Improving performance of mammalian microRNA target prediction
Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However,...
Saved in:
| Published in | BMC bioinformatics Vol. 11; no. 1; p. 476 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
22.09.2010
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-11-476 |
Cover
| Abstract | Background
MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms.
Results
A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at
http://compgenomics.utsa.edu/svmicro.html
.
Conclusions
A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available. |
|---|---|
| AbstractList | MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms.BACKGROUNDMicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms.A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html.RESULTSA comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html.A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available.CONCLUSIONSA 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available. MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html. A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available. MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html. A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available. Abstract Background: MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. Results: A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html . Conclusions: A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available. Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. Results A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at Conclusions A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available. Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. Results A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html . Conclusions A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available. |
| ArticleNumber | 476 |
| Audience | Academic |
| Author | Liu, Hui Gao, Shou-Jiang Yue, Dong Huang, Yufei Chen, Yidong |
| AuthorAffiliation | 2 Department of ECE, University of Texas at San Antonio, USA 3 Department of Pediatrics, University of Texas Health Science Center at San Antonio, USA 1 SIEE, China University of Mining and Technology, Xuzhou, Jiangsu, China 4 Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, USA 5 Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, USA |
| AuthorAffiliation_xml | – name: 4 Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, USA – name: 2 Department of ECE, University of Texas at San Antonio, USA – name: 5 Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, USA – name: 3 Department of Pediatrics, University of Texas Health Science Center at San Antonio, USA – name: 1 SIEE, China University of Mining and Technology, Xuzhou, Jiangsu, China |
| Author_xml | – sequence: 1 givenname: Hui surname: Liu fullname: Liu, Hui organization: SIEE, China University of Mining and Technology – sequence: 2 givenname: Dong surname: Yue fullname: Yue, Dong organization: Department of ECE, University of Texas at San Antonio – sequence: 3 givenname: Yidong surname: Chen fullname: Chen, Yidong organization: Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio – sequence: 4 givenname: Shou-Jiang surname: Gao fullname: Gao, Shou-Jiang organization: Department of Pediatrics, University of Texas Health Science Center at San Antonio, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio – sequence: 5 givenname: Yufei surname: Huang fullname: Huang, Yufei email: yufei.huang@utsa.edu organization: Department of ECE, University of Texas at San Antonio, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20860840$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1v1DAQxSNURD_gzglFcEAcUuzYTuwDSKuKj5UqkAqcrYljB1eJndpJof89Drss3QoQyiHO5PdeJm_mODtw3ukse4zRKca8eolpjYsSI1ZgXNC6upcd7UoHt86H2XGMlwjhmiP2IDssEa8Qp-goe7UexuCvrevyUQfjwwBO6dybfIBhgN6Cywergr_4sMonCJ2e8jHo1qrJevcwu2-gj_rR9n6SfXn75vPZ--L847v12eq8UBXBU2EEUsIgRlpclVqxsuKqVIAa3BIiuMCIckGbWpjKUKaaGpmyFppVlBJghJKTbL3xbT1cyjHYAcKN9GDlz4IPnYQwWdVrCSVRUHPTmEpTARwMUVWTTgo1mtYkeeGN1-xGuPkGfb8zxEguscolN7nklh5lijVpXm8049wMulXaTQH6vUb23zj7VXb-WpaCsRrhZPB8axD81azjJAcble57cNrPUdZMYEIZ54l8eoe89HNwKV0pUGoOEYwS9GwDdZB-2Trj01fVYilXJRFUYIGXrk__QKWr1WmkaZOMTfU9wYs9QWIm_X3qYI5Rrj9d7LNPbkeyy-LXaiWg2gBpeWIM2khlJ1i2JnVh-3-Fje4I_2M-25nGhLpOh9-h_VXzAzgV_DI |
| CitedBy_id | crossref_primary_10_4137_CIN_S30563 crossref_primary_10_1371_journal_pone_0032208 crossref_primary_10_1016_j_omtn_2020_09_031 crossref_primary_10_3389_fgene_2019_01330 crossref_primary_10_1093_bioinformatics_btt599 crossref_primary_10_31083_j_fbl2709269 crossref_primary_10_1186_s13059_014_0500_5 crossref_primary_10_1016_j_csbj_2021_10_025 crossref_primary_10_3390_ijms22115478 crossref_primary_10_31590_ejosat_1011033 crossref_primary_10_1186_s13040_015_0052_6 crossref_primary_10_3390_cancers13081833 crossref_primary_10_3390_genes13020370 crossref_primary_10_1038_s41467_021_22650_x crossref_primary_10_1186_s12859_021_04164_x crossref_primary_10_3390_cells9112525 crossref_primary_10_3390_genes13122323 crossref_primary_10_1016_j_jprot_2019_01_003 crossref_primary_10_1093_bib_bby054 crossref_primary_10_7554_eLife_05005 crossref_primary_10_1016_j_compbiolchem_2021_107448 crossref_primary_10_1186_1752_0509_8_36 crossref_primary_10_1093_nar_gkad645 crossref_primary_10_1098_rsob_160181 crossref_primary_10_1142_S0219720015500171 crossref_primary_10_1109_JBHI_2020_2987034 crossref_primary_10_1016_j_csbj_2024_07_014 crossref_primary_10_4028_www_scientific_net_AMM_577_1245 crossref_primary_10_1186_s13040_015_0075_z crossref_primary_10_1093_nar_gkx1144 crossref_primary_10_1016_j_gene_2014_10_043 crossref_primary_10_1093_bib_bbu044 crossref_primary_10_1155_2013_360678 crossref_primary_10_1186_s12859_023_05564_x crossref_primary_10_1017_S1751731113001183 crossref_primary_10_3389_fgene_2014_00246 crossref_primary_10_1093_nar_gks841 crossref_primary_10_1371_journal_pone_0098070 crossref_primary_10_1177_1176934320925752 crossref_primary_10_1128_JVI_06855_11 crossref_primary_10_4161_rna_9_1_18121 crossref_primary_10_1002_jcp_27949 crossref_primary_10_3389_fgene_2020_00088 crossref_primary_10_1093_nar_gkz074 crossref_primary_10_1109_MSP_2011_943013 crossref_primary_10_1039_C4MB00585F crossref_primary_10_1186_1471_2164_11_S3_S12 crossref_primary_10_1186_s12943_022_01694_7 crossref_primary_10_1159_000449202 crossref_primary_10_1161_CIRCGENETICS_113_000125 crossref_primary_10_1089_regen_2023_0027 crossref_primary_10_1371_journal_ppat_1003857 crossref_primary_10_1186_1471_2105_15_S7_S4 crossref_primary_10_1371_journal_pone_0147067 crossref_primary_10_1261_rna_033282_112 crossref_primary_10_1038_srep08004 crossref_primary_10_1039_C5MB00245A crossref_primary_10_1093_bib_bbw084 crossref_primary_10_2174_1389201024666221025114500 |
| Cites_doi | 10.1186/1471-2105-7-411 10.1093/nar/gki364 10.1038/nmeth954 10.1371/journal.pbio.0030085 10.1101/gad.1184704 10.1016/j.ydbio.2003.12.003 10.1186/gb-2003-5-1-r1 10.1038/nature07242 10.1093/nar/gkn851 10.1038/ng2135 10.1038/nrm2619 10.1371/journal.pone.0002126 10.1261/rna.7290705 10.1007/s00430-007-0070-1 10.1007/978-1-59745-583-1_20 10.1371/journal.pbio.0020363 10.1016/j.cell.2006.07.031 10.1186/1471-2164-6-88 10.1016/S0092-8674(04)00045-5 10.1137/1116025 10.1093/bioinformatics/btm484 10.1142/S0219720005001004 10.1089/dna.2006.0551 10.1098/rspb.1994.0040 10.1093/bioinformatics/btm595 10.1007/978-0-387-84858-7 10.1038/ng1536 10.1038/nature07228 10.1261/rna.5248604 10.1016/j.molcel.2007.06.017 |
| ContentType | Journal Article |
| Copyright | Liu et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2010 BioMed Central Ltd. 2010 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2010 Liu et al; licensee BioMed Central Ltd. 2010 Liu et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Liu et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2010 BioMed Central Ltd. – notice: 2010 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2010 Liu et al; licensee BioMed Central Ltd. 2010 Liu et al; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2105-11-476 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (ProQuest) Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 476 |
| ExternalDocumentID | oai_doaj_org_article_a23ca78fbf6e49a8af3c6b49ac0be473 10.1186/1471-2105-11-476 PMC2955701 2501705321 A239491916 20860840 10_1186_1471_2105_11_476 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA132637 – fundername: NCI NIH HHS grantid: CA096512 – fundername: NCI NIH HHS grantid: R01 CA096512 – fundername: NCRR NIH HHS grantid: 1UL1RR025767-01 – fundername: NCATS NIH HHS grantid: UL1 TR000149 – fundername: NCI NIH HHS grantid: P30 CA054174-17 – fundername: NCI NIH HHS grantid: CA124332 – fundername: NCRR NIH HHS grantid: UL1 RR025767 – fundername: NCI NIH HHS grantid: R01 CA124332 |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR IPNFZ ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c631t-f90c9f053d162ec5268c2ca0b1d33989104894b79f6f45cb70f279e56443a5343 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:53:05 EDT 2025 Tue Aug 19 19:51:10 EDT 2025 Tue Sep 30 16:49:41 EDT 2025 Wed Oct 01 14:31:08 EDT 2025 Mon Oct 06 18:39:55 EDT 2025 Mon Oct 20 22:10:22 EDT 2025 Mon Oct 20 16:44:07 EDT 2025 Thu Oct 16 15:05:51 EDT 2025 Mon Jul 21 06:05:28 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Wed Oct 01 04:15:18 EDT 2025 Sat Sep 06 07:27:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Seed Region Support Vector Machine Positive Site Conservation Score miRNA Target |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c631t-f90c9f053d162ec5268c2ca0b1d33989104894b79f6f45cb70f279e56443a5343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-11-476 |
| PMID | 20860840 |
| PQID | 901860310 |
| PQPubID | 44065 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a23ca78fbf6e49a8af3c6b49ac0be473 unpaywall_primary_10_1186_1471_2105_11_476 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2955701 proquest_miscellaneous_759134588 proquest_journals_901860310 gale_infotracmisc_A239491916 gale_infotracacademiconefile_A239491916 gale_incontextgauss_ISR_A239491916 pubmed_primary_20860840 crossref_citationtrail_10_1186_1471_2105_11_476 crossref_primary_10_1186_1471_2105_11_476 springer_journals_10_1186_1471_2105_11_476 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-09-22 |
| PublicationDateYYYYMMDD | 2010-09-22 |
| PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2010 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | A Grimson (3933_CR5) 2007; 27 SK Kim (3933_CR17) 2006; 7 V Rusinov (3933_CR11) 2005 C Burgler (3933_CR12) 2005; 6 KC Miranda (3933_CR13) 2006; 126 M Yousef (3933_CR14) 2007; 23 3933_CR3 J Brennecke (3933_CR24) 2005; 3 AJ Enright (3933_CR7) 2003; 5 M Kertesz (3933_CR8) 2007; 39 M Selbach (3933_CR30) 2008; 455 M Kiriakidou (3933_CR9) 2004; 18 P Brodersen (3933_CR19) 2009; 10 M Lindow (3933_CR20) 2007; 26 C Ding (3933_CR26) 2005; 3 C Cortes (3933_CR22) 1995; 20 M Rehmsmeier (3933_CR10) 2004; 10 B John (3933_CR28) 2004; 2 D Baek (3933_CR29) 2008; 455 NS Sokol (3933_CR21) 2008; 420 DP Bartel (3933_CR1) 2004; 116 N Rajewsky (3933_CR15) 2004; 267 D Krek AaGun (3933_CR6) 2005; 37 P Schuster (3933_CR25) 1994; 255 IMEN Xiaowei Wang (3933_CR16) 2008; 24 V Vapnik (3933_CR23) 1971; 16 RT Trevor Hastie (3933_CR27) 2009 P Sethupathy (3933_CR4) 2006; 3 O Saetrom (3933_CR18) 2005; 11 F Grey (3933_CR2) 2008; 197 DG Hendrickson (3933_CR31) 2008; 3 19145236 - Nat Rev Mol Cell Biol. 2009 Feb;10(2):141-8 15723116 - PLoS Biol. 2005 Mar;3(3):e85 15852500 - J Bioinform Comput Biol. 2005 Apr;3(2):185-205 15943864 - BMC Genomics. 2005;6:88 18461144 - PLoS One. 2008;3(5):e2126 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105 14709173 - Genome Biol. 2003;5(1):R1 17925304 - Bioinformatics. 2007 Nov 15;23(22):2987-92 17504029 - DNA Cell Biol. 2007 May;26(5):339-51 15013811 - Dev Biol. 2004 Mar 15;267(2):529-35 15383676 - RNA. 2004 Oct;10(10):1507-17 15980566 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W696-700 7517565 - Proc Biol Sci. 1994 Mar 22;255(1344):279-84 16978421 - BMC Bioinformatics. 2006;7:411 17893677 - Nat Genet. 2007 Oct;39(10):1278-84 17060911 - Nat Methods. 2006 Nov;3(11):881-6 15806104 - Nat Genet. 2005 May;37(5):495-500 15131085 - Genes Dev. 2004 May 15;18(10):1165-78 18641957 - Methods Mol Biol. 2008;420:319-34 18048393 - Bioinformatics. 2008 Feb 1;24(3):325-32 15928346 - RNA. 2005 Jul;11(7):995-1003 15502875 - PLoS Biol. 2004 Nov;2(11):e363 14744438 - Cell. 2004 Jan 23;116(2):281-97 18668037 - Nature. 2008 Sep 4;455(7209):64-71 18996891 - Nucleic Acids Res. 2009 Jan;37(Database issue):D105-10 18668040 - Nature. 2008 Sep 4;455(7209):58-63 16990141 - Cell. 2006 Sep 22;126(6):1203-17 18087721 - Med Microbiol Immunol. 2008 Jun;197(2):261-7 |
| References_xml | – volume: 7 start-page: 411 year: 2006 ident: 3933_CR17 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-411 – start-page: W696 volume-title: Nucleic Acids Res year: 2005 ident: 3933_CR11 doi: 10.1093/nar/gki364 – volume: 3 start-page: 881 issue: 11 year: 2006 ident: 3933_CR4 publication-title: Nature methods doi: 10.1038/nmeth954 – volume: 3 start-page: e85 issue: 3 year: 2005 ident: 3933_CR24 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030085 – volume: 18 start-page: 1165 issue: 10 year: 2004 ident: 3933_CR9 publication-title: Genes Dev doi: 10.1101/gad.1184704 – volume: 267 start-page: 529 issue: 2 year: 2004 ident: 3933_CR15 publication-title: Dev Biol doi: 10.1016/j.ydbio.2003.12.003 – volume: 5 start-page: R1 issue: 1 year: 2003 ident: 3933_CR7 publication-title: Genome Biol doi: 10.1186/gb-2003-5-1-r1 – volume: 455 start-page: 64 issue: 7209 year: 2008 ident: 3933_CR29 publication-title: Nature doi: 10.1038/nature07242 – ident: 3933_CR3 doi: 10.1093/nar/gkn851 – volume: 39 start-page: 1278 issue: 10 year: 2007 ident: 3933_CR8 publication-title: Nat Genet doi: 10.1038/ng2135 – volume: 10 start-page: 141 issue: 2 year: 2009 ident: 3933_CR19 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2619 – volume: 3 start-page: e2126 issue: 5 year: 2008 ident: 3933_CR31 publication-title: PLoS ONE doi: 10.1371/journal.pone.0002126 – volume: 11 start-page: 995 issue: 7 year: 2005 ident: 3933_CR18 publication-title: RNA doi: 10.1261/rna.7290705 – volume: 197 start-page: 261 issue: 2 year: 2008 ident: 3933_CR2 publication-title: Med Microbiol Immunol doi: 10.1007/s00430-007-0070-1 – volume: 420 start-page: 319 year: 2008 ident: 3933_CR21 publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-583-1_20 – volume: 2 start-page: e363 issue: 11 year: 2004 ident: 3933_CR28 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020363 – volume: 126 start-page: 1203 issue: 6 year: 2006 ident: 3933_CR13 publication-title: Cell doi: 10.1016/j.cell.2006.07.031 – volume: 6 start-page: 88 issue: 1 year: 2005 ident: 3933_CR12 publication-title: BMC Genomics doi: 10.1186/1471-2164-6-88 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 3933_CR22 publication-title: Machine Learning – volume: 116 start-page: 281 issue: 2 year: 2004 ident: 3933_CR1 publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 16 start-page: 264 issue: 2 year: 1971 ident: 3933_CR23 publication-title: Theory of Probability and its Applications doi: 10.1137/1116025 – volume: 23 start-page: 2987 issue: 22 year: 2007 ident: 3933_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm484 – volume: 3 start-page: 185 issue: 2 year: 2005 ident: 3933_CR26 publication-title: Journal of Bioinformatics and Computational Biology doi: 10.1142/S0219720005001004 – volume: 26 start-page: 339 issue: 5 year: 2007 ident: 3933_CR20 publication-title: DNA Cell Biol doi: 10.1089/dna.2006.0551 – volume: 255 start-page: 279 issue: 1344 year: 1994 ident: 3933_CR25 publication-title: Proc Biol Sci doi: 10.1098/rspb.1994.0040 – volume: 24 start-page: 325 year: 2008 ident: 3933_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm595 – volume-title: The elements of Statistical Learning year: 2009 ident: 3933_CR27 doi: 10.1007/978-0-387-84858-7 – volume: 37 start-page: 495 year: 2005 ident: 3933_CR6 publication-title: Nature Genetics doi: 10.1038/ng1536 – volume: 455 start-page: 58 issue: 7209 year: 2008 ident: 3933_CR30 publication-title: Nature doi: 10.1038/nature07228 – volume: 10 start-page: 1507 issue: 10 year: 2004 ident: 3933_CR10 publication-title: RNA doi: 10.1261/rna.5248604 – volume: 27 start-page: 91 issue: 1 year: 2007 ident: 3933_CR5 publication-title: Mol Cell doi: 10.1016/j.molcel.2007.06.017 – reference: 15131085 - Genes Dev. 2004 May 15;18(10):1165-78 – reference: 16978421 - BMC Bioinformatics. 2006;7:411 – reference: 7517565 - Proc Biol Sci. 1994 Mar 22;255(1344):279-84 – reference: 14709173 - Genome Biol. 2003;5(1):R1 – reference: 16990141 - Cell. 2006 Sep 22;126(6):1203-17 – reference: 17504029 - DNA Cell Biol. 2007 May;26(5):339-51 – reference: 15980566 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W696-700 – reference: 19145236 - Nat Rev Mol Cell Biol. 2009 Feb;10(2):141-8 – reference: 15852500 - J Bioinform Comput Biol. 2005 Apr;3(2):185-205 – reference: 15928346 - RNA. 2005 Jul;11(7):995-1003 – reference: 15013811 - Dev Biol. 2004 Mar 15;267(2):529-35 – reference: 18996891 - Nucleic Acids Res. 2009 Jan;37(Database issue):D105-10 – reference: 15383676 - RNA. 2004 Oct;10(10):1507-17 – reference: 15502875 - PLoS Biol. 2004 Nov;2(11):e363 – reference: 17893677 - Nat Genet. 2007 Oct;39(10):1278-84 – reference: 14744438 - Cell. 2004 Jan 23;116(2):281-97 – reference: 17060911 - Nat Methods. 2006 Nov;3(11):881-6 – reference: 15723116 - PLoS Biol. 2005 Mar;3(3):e85 – reference: 15943864 - BMC Genomics. 2005;6:88 – reference: 18641957 - Methods Mol Biol. 2008;420:319-34 – reference: 18087721 - Med Microbiol Immunol. 2008 Jun;197(2):261-7 – reference: 18461144 - PLoS One. 2008;3(5):e2126 – reference: 18668037 - Nature. 2008 Sep 4;455(7209):64-71 – reference: 17925304 - Bioinformatics. 2007 Nov 15;23(22):2987-92 – reference: 15806104 - Nat Genet. 2005 May;37(5):495-500 – reference: 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105 – reference: 18048393 - Bioinformatics. 2008 Feb 1;24(3):325-32 – reference: 18668040 - Nature. 2008 Sep 4;455(7209):58-63 |
| SSID | ssj0017805 |
| Score | 2.319231 |
| Snippet | Background
MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the... MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein... Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the... Abstract Background: MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene... Abstract Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 476 |
| SubjectTerms | 3' Untranslated Regions 5' Untranslated Regions Algorithms Animals Binding sites Bioinformatics Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences Gene expression Gene Silencing Genetic algorithms Genetic aspects Genome Genomes Humans Infections Information management Life Sciences Mammals Mammals - genetics Mammals - metabolism Microarrays MicroRNA MicroRNAs - chemistry MicroRNAs - metabolism Prediction theory Proteomics Quality management Research Article RNA, Untranslated - chemistry RNA, Untranslated - metabolism Studies |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kIOqD-G3aKkEEsRBuk91sdh9PsVTBPlQLfVs2m10r3OWO3h3S_74z-bqLon3x7ZKdcMnMb7Mz2ZnfALxVqeOsrETCBWcYoAiLU6rySYa-ueMpR5ee6p2_nsqTc_HlIr_YafVFOWEtPXCruInNuLOFCmWQXmirbOBOlvjLsdKLouH5ZEr3wVS3f0BM_U1dUZEmGNTk_QalkpPhHFWUCeIa2VmQGt7-P9_OO8vT76mTw_7pA7i3qZf2-pedzXaWqONH8LDzLeNp-0yP4Y6vn8Ddttvk9VPYfkCIl9tygXgR4rmdz5vvHfGc8vPOTqdxmyEeL69oI4eM9wzOjz99_3iSdN0TEid5uk6CZk4HnGNVKjPviNbFZc6yMq041wrdBKG0KAsdZBC5KwsWskL7HB0kbnM03XPYqxe1fwlx6VNmPVovd04UrlK2sqGpmQ3WK8YjmPQqNK6jFqcOFzPThBhKGlK6IaXjoUGlR_B-uGLZ0mr8Q_YDWWWQI0Ls5gTCxHQwMbfBJII3ZFNDlBc15dT8sJvVynz-dmam1B1eY9yK__SuEwoLvH9nuxIF1AKxZI0kD0eSOCfdaPigh47p3gkrg56Xop7eLIJ4GKULKc2t9ovNyhQ5JULkSkXwosXZ8NQIcskwGo-gGCFwpJbxSP3zsuELzzTxrKURHPVY3d7U35V-NKD5Vgvt_w8LHcD9NjNDJ1l2CHvrq41_hQ7funzdzO0brQFLsw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEB_qFVE_iG9jqwQRxEK4JLtJNh9ErtJShR5yWui3ZbPZrcJdEu-B9L93Jq-7KNZvd7cTbjOvnd2d-Q3AGxFo5mc59xhnPm5QuEKTyo0XYmyuWcAwpKd65_NpfHbBP19Gl3tw3tXCUFpl5xNrR52Xms7Ix7huCeqI7H-ofnrUNIouV7sOGqrtrJC_rxHGbsF-SMBYI9g_Ppl-mfXXCgTg391VingcoGf2kC6i4jJOsCM7a1MN4f-3o95Zqf7MouyvUu_BnU1Rqetfaj7fWa1OH8D9Nsx0J41ePIQ9UzyC203jyevHsD1LcKtt5YBbWnehFov66MNdUKrebDpxm2Rxt1rSnQ7J8QlcnJ58-3jmtY0UPB2zYO3Z1NepRXPLgzg0mhBedKiVnwU5Y6nAiIGLlGdJamPLI50lvg2T1EQYKzEVoRSfwqgoC_Mc3MwEvjIoyEhrnuhcqFzZunzWKiN85sC4Y6HULco4NbuYy3q3IWJJTJfEdPwqkekOvOufqBqEjRtoj0kqPR1hY9c_lMsr2ZqaVCHTKhE2s7HhqRLKMh1n-En7meEJTvE1yVQS-kVB6TVXarNayU9fZ3JCjeJT3MLiP71tiWyJ89eqrVZALhBg1oDycECJ5qkHwwed6sjWPaxkr8wOuP0oPUgZb4UpNyuZRJQTEQnhwLNGz_q3DnEb6uPG3IFkoIEDtgxHih_fa-jwMCXItcCBo05Xt5P6N9OPem3-r4Re3Pi6B3C3yb5IvTA8hNF6uTEvMahbZ69aU_0NeUhFyw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BEGI8ID5H2EARQkJMiubEjmM_dtOmgcQeBpP2ZjmODUhtWq2t0P577pI0bTY-xFtbn1v3PuI7393PAO9U6jgrK5FwwRkGKMKiSVU-ydA3dzzl6NJTv_PnM3l6IT5d5pfdeQf1wmzm71MlD1J8eCYYluTU_yUKeRfu4RYlm7SsPOrzBYTMv0pC_mbWYNNpsPlvP4E3tqCb5ZF9jvQhPFjWM3v9047HG9vQyWN41PmP8agV-BO44-uncL-9UfL6GawPCeLZuiUgnoZ4YieT5kwjnlAN3vnZKG6rwOPZFSVrSEDP4eLk-OvRadLdkJA4ydNFEjRzOqAdVanMvCPoFpc5y8q04lwrdAWE0qIsdJBB5K4sWMgK7XN0grjNUTwvYKue1v4lxKVPmfUoodw5UbhK2cqGpi82WK8Yj-BgxULjOvhwusVibJowQklDTDfEdHxrkOkRfOhnzFrojL_QHpJUejoCvW4-QF0wnQ0Zm3FnCxXKIL3QVtnAnSzxlWOlFwUu8S3J1BCsRU11M9_scj43H7-cmxHdAK8xNsVfet8RhSmu39muDQG5QEhYA8q9ASXanRsM765Ux3R2PzfoXSm6t5tFEPejNJFK2Wo_Xc5NkVOxQ65UBDutnvX_OsP4kmHEHUEx0MABW4Yj9Y_vDSZ4pglLLY1gf6Wr60X9men7vTb_U0Kv_uebd2G7rbLQSZbtwdbiaulfo_O2KN80dvsLhSk3RQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdGJwR84P0IGyhCSIhJaZPYSZyPBTENJKppUGl8smzHHhNtUtpGaPz13OXVZryExLemPivO5e58F9_9jpDnPNDUVxnzKKM-BChMgkplxgvBN9c0oODSY73z-0l8NGXvTqPTHXLc1sKouVbnRQMaikDFw-0y9Fld5YBdFMxytMhsrfQ8HgVgZD0IXyKsE2NJfIXsxhF45wOyO50cjz9VRUYNSXta-Ytpvd2pAvH_2VRv7VWX8yi7w9Qb5FqZL-TFNzmbbe1Xh7fI1_ZJ6zSVL8NyrYb6-yUQyP_JitvkZuPcuuNaGu-QHZPfJVfrdpcX98jmC4a72NQruIV153I-rz64uHNMEDyZjN06Rd1dLPEkCaXnPpkevvn4-shr2jd4OqbB2rOpr1MLSp4FcWg04sroUEtfBRmlKQc_hfGUqSS1sWWRVolvwyQ1EXhoVEYgOw_IIC9y84i4ygS-NCA-kdYs0RmXmbRV0a6VhvvUIaP2tQndYJtji42ZqGIcHgtkikCmwKUApjjkZTdjUeN6_IH2FUpCR4eI3NUfxfJMNAouZEi1TLhVNjYslVxaqmMFv7SvDEtgic9QjgRibuSY1HMmy9VKvP1wIsbYnj6FwBnu9KIhsgWsX8umRgK4gDBdPcr9HiUYBd0b3mvFVTRGaSXA9ePYVNx3iNuN4kTMs8tNUa5EEmEmRsS5Qx7Wst09dQjBr88ZTE56Ut9jS38kP_9cAZaHKQK9BQ45aPVjs6jfM_2g06C_vqHH_0K8R67XKSCpF4b7ZLBeluYJeJZr9bQxFj8A5LpvFw priority: 102 providerName: Unpaywall |
| Title | Improving performance of mammalian microRNA target prediction |
| URI | https://link.springer.com/article/10.1186/1471-2105-11-476 https://www.ncbi.nlm.nih.gov/pubmed/20860840 https://www.proquest.com/docview/901860310 https://www.proquest.com/docview/759134588 https://pubmed.ncbi.nlm.nih.gov/PMC2955701 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-11-476 https://doaj.org/article/a23ca78fbf6e49a8af3c6b49ac0be473 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELfYJgR8QLwJG1WEkBCTsiWxkzgfEMqqlVFp1dRRqXyyHMceSG1S-hD0v-cuSdMFBogvfcSXNL1HfGff_Y6Q19xT1E0z5lBGXQhQmASTyrTjg2-uqEfBpcd65_NBeDZi_XEw3pZH1wxc3BjaYT-p0Xxy9OPb-j0Y_LvS4Hl47MED1oHQJcAaMRaFO2QP5qkYGzmcs-2eAqL3l7VGNfVm0_KGK7QmqRLL__cn9rUp69d0ymZP9R65s8pncv1dTibXpq3eA3K_9jftpFKQh-SWzh-R21UHyvVjsl1UsGfbEgK7MPZUTqflGog9xZy94SCxq6xxezbHzR0U6BMy6p1-6p45dUcFR4XUWzomdlVswO4yL_S1QqgX5Svppl5GaczBdWA8ZmkUm9CwQKWRa_wo1gE4TVQGIM6nZDcvcv2c2Kn2XKlBooFSLFIZl5k0ZR2tkZq71CLHGxYKVcONY9eLiSjDDh4KZLpApsNXAUy3yNvmjFkFtfEX2hOUSkOHINnlgWJ-JWqbE9KnSkbcpCbULJZcGqrCFD4pN9Usglt8hTIVCIORY57NlVwtFuLj5VAk2DE-hlgWfulNTWQKuH8l67IF4AIiZ7UoD1qUYKeqNby_UR2xUXMB3hjHPt-uRexmFE_E1LdcF6uFiAJMjgg4t8izSs-af-1DPOpChG6RqKWBLba0R_KvX0oMcT9G7DXPIocbXd3e1J-Zftho8z8l9OI_pLlP7lZJGbHj-wdkdzlf6Zfg6y3TDtmJxhG88t6HDtlLkv5lH95PTgcXQzjaDbudchWlU5o6jIwGF8nnn9KaT6g |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDaPCAuBM2IEIgxKSoSewkzgNC5TK1bOvD2KS-eY5jD6Q2Cb1o6kfxj5yTWxsQ42lvbX3S2Mfnap8LIa-5p6ibpMyhjLrgoDAJLJVqxwfbXFGPgkmP-c7Ho3Bwxr6Og_EW-dXkwmBYZSMTS0Gd5grPyHugtzh2RHY_FD8dbBqFl6tNB42KKg716hI8tvn74WfY3je-f_Dl9NPAqZsKOCqk3sIxsatiA6SXeqGvFVY7Ub6SbuKllMYctCfjMUui2ISGBSqJXONHsQ7AbqAygBXB_94gN2FlLjZMiMatf-dhe4DmJpSHPQ_kvgMeVYCpawyLmmxovrJBwN9qYEMP_hmj2V7U3iE7y6yQq0s5mWzowoN75G5txNr9iuruky2dPSC3qraWq4dkfVJhF-u8BDs39lROp-XBij3FQMCTUd-uQtHtYoY3Rkglj8jZtWD0MdnO8kw_JXaiPVdqIJNAKRaplMtUmjI510jNXWqRXoNCoeoa5thKYyJKX4aHApEuEOnwVQDSLfKufaKo6ndcAfsRd6WFw8rb5Q_57ELUjCykT5WMuElMqFksuTRUhQl8Um6iWQRTfIV7KrC2RobBOxdyOZ-L4bcT0cc29DE4yPCmtzWQyWH-Sta5EIAFLMfVgdzrQALzq87wbkM6ohY-c9GyikXsdhQfxHi6TOfLuYgCjLgIOLfIk4rO2lX74OS64PZbJOpQYAct3ZHsx_eyMLkfY0E3zyL7Da2uJ_VvpO-31PzfHXp25XJfkp3B6fGROBqODnfJ7SrOI3Z8f49sL2ZL_RzMx0XyomRam5xft5T4DTNgeh4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdgiNcHxHOEDYgQEmJSVCd2EvtjKVQbjwoNJu2b5Tj2mNQmVdMK7b_nLq8uPMW3prZT9x72nX33O0JeitAwmuU8YJxRcFC4BpXKbRCBbW5YyMCkx3znT7Pk8IS_P41P2wO3qot2764km5wGRGkq1qNl7hoVF8kohCU1AGclxqwwniZXyTUOextWMJgkk_4WAfH6u6vJ34wabEU1Yv-v6_KljennoMn-5vQ2ubkplvriu57PL21O07vkTmtV-uNGDO6RK7a4T643dSYvHpDt0YG_3CYK-KXzF3qxqE86_AVG5h3Pxn4TG-4vV3iFg2x7SE6m775ODoO2bkJgEhauAyepkQ60Kw-TyBoEdDGR0TQLc8akAAOBC8mzVLrE8dhkKXVRKm0MphHTMTDtEdkpysI-Jn5mQ6ot8C02hqcmFzrXrs6WddoKyjwy6kioTAsqjrUt5qp2LkSikOgKiQ6PCojukdf9iGUDqPGXvm-QK30_hMKuvyhXZ6rVLKUjZnQqXOYSy6UW2jGTZPDJ0MzyFKb4AnmqEOyiwGiaM72pKnX05ViNsS68BI8VfulV28mVMH-j2-QEoALiYw167g96gjaaQfNeJzqqXQ0qBTaXwGre1CN-34oDMcCtsOWmUmmMIRCxEB7ZbeSs_9cReJ0U_HCPpAMJHJBl2FKcf6uRwiOJCGuhRw46Wd1O6s9EP-il-Z8cevI_b35Obnx-O1Ufj2Yf9sitJgxDBlG0T3bWq419CtbdOntWq_APxc5Cew |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdGJwR84P0IGyhCSIhJaZPYSZyPBTENJKppUGl8smzHHhNtUtpGaPz13OXVZryExLemPivO5e58F9_9jpDnPNDUVxnzKKM-BChMgkplxgvBN9c0oODSY73z-0l8NGXvTqPTHXLc1sKouVbnRQMaikDFw-0y9Fld5YBdFMxytMhsrfQ8HgVgZD0IXyKsE2NJfIXsxhF45wOyO50cjz9VRUYNSXta-Ytpvd2pAvH_2VRv7VWX8yi7w9Qb5FqZL-TFNzmbbe1Xh7fI1_ZJ6zSVL8NyrYb6-yUQyP_JitvkZuPcuuNaGu-QHZPfJVfrdpcX98jmC4a72NQruIV153I-rz64uHNMEDyZjN06Rd1dLPEkCaXnPpkevvn4-shr2jd4OqbB2rOpr1MLSp4FcWg04sroUEtfBRmlKQc_hfGUqSS1sWWRVolvwyQ1EXhoVEYgOw_IIC9y84i4ygS-NCA-kdYs0RmXmbRV0a6VhvvUIaP2tQndYJtji42ZqGIcHgtkikCmwKUApjjkZTdjUeN6_IH2FUpCR4eI3NUfxfJMNAouZEi1TLhVNjYslVxaqmMFv7SvDEtgic9QjgRibuSY1HMmy9VKvP1wIsbYnj6FwBnu9KIhsgWsX8umRgK4gDBdPcr9HiUYBd0b3mvFVTRGaSXA9ePYVNx3iNuN4kTMs8tNUa5EEmEmRsS5Qx7Wst09dQjBr88ZTE56Ut9jS38kP_9cAZaHKQK9BQ45aPVjs6jfM_2g06C_vqHH_0K8R67XKSCpF4b7ZLBeluYJeJZr9bQxFj8A5LpvFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+performance+of+mammalian+microRNA+target+prediction&rft.jtitle=BMC+bioinformatics&rft.au=Liu%2C+Hui&rft.au=Yue%2C+Dong&rft.au=Chen%2C+Yidong&rft.au=Gao%2C+Shou-Jiang&rft.date=2010-09-22&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2F1471-2105-11-476&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1471_2105_11_476 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |