Improving performance of mammalian microRNA target prediction

Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However,...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 11; no. 1; p. 476
Main Authors Liu, Hui, Yue, Dong, Chen, Yidong, Gao, Shou-Jiang, Huang, Yufei
Format Journal Article
LanguageEnglish
Published London BioMed Central 22.09.2010
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-11-476

Cover

Abstract Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. Results A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html . Conclusions A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available.
AbstractList MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms.BACKGROUNDMicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms.A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html.RESULTSA comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html.A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available.CONCLUSIONSA 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available.
MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html. A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available.
MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html. A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available.
Abstract Background: MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. Results: A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html . Conclusions: A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available.
Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. Results A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at Conclusions A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available.
Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. Results A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html . Conclusions A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available.
ArticleNumber 476
Audience Academic
Author Liu, Hui
Gao, Shou-Jiang
Yue, Dong
Huang, Yufei
Chen, Yidong
AuthorAffiliation 2 Department of ECE, University of Texas at San Antonio, USA
3 Department of Pediatrics, University of Texas Health Science Center at San Antonio, USA
1 SIEE, China University of Mining and Technology, Xuzhou, Jiangsu, China
4 Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, USA
5 Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, USA
AuthorAffiliation_xml – name: 4 Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, USA
– name: 2 Department of ECE, University of Texas at San Antonio, USA
– name: 5 Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, USA
– name: 3 Department of Pediatrics, University of Texas Health Science Center at San Antonio, USA
– name: 1 SIEE, China University of Mining and Technology, Xuzhou, Jiangsu, China
Author_xml – sequence: 1
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  organization: SIEE, China University of Mining and Technology
– sequence: 2
  givenname: Dong
  surname: Yue
  fullname: Yue, Dong
  organization: Department of ECE, University of Texas at San Antonio
– sequence: 3
  givenname: Yidong
  surname: Chen
  fullname: Chen, Yidong
  organization: Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio
– sequence: 4
  givenname: Shou-Jiang
  surname: Gao
  fullname: Gao, Shou-Jiang
  organization: Department of Pediatrics, University of Texas Health Science Center at San Antonio, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio
– sequence: 5
  givenname: Yufei
  surname: Huang
  fullname: Huang, Yufei
  email: yufei.huang@utsa.edu
  organization: Department of ECE, University of Texas at San Antonio, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20860840$$D View this record in MEDLINE/PubMed
BookMark eNqNks1v1DAQxSNURD_gzglFcEAcUuzYTuwDSKuKj5UqkAqcrYljB1eJndpJof89Drss3QoQyiHO5PdeJm_mODtw3ukse4zRKca8eolpjYsSI1ZgXNC6upcd7UoHt86H2XGMlwjhmiP2IDssEa8Qp-goe7UexuCvrevyUQfjwwBO6dybfIBhgN6Cywergr_4sMonCJ2e8jHo1qrJevcwu2-gj_rR9n6SfXn75vPZ--L847v12eq8UBXBU2EEUsIgRlpclVqxsuKqVIAa3BIiuMCIckGbWpjKUKaaGpmyFppVlBJghJKTbL3xbT1cyjHYAcKN9GDlz4IPnYQwWdVrCSVRUHPTmEpTARwMUVWTTgo1mtYkeeGN1-xGuPkGfb8zxEguscolN7nklh5lijVpXm8049wMulXaTQH6vUb23zj7VXb-WpaCsRrhZPB8axD81azjJAcble57cNrPUdZMYEIZ54l8eoe89HNwKV0pUGoOEYwS9GwDdZB-2Trj01fVYilXJRFUYIGXrk__QKWr1WmkaZOMTfU9wYs9QWIm_X3qYI5Rrj9d7LNPbkeyy-LXaiWg2gBpeWIM2khlJ1i2JnVh-3-Fje4I_2M-25nGhLpOh9-h_VXzAzgV_DI
CitedBy_id crossref_primary_10_4137_CIN_S30563
crossref_primary_10_1371_journal_pone_0032208
crossref_primary_10_1016_j_omtn_2020_09_031
crossref_primary_10_3389_fgene_2019_01330
crossref_primary_10_1093_bioinformatics_btt599
crossref_primary_10_31083_j_fbl2709269
crossref_primary_10_1186_s13059_014_0500_5
crossref_primary_10_1016_j_csbj_2021_10_025
crossref_primary_10_3390_ijms22115478
crossref_primary_10_31590_ejosat_1011033
crossref_primary_10_1186_s13040_015_0052_6
crossref_primary_10_3390_cancers13081833
crossref_primary_10_3390_genes13020370
crossref_primary_10_1038_s41467_021_22650_x
crossref_primary_10_1186_s12859_021_04164_x
crossref_primary_10_3390_cells9112525
crossref_primary_10_3390_genes13122323
crossref_primary_10_1016_j_jprot_2019_01_003
crossref_primary_10_1093_bib_bby054
crossref_primary_10_7554_eLife_05005
crossref_primary_10_1016_j_compbiolchem_2021_107448
crossref_primary_10_1186_1752_0509_8_36
crossref_primary_10_1093_nar_gkad645
crossref_primary_10_1098_rsob_160181
crossref_primary_10_1142_S0219720015500171
crossref_primary_10_1109_JBHI_2020_2987034
crossref_primary_10_1016_j_csbj_2024_07_014
crossref_primary_10_4028_www_scientific_net_AMM_577_1245
crossref_primary_10_1186_s13040_015_0075_z
crossref_primary_10_1093_nar_gkx1144
crossref_primary_10_1016_j_gene_2014_10_043
crossref_primary_10_1093_bib_bbu044
crossref_primary_10_1155_2013_360678
crossref_primary_10_1186_s12859_023_05564_x
crossref_primary_10_1017_S1751731113001183
crossref_primary_10_3389_fgene_2014_00246
crossref_primary_10_1093_nar_gks841
crossref_primary_10_1371_journal_pone_0098070
crossref_primary_10_1177_1176934320925752
crossref_primary_10_1128_JVI_06855_11
crossref_primary_10_4161_rna_9_1_18121
crossref_primary_10_1002_jcp_27949
crossref_primary_10_3389_fgene_2020_00088
crossref_primary_10_1093_nar_gkz074
crossref_primary_10_1109_MSP_2011_943013
crossref_primary_10_1039_C4MB00585F
crossref_primary_10_1186_1471_2164_11_S3_S12
crossref_primary_10_1186_s12943_022_01694_7
crossref_primary_10_1159_000449202
crossref_primary_10_1161_CIRCGENETICS_113_000125
crossref_primary_10_1089_regen_2023_0027
crossref_primary_10_1371_journal_ppat_1003857
crossref_primary_10_1186_1471_2105_15_S7_S4
crossref_primary_10_1371_journal_pone_0147067
crossref_primary_10_1261_rna_033282_112
crossref_primary_10_1038_srep08004
crossref_primary_10_1039_C5MB00245A
crossref_primary_10_1093_bib_bbw084
crossref_primary_10_2174_1389201024666221025114500
Cites_doi 10.1186/1471-2105-7-411
10.1093/nar/gki364
10.1038/nmeth954
10.1371/journal.pbio.0030085
10.1101/gad.1184704
10.1016/j.ydbio.2003.12.003
10.1186/gb-2003-5-1-r1
10.1038/nature07242
10.1093/nar/gkn851
10.1038/ng2135
10.1038/nrm2619
10.1371/journal.pone.0002126
10.1261/rna.7290705
10.1007/s00430-007-0070-1
10.1007/978-1-59745-583-1_20
10.1371/journal.pbio.0020363
10.1016/j.cell.2006.07.031
10.1186/1471-2164-6-88
10.1016/S0092-8674(04)00045-5
10.1137/1116025
10.1093/bioinformatics/btm484
10.1142/S0219720005001004
10.1089/dna.2006.0551
10.1098/rspb.1994.0040
10.1093/bioinformatics/btm595
10.1007/978-0-387-84858-7
10.1038/ng1536
10.1038/nature07228
10.1261/rna.5248604
10.1016/j.molcel.2007.06.017
ContentType Journal Article
Copyright Liu et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2010 BioMed Central Ltd.
2010 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 Liu et al; licensee BioMed Central Ltd. 2010 Liu et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Liu et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: 2010 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 Liu et al; licensee BioMed Central Ltd. 2010 Liu et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-11-476
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 476
ExternalDocumentID oai_doaj_org_article_a23ca78fbf6e49a8af3c6b49ac0be473
10.1186/1471-2105-11-476
PMC2955701
2501705321
A239491916
20860840
10_1186_1471_2105_11_476
Genre Research Support, U.S. Gov't, Non-P.H.S
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA132637
– fundername: NCI NIH HHS
  grantid: CA096512
– fundername: NCI NIH HHS
  grantid: R01 CA096512
– fundername: NCRR NIH HHS
  grantid: 1UL1RR025767-01
– fundername: NCATS NIH HHS
  grantid: UL1 TR000149
– fundername: NCI NIH HHS
  grantid: P30 CA054174-17
– fundername: NCI NIH HHS
  grantid: CA124332
– fundername: NCRR NIH HHS
  grantid: UL1 RR025767
– fundername: NCI NIH HHS
  grantid: R01 CA124332
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
ADTOC
UNPAY
ID FETCH-LOGICAL-c631t-f90c9f053d162ec5268c2ca0b1d33989104894b79f6f45cb70f279e56443a5343
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:53:05 EDT 2025
Tue Aug 19 19:51:10 EDT 2025
Tue Sep 30 16:49:41 EDT 2025
Wed Oct 01 14:31:08 EDT 2025
Mon Oct 06 18:39:55 EDT 2025
Mon Oct 20 22:10:22 EDT 2025
Mon Oct 20 16:44:07 EDT 2025
Thu Oct 16 15:05:51 EDT 2025
Mon Jul 21 06:05:28 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Wed Oct 01 04:15:18 EDT 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Seed Region
Support Vector Machine
Positive Site
Conservation Score
miRNA Target
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631t-f90c9f053d162ec5268c2ca0b1d33989104894b79f6f45cb70f279e56443a5343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-11-476
PMID 20860840
PQID 901860310
PQPubID 44065
ParticipantIDs doaj_primary_oai_doaj_org_article_a23ca78fbf6e49a8af3c6b49ac0be473
unpaywall_primary_10_1186_1471_2105_11_476
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2955701
proquest_miscellaneous_759134588
proquest_journals_901860310
gale_infotracmisc_A239491916
gale_infotracacademiconefile_A239491916
gale_incontextgauss_ISR_A239491916
pubmed_primary_20860840
crossref_citationtrail_10_1186_1471_2105_11_476
crossref_primary_10_1186_1471_2105_11_476
springer_journals_10_1186_1471_2105_11_476
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-22
PublicationDateYYYYMMDD 2010-09-22
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-22
  day: 22
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2010
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References A Grimson (3933_CR5) 2007; 27
SK Kim (3933_CR17) 2006; 7
V Rusinov (3933_CR11) 2005
C Burgler (3933_CR12) 2005; 6
KC Miranda (3933_CR13) 2006; 126
M Yousef (3933_CR14) 2007; 23
3933_CR3
J Brennecke (3933_CR24) 2005; 3
AJ Enright (3933_CR7) 2003; 5
M Kertesz (3933_CR8) 2007; 39
M Selbach (3933_CR30) 2008; 455
M Kiriakidou (3933_CR9) 2004; 18
P Brodersen (3933_CR19) 2009; 10
M Lindow (3933_CR20) 2007; 26
C Ding (3933_CR26) 2005; 3
C Cortes (3933_CR22) 1995; 20
M Rehmsmeier (3933_CR10) 2004; 10
B John (3933_CR28) 2004; 2
D Baek (3933_CR29) 2008; 455
NS Sokol (3933_CR21) 2008; 420
DP Bartel (3933_CR1) 2004; 116
N Rajewsky (3933_CR15) 2004; 267
D Krek AaGun (3933_CR6) 2005; 37
P Schuster (3933_CR25) 1994; 255
IMEN Xiaowei Wang (3933_CR16) 2008; 24
V Vapnik (3933_CR23) 1971; 16
RT Trevor Hastie (3933_CR27) 2009
P Sethupathy (3933_CR4) 2006; 3
O Saetrom (3933_CR18) 2005; 11
F Grey (3933_CR2) 2008; 197
DG Hendrickson (3933_CR31) 2008; 3
19145236 - Nat Rev Mol Cell Biol. 2009 Feb;10(2):141-8
15723116 - PLoS Biol. 2005 Mar;3(3):e85
15852500 - J Bioinform Comput Biol. 2005 Apr;3(2):185-205
15943864 - BMC Genomics. 2005;6:88
18461144 - PLoS One. 2008;3(5):e2126
17612493 - Mol Cell. 2007 Jul 6;27(1):91-105
14709173 - Genome Biol. 2003;5(1):R1
17925304 - Bioinformatics. 2007 Nov 15;23(22):2987-92
17504029 - DNA Cell Biol. 2007 May;26(5):339-51
15013811 - Dev Biol. 2004 Mar 15;267(2):529-35
15383676 - RNA. 2004 Oct;10(10):1507-17
15980566 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W696-700
7517565 - Proc Biol Sci. 1994 Mar 22;255(1344):279-84
16978421 - BMC Bioinformatics. 2006;7:411
17893677 - Nat Genet. 2007 Oct;39(10):1278-84
17060911 - Nat Methods. 2006 Nov;3(11):881-6
15806104 - Nat Genet. 2005 May;37(5):495-500
15131085 - Genes Dev. 2004 May 15;18(10):1165-78
18641957 - Methods Mol Biol. 2008;420:319-34
18048393 - Bioinformatics. 2008 Feb 1;24(3):325-32
15928346 - RNA. 2005 Jul;11(7):995-1003
15502875 - PLoS Biol. 2004 Nov;2(11):e363
14744438 - Cell. 2004 Jan 23;116(2):281-97
18668037 - Nature. 2008 Sep 4;455(7209):64-71
18996891 - Nucleic Acids Res. 2009 Jan;37(Database issue):D105-10
18668040 - Nature. 2008 Sep 4;455(7209):58-63
16990141 - Cell. 2006 Sep 22;126(6):1203-17
18087721 - Med Microbiol Immunol. 2008 Jun;197(2):261-7
References_xml – volume: 7
  start-page: 411
  year: 2006
  ident: 3933_CR17
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-411
– start-page: W696
  volume-title: Nucleic Acids Res
  year: 2005
  ident: 3933_CR11
  doi: 10.1093/nar/gki364
– volume: 3
  start-page: 881
  issue: 11
  year: 2006
  ident: 3933_CR4
  publication-title: Nature methods
  doi: 10.1038/nmeth954
– volume: 3
  start-page: e85
  issue: 3
  year: 2005
  ident: 3933_CR24
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030085
– volume: 18
  start-page: 1165
  issue: 10
  year: 2004
  ident: 3933_CR9
  publication-title: Genes Dev
  doi: 10.1101/gad.1184704
– volume: 267
  start-page: 529
  issue: 2
  year: 2004
  ident: 3933_CR15
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2003.12.003
– volume: 5
  start-page: R1
  issue: 1
  year: 2003
  ident: 3933_CR7
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-5-1-r1
– volume: 455
  start-page: 64
  issue: 7209
  year: 2008
  ident: 3933_CR29
  publication-title: Nature
  doi: 10.1038/nature07242
– ident: 3933_CR3
  doi: 10.1093/nar/gkn851
– volume: 39
  start-page: 1278
  issue: 10
  year: 2007
  ident: 3933_CR8
  publication-title: Nat Genet
  doi: 10.1038/ng2135
– volume: 10
  start-page: 141
  issue: 2
  year: 2009
  ident: 3933_CR19
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2619
– volume: 3
  start-page: e2126
  issue: 5
  year: 2008
  ident: 3933_CR31
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002126
– volume: 11
  start-page: 995
  issue: 7
  year: 2005
  ident: 3933_CR18
  publication-title: RNA
  doi: 10.1261/rna.7290705
– volume: 197
  start-page: 261
  issue: 2
  year: 2008
  ident: 3933_CR2
  publication-title: Med Microbiol Immunol
  doi: 10.1007/s00430-007-0070-1
– volume: 420
  start-page: 319
  year: 2008
  ident: 3933_CR21
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-583-1_20
– volume: 2
  start-page: e363
  issue: 11
  year: 2004
  ident: 3933_CR28
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020363
– volume: 126
  start-page: 1203
  issue: 6
  year: 2006
  ident: 3933_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.031
– volume: 6
  start-page: 88
  issue: 1
  year: 2005
  ident: 3933_CR12
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-6-88
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 3933_CR22
  publication-title: Machine Learning
– volume: 116
  start-page: 281
  issue: 2
  year: 2004
  ident: 3933_CR1
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 16
  start-page: 264
  issue: 2
  year: 1971
  ident: 3933_CR23
  publication-title: Theory of Probability and its Applications
  doi: 10.1137/1116025
– volume: 23
  start-page: 2987
  issue: 22
  year: 2007
  ident: 3933_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm484
– volume: 3
  start-page: 185
  issue: 2
  year: 2005
  ident: 3933_CR26
  publication-title: Journal of Bioinformatics and Computational Biology
  doi: 10.1142/S0219720005001004
– volume: 26
  start-page: 339
  issue: 5
  year: 2007
  ident: 3933_CR20
  publication-title: DNA Cell Biol
  doi: 10.1089/dna.2006.0551
– volume: 255
  start-page: 279
  issue: 1344
  year: 1994
  ident: 3933_CR25
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.1994.0040
– volume: 24
  start-page: 325
  year: 2008
  ident: 3933_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm595
– volume-title: The elements of Statistical Learning
  year: 2009
  ident: 3933_CR27
  doi: 10.1007/978-0-387-84858-7
– volume: 37
  start-page: 495
  year: 2005
  ident: 3933_CR6
  publication-title: Nature Genetics
  doi: 10.1038/ng1536
– volume: 455
  start-page: 58
  issue: 7209
  year: 2008
  ident: 3933_CR30
  publication-title: Nature
  doi: 10.1038/nature07228
– volume: 10
  start-page: 1507
  issue: 10
  year: 2004
  ident: 3933_CR10
  publication-title: RNA
  doi: 10.1261/rna.5248604
– volume: 27
  start-page: 91
  issue: 1
  year: 2007
  ident: 3933_CR5
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.06.017
– reference: 15131085 - Genes Dev. 2004 May 15;18(10):1165-78
– reference: 16978421 - BMC Bioinformatics. 2006;7:411
– reference: 7517565 - Proc Biol Sci. 1994 Mar 22;255(1344):279-84
– reference: 14709173 - Genome Biol. 2003;5(1):R1
– reference: 16990141 - Cell. 2006 Sep 22;126(6):1203-17
– reference: 17504029 - DNA Cell Biol. 2007 May;26(5):339-51
– reference: 15980566 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W696-700
– reference: 19145236 - Nat Rev Mol Cell Biol. 2009 Feb;10(2):141-8
– reference: 15852500 - J Bioinform Comput Biol. 2005 Apr;3(2):185-205
– reference: 15928346 - RNA. 2005 Jul;11(7):995-1003
– reference: 15013811 - Dev Biol. 2004 Mar 15;267(2):529-35
– reference: 18996891 - Nucleic Acids Res. 2009 Jan;37(Database issue):D105-10
– reference: 15383676 - RNA. 2004 Oct;10(10):1507-17
– reference: 15502875 - PLoS Biol. 2004 Nov;2(11):e363
– reference: 17893677 - Nat Genet. 2007 Oct;39(10):1278-84
– reference: 14744438 - Cell. 2004 Jan 23;116(2):281-97
– reference: 17060911 - Nat Methods. 2006 Nov;3(11):881-6
– reference: 15723116 - PLoS Biol. 2005 Mar;3(3):e85
– reference: 15943864 - BMC Genomics. 2005;6:88
– reference: 18641957 - Methods Mol Biol. 2008;420:319-34
– reference: 18087721 - Med Microbiol Immunol. 2008 Jun;197(2):261-7
– reference: 18461144 - PLoS One. 2008;3(5):e2126
– reference: 18668037 - Nature. 2008 Sep 4;455(7209):64-71
– reference: 17925304 - Bioinformatics. 2007 Nov 15;23(22):2987-92
– reference: 15806104 - Nat Genet. 2005 May;37(5):495-500
– reference: 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105
– reference: 18048393 - Bioinformatics. 2008 Feb 1;24(3):325-32
– reference: 18668040 - Nature. 2008 Sep 4;455(7209):58-63
SSID ssj0017805
Score 2.319231
Snippet Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the...
MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein...
Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the...
Abstract Background: MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene...
Abstract Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 476
SubjectTerms 3' Untranslated Regions
5' Untranslated Regions
Algorithms
Animals
Binding sites
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Gene expression
Gene Silencing
Genetic algorithms
Genetic aspects
Genome
Genomes
Humans
Infections
Information management
Life Sciences
Mammals
Mammals - genetics
Mammals - metabolism
Microarrays
MicroRNA
MicroRNAs - chemistry
MicroRNAs - metabolism
Prediction theory
Proteomics
Quality management
Research Article
RNA, Untranslated - chemistry
RNA, Untranslated - metabolism
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kIOqD-G3aKkEEsRBuk91sdh9PsVTBPlQLfVs2m10r3OWO3h3S_74z-bqLon3x7ZKdcMnMb7Mz2ZnfALxVqeOsrETCBWcYoAiLU6rySYa-ueMpR5ee6p2_nsqTc_HlIr_YafVFOWEtPXCruInNuLOFCmWQXmirbOBOlvjLsdKLouH5ZEr3wVS3f0BM_U1dUZEmGNTk_QalkpPhHFWUCeIa2VmQGt7-P9_OO8vT76mTw_7pA7i3qZf2-pedzXaWqONH8LDzLeNp-0yP4Y6vn8Ddttvk9VPYfkCIl9tygXgR4rmdz5vvHfGc8vPOTqdxmyEeL69oI4eM9wzOjz99_3iSdN0TEid5uk6CZk4HnGNVKjPviNbFZc6yMq041wrdBKG0KAsdZBC5KwsWskL7HB0kbnM03XPYqxe1fwlx6VNmPVovd04UrlK2sqGpmQ3WK8YjmPQqNK6jFqcOFzPThBhKGlK6IaXjoUGlR_B-uGLZ0mr8Q_YDWWWQI0Ls5gTCxHQwMbfBJII3ZFNDlBc15dT8sJvVynz-dmam1B1eY9yK__SuEwoLvH9nuxIF1AKxZI0kD0eSOCfdaPigh47p3gkrg56Xop7eLIJ4GKULKc2t9ovNyhQ5JULkSkXwosXZ8NQIcskwGo-gGCFwpJbxSP3zsuELzzTxrKURHPVY3d7U35V-NKD5Vgvt_w8LHcD9NjNDJ1l2CHvrq41_hQ7funzdzO0brQFLsw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEB_qFVE_iG9jqwQRxEK4JLtJNh9ErtJShR5yWui3ZbPZrcJdEu-B9L93Jq-7KNZvd7cTbjOvnd2d-Q3AGxFo5mc59xhnPm5QuEKTyo0XYmyuWcAwpKd65_NpfHbBP19Gl3tw3tXCUFpl5xNrR52Xms7Ix7huCeqI7H-ofnrUNIouV7sOGqrtrJC_rxHGbsF-SMBYI9g_Ppl-mfXXCgTg391VingcoGf2kC6i4jJOsCM7a1MN4f-3o95Zqf7MouyvUu_BnU1Rqetfaj7fWa1OH8D9Nsx0J41ePIQ9UzyC203jyevHsD1LcKtt5YBbWnehFov66MNdUKrebDpxm2Rxt1rSnQ7J8QlcnJ58-3jmtY0UPB2zYO3Z1NepRXPLgzg0mhBedKiVnwU5Y6nAiIGLlGdJamPLI50lvg2T1EQYKzEVoRSfwqgoC_Mc3MwEvjIoyEhrnuhcqFzZunzWKiN85sC4Y6HULco4NbuYy3q3IWJJTJfEdPwqkekOvOufqBqEjRtoj0kqPR1hY9c_lMsr2ZqaVCHTKhE2s7HhqRLKMh1n-En7meEJTvE1yVQS-kVB6TVXarNayU9fZ3JCjeJT3MLiP71tiWyJ89eqrVZALhBg1oDycECJ5qkHwwed6sjWPaxkr8wOuP0oPUgZb4UpNyuZRJQTEQnhwLNGz_q3DnEb6uPG3IFkoIEDtgxHih_fa-jwMCXItcCBo05Xt5P6N9OPem3-r4Re3Pi6B3C3yb5IvTA8hNF6uTEvMahbZ69aU_0NeUhFyw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BEGI8ID5H2EARQkJMiubEjmM_dtOmgcQeBpP2ZjmODUhtWq2t0P577pI0bTY-xFtbn1v3PuI7393PAO9U6jgrK5FwwRkGKMKiSVU-ydA3dzzl6NJTv_PnM3l6IT5d5pfdeQf1wmzm71MlD1J8eCYYluTU_yUKeRfu4RYlm7SsPOrzBYTMv0pC_mbWYNNpsPlvP4E3tqCb5ZF9jvQhPFjWM3v9047HG9vQyWN41PmP8agV-BO44-uncL-9UfL6GawPCeLZuiUgnoZ4YieT5kwjnlAN3vnZKG6rwOPZFSVrSEDP4eLk-OvRadLdkJA4ydNFEjRzOqAdVanMvCPoFpc5y8q04lwrdAWE0qIsdJBB5K4sWMgK7XN0grjNUTwvYKue1v4lxKVPmfUoodw5UbhK2cqGpi82WK8Yj-BgxULjOvhwusVibJowQklDTDfEdHxrkOkRfOhnzFrojL_QHpJUejoCvW4-QF0wnQ0Zm3FnCxXKIL3QVtnAnSzxlWOlFwUu8S3J1BCsRU11M9_scj43H7-cmxHdAK8xNsVfet8RhSmu39muDQG5QEhYA8q9ASXanRsM765Ux3R2PzfoXSm6t5tFEPejNJFK2Wo_Xc5NkVOxQ65UBDutnvX_OsP4kmHEHUEx0MABW4Yj9Y_vDSZ4pglLLY1gf6Wr60X9men7vTb_U0Kv_uebd2G7rbLQSZbtwdbiaulfo_O2KN80dvsLhSk3RQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdGJwR84P0IGyhCSIhJaZPYSZyPBTENJKppUGl8smzHHhNtUtpGaPz13OXVZryExLemPivO5e58F9_9jpDnPNDUVxnzKKM-BChMgkplxgvBN9c0oODSY73z-0l8NGXvTqPTHXLc1sKouVbnRQMaikDFw-0y9Fld5YBdFMxytMhsrfQ8HgVgZD0IXyKsE2NJfIXsxhF45wOyO50cjz9VRUYNSXta-Ytpvd2pAvH_2VRv7VWX8yi7w9Qb5FqZL-TFNzmbbe1Xh7fI1_ZJ6zSVL8NyrYb6-yUQyP_JitvkZuPcuuNaGu-QHZPfJVfrdpcX98jmC4a72NQruIV153I-rz64uHNMEDyZjN06Rd1dLPEkCaXnPpkevvn4-shr2jd4OqbB2rOpr1MLSp4FcWg04sroUEtfBRmlKQc_hfGUqSS1sWWRVolvwyQ1EXhoVEYgOw_IIC9y84i4ygS-NCA-kdYs0RmXmbRV0a6VhvvUIaP2tQndYJtji42ZqGIcHgtkikCmwKUApjjkZTdjUeN6_IH2FUpCR4eI3NUfxfJMNAouZEi1TLhVNjYslVxaqmMFv7SvDEtgic9QjgRibuSY1HMmy9VKvP1wIsbYnj6FwBnu9KIhsgWsX8umRgK4gDBdPcr9HiUYBd0b3mvFVTRGaSXA9ePYVNx3iNuN4kTMs8tNUa5EEmEmRsS5Qx7Wst09dQjBr88ZTE56Ut9jS38kP_9cAZaHKQK9BQ45aPVjs6jfM_2g06C_vqHH_0K8R67XKSCpF4b7ZLBeluYJeJZr9bQxFj8A5LpvFw
  priority: 102
  providerName: Unpaywall
Title Improving performance of mammalian microRNA target prediction
URI https://link.springer.com/article/10.1186/1471-2105-11-476
https://www.ncbi.nlm.nih.gov/pubmed/20860840
https://www.proquest.com/docview/901860310
https://www.proquest.com/docview/759134588
https://pubmed.ncbi.nlm.nih.gov/PMC2955701
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-11-476
https://doaj.org/article/a23ca78fbf6e49a8af3c6b49ac0be473
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELfYJgR8QLwJG1WEkBCTsiWxkzgfEMqqlVFp1dRRqXyyHMceSG1S-hD0v-cuSdMFBogvfcSXNL1HfGff_Y6Q19xT1E0z5lBGXQhQmASTyrTjg2-uqEfBpcd65_NBeDZi_XEw3pZH1wxc3BjaYT-p0Xxy9OPb-j0Y_LvS4Hl47MED1oHQJcAaMRaFO2QP5qkYGzmcs-2eAqL3l7VGNfVm0_KGK7QmqRLL__cn9rUp69d0ymZP9R65s8pncv1dTibXpq3eA3K_9jftpFKQh-SWzh-R21UHyvVjsl1UsGfbEgK7MPZUTqflGog9xZy94SCxq6xxezbHzR0U6BMy6p1-6p45dUcFR4XUWzomdlVswO4yL_S1QqgX5Svppl5GaczBdWA8ZmkUm9CwQKWRa_wo1gE4TVQGIM6nZDcvcv2c2Kn2XKlBooFSLFIZl5k0ZR2tkZq71CLHGxYKVcONY9eLiSjDDh4KZLpApsNXAUy3yNvmjFkFtfEX2hOUSkOHINnlgWJ-JWqbE9KnSkbcpCbULJZcGqrCFD4pN9Usglt8hTIVCIORY57NlVwtFuLj5VAk2DE-hlgWfulNTWQKuH8l67IF4AIiZ7UoD1qUYKeqNby_UR2xUXMB3hjHPt-uRexmFE_E1LdcF6uFiAJMjgg4t8izSs-af-1DPOpChG6RqKWBLba0R_KvX0oMcT9G7DXPIocbXd3e1J-Zftho8z8l9OI_pLlP7lZJGbHj-wdkdzlf6Zfg6y3TDtmJxhG88t6HDtlLkv5lH95PTgcXQzjaDbudchWlU5o6jIwGF8nnn9KaT6g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDaPCAuBM2IEIgxKSoSewkzgNC5TK1bOvD2KS-eY5jD6Q2Cb1o6kfxj5yTWxsQ42lvbX3S2Mfnap8LIa-5p6ibpMyhjLrgoDAJLJVqxwfbXFGPgkmP-c7Ho3Bwxr6Og_EW-dXkwmBYZSMTS0Gd5grPyHugtzh2RHY_FD8dbBqFl6tNB42KKg716hI8tvn74WfY3je-f_Dl9NPAqZsKOCqk3sIxsatiA6SXeqGvFVY7Ub6SbuKllMYctCfjMUui2ISGBSqJXONHsQ7AbqAygBXB_94gN2FlLjZMiMatf-dhe4DmJpSHPQ_kvgMeVYCpawyLmmxovrJBwN9qYEMP_hmj2V7U3iE7y6yQq0s5mWzowoN75G5txNr9iuruky2dPSC3qraWq4dkfVJhF-u8BDs39lROp-XBij3FQMCTUd-uQtHtYoY3Rkglj8jZtWD0MdnO8kw_JXaiPVdqIJNAKRaplMtUmjI510jNXWqRXoNCoeoa5thKYyJKX4aHApEuEOnwVQDSLfKufaKo6ndcAfsRd6WFw8rb5Q_57ELUjCykT5WMuElMqFksuTRUhQl8Um6iWQRTfIV7KrC2RobBOxdyOZ-L4bcT0cc29DE4yPCmtzWQyWH-Sta5EIAFLMfVgdzrQALzq87wbkM6ohY-c9GyikXsdhQfxHi6TOfLuYgCjLgIOLfIk4rO2lX74OS64PZbJOpQYAct3ZHsx_eyMLkfY0E3zyL7Da2uJ_VvpO-31PzfHXp25XJfkp3B6fGROBqODnfJ7SrOI3Z8f49sL2ZL_RzMx0XyomRam5xft5T4DTNgeh4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdgiNcHxHOEDYgQEmJSVCd2EvtjKVQbjwoNJu2b5Tj2mNQmVdMK7b_nLq8uPMW3prZT9x72nX33O0JeitAwmuU8YJxRcFC4BpXKbRCBbW5YyMCkx3znT7Pk8IS_P41P2wO3qot2764km5wGRGkq1qNl7hoVF8kohCU1AGclxqwwniZXyTUOextWMJgkk_4WAfH6u6vJ34wabEU1Yv-v6_KljennoMn-5vQ2ubkplvriu57PL21O07vkTmtV-uNGDO6RK7a4T643dSYvHpDt0YG_3CYK-KXzF3qxqE86_AVG5h3Pxn4TG-4vV3iFg2x7SE6m775ODoO2bkJgEhauAyepkQ60Kw-TyBoEdDGR0TQLc8akAAOBC8mzVLrE8dhkKXVRKm0MphHTMTDtEdkpysI-Jn5mQ6ot8C02hqcmFzrXrs6WddoKyjwy6kioTAsqjrUt5qp2LkSikOgKiQ6PCojukdf9iGUDqPGXvm-QK30_hMKuvyhXZ6rVLKUjZnQqXOYSy6UW2jGTZPDJ0MzyFKb4AnmqEOyiwGiaM72pKnX05ViNsS68BI8VfulV28mVMH-j2-QEoALiYw167g96gjaaQfNeJzqqXQ0qBTaXwGre1CN-34oDMcCtsOWmUmmMIRCxEB7ZbeSs_9cReJ0U_HCPpAMJHJBl2FKcf6uRwiOJCGuhRw46Wd1O6s9EP-il-Z8cevI_b35Obnx-O1Ufj2Yf9sitJgxDBlG0T3bWq419CtbdOntWq_APxc5Cew
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdGJwR84P0IGyhCSIhJaZPYSZyPBTENJKppUGl8smzHHhNtUtpGaPz13OXVZryExLemPivO5e58F9_9jpDnPNDUVxnzKKM-BChMgkplxgvBN9c0oODSY73z-0l8NGXvTqPTHXLc1sKouVbnRQMaikDFw-0y9Fld5YBdFMxytMhsrfQ8HgVgZD0IXyKsE2NJfIXsxhF45wOyO50cjz9VRUYNSXta-Ytpvd2pAvH_2VRv7VWX8yi7w9Qb5FqZL-TFNzmbbe1Xh7fI1_ZJ6zSVL8NyrYb6-yUQyP_JitvkZuPcuuNaGu-QHZPfJVfrdpcX98jmC4a72NQruIV153I-rz64uHNMEDyZjN06Rd1dLPEkCaXnPpkevvn4-shr2jd4OqbB2rOpr1MLSp4FcWg04sroUEtfBRmlKQc_hfGUqSS1sWWRVolvwyQ1EXhoVEYgOw_IIC9y84i4ygS-NCA-kdYs0RmXmbRV0a6VhvvUIaP2tQndYJtji42ZqGIcHgtkikCmwKUApjjkZTdjUeN6_IH2FUpCR4eI3NUfxfJMNAouZEi1TLhVNjYslVxaqmMFv7SvDEtgic9QjgRibuSY1HMmy9VKvP1wIsbYnj6FwBnu9KIhsgWsX8umRgK4gDBdPcr9HiUYBd0b3mvFVTRGaSXA9ePYVNx3iNuN4kTMs8tNUa5EEmEmRsS5Qx7Wst09dQjBr88ZTE56Ut9jS38kP_9cAZaHKQK9BQ45aPVjs6jfM_2g06C_vqHH_0K8R67XKSCpF4b7ZLBeluYJeJZr9bQxFj8A5LpvFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+performance+of+mammalian+microRNA+target+prediction&rft.jtitle=BMC+bioinformatics&rft.au=Liu%2C+Hui&rft.au=Yue%2C+Dong&rft.au=Chen%2C+Yidong&rft.au=Gao%2C+Shou-Jiang&rft.date=2010-09-22&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2F1471-2105-11-476&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1471_2105_11_476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon