An Optimized Path Planning Method for Coastal Ships Based on Improved DDPG and DP
Deep Reinforcement Learning (DRL) is widely used in path planning with its powerful neural network fitting ability and learning ability. However, existing DRL-based methods use discrete action space and do not consider the impact of historical state information, resulting in the algorithm not being...
        Saved in:
      
    
          | Published in | Journal of advanced transportation Vol. 2021; pp. 1 - 23 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Hindawi
    
        2021
     John Wiley & Sons, Inc Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0197-6729 2042-3195 2042-3195  | 
| DOI | 10.1155/2021/7765130 | 
Cover
| Abstract | Deep Reinforcement Learning (DRL) is widely used in path planning with its powerful neural network fitting ability and learning ability. However, existing DRL-based methods use discrete action space and do not consider the impact of historical state information, resulting in the algorithm not being able to learn the optimal strategy to plan the path, and the planned path has arcs or too many corners, which does not meet the actual sailing requirements of the ship. In this paper, an optimized path planning method for coastal ships based on improved Deep Deterministic Policy Gradient (DDPG) and Douglas–Peucker (DP) algorithm is proposed. Firstly, Long Short-Term Memory (LSTM) is used to improve the network structure of DDPG, which uses the historical state information to approximate the current environmental state information, so that the predicted action is more accurate. On the other hand, the traditional reward function of DDPG may lead to low learning efficiency and convergence speed of the model. Hence, this paper improves the reward principle of traditional DDPG through the mainline reward function and auxiliary reward function, which not only helps to plan a better path for ship but also improves the convergence speed of the model. Secondly, aiming at the problem that too many turning points exist in the above-planned path which may increase the navigation risk, an improved DP algorithm is proposed to further optimize the planned path to make the final path more safe and economical. Finally, simulation experiments are carried out to verify the proposed method from the aspects of plan planning effect and convergence trend. Results show that the proposed method can plan safe and economic navigation paths and has good stability and convergence. | 
    
|---|---|
| AbstractList | Deep Reinforcement Learning (DRL) is widely used in path planning with its powerful neural network fitting ability and learning ability. However, existing DRL-based methods use discrete action space and do not consider the impact of historical state information, resulting in the algorithm not being able to learn the optimal strategy to plan the path, and the planned path has arcs or too many corners, which does not meet the actual sailing requirements of the ship. In this paper, an optimized path planning method for coastal ships based on improved Deep Deterministic Policy Gradient (DDPG) and Douglas-Peucker (DP) algorithm is proposed. Firstly, Long Short-Term Memory (LSTM) is used to improve the network structure of DDPG, which uses the historical state information to approximate the current environmental state information, so that the predicted action is more accurate. On the other hand, the traditional reward function of DDPG may lead to low learning efficiency and convergence speed of the model. Hence, this paper improves the reward principle of traditional DDPG through the mainline reward function and auxiliary reward function, which not only helps to plan a better path for ship but also improves the convergence speed of the model. Secondly, aiming at the problem that too many turning points exist in the above-planned path which may increase the navigation risk, an improved DP algorithm is proposed to further optimize the planned path to make the final path more safe and economical. Finally, simulation experiments are carried out to verify the proposed method from the aspects of plan planning effect and convergence trend. Results show that the proposed method can plan safe and economic navigation paths and has good stability and convergence. | 
    
| Audience | Academic | 
    
| Author | Cao, Zhiying Zhang, Xiuguo Tang, Jiawei Wang, Shaobo Du, Yiquan Zhang, Fengge Liang, Jiacheng  | 
    
| Author_xml | – sequence: 1 givenname: Yiquan orcidid: 0000-0002-8326-0224 surname: Du fullname: Du, Yiquan organization: School of Information Science and TechnologyDalian Maritime UniversityDalian 116026Chinadlmu.edu.cn – sequence: 2 givenname: Xiuguo orcidid: 0000-0003-0204-0295 surname: Zhang fullname: Zhang, Xiuguo organization: School of Information Science and TechnologyDalian Maritime UniversityDalian 116026Chinadlmu.edu.cn – sequence: 3 givenname: Zhiying orcidid: 0000-0001-6778-6077 surname: Cao fullname: Cao, Zhiying organization: School of Information Science and TechnologyDalian Maritime UniversityDalian 116026Chinadlmu.edu.cn – sequence: 4 givenname: Shaobo orcidid: 0000-0001-8547-4333 surname: Wang fullname: Wang, Shaobo organization: School of NavigationDalian Maritime UniversityDalian 116026Chinadlmu.edu.cn – sequence: 5 givenname: Jiacheng orcidid: 0000-0003-4986-7994 surname: Liang fullname: Liang, Jiacheng organization: School of Information Science and TechnologyDalian Maritime UniversityDalian 116026Chinadlmu.edu.cn – sequence: 6 givenname: Fengge orcidid: 0000-0003-1105-6037 surname: Zhang fullname: Zhang, Fengge organization: School of Information Science and TechnologyDalian Maritime UniversityDalian 116026Chinadlmu.edu.cn – sequence: 7 givenname: Jiawei orcidid: 0000-0001-9558-1247 surname: Tang fullname: Tang, Jiawei organization: School of Information Science and TechnologyDalian Maritime UniversityDalian 116026Chinadlmu.edu.cn  | 
    
| BookMark | eNqNkd9v0zAQxyM0JLrBG39AJB5ZNv9M7MfSwag0tCLg2brETuoqtYvtbhp_PR6doKABlS37fPrc9853x8WR884UxUuMzjDm_Jwggs-bpuaYoifFhCBGKoolPyomCMumqhsinxXHMa4QopJLNik-Tl15vUl2bb8ZXS4gLcvFCM5ZN5QfTFp6XfY-lDMPMcFYflraTSzfQMywd-V8vQn-JtsXF4vLElw2Fs-Lpz2M0bx4uE-KL-_efp69r66uL-ez6VXV1RSnSmuk64ZhgVogRuZNa2G6lgliUNtx3YBuWiQ60iJKEO0RAsm6nucnJa2gJ8V8p6s9rNQm2DWEO-XBqh8OHwYFIdluNEowpKlEvWk5Y43GEoua1UhzjHqMocta1U5r6zZwdwvj-FMQI3XfW3XfW_XQ28y_2vH5-1-3Jia18tvg8ncV4YJjKQVufqkOkIuwrvcpQDcYZwKMeXK9ze5pLWvBGOUH84JyTmWDM3_2CJ-XNmvbPZrgsIC9DKd7Ae02WmdiPqIdlikOsI3xd_1D8D11ssO74GMMpledTZCsd7ksO_6t9ad_BP1nUq93-NI6Dbf23_R3PBv_Kw | 
    
| CitedBy_id | crossref_primary_10_1088_1742_6596_2607_1_012012 crossref_primary_10_1016_j_oceaneng_2023_114679 crossref_primary_10_1016_j_oceaneng_2023_116527 crossref_primary_10_3390_jmse12081428 crossref_primary_10_3390_s22093579 crossref_primary_10_3390_jmse11050970 crossref_primary_10_3390_jmse12081334 crossref_primary_10_3390_jmse13030514 crossref_primary_10_3390_jmse11071320 crossref_primary_10_1016_j_oceaneng_2025_120968 crossref_primary_10_1109_ACCESS_2023_3307480 crossref_primary_10_3390_jmse11040812 crossref_primary_10_1016_j_oceaneng_2024_119189 crossref_primary_10_3390_jmse12122321 crossref_primary_10_7717_peerj_cs_1126 crossref_primary_10_3390_robotics13100145 crossref_primary_10_1088_1361_6501_ad7b66 crossref_primary_10_1155_2022_1117781  | 
    
| Cites_doi | 10.1007/s11804-019-00089-3 10.1038/nature14236 10.1016/j.ress.2017.03.029 10.1016/j.trc.2018.10.024 10.1016/j.oceaneng.2019.106299 10.1016/j.asoc.2019.01.036 10.3138/fm57-6770-u75u-7727 10.1016/j.oceaneng.2019.106542 10.1155/2021/8898507 10.1109/access.2019.2929120 10.1109/access.2019.2953326 10.1017/s0373463314000708 10.1109/jas.2014.7004666 10.3390/jmse9020210 10.1038/nature14539 10.1109/joe.2019.2909508 10.1016/j.oceaneng.2019.106873 10.1007/s10707-013-0184-0 10.1016/j.oceaneng.2021.109612 10.1109/isie.2019.8781205 10.12716/1001.11.01.09 10.3390/s19184055 10.1155/2020/6523158 10.1016/j.arcontrol.2016.04.018 10.3390/s20020426 10.1016/j.oceaneng.2020.107793 10.1109/access.2019.2949835  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2021 Yiquan Du et al. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Yiquan Du et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: Copyright © 2021 Yiquan Du et al. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Yiquan Du et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | RHU RHW RHX AAYXX CITATION N95 3V. 7ST 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ C1K CCPQU DWQXO FR3 FRNLG F~G HCIFZ K60 K6~ KR7 L.- L6V M0C M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U SOI ADTOC UNPAY DOA  | 
    
| DOI | 10.1155/2021/7765130 | 
    
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Gale Business: Insights ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Proquest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2042-3195 | 
    
| Editor | Iqbal, Umar | 
    
| Editor_xml | – sequence: 1 givenname: Umar surname: Iqbal fullname: Iqbal, Umar  | 
    
| EndPage | 23 | 
    
| ExternalDocumentID | oai_doaj_org_article_840d390feb5447d19186460d510f11ac 10.1155/2021/7765130 A696844357 A683553971 10_1155_2021_7765130  | 
    
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 3132019313 – fundername: National Basic Research Program of China (973 Program) grantid: 2018YFB1601502 – fundername: Liaoning Revitalization Talents Program grantid: XLYC1902071  | 
    
| GroupedDBID | -~X ..I 05W 0R~ 1OC 29J 3SF 4.4 52U 5GY 7WY 8-1 8FL AAESR AAFWJ AAJEY AAONW ABDBF ABJCF ABUWG ACIWK ACNCT ADBBV ADIZJ AENEX AFBPY AFKRA AFPKN AFRAH AJXKR ALMA_UNASSIGNED_HOLDINGS ARAPS ATUGU AZVAB BAAKF BCNDV BDRZF BENPR BEZIV BGLVJ BHBCM BNHUX BOGZA BRXPI CCPQU DU5 DWQXO EBS ESX FRNLG G-S GODZA GROUPED_DOAJ HCIFZ HZ~ I-F IAO ICW IOF ITC LITHE M0C M7S MY~ N95 O9- OK1 P2P PIMPY PQBIZ PQBZA PTHSS RHU RHW RHX TN5 TUS WBKPD WH7 WIH XI7 24P AAMMB AAYXX ACCMX ACUHS AEFGJ AEUYN AGXDD AIDQK AIDYY CITATION H13 PHGZM PHGZT PQGLB PUEGO 3V. 7ST 7XB 8FD 8FE 8FG 8FK AZQEC C1K FR3 K60 K6~ KR7 L.- L6V P62 PKEHL PQEST PQQKQ PQUKI Q9U SOI 31~ AAEVG AANHP AAZKR ABDPE ACBWZ ACRPL ACXQS ACYXJ ADNMO ADTOC AEIMD AGQPQ AI. AMBMR ASPBG AVWKF AZFZN EJD FEDTE HVGLF LPU PV9 RIWAO RJQFR RZL SUPJJ UNPAY VH1  | 
    
| ID | FETCH-LOGICAL-c631t-dd0d674180ba2e92e9368ecb482e0bc5d7ad7b08c2b03203f00a94cf5b0332b83 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0197-6729 2042-3195  | 
    
| IngestDate | Tue Oct 14 18:05:37 EDT 2025 Wed Oct 01 15:53:45 EDT 2025 Fri Jul 25 12:10:21 EDT 2025 Fri Jun 13 00:05:38 EDT 2025 Fri Jun 13 00:05:37 EDT 2025 Mon Oct 20 16:57:00 EDT 2025 Mon Oct 20 16:56:06 EDT 2025 Fri May 23 02:36:30 EDT 2025 Fri May 23 02:36:26 EDT 2025 Wed Oct 01 00:44:37 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 Sun Jun 02 19:17:41 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c631t-dd0d674180ba2e92e9368ecb482e0bc5d7ad7b08c2b03203f00a94cf5b0332b83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4986-7994 0000-0001-6778-6077 0000-0002-8326-0224 0000-0003-1105-6037 0000-0001-8547-4333 0000-0003-0204-0295 0000-0001-9558-1247  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2585199817?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2585199817 | 
    
| PQPubID | 1006382 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_840d390feb5447d19186460d510f11ac unpaywall_primary_10_1155_2021_7765130 proquest_journals_2585199817 gale_infotracgeneralonefile_A696844357 gale_infotracgeneralonefile_A683553971 gale_infotracacademiconefile_A696844357 gale_infotracacademiconefile_A683553971 gale_businessinsightsgauss_A696844357 gale_businessinsightsgauss_A683553971 crossref_citationtrail_10_1155_2021_7765130 crossref_primary_10_1155_2021_7765130 hindawi_primary_10_1155_2021_7765130  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-00-00 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 2021-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London | 
    
| PublicationTitle | Journal of advanced transportation | 
    
| PublicationYear | 2021 | 
    
| Publisher | Hindawi John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | 23 24 M. Hausknecht (39) 25 H. Shen (6) 2018; 39 Z. Zhou (36) J. Xiang (26) 2020; 61 S. Wang (3) 2020; 215 S. Lavalle (27) 1998; 98 H. Nicolas (38) 2015 31 10 32 12 34 L. Huang (37) 13 35 14 15 16 17 F. Ding (30) 18 19 Q. Liu (11) 2018; 41 1 2 4 5 W. Tao (28) F. Gao (22) 2020; 37 7 8 9 G. Xiong (21) 2020 40 J. Jiang (29) D. Zhao (33) 2016; 33 20 D. Zhang (41) 2013; 3 42 43  | 
    
| References_xml | – ident: 14 doi: 10.1007/s11804-019-00089-3 – ident: 34 doi: 10.1038/nature14236 – volume: 39 start-page: 998 year: 2018 ident: 6 article-title: An intelligent collision avoidance and navigation approach of unmanned surface vessel considering navigation experience and rules publication-title: Journal of Harbin Engineering University – ident: 1 doi: 10.1016/j.ress.2017.03.029 – ident: 20 doi: 10.1016/j.trc.2018.10.024 – ident: 13 doi: 10.1016/j.oceaneng.2019.106299 – ident: 19 doi: 10.1016/j.asoc.2019.01.036 – start-page: 1 ident: 30 article-title: Energy-efficient path planning and control approach of USV based on particle swarm optimization – ident: 43 doi: 10.3138/fm57-6770-u75u-7727 – start-page: 195 ident: 28 article-title: AUV path planning based on improved genetic algorithm – ident: 32 doi: 10.1016/j.oceaneng.2019.106542 – ident: 39 article-title: Deep recurrent Q-learning for partially observable MDPs – ident: 9 doi: 10.1155/2021/8898507 – volume: 98 start-page: 293 year: 1998 ident: 27 article-title: Rapidly-exploring random trees : a new tool for path planning publication-title: Research Report – start-page: 27 ident: 36 article-title: USV path planning and simulation based on deep reinforcement learning – ident: 17 doi: 10.1109/access.2019.2929120 – ident: 12 doi: 10.1109/access.2019.2953326 – volume: 41 start-page: 1 year: 2018 ident: 11 article-title: A survey on deep reinforcement learning publication-title: Chinese Journal of Computers – ident: 31 doi: 10.1017/s0373463314000708 – volume: 33 start-page: 701 year: 2016 ident: 33 article-title: Review of deep reinforcement learning and discussion on the development of computer Go publication-title: Control Theory & Applications – ident: 35 doi: 10.1109/jas.2014.7004666 – volume: 215 year: 2020 ident: 3 article-title: A collision avoidance decision-making system for autonomous ship based on modified velocity obstacle method publication-title: Ocean Engineering – ident: 40 doi: 10.3390/jmse9020210 – ident: 10 doi: 10.1038/nature14539 – ident: 7 doi: 10.1109/joe.2019.2909508 – ident: 2 doi: 10.1016/j.oceaneng.2019.106873 – ident: 42 doi: 10.1007/s10707-013-0184-0 – ident: 8 doi: 10.1016/j.oceaneng.2021.109612 – start-page: 441 ident: 37 article-title: Reinforcement learning for mobile robot obstacle avoidance under dynamic environments – start-page: 229 year: 2020 ident: 21 article-title: Path planning system for smart cars used in education[C]//2020 15th IEEE conference on industrial electronics and applications (ICIEA). IEEE – ident: 4 doi: 10.1109/isie.2019.8781205 – ident: 25 doi: 10.12716/1001.11.01.09 – volume: 3 start-page: 6 year: 2013 ident: 41 article-title: Compression algorithm of GPS trajectory data based on the temporal characteristics publication-title: Journal of Transport Information and Safety – volume: 61 start-page: 157 year: 2020 ident: 26 article-title: Research on local path planning algorithm of unmanned boat based on improved Bidirectional RRT publication-title: Shipbuilding of China – ident: 15 doi: 10.3390/s19184055 – ident: 24 doi: 10.1155/2020/6523158 – start-page: 19 ident: 29 article-title: An improved adaptive genetic algorithm for mobile robot path planning analogous to TSP with constraints on city priorities – ident: 5 doi: 10.1016/j.arcontrol.2016.04.018 – ident: 16 doi: 10.3390/s20020426 – volume: 37 year: 2020 ident: 22 article-title: Global path planning for surface unmanned ships based on improved A∗ algorithm publication-title: Application Research of Computers – ident: 23 doi: 10.1016/j.oceaneng.2020.107793 – year: 2015 ident: 38 article-title: Memory-based control with recurrent neural networks – ident: 18 doi: 10.1109/access.2019.2949835  | 
    
| SSID | ssj0039594 | 
    
| Score | 2.3954077 | 
    
| Snippet | Deep Reinforcement Learning (DRL) is widely used in path planning with its powerful neural network fitting ability and learning ability. However, existing... | 
    
| SourceID | doaj unpaywall proquest gale crossref hindawi  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Analysis Automation Convergence Deep learning Energy consumption Intelligence Learning Long short-term memory Machine learning Methods Navigation Neural networks Optimization Path planning Planning Reinforcement Sailing Ships Transportation  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hSgg4IJ4itKA9FDggq17b-zqmLaVCKgRBpd5W-7DbSMGJcKKq_HpmvHaaSIAvSFHkRKOJPTue_b715htC9jWvKmAJOqmgLCJBcYmTGjgPYBHLKpfZgEsDZ5_F6Xnx6YJfbLT6wj1hUR44Bu4ACEgAXl6VjheFDEAvlChEGiCXKsasx-qbKt2TqViDc811VPXWMhGAH_st75wj22cHUgrOcOfzxmTUavavK_PdK-TE19Mt5HlvVS_szbWdzTYmoZNH5GGHHuk4nvVjcqesn5AHG5qCT8nXcU2_QB34Mf1VBjoBgEf7xkT0rG0XTQGn0qO5BVw4o9-upouGHsJcFui8pnGNAY6Pjycfqa3hYPKMnJ98-H50mnR9ExIvcrZMQkiDQFWa1Nms1PDKhSq9K1RWps7zIG2QLlU-c9g-Pa_S1OrCVxw-5plT-XOyU8_r8gWhQganvSqsFTkQx-AUEwDYvORalTroEXnfB9D4TlQce1vMTEsuODcYbtOFe0TerK0XUUzjL3aHOBZrG5TAbr-AxDBdYpihxIAfw5E0XTNPeGtwuaO5tKumMWMB0JMDGGNDdlqoAjClHJF3rR3e-HCJ3nb_X4BAoYTWlschy1ufb7csL6PU-J9cDhjeetzvEncgwnt9VpuuaDUmw0fEQL8Zntc60__p5-X_GKldch99xoWtPbKz_LkqXwHUW7rX7V39G6PSRlc priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEF7RSgh4QJwiUNA-FHhAFr72ekxbSoRUCEelvK32chspOBFOVMGvZ8Zepw1XkCLLtiZjZ3Z39vvWzjeE7CtWVcASVFJBWkSCYhMrFHAewCImq2xuPC4NnLzno9Py3YRNokhS8_sjfJjtkJ5nr4XgDNLtDtmRHN_c-jSa9Am3UEx1Et5KJBzAYv9--y_f3Zh5WoH-dRq-fo4E-GK6ATNvrOqF-X5hZrMrM87xHXI7QkU67Nr2LrkW6nvk1hUBwfvk47CmH2DQf53-CJ6OAc3RvgoRPWlrQ1MApfRwbgAEzujn8-mioQcwcXk6r2m3oAD7R0fjt9TUsDN-QE6P33w5HCWxSELieJEtE-9Tz1GCJrUmDwo-BZfB2VLmIbWOeWG8sKl0ucVa6UWVpkaVrmJwWORWFg_Jbj2vwyNCufBWOVkawwtgid7KjAM6c4IpGZRXA_KqD6B2UUEcC1nMdMskGNMYbh3DPSDP19aLTjnjL3YH2BZrG9S7bk9AH9Bx-Gigob5QaRUsK0vhgWRKXvLUQ0apssw4uBi2pI6VO2HT4NpGc2ZWTaOHHHAmA-SVbbNTXJYAIMWAvGztcJTDT3Qm_lkBAoV6WRset1le-nyxYXnW6Yr_yeUWw0uP-7HjbonwXt-rdcxQjc7xeTBw7Qzva93T_-nn8f9d7gm5iYfdOtUe2V1-W4WngNyW9lk7bn8CREs0pA priority: 102 providerName: Hindawi Publishing – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGJwR74I7WMZAfBjygdLnZjsVTtzEmpI0iqDSkSZYvSVfWJdXSatp-PceJ0y0IKEKqqqQ6Oomd4-Pvc-PvILTFSZYBS-BeBmnREhTlKcaB8wAWkUGmQmns0sDhET0Yxp-OyfEKet_shTFWIr6QpuydWk56Oa6ytevXcvuHrOh6sM0YJZB-e1OT3UGrlAAQ76DV4dGg_73eIM08yqoaZaHdgAKBRprX3glpuWhNSJVu_yI733X30EKf9-b5VF5dysnk1kS0_xCdNE2o3z85681nqqevf1F3_M82PkIPHEDF_TqiHqOVNH-C1m7JFj5FX_o5_gyp5nx8nRo8AAyJm9pH-LCqSI0BCuPdQgL0nOCvp-NpiXdgujS4yHG9jAHHe3uDj1jmcDB4hob7H77tHniuNIOnaRTMPGN8Q63wja9kmHL4RDRJtYqTMPWVJoZJw5Sf6FDZCu1R5vuSxzojcBqFKomeo05e5Ok6wpQZxXUSS0kj4KZGJQEFTKgZ4UnKDe-id83zEdrpltvyGRNR8RdChO0s4Tqri14vrKe1Xscf7Hbso17YWJXt6ofiYiTcoBVAfk3E_SxVJI6ZAWqb0Jj6BvJYFgRSw8VsoAhXLxS-SruiUo7kvCxFnwK6JYD3gmV2nCYxwFbWRW8rO5tboIlaui0S0FFWpavlcZnljc83LctRrWb-O5dLDG88brm4XdLDm82gEU1si9D-Cw0MP7D3tRhIf_Wz8a-GL9B9e1qvj22izuxinr4ExDhTr1xm-Am-qGCY priority: 102 providerName: Unpaywall  | 
    
| Title | An Optimized Path Planning Method for Coastal Ships Based on Improved DDPG and DP | 
    
| URI | https://dx.doi.org/10.1155/2021/7765130 https://www.proquest.com/docview/2585199817 https://downloads.hindawi.com/journals/jat/2021/7765130.pdf https://doaj.org/article/840d390feb5447d19186460d510f11ac  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2021 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2042-3195 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039594 issn: 2042-3195 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2042-3195 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039594 issn: 2042-3195 databaseCode: ABDBF dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2042-3195 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039594 issn: 2042-3195 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2042-3195 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039594 issn: 2042-3195 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Za9tAEF4Sh9L2ofSkTlOzD2n7UER07a72oRQ7iWMKcd20BvdJ7CE5Bld2IpvQ_vrO6PABbQxikcQwQqPd2W9Gu98QcixZmkKUIJ0U3CIGKNrRQkLMA1hEean2lcXUwGWf94bhlxEb7ZF-vRcGl1XWPrFw1HZmMEd-4uP_K4gNPPF5fuNg1Sj8u1qX0FBVaQX7qaAY2ycHPjJjNchB57w_uKp9cyCZLNm-pXA44Mp6KTxjmAXwToTgzMMV0RuTVMHlv_LYD64xVr6bbCHSh8tsrn7fqel0Y3LqPiVPKlRJ22U3eEb2kuw5ebzBNfiCfGtn9Cv4h1-TP4mlAwB-tC5YRC-LMtIU8Cs9nSnAi1P6_Xoyz2kH5jhLZxktcw9wfnY2uKAqg5PBSzLsnv847TlVPQXH8MBbONa6liNbjauVn0g4Ah4lRoeRn7jaMCuUFdqNjK-xrHqQuq6SoUkZXAa-joJXpJHNsuQ1oVxYLU0UKsUDCCitjjwOQM4IJqNEWtkkH2sDxqYiG8eaF9O4CDoYi9HccWXuJnm3kp6XJBv_kevgt1jJIDV2cWN2O46rkRZDxGoD6aaJZmEoLMSjEQ-5a8H5pJ6nDDwMv2RcFfmEJsc0SD5WyzyP2xwgKQOQ5u2SkzwKAWuKJvlQyKFDgFc0qtrXAIZCaq0tjbsk1zrfb0mOSwryf6ncIbjWeFx13B0WPqp7dVw5szxeDz143Kqn36vn8H49b8gjlC5TWUeksbhdJm8B3C10i-xH3YtWNW5bRYoE2qveCO4N-4P2z7_BCEoo | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVqjlgHhVBArsoYUDsurX7noPFUqalpQ2IUAr9Wb2YaeRUifUiaLy4_htzNrrPCRoTpWiyIkmY2V2d-b7xrszCO1ykqbAEriTgls0BEU6knHgPIBFhJdKX2iTGmh3aOsi_HJJLtfQn-osjNlWWfnEwlHroTI58n3fPL8CbuCxT6NfjukaZZ6uVi00hG2toA-KEmP2YMdpcjsFCpcfnDRhvPd8__jo_LDl2C4DjqKBN3a0djU1NVxcKfyEwyugUaJkGPmJKxXRTGgm3Uj50jQbD1LXFTxUKYGPgS-jAPQ-QBthEHIgfxuNo073exULAk54WV2cM4cCjq223hNisg7ePmOUeGYH9kJQLHoHzCLEwyvDzaf9JQS8OclG4nYqBoOFYHj8BD22KBbXy2n3FK0l2TP0aKG24XP0rZ7hr-CPrvu_E427ADRx1SAJt4u21RjwMj4cCsCnA_zjqj_KcQNiqsbDDJe5DrhuNrufscjgovsCXdyLZbfRejbMkpcIU6YlV1EoBA2AwGoZeRSAo2KERwnXvIY-VgaMlS1ubnpsDOKC5BASG3PH1tw1tDeTHpVFPf4j1zBjMZMxpbiLL4Y3vdiu7BgYsg64myaShCHTwH8jGlJXg7NLPU8ouJkZydg2FYW33KRd8p6Y5HlcpwCBCYBCb5Ucp1EI2JbV0IdCzjgg-ItK2HMUYChTymtJ4yrJuc73S5K9suT5v1SuEJxr3LUTd4WFd6pZHVvnmcfzpQ63m830O_W8ulvPO7TZOm-fxWcnndPXaMv8skyj7aD18c0keQPAcizf2tWL0c_7dhh_AXiwgmg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIq4HxCkCBfahhQdkxdfueh8QShvSltISBJX6Zvaw00jBDnWiqPw0fh0zPnJI0DxViiInmoyV2d2Z7xvvzhCyLVmaAkuQTgpuEQmKdrSQwHkAiygv1b6ymBo4PuEHp-GnM3a2Qf40Z2FwW2XjE0tHbXODOfK2j8-vgBt4op3W2yL63d6H8S8HO0jhk9amnUY1RY6SyxnQt-L9YRfGesf3ex-_7x04dYcBx_DAmzjWupZj_RZXKz-R8Ap4lBgdRn7iasOsUFZoNzK-xkbjQeq6SoYmZfAx8HUUgN4b5KbAKu54Sr2330SBQDJZ1RWXwuGAYJtN94xhvsFrC8GZh3uvl8Jh2TVgHhtunSMrnw1XsO-daTZWlzM1Gi2Fwd4Dcr_Gr7RTTbiHZCPJHpF7S1UNH5OvnYx-AU_0c_g7sbQPEJM2rZHocdmwmgJSpnu5AmQ6ot_Oh-OC7kI0tTTPaJXlgOtut79PVQYX_Sfk9Frs-pRsZnmWPCOUC6uliUKleADU1erI4wAZjWAySqSVLfKuMWBs6rLm2F1jFJf0hrEYzR3X5m6Rnbn0uCrn8R-5XRyLuQwW4S6_yC8Gcb2mY-DGNpBummgWhsIC8414yF0Lbi71PGXgZjiScd1OFN4KTLgUAzUtirjDAfwygIPeOjnJoxBQrWiRt6Ucuh74i0bVJyjAUFjEa0XjOsmFzjcrkoOq2Pm_VK4RXGjcrifuGgtvNbM6rt1mES8WOdxuPtOv1PP8aj2vyW1wE_Hnw5OjF-Qu_rDKn22RzcnFNHkJiHKiX5VLl5If1-0r_gLGwoAC | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGJwR74I7WMZAfBjygdLnZjsVTtzEmpI0iqDSkSZYvSVfWJdXSatp-PceJ0y0IKEKqqqQ6Oomd4-Pvc-PvILTFSZYBS-BeBmnREhTlKcaB8wAWkUGmQmns0sDhET0Yxp-OyfEKet_shTFWIr6QpuydWk56Oa6ytevXcvuHrOh6sM0YJZB-e1OT3UGrlAAQ76DV4dGg_73eIM08yqoaZaHdgAKBRprX3glpuWhNSJVu_yI733X30EKf9-b5VF5dysnk1kS0_xCdNE2o3z85681nqqevf1F3_M82PkIPHEDF_TqiHqOVNH-C1m7JFj5FX_o5_gyp5nx8nRo8AAyJm9pH-LCqSI0BCuPdQgL0nOCvp-NpiXdgujS4yHG9jAHHe3uDj1jmcDB4hob7H77tHniuNIOnaRTMPGN8Q63wja9kmHL4RDRJtYqTMPWVJoZJw5Sf6FDZCu1R5vuSxzojcBqFKomeo05e5Ok6wpQZxXUSS0kj4KZGJQEFTKgZ4UnKDe-id83zEdrpltvyGRNR8RdChO0s4Tqri14vrKe1Xscf7Hbso17YWJXt6ofiYiTcoBVAfk3E_SxVJI6ZAWqb0Jj6BvJYFgRSw8VsoAhXLxS-SruiUo7kvCxFnwK6JYD3gmV2nCYxwFbWRW8rO5tboIlaui0S0FFWpavlcZnljc83LctRrWb-O5dLDG88brm4XdLDm82gEU1si9D-Cw0MP7D3tRhIf_Wz8a-GL9B9e1qvj22izuxinr4ExDhTr1xm-Am-qGCY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Path+Planning+Method+for+Coastal+Ships+Based+on+Improved+DDPG+and+DP&rft.jtitle=Journal+of+advanced+transportation&rft.au=Du%2C+Yiquan&rft.au=Zhang%2C+Xiuguo&rft.au=Cao%2C+Zhiying&rft.au=Wang%2C+Shaobo&rft.date=2021&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0197-6729&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F7765130&rft.externalDocID=A683553971 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon |