Separating group- and individual-level brain signatures in the newborn functional connectome: A deep learning approach
•The VAE shows significant subject identification accuracy with whole-brain FC profiles, surpassing the identification accuracy obtained with linear countermodels.•The VAE is able to reliably separate the neonatal FC profile into connections that track age and connections that reflect individual bra...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 299; p. 120806 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.10.2024
Elsevier Limited Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2024.120806 |
Cover
| Abstract | •The VAE shows significant subject identification accuracy with whole-brain FC profiles, surpassing the identification accuracy obtained with linear countermodels.•The VAE is able to reliably separate the neonatal FC profile into connections that track age and connections that reflect individual brain signatures.•Cortical functional network, derived by the VAE, varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures.
Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ∼ 0.7) and individual identification accuracy (∼45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10∼30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE's capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes. |
|---|---|
| AbstractList | Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ∼ 0.7) and individual identification accuracy (∼45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10∼30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE's capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes.Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ∼ 0.7) and individual identification accuracy (∼45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10∼30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE's capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes. •The VAE shows significant subject identification accuracy with whole-brain FC profiles, surpassing the identification accuracy obtained with linear countermodels.•The VAE is able to reliably separate the neonatal FC profile into connections that track age and connections that reflect individual brain signatures.•Cortical functional network, derived by the VAE, varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ∼ 0.7) and individual identification accuracy (∼45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10∼30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE's capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes. Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ∼ 0.7) and individual identification accuracy (∼45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10∼30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE's capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes. Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ~ 0.7) and individual identification accuracy (~45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10~30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE’s capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes. |
| ArticleNumber | 120806 |
| Author | Limperopoulos, Catherine Kim, Jung-Hoon De Asis-Cruz, Josepheen |
| Author_xml | – sequence: 1 givenname: Jung-Hoon orcidid: 0000-0003-3032-8827 surname: Kim fullname: Kim, Jung-Hoon email: jkim9@childrensnational.org – sequence: 2 givenname: Josepheen surname: De Asis-Cruz fullname: De Asis-Cruz, Josepheen – sequence: 3 givenname: Catherine orcidid: 0000-0003-1735-0069 surname: Limperopoulos fullname: Limperopoulos, Catherine email: climpero@childrensnational.org |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39179011$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkktv1DAUhSNURB_wF5AlNmwy2HHixCyAUvGoVIkFsLZu7JuMB48dnGSq-fd4mFLorIaVLfvcz-f63PPsxAePWUYYXTDKxKvVwuMcg11Dj4uCFuWCFbSh4lF2xqisclnVxcluX_G8YUyeZufjuKKUSlY2T7JTLlktKWNn2eYrDhBhsr4nfQzzkBPwhlhv7MaaGVzucIOOtBGsJ6PtPUxzxDEpyLRE4vG2DdGTbvZ6ssGDIzp4j3oKa3xNLolBHIhDiH73BAxDDKCXT7PHHbgRn92tF9n3jx--XX3Ob758ur66vMm14GzKtWwb1nIqWMk4b6pKlmUlRA2V7motuagNbauCVQWtTWOK1G8hUHZQd0xzhvwiu95zTYCVGmL6sbhVAaz6fRBiryBOVjtUBpoOgHaNMLLkoJv0W9LQuuw4LwoqE0vuWbMfYHsLzt0DGVW7XNRK_c1F7XJR-1xS7dt97TC3azQa_RTBPTD08MbbperDRjFWVnXJWCK8vCPE8HPGcVJrO2p0DjyGeVScSiFEWRc8SV8cSFdhjimapGLJjBC02gGf_2vp3suf2UiCZi_QMYxjxO5_2n1zUKrtBLv5SM1Zdwzg_R6AaTg2FqMatUWv0diYZiulZ4-BvDuAaGe91eB-4PY4xC_cUxUE |
| CitedBy_id | crossref_primary_10_1038_s41398_025_03268_9 |
| Cites_doi | 10.1016/j.neuroimage.2018.08.007 10.2307/1131638 10.1152/jn.00338.2011 10.1016/j.dcn.2022.101117 10.1016/j.neuroimage.2020.117043 10.1016/j.neuroimage.2019.116398 10.1093/cercor/bhy023 10.1016/j.dcn.2022.101123 10.7554/eLife.80878 10.1038/s41598-018-25089-1 10.1073/pnas.1324118111 10.1038/nn.4135 10.1016/j.neuroimage.2021.118423 10.1016/j.neuroimage.2020.117303 10.1002/hbm.26183 10.1109/TMI.2003.822821 10.3389/fnins.2022.886772 10.1016/j.neuroimage.2018.01.029 10.1038/nature18933 10.1093/cercor/bhr291 10.1007/s00429-018-1707-0 10.1162/netn_a_00068 10.1007/s00429-014-0710-3 10.1016/j.neuroimage.2022.119387 10.1016/j.neuroimage.2019.02.002 10.1016/j.neuroimage.2022.119808 10.1016/j.neuroimage.2011.09.015 10.1371/journal.pone.0111048 10.1073/pnas.1007921107 10.1093/cercor/bhu303 10.1016/j.compbiomed.2022.105854 10.1088/1741-2552/ac1179 10.1016/j.neuroimage.2016.05.029 10.1111/ejn.15435 10.1093/cercor/bhab041 10.1523/JNEUROSCI.0480-21.2021 10.1016/j.neuroimage.2006.11.004 10.1038/s41390-021-01497-4 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. 2024. The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2024. The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1016/j.neuroimage.2024.120806 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database ProQuest Psychology Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 120806 |
| ExternalDocumentID | oai_doaj_org_article_da8faa0f86d943ac80099d074f332209 10.1016/j.neuroimage.2024.120806 PMC11457411 39179011 10_1016_j_neuroimage_2024_120806 S1053811924003033 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NICHD NIH HHS grantid: T32 HD098066 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 0SF 6I. AACTN AAFTH AFKWA AJOXV ALIPV AMFUW C45 HMQ NCXOZ SEW 29N 53G AAQFI AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EFLBG EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ PUEGO R2- SNS WUQ XPP ZMT AGCQF AGRNS CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c631t-c9b81b306141338559445667a5cf7c9367d0b5215207d8d205326e9fa7f1c31e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Oct 14 19:06:19 EDT 2025 Sun Oct 26 03:56:34 EDT 2025 Tue Sep 30 17:07:04 EDT 2025 Thu Oct 02 10:54:37 EDT 2025 Tue Oct 07 07:23:33 EDT 2025 Mon Jul 21 05:49:16 EDT 2025 Wed Oct 01 03:43:47 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 Sat Dec 28 15:51:07 EST 2024 Tue Oct 14 19:35:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Resting-state fMRI Variational autoencoder Neonate Age prediction Subject identification Individual uniqueness |
| Language | English |
| License | This is an open access article under the CC BY-NC license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC license ( http://creativecommons.org/licenses/by-nc/4.0/ ). cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c631t-c9b81b306141338559445667a5cf7c9367d0b5215207d8d205326e9fa7f1c31e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3032-8827 0000-0003-1735-0069 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2024.120806 |
| PMID | 39179011 |
| PQID | 3106366051 |
| PQPubID | 2031077 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_da8faa0f86d943ac80099d074f332209 unpaywall_primary_10_1016_j_neuroimage_2024_120806 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457411 proquest_miscellaneous_3096664723 proquest_journals_3106366051 pubmed_primary_39179011 crossref_primary_10_1016_j_neuroimage_2024_120806 crossref_citationtrail_10_1016_j_neuroimage_2024_120806 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120806 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120806 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Delorme, Sejnowski, Makeig (bib0007) 2007; 34 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib0010) 2015; 18 Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0020) 2012; 62 Venkatesh, Jaja, Pessoa (bib0037) 2020; 207 Beckmann, Smith (bib0003) 2004; 23 Jalbrzikowski, Liu, Foran, Roeder, Devlin, Luna (bib0018) 2020; 46 Gozdas, Parikh, Merhar, Tkach, He, Holland (bib0013) 2018; 223 De Asis-Cruz, Kapse, Basu, Said, Scheinost, Murnick, Chang, du Plessis, Limperopoulos (bib0006) 2020; 219 Uchitel, Vanhatalo, Austin (bib0035) 2022; 91 Kim, De Asis-Cruz, Kapse, Limperopoulos (bib0024) 2023; 44 King, Truzzi, Cusack (bib0025) 2023; 265 Herzmann, Snyder, Kenley, Rogers, Shimony, Smyser (bib0014) 2019; 29 Wang, Xu, Zhao, Xu, He, Liao (bib0038) 2021; 31 Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni (bib0039) 2011; 106 James-Roberts, Plewis (bib0019) 1996; 67 Zhang, Wei, Liu, Wang, Xi, Pan (bib0040) 2022; 148 Edwards, Rueckert, Smith, Abo Seada, Alansary, Almalbis, Allsop, Andersson, Arichi, Arulkumaran (bib0009) 2022; 16 Horien, Shen, Scheinost, Constable (bib0016) 2019; 189 Smyser, Dosenbach, Smyser, Snyder, Rogers, Inder, Schlaggar, Neil (bib0032) 2016; 136 Van Essen, Glasser, Dierker, Harwell, Coalson (bib0036) 2012; 22 Byrge, Kennedy (bib0004) 2019; 3 Miranda-Dominguez, Mills, Carpenter, Grant, Kroenke, Nigg, Fair (bib0028) 2014; 9 Ciarrusta, Christiaens, Fitzgibbon, Dimitrova, Hutter, Hughes, Duff, Price, Cordero-Grande, Tournier (bib0005) 2022; 55 Gao, Alcauter, Smith, Gilmore, Lin (bib0011) 2015; 220 Kardan, Kaplan, Wheelock, Feczko, Day, Miranda-Domínguez, Meyer, Eggebrecht, Moore, Sung (bib0021) 2022; 56 Kim, Zhang, Han, Wen, Choi, Liu (bib0023) 2021; 241 Osher, Saxe, Koldewyn, Gabrieli, Kanwisher, Saygin (bib0029) 2016; 26 Sun, Liang, Duan, Liu, Chen, Wang, Liao, Xia, Zhao, He (bib0033) 2022; 259 Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, Lerchner (bib0015) 2017 Kim, De Asis-Cruz, Krishnamurthy, Limperopoulos (bib0022) 2023; 12 Sato, Biazoli, Zugman, Pan, Bueno, Moura, Gadelha, Picon, Amaro, Salum (bib0031) 2021; 54 Hu, Wang, Zhang, Wu, Zhou, Li, Wang, Lin, Li, Consortium (bib0017) 2022; 42 . Qiang, Dong, Liang, Ge, Zhang, Sun, Zhang, Zhang, Gao, Liu (bib0030) 2021; 18 Doria, Beckmann, Arichi, Merchant, Groppo, Turkheimer, Counsell, Murgasova, Aljabar, Nunes (bib0008) 2010; 107 Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson (bib0012) 2016; 536 Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint Mejia, Nebel, Barber, Choe, Pekar, Caffo, Lindquist (bib0027) 2018; 172 Ball, Aljabar, Zebari, Tusor, Arichi, Merchant, Robinson, Ogundipe, Rueckert, Edwards (bib0002) 2014; 111 Fitzgibbon, Harrison, Jenkinson, Baxter, Robinson, Bastiani, Bozek, Karolis, Grande, Price, Hughes (bib41) 2020; 223 Amico, Goñi (bib0001) 2018; 8 Tobyne, Somers, Brissenden, Michalka, Noyce, Osher (bib0034) 2018; 183 Wang (10.1016/j.neuroimage.2024.120806_bib0038) 2021; 31 Mejia (10.1016/j.neuroimage.2024.120806_bib0027) 2018; 172 Beckmann (10.1016/j.neuroimage.2024.120806_bib0003) 2004; 23 Finn (10.1016/j.neuroimage.2024.120806_bib0010) 2015; 18 Higgins (10.1016/j.neuroimage.2024.120806_bib0015) 2017 Kardan (10.1016/j.neuroimage.2024.120806_bib0021) 2022; 56 Kim (10.1016/j.neuroimage.2024.120806_bib0024) 2023; 44 Qiang (10.1016/j.neuroimage.2024.120806_bib0030) 2021; 18 Byrge (10.1016/j.neuroimage.2024.120806_bib0004) 2019; 3 Tobyne (10.1016/j.neuroimage.2024.120806_bib0034) 2018; 183 Sun (10.1016/j.neuroimage.2024.120806_bib0033) 2022; 259 Horien (10.1016/j.neuroimage.2024.120806_bib0016) 2019; 189 James-Roberts (10.1016/j.neuroimage.2024.120806_bib0019) 1996; 67 Yeo (10.1016/j.neuroimage.2024.120806_bib0039) 2011; 106 Smyser (10.1016/j.neuroimage.2024.120806_bib0032) 2016; 136 Ciarrusta (10.1016/j.neuroimage.2024.120806_bib0005) 2022; 55 Gozdas (10.1016/j.neuroimage.2024.120806_bib0013) 2018; 223 10.1016/j.neuroimage.2024.120806_bib0026 Uchitel (10.1016/j.neuroimage.2024.120806_bib0035) 2022; 91 Zhang (10.1016/j.neuroimage.2024.120806_bib0040) 2022; 148 Miranda-Dominguez (10.1016/j.neuroimage.2024.120806_bib0028) 2014; 9 Fitzgibbon (10.1016/j.neuroimage.2024.120806_bib41) 2020; 223 Amico (10.1016/j.neuroimage.2024.120806_bib0001) 2018; 8 Van Essen (10.1016/j.neuroimage.2024.120806_bib0036) 2012; 22 Ball (10.1016/j.neuroimage.2024.120806_bib0002) 2014; 111 Doria (10.1016/j.neuroimage.2024.120806_bib0008) 2010; 107 Hu (10.1016/j.neuroimage.2024.120806_bib0017) 2022; 42 Sato (10.1016/j.neuroimage.2024.120806_bib0031) 2021; 54 Herzmann (10.1016/j.neuroimage.2024.120806_bib0014) 2019; 29 De Asis-Cruz (10.1016/j.neuroimage.2024.120806_bib0006) 2020; 219 King (10.1016/j.neuroimage.2024.120806_bib0025) 2023; 265 Jenkinson (10.1016/j.neuroimage.2024.120806_bib0020) 2012; 62 Osher (10.1016/j.neuroimage.2024.120806_bib0029) 2016; 26 Delorme (10.1016/j.neuroimage.2024.120806_bib0007) 2007; 34 Kim (10.1016/j.neuroimage.2024.120806_bib0022) 2023; 12 Edwards (10.1016/j.neuroimage.2024.120806_bib0009) 2022; 16 Gao (10.1016/j.neuroimage.2024.120806_bib0011) 2015; 220 Glasser (10.1016/j.neuroimage.2024.120806_bib0012) 2016; 536 Venkatesh (10.1016/j.neuroimage.2024.120806_bib0037) 2020; 207 Kim (10.1016/j.neuroimage.2024.120806_bib0023) 2021; 241 Jalbrzikowski (10.1016/j.neuroimage.2024.120806_bib0018) 2020; 46 |
| References_xml | – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: bib0010 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 9 year: 2014 ident: bib0028 article-title: Connectotyping: model based fingerprinting of the functional connectome publication-title: PLoS ONE – volume: 31 start-page: 3701 year: 2021 end-page: 3712 ident: bib0038 article-title: Individual uniqueness in the neonatal functional connectome publication-title: Cereb. Cortex – volume: 207 year: 2020 ident: bib0037 article-title: Comparing functional connectivity matrices: a geometry-aware approach applied to participant identification publication-title: Neuroimage – volume: 55 year: 2022 ident: bib0005 article-title: The developing brain structural and functional connectome fingerprint publication-title: Dev. Cogn. Neurosci. – volume: 34 start-page: 1443 year: 2007 end-page: 1449 ident: bib0007 article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis publication-title: Neuroimage – volume: 111 start-page: 7456 year: 2014 end-page: 7461 ident: bib0002 article-title: Rich-club organization of the newborn human brain publication-title: Proc. Natl. Acad. Sci. – volume: 189 start-page: 676 year: 2019 end-page: 687 ident: bib0016 article-title: The individual functional connectome is unique and stable over months to years publication-title: Neuroimage – volume: 172 start-page: 478 year: 2018 end-page: 491 ident: bib0027 article-title: Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage publication-title: Neuroimage – volume: 183 start-page: 173 year: 2018 end-page: 185 ident: bib0034 article-title: Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting publication-title: Neuroimage – volume: 220 start-page: 1173 year: 2015 end-page: 1186 ident: bib0011 article-title: Development of human brain cortical network architecture during infancy publication-title: Brain Struct. Funct. – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bib0020 article-title: Fsl publication-title: Neuroimage – volume: 18 start-page: 0460b0466 year: 2021 ident: bib0030 article-title: Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder publication-title: J. Neural Eng. – volume: 67 start-page: 2527 year: 1996 end-page: 2540 ident: bib0019 article-title: Individual differences, daily fluctuations, and developmental changes in amounts of infant waking, fussing, crying, feeding, and sleeping publication-title: Child Dev. – volume: 12 start-page: e80878 year: 2023 ident: bib0022 article-title: Towards a more informative representation of the fetal-neonatal brain connectome using variational autoencoder publication-title: Elife – volume: 148 year: 2022 ident: bib0040 article-title: Identification of Autism spectrum disorder based on a novel feature selection method and Variational Autoencoder publication-title: Comput. Biol. Med. – volume: 91 start-page: 771 year: 2022 end-page: 786 ident: bib0035 article-title: Early development of sleep and brain functional connectivity in term-born and preterm infants publication-title: Pediatr. Res. – volume: 23 start-page: 137 year: 2004 end-page: 152 ident: bib0003 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging – volume: 241 year: 2021 ident: bib0023 article-title: Representation learning of resting state fMRI with variational autoencoder publication-title: Neuroimage – reference: Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint – volume: 223 start-page: 3665 year: 2018 end-page: 3680 ident: bib0013 article-title: Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments? publication-title: Brain Struct. Funct. – volume: 54 start-page: 6187 year: 2021 end-page: 6201 ident: bib0031 article-title: Long-term stability of the cortical volumetric profile and the functional human connectome throughout childhood and adolescence publication-title: Eur. J. Neurosci. – volume: 16 year: 2022 ident: bib0009 article-title: The developing human connectome project neonatal data release publication-title: Front. Neurosci. – volume: 8 start-page: 8254 year: 2018 ident: bib0001 article-title: The quest for identifiability in human functional connectomes publication-title: Sci. Rep. – volume: 22 start-page: 2241 year: 2012 end-page: 2262 ident: bib0036 article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases publication-title: Cereb. Cortex – volume: 29 start-page: 1174 year: 2019 end-page: 1184 ident: bib0014 article-title: Cerebellar functional connectivity in term-and very preterm-born infants publication-title: Cereb. Cortex – volume: 56 year: 2022 ident: bib0021 article-title: Resting-state functional connectivity identifies individuals and predicts age in 8-to-26-month-olds publication-title: Dev. Cogn. Neurosci. – volume: 3 start-page: 363 year: 2019 end-page: 383 ident: bib0004 article-title: High-accuracy individual identification using a “thin slice” of the functional connectome publication-title: Netw. Neurosci. – volume: 26 start-page: 1668 year: 2016 end-page: 1683 ident: bib0029 article-title: Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex publication-title: Cereb. Cortex – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: bib0039 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. – volume: 136 start-page: 1 year: 2016 end-page: 9 ident: bib0032 article-title: Prediction of brain maturity in infants using machine-learning algorithms publication-title: Neuroimage – reference: . – volume: 259 year: 2022 ident: bib0033 article-title: Structural insight into the individual variability architecture of the functional brain connectome publication-title: Neuroimage – volume: 265 year: 2023 ident: bib0025 article-title: The confound of head position in within-session connectome fingerprinting in infants publication-title: Neuroimage – volume: 107 start-page: 20015 year: 2010 end-page: 20020 ident: bib0008 article-title: Emergence of resting state networks in the preterm human brain publication-title: Proc. Natl. Acad. Sci. – volume: 46 start-page: 395 year: 2020 end-page: 407 ident: bib0018 article-title: Resting-state functional network organization is stable across adolescent development for typical and psychosis spectrum youth publication-title: Schizophr. Bull. – volume: 219 year: 2020 ident: bib0006 article-title: Functional brain connectivity in ex utero premature infants compared to in utero fetuses publication-title: Neuroimage – volume: 223 start-page: 117303 year: 2020 ident: bib41 article-title: The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants publication-title: NeuroImage – volume: 42 start-page: 377 year: 2022 end-page: 389 ident: bib0017 article-title: Existence of functional connectome fingerprint during infancy and its stability over months publication-title: J. Neurosci. – volume: 44 start-page: 1934 year: 2023 end-page: 1948 ident: bib0024 article-title: Systematic evaluation of head motion on resting-state functional connectivity MRI in the neonate publication-title: Hum. Brain Mapp. – volume: 536 start-page: 171 year: 2016 end-page: 178 ident: bib0012 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature – year: 2017 ident: bib0015 article-title: beta-vae: learning basic visual concepts with a constrained variational framework publication-title: International Conference on Learning Representations – volume: 183 start-page: 173 year: 2018 ident: 10.1016/j.neuroimage.2024.120806_bib0034 article-title: Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.08.007 – volume: 67 start-page: 2527 year: 1996 ident: 10.1016/j.neuroimage.2024.120806_bib0019 article-title: Individual differences, daily fluctuations, and developmental changes in amounts of infant waking, fussing, crying, feeding, and sleeping publication-title: Child Dev. doi: 10.2307/1131638 – ident: 10.1016/j.neuroimage.2024.120806_bib0026 – volume: 106 start-page: 1125 year: 2011 ident: 10.1016/j.neuroimage.2024.120806_bib0039 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 55 year: 2022 ident: 10.1016/j.neuroimage.2024.120806_bib0005 article-title: The developing brain structural and functional connectome fingerprint publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2022.101117 – volume: 219 year: 2020 ident: 10.1016/j.neuroimage.2024.120806_bib0006 article-title: Functional brain connectivity in ex utero premature infants compared to in utero fetuses publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117043 – volume: 207 year: 2020 ident: 10.1016/j.neuroimage.2024.120806_bib0037 article-title: Comparing functional connectivity matrices: a geometry-aware approach applied to participant identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116398 – volume: 29 start-page: 1174 year: 2019 ident: 10.1016/j.neuroimage.2024.120806_bib0014 article-title: Cerebellar functional connectivity in term-and very preterm-born infants publication-title: Cereb. Cortex doi: 10.1093/cercor/bhy023 – volume: 56 year: 2022 ident: 10.1016/j.neuroimage.2024.120806_bib0021 article-title: Resting-state functional connectivity identifies individuals and predicts age in 8-to-26-month-olds publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2022.101123 – volume: 12 start-page: e80878 year: 2023 ident: 10.1016/j.neuroimage.2024.120806_bib0022 article-title: Towards a more informative representation of the fetal-neonatal brain connectome using variational autoencoder publication-title: Elife doi: 10.7554/eLife.80878 – volume: 8 start-page: 8254 year: 2018 ident: 10.1016/j.neuroimage.2024.120806_bib0001 article-title: The quest for identifiability in human functional connectomes publication-title: Sci. Rep. doi: 10.1038/s41598-018-25089-1 – volume: 111 start-page: 7456 year: 2014 ident: 10.1016/j.neuroimage.2024.120806_bib0002 article-title: Rich-club organization of the newborn human brain publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1324118111 – volume: 18 start-page: 1664 year: 2015 ident: 10.1016/j.neuroimage.2024.120806_bib0010 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 241 year: 2021 ident: 10.1016/j.neuroimage.2024.120806_bib0023 article-title: Representation learning of resting state fMRI with variational autoencoder publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118423 – volume: 223 start-page: 117303 year: 2020 ident: 10.1016/j.neuroimage.2024.120806_bib41 article-title: The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117303 – volume: 44 start-page: 1934 year: 2023 ident: 10.1016/j.neuroimage.2024.120806_bib0024 article-title: Systematic evaluation of head motion on resting-state functional connectivity MRI in the neonate publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.26183 – volume: 23 start-page: 137 year: 2004 ident: 10.1016/j.neuroimage.2024.120806_bib0003 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.822821 – volume: 16 year: 2022 ident: 10.1016/j.neuroimage.2024.120806_bib0009 article-title: The developing human connectome project neonatal data release publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.886772 – volume: 172 start-page: 478 year: 2018 ident: 10.1016/j.neuroimage.2024.120806_bib0027 article-title: Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.029 – volume: 536 start-page: 171 year: 2016 ident: 10.1016/j.neuroimage.2024.120806_bib0012 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 22 start-page: 2241 year: 2012 ident: 10.1016/j.neuroimage.2024.120806_bib0036 article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr291 – volume: 223 start-page: 3665 year: 2018 ident: 10.1016/j.neuroimage.2024.120806_bib0013 article-title: Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments? publication-title: Brain Struct. Funct. doi: 10.1007/s00429-018-1707-0 – volume: 3 start-page: 363 year: 2019 ident: 10.1016/j.neuroimage.2024.120806_bib0004 article-title: High-accuracy individual identification using a “thin slice” of the functional connectome publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00068 – volume: 220 start-page: 1173 year: 2015 ident: 10.1016/j.neuroimage.2024.120806_bib0011 article-title: Development of human brain cortical network architecture during infancy publication-title: Brain Struct. Funct. doi: 10.1007/s00429-014-0710-3 – volume: 259 year: 2022 ident: 10.1016/j.neuroimage.2024.120806_bib0033 article-title: Structural insight into the individual variability architecture of the functional brain connectome publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.119387 – volume: 189 start-page: 676 year: 2019 ident: 10.1016/j.neuroimage.2024.120806_bib0016 article-title: The individual functional connectome is unique and stable over months to years publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.02.002 – volume: 265 year: 2023 ident: 10.1016/j.neuroimage.2024.120806_bib0025 article-title: The confound of head position in within-session connectome fingerprinting in infants publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.119808 – volume: 62 start-page: 782 year: 2012 ident: 10.1016/j.neuroimage.2024.120806_bib0020 article-title: Fsl publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 9 year: 2014 ident: 10.1016/j.neuroimage.2024.120806_bib0028 article-title: Connectotyping: model based fingerprinting of the functional connectome publication-title: PLoS ONE doi: 10.1371/journal.pone.0111048 – volume: 107 start-page: 20015 year: 2010 ident: 10.1016/j.neuroimage.2024.120806_bib0008 article-title: Emergence of resting state networks in the preterm human brain publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1007921107 – volume: 26 start-page: 1668 year: 2016 ident: 10.1016/j.neuroimage.2024.120806_bib0029 article-title: Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhu303 – volume: 148 year: 2022 ident: 10.1016/j.neuroimage.2024.120806_bib0040 article-title: Identification of Autism spectrum disorder based on a novel feature selection method and Variational Autoencoder publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105854 – volume: 18 start-page: 0460b0466 year: 2021 ident: 10.1016/j.neuroimage.2024.120806_bib0030 article-title: Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac1179 – volume: 136 start-page: 1 year: 2016 ident: 10.1016/j.neuroimage.2024.120806_bib0032 article-title: Prediction of brain maturity in infants using machine-learning algorithms publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.05.029 – year: 2017 ident: 10.1016/j.neuroimage.2024.120806_bib0015 article-title: beta-vae: learning basic visual concepts with a constrained variational framework – volume: 54 start-page: 6187 year: 2021 ident: 10.1016/j.neuroimage.2024.120806_bib0031 article-title: Long-term stability of the cortical volumetric profile and the functional human connectome throughout childhood and adolescence publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.15435 – volume: 31 start-page: 3701 year: 2021 ident: 10.1016/j.neuroimage.2024.120806_bib0038 article-title: Individual uniqueness in the neonatal functional connectome publication-title: Cereb. Cortex doi: 10.1093/cercor/bhab041 – volume: 42 start-page: 377 year: 2022 ident: 10.1016/j.neuroimage.2024.120806_bib0017 article-title: Existence of functional connectome fingerprint during infancy and its stability over months publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0480-21.2021 – volume: 34 start-page: 1443 year: 2007 ident: 10.1016/j.neuroimage.2024.120806_bib0007 article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.004 – volume: 91 start-page: 771 year: 2022 ident: 10.1016/j.neuroimage.2024.120806_bib0035 article-title: Early development of sleep and brain functional connectivity in term-born and preterm infants publication-title: Pediatr. Res. doi: 10.1038/s41390-021-01497-4 – volume: 46 start-page: 395 year: 2020 ident: 10.1016/j.neuroimage.2024.120806_bib0018 article-title: Resting-state functional network organization is stable across adolescent development for typical and psychosis spectrum youth publication-title: Schizophr. Bull. |
| SSID | ssj0009148 |
| Score | 2.481371 |
| Snippet | •The VAE shows significant subject identification accuracy with whole-brain FC profiles, surpassing the identification accuracy obtained with linear... Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 120806 |
| SubjectTerms | Adult Age Age prediction Babies Brain - diagnostic imaging Brain - growth & development Brain - physiology Brain mapping Brain research Connectome - methods Datasets Deep Learning DNA fingerprinting Female Functional magnetic resonance imaging Humans Individual uniqueness Infant, Newborn Magnetic Resonance Imaging - methods Male Neonate Neonates Nerve Net - diagnostic imaging Nerve Net - physiology Neural networks Neurodevelopment Neuroimaging Newborn babies Older people Phenotypes Resting-state fMRI Sensorimotor system Subject identification Variables Variational autoencoder Young Adult Young adults |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYmDrALGmMb2WDypF2z1XXi2HCCaaia1F02JG6WYztQVNxqtEP8-70XO1krDvTAtfFLGr-X5-8lz99HyGfFpIG873MUtMoLD8-cssblVg5rr1TB6pZMZ_xTjC6KH5fl5YrUF_aERXrgOHFfnZGNMYNGCqcKbqxETONg4Ws4xGLcujeQqiumOrpdQPmpbyd2c7XskJNbeEahJhwWXxgYocrRymLUcvavrUmPMefj1smdZZibh3szna6sS-evyG4ClPQ03sgeeeHDa7I9Tp_M98nfXz7Se4cr2m7hyKkJjk76jVj5FPuGaI1aERTbOVqqzzsYQQEcUoDdECaB4gIY3xtSi80xdjG79cf0lDrv5zSJT1zRjqP8Dbk4__772yhPYgu5FZwtcqtqQLAcC0QsW6HQKABbicqUtqms4qJyg7pEFdxB5aQboqKE8KoxVcMsZ56_JVthFvwBwes6WyqwRXL3xkjuDOKiwgBe8KbMSNXNuraJiRwFMaa6azm70f_9pdFfOvorI6y3nEc2jg1sztCx_Xjk025_gCjTKcr0U1GWEdWFhe62rEKShRNNNvgDJ71tgjURrmxofdhFoU7p5U4DJhdcQCXKMvKpPwyJAb_2mOBnSxgDxalAcQCekXcxaPs54AqJ2RhYy7VwXpuk9SNhct2Sj0P9XAIKBdNhH_kb--L9c_jiA3mJp4wdlYdka_Fn6Y8AGS7qj20S-AfvQGMD priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHoAL4ptAQUbimu46dpwYTqWiqpDKpVTqzXJsZwnaZlftLogLv50Z20mJelmJ4yae3ezMZPwmmXlDyHvFagNx3-c40CoXHu45ZY3LbV00XinBmkCmc_ZVnl6IL5fl5R45HnphsKwyxf4Y00O0TkdmSZuzddfNzgEZwHaDCQR6KkfGTyEqnGJw-Oe2zEMxEdvhSp7j6lTNE2u8AmdkdwV3LmSKhThkBQAoOdmiApP_ZKe6i0TvFlTe3_Zr8_uXWS7_2a1OHpGHCWbSo_hPHpM93z8h987Si_Sn5Oe5j6Tf_YKGxo6cmt7RbmzPypdYTUQbnCBBscgjEIDewAoKkJECGAfn6Slui_FpIrVYMmM3qyv_gR5R5_2appEUCzowlz8jFyefvx2f5mkEQ24lZ5vcqgZwLce0EZNZSD8EIC5ZmdK2lVVcVm7elDgbd1652hU4Z0J61ZqqZZYzz5-T_X7V-5cEf9fZUoEsUr63pubOIFoSBlCEN2VGqkHr2iZ-chyTsdRDIdoPfWsvjfbS0V4ZYaPkOnJ07CDzCQ07rkeW7XBgdb3Qyc20M3VrzLytpYNLNrZGPO0AdLUc4uBcZUQNbqGHRlYIvfBF3Q4X8HGUnTj8jtIHgxfqFHRuNCB1ySXkpywj78bTEC7wHZDp_WoLayBllTgygGfkRXTaUQdcIV0bA-l64s4TJU3P9N33QEkOWXUJ2BREi9Hzd7bFq_9SxWvyAD_FAssDsr-53vo3ABQ3zdsQCf4C5FVnwg priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGJ8FeEL8JDGQkXg11nDgxCKENbZqQViFg0t4sx3ZKUZd0Wwviv-cudlKqSaivia9J7fP5u_j8fYS8Vrw0EPc9Q0ErlnmYc8oax2yZVl6pjFcdmc7pRJ6cZZ_P8_MdMunPwmBZZR8Tu0DtWovfyN8CDJFCAvjmHxeXDFWjcHe1l9AwUVrBfegoxm6R3RSZsUZk9_Bo8uXrmoaXZ-FwXC5YybmKtT2h4qtjkJxdwDyGvDHN3vAU4JTcWLA6Xv-NdesmLr1ZXnln1SzMn99mPv9n7Tq-R-5G0EkPgpfcJzu-eUBun8Zt9Yfk1zcfKMCbKe2OeTBqGkdnw2EtNsfaIlqhngTFko-ODvQaWlAAkBSgObhSQ3GRDN8WqcUCGrtsL_w7ekCd9wsaBSqmtOcxf0TOjo--fzphUZCBWSn4kllVAcoVmERiagvJSAb4SxYmt3VhlZCFG1c5KuWOC1e6FFUnpFe1KWpuBffiMRk1beOfEnyus7kCWySAr00pnEHslBnAFN7kCSn6Xtc2spWjaMZc92VpP_V6vDSOlw7jlRA-WC4CY8cWNoc4sEN75NzuLrRXUx2nsHamrI0Z16V08MrGloiuHUCwWkBUHKuEqN4tdH-sFQIx_NBsixd4P9hG6BMgzZbW-70X6hiCrvV6wiTk1XAbggfuCJnGtytoAwmsRAEBkZAnwWmHPhAKyds4WJcb7rzRSZt3mtmPjqAccuwckCqYpoPnbz0Wz_7_Z56TPWwc6in3yWh5tfIvABcuq5dxsv8F0EhjDA priority: 102 providerName: ProQuest |
| Title | Separating group- and individual-level brain signatures in the newborn functional connectome: A deep learning approach |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924003033 https://dx.doi.org/10.1016/j.neuroimage.2024.120806 https://www.ncbi.nlm.nih.gov/pubmed/39179011 https://www.proquest.com/docview/3106366051 https://www.proquest.com/docview/3096664723 https://pubmed.ncbi.nlm.nih.gov/PMC11457411 https://doi.org/10.1016/j.neuroimage.2024.120806 https://doaj.org/article/da8faa0f86d943ac80099d074f332209 |
| UnpaywallVersion | publishedVersion |
| Volume | 299 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250901 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250901 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9trQS88D0oG5WReE0V14mTwFOHNhXQqvFRqTxFju2MQpdWrAXBA3_77pwPCJNQ4aVVG18-zr7z7-Lz7wCeJjxW6PetRwWtvMCizSVaGU_Hw8wmScAzR6ZzMpHjafBqFs52wK_3wrTW710eluN1nJ-jdWE0NwwGfIggR-5CV4aIvjvQnU5ORx_comYovJi7Wh7cpxKEYVQn7_ztVK0ZyRH3tyamq8Dzav7k9U2xUt-_qcXit8np-Ba8qR-rzEn5PNiss4H-8Qfj47889224WSFVNiqH1h3YscVduHZSrcXfg6_vbMkbXpwxtzfEY6owbN7s8PIWlJDEMipCwShPxHGIXmALhqiTIZ7H8VcwmlnLF5JMU9aNXi_P7TM2YsbaFauqWpyxmvz8PkyPj96_GHtVFQdPS8HXnk4yhMaCIk-KhzGCCRC0yUiFOo90ImRk_Cyk8rp-ZGIzpFIV0ia5inKuBbdiDzrFsrAPga5rNPZ6pIg1PlexMIoAV6AQiFgV9iCqezLVFcU5VdpYpHUu26f0l1pTUmtaqrUHvJFclTQfW8gc0mBp2hNRt_sD-zGt7D41Ks6V8vNYGrxlpWOC5AZxWy7QlfpJD5J6qKX1Xlj03nii-RY38LyRrfBSiYO2lD6oR3Za-a2LFMG-FBJDXN6DJ81h9Di0jKQKu9xgG4x6JVUdED14UBpCowOREOMbR-m4ZSItJbWPFPOPjtUcA_MQ4S2KDhtr2rovHv2P0D7coF9lauYBdNZfNvYxQsx11ofdwU-On9Es6kN39PL1eILfh0eT07d999qmX_mdS6N0fdM |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjFeEN8EBhgJHgN1nC-DJrTBpo6tFYJN2ptxbKcUdUlZW6b9c_xt3CVOSjQJ9WWvjS9NfOfz7-K73xHySrBUgd-3Pja08kMLa05oZXydBpkVImRZRaYzGMb9k_DzaXS6Rv40tTCYVtn4xMpRm1LjN_K3AENiHgP4Zh-mv3zsGoWnq00LDeVaK5jtimLMFXYc2ssLCOFm2wefQN-vg2B_7_hj33ddBnwdczb3tcgAunGMjDBeA4QdAqiIExXpPNGCx4npZRG2f-0lJjUBtlKIrchVkjPNmeVw3xtkI-ShgOBvY3dv-OXrkvaXhXUxXsT9lDHhconqDLOKsXJ8Bn4D4tQgfMMCgG9xZ4Os-gh09smrOPhqOufmopiqyws1mfyzV-7fIbcdyKU7tVXeJWu2uEduDtwx_n3y-5utKceLEa3KSnyqCkPHbXGYP8FcJpph_wqKKSYV_egMRlAArBRCATDdguKmXH_LpBoTdvS8PLPv6A411k6pa4gxog1v-gNyci2qeUjWi7Kwjwn-r9GRAFkknM9Vyo1CrBYqwDBWRR5JmlmX2rGjY5OOiWzS4H7Kpb4k6kvW-vIIayWnNUPICjK7qNh2PHJ8Vz-U5yPpXIY0Ks2V6uVpbOCRlU4RzRuAfDkHL9wTHhGNWcimjBYcP9xovMIDvG9lHdSqIdSK0luNFUrn8mZyuUA98rK9DM4KT6BUYcsFjIGAOcaGBdwjj2qjbeeACySLYyCddsy5M0ndK8X4R0WIDjF9BMgYRIPW8lfWxZP_v8wLstk_HhzJo4Ph4VNyCwXrXM4tsj4_X9hngEnn2XO38Cn5ft2-5i9STJ0s |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkAYviG8yBhgJHs3qOF8GITQY1cbYhAST-uY5tlM6dUlZW6b9a_x13MVJSjUJ9WWvjS9NfOfz7-K73xHySvJMg993DBtascjBmpNGW2ayMHdSRjyvyXQOj5K94-jLIB6skT9tLQymVbY-sXbUtjL4jXwbYEgiEgDffLto0iK-7fY_TH4x7CCFJ61tOw1vIgfu8gLCt-n7_V3Q9esw7H_-8WmPNR0GmEkEnzEjc4BtAqMijNUAXUcAKJJUx6ZIjRRJant5jK1fe6nNbIhtFBInC50W3AjuBNz3BrmZCiExnTAdpAvCXx75MrxYsIxz2WQR-dyymqtydAYeAyLUMHrDQwBuydLWWHcQWNohryLgq4mct-blRF9e6PH4n12yf5fcaeAt3fH2eI-sufI-2ThsDvAfkN_fnScbL4e0LihhVJeWjrqyMDbGLCaaY-cKisklNfHoFEZQgKoUggAw2pLiduy_YlKDqTpmVp25t3SHWucmtGmFMaQtY_pDcnwtinlE1suqdE8I_q81sQRZpJovdCasRpQWaUAvTscBSdtZV6bhRcf2HGPVJsCdqoW-FOpLeX0FhHeSE88NsoLMR1RsNx7ZvesfqvOhapyFsjortO4VWWLhkbXJEMdbAHuFAP_bkwGRrVmotoAWXD7caLTCA7zrZBuQ5cHTitJbrRWqxtlN1WJpBuRldxncFJ496dJVcxgDoXKCrQpEQB57o-3mQEikieMgnS2Z89IkLV8pRz9rKnSI5mPAxCAadpa_si42__8yL8gGeBj1df_o4Cm5jXI-iXOLrM_O5-4ZgNFZ_rxe9ZScXLeb-Qv8TprG |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToK98M0IDGQkXlPFceIk8FQQ04S0CQSVxpPl2M4odGnFUhD89dw5HxAmocJjG1-anO_Ov6vPvwN4WvBcY9x3ITW0ChOHPlcYbUOTx6UrioSXnkzn-EQezZPXp-npDkT9WZjR_r2vw_K8jotz9C7M5uJkymMEOfIK7MoU0fcEducnb2Yf_KZmKsKc-14ePKIWhGnWF-_87VajFckT948WpsvA83L95LVNvdbfv-nl8rfF6fAGvO1fq61J-TzdNOXU_PiD8fFf3vsmXO-QKpu1pnULdlx9G64ed3vxd-DrO9fyhtdnzJ8NCZmuLVsMJ7zCJRUksZKaUDCqE_Ecohc4giHqZIjn0f5qRitr-4ckM1R1Y5rVuXvGZsw6t2ZdV4sz1pOf34X54av3L4_CrotDaKTgTWiKEqGxoMyT8mHMYBIEbTLTqakyUwiZ2ahMqb1ulNncxtSqQrqi0lnFjeBO3INJvardfaDftQZnPdPEGl_pXFhNgCvRCEScTgPI-plUpqM4p04bS9XXsn1Sv9SqSK2qVWsAfJBctzQfW8i8IGMZxhNRt_8C51F1fq-sziutoyqXFh9Zm5wguUXcVgkMpVERQNGbmurPwmL0xhsttniA54Nsh5daHLSl9EFv2aqLWxcKwb4UElNcHsCT4TJGHNpG0rVbbXAMZr2Sug6IAPZbRxh0IApifOMonY9cZKSk8ZV68dGzmmNiniK8RdF48Kat5-LB_wg9hD361JZmHsCk-bJxjxBiNuXjLqr8BGFkd9E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Separating+group-+and+individual-level+brain+signatures+in+the+newborn+functional+connectome%3A+A+deep+learning+approach&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kim%2C+Jung-Hoon&rft.au=De+Asis-Cruz%2C+Josepheen&rft.au=Limperopoulos%2C+Catherine&rft.date=2024-10-01&rft.issn=1053-8119&rft.volume=299&rft.spage=120806&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120806&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2024_120806 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |