Separating group- and individual-level brain signatures in the newborn functional connectome: A deep learning approach

•The VAE shows significant subject identification accuracy with whole-brain FC profiles, surpassing the identification accuracy obtained with linear countermodels.•The VAE is able to reliably separate the neonatal FC profile into connections that track age and connections that reflect individual bra...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 299; p. 120806
Main Authors Kim, Jung-Hoon, De Asis-Cruz, Josepheen, Limperopoulos, Catherine
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2024
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2024.120806

Cover

Abstract •The VAE shows significant subject identification accuracy with whole-brain FC profiles, surpassing the identification accuracy obtained with linear countermodels.•The VAE is able to reliably separate the neonatal FC profile into connections that track age and connections that reflect individual brain signatures.•Cortical functional network, derived by the VAE, varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ∼ 0.7) and individual identification accuracy (∼45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10∼30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE's capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes.
AbstractList Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ∼ 0.7) and individual identification accuracy (∼45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10∼30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE's capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes.Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ∼ 0.7) and individual identification accuracy (∼45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10∼30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE's capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes.
•The VAE shows significant subject identification accuracy with whole-brain FC profiles, surpassing the identification accuracy obtained with linear countermodels.•The VAE is able to reliably separate the neonatal FC profile into connections that track age and connections that reflect individual brain signatures.•Cortical functional network, derived by the VAE, varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ∼ 0.7) and individual identification accuracy (∼45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10∼30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE's capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes.
Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ∼ 0.7) and individual identification accuracy (∼45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10∼30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE's capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes.
Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accuracy in identifying adults, early studies on neonates suggest that individualized FC signatures are absent. We posit that individual uniqueness is present in neonatal FC data and that conventional linear models fail to capture the rapid developmental trajectories characteristic of newborn brains. To explore this hypothesis, we employed a deep generative model, known as a variational autoencoder (VAE), leveraging two extensive public datasets: one comprising resting-state functional MRI (rs-fMRI) scans from 100 adults and the other from 464 neonates. VAE models trained on rs-fMRI from both adults and newborns produced superior age prediction performance (with r between predicted- and actual age ~ 0.7) and individual identification accuracy (~45 %) compared to models trained solely on adult or neonatal data. The VAE model also showed significantly higher individual identification accuracy than linear models (=10~30 %). Importantly, the VAE differentiated connections reflecting age-related changes from those indicative of individual uniqueness, a distinction not possible with linear models. Moreover, we derived 20 latent variables, each corresponding to distinct patterns of cortical functional network (CFNs). These CFNs varied in their representation of brain maturation and individual signatures; notably, certain CFNs that failed to capture neurodevelopmental traits, in fact, exhibited individual signatures. CFNs associated with neonatal neurodevelopment predominantly encompassed unimodal regions such as visual and sensorimotor areas, whereas those linked to individual uniqueness spanned multimodal and transmodal brain regions. The VAE’s capacity to extract features from rs-fMRI data beyond the capabilities of linear models positions it as a valuable tool for delineating cognitive traits inherent in rs-fMRI and exploring individualized imaging phenotypes.
ArticleNumber 120806
Author Limperopoulos, Catherine
Kim, Jung-Hoon
De Asis-Cruz, Josepheen
Author_xml – sequence: 1
  givenname: Jung-Hoon
  orcidid: 0000-0003-3032-8827
  surname: Kim
  fullname: Kim, Jung-Hoon
  email: jkim9@childrensnational.org
– sequence: 2
  givenname: Josepheen
  surname: De Asis-Cruz
  fullname: De Asis-Cruz, Josepheen
– sequence: 3
  givenname: Catherine
  orcidid: 0000-0003-1735-0069
  surname: Limperopoulos
  fullname: Limperopoulos, Catherine
  email: climpero@childrensnational.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39179011$$D View this record in MEDLINE/PubMed
BookMark eNqVkktv1DAUhSNURB_wF5AlNmwy2HHixCyAUvGoVIkFsLZu7JuMB48dnGSq-fd4mFLorIaVLfvcz-f63PPsxAePWUYYXTDKxKvVwuMcg11Dj4uCFuWCFbSh4lF2xqisclnVxcluX_G8YUyeZufjuKKUSlY2T7JTLlktKWNn2eYrDhBhsr4nfQzzkBPwhlhv7MaaGVzucIOOtBGsJ6PtPUxzxDEpyLRE4vG2DdGTbvZ6ssGDIzp4j3oKa3xNLolBHIhDiH73BAxDDKCXT7PHHbgRn92tF9n3jx--XX3Ob758ur66vMm14GzKtWwb1nIqWMk4b6pKlmUlRA2V7motuagNbauCVQWtTWOK1G8hUHZQd0xzhvwiu95zTYCVGmL6sbhVAaz6fRBiryBOVjtUBpoOgHaNMLLkoJv0W9LQuuw4LwoqE0vuWbMfYHsLzt0DGVW7XNRK_c1F7XJR-1xS7dt97TC3azQa_RTBPTD08MbbperDRjFWVnXJWCK8vCPE8HPGcVJrO2p0DjyGeVScSiFEWRc8SV8cSFdhjimapGLJjBC02gGf_2vp3suf2UiCZi_QMYxjxO5_2n1zUKrtBLv5SM1Zdwzg_R6AaTg2FqMatUWv0diYZiulZ4-BvDuAaGe91eB-4PY4xC_cUxUE
CitedBy_id crossref_primary_10_1038_s41398_025_03268_9
Cites_doi 10.1016/j.neuroimage.2018.08.007
10.2307/1131638
10.1152/jn.00338.2011
10.1016/j.dcn.2022.101117
10.1016/j.neuroimage.2020.117043
10.1016/j.neuroimage.2019.116398
10.1093/cercor/bhy023
10.1016/j.dcn.2022.101123
10.7554/eLife.80878
10.1038/s41598-018-25089-1
10.1073/pnas.1324118111
10.1038/nn.4135
10.1016/j.neuroimage.2021.118423
10.1016/j.neuroimage.2020.117303
10.1002/hbm.26183
10.1109/TMI.2003.822821
10.3389/fnins.2022.886772
10.1016/j.neuroimage.2018.01.029
10.1038/nature18933
10.1093/cercor/bhr291
10.1007/s00429-018-1707-0
10.1162/netn_a_00068
10.1007/s00429-014-0710-3
10.1016/j.neuroimage.2022.119387
10.1016/j.neuroimage.2019.02.002
10.1016/j.neuroimage.2022.119808
10.1016/j.neuroimage.2011.09.015
10.1371/journal.pone.0111048
10.1073/pnas.1007921107
10.1093/cercor/bhu303
10.1016/j.compbiomed.2022.105854
10.1088/1741-2552/ac1179
10.1016/j.neuroimage.2016.05.029
10.1111/ejn.15435
10.1093/cercor/bhab041
10.1523/JNEUROSCI.0480-21.2021
10.1016/j.neuroimage.2006.11.004
10.1038/s41390-021-01497-4
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
2024. The Author(s)
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2024. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.neuroimage.2024.120806
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Psychology
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest One Psychology



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 120806
ExternalDocumentID oai_doaj_org_article_da8faa0f86d943ac80099d074f332209
10.1016/j.neuroimage.2024.120806
PMC11457411
39179011
10_1016_j_neuroimage_2024_120806
S1053811924003033
Genre Journal Article
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: T32 HD098066
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
0SF
6I.
AACTN
AAFTH
AFKWA
AJOXV
ALIPV
AMFUW
C45
HMQ
NCXOZ
SEW
29N
53G
AAQFI
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
PUEGO
R2-
SNS
WUQ
XPP
ZMT
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c631t-c9b81b306141338559445667a5cf7c9367d0b5215207d8d205326e9fa7f1c31e3
IEDL.DBID UNPAY
ISSN 1053-8119
1095-9572
IngestDate Tue Oct 14 19:06:19 EDT 2025
Sun Oct 26 03:56:34 EDT 2025
Tue Sep 30 17:07:04 EDT 2025
Thu Oct 02 10:54:37 EDT 2025
Tue Oct 07 07:23:33 EDT 2025
Mon Jul 21 05:49:16 EDT 2025
Wed Oct 01 03:43:47 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
Sat Dec 28 15:51:07 EST 2024
Tue Oct 14 19:35:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Resting-state fMRI
Variational autoencoder
Neonate
Age prediction
Subject identification
Individual uniqueness
Language English
License This is an open access article under the CC BY-NC license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC license ( http://creativecommons.org/licenses/by-nc/4.0/ ).
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631t-c9b81b306141338559445667a5cf7c9367d0b5215207d8d205326e9fa7f1c31e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3032-8827
0000-0003-1735-0069
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2024.120806
PMID 39179011
PQID 3106366051
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_da8faa0f86d943ac80099d074f332209
unpaywall_primary_10_1016_j_neuroimage_2024_120806
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457411
proquest_miscellaneous_3096664723
proquest_journals_3106366051
pubmed_primary_39179011
crossref_primary_10_1016_j_neuroimage_2024_120806
crossref_citationtrail_10_1016_j_neuroimage_2024_120806
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120806
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120806
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2024
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Delorme, Sejnowski, Makeig (bib0007) 2007; 34
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib0010) 2015; 18
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0020) 2012; 62
Venkatesh, Jaja, Pessoa (bib0037) 2020; 207
Beckmann, Smith (bib0003) 2004; 23
Jalbrzikowski, Liu, Foran, Roeder, Devlin, Luna (bib0018) 2020; 46
Gozdas, Parikh, Merhar, Tkach, He, Holland (bib0013) 2018; 223
De Asis-Cruz, Kapse, Basu, Said, Scheinost, Murnick, Chang, du Plessis, Limperopoulos (bib0006) 2020; 219
Uchitel, Vanhatalo, Austin (bib0035) 2022; 91
Kim, De Asis-Cruz, Kapse, Limperopoulos (bib0024) 2023; 44
King, Truzzi, Cusack (bib0025) 2023; 265
Herzmann, Snyder, Kenley, Rogers, Shimony, Smyser (bib0014) 2019; 29
Wang, Xu, Zhao, Xu, He, Liao (bib0038) 2021; 31
Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni (bib0039) 2011; 106
James-Roberts, Plewis (bib0019) 1996; 67
Zhang, Wei, Liu, Wang, Xi, Pan (bib0040) 2022; 148
Edwards, Rueckert, Smith, Abo Seada, Alansary, Almalbis, Allsop, Andersson, Arichi, Arulkumaran (bib0009) 2022; 16
Horien, Shen, Scheinost, Constable (bib0016) 2019; 189
Smyser, Dosenbach, Smyser, Snyder, Rogers, Inder, Schlaggar, Neil (bib0032) 2016; 136
Van Essen, Glasser, Dierker, Harwell, Coalson (bib0036) 2012; 22
Byrge, Kennedy (bib0004) 2019; 3
Miranda-Dominguez, Mills, Carpenter, Grant, Kroenke, Nigg, Fair (bib0028) 2014; 9
Ciarrusta, Christiaens, Fitzgibbon, Dimitrova, Hutter, Hughes, Duff, Price, Cordero-Grande, Tournier (bib0005) 2022; 55
Gao, Alcauter, Smith, Gilmore, Lin (bib0011) 2015; 220
Kardan, Kaplan, Wheelock, Feczko, Day, Miranda-Domínguez, Meyer, Eggebrecht, Moore, Sung (bib0021) 2022; 56
Kim, Zhang, Han, Wen, Choi, Liu (bib0023) 2021; 241
Osher, Saxe, Koldewyn, Gabrieli, Kanwisher, Saygin (bib0029) 2016; 26
Sun, Liang, Duan, Liu, Chen, Wang, Liao, Xia, Zhao, He (bib0033) 2022; 259
Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, Lerchner (bib0015) 2017
Kim, De Asis-Cruz, Krishnamurthy, Limperopoulos (bib0022) 2023; 12
Sato, Biazoli, Zugman, Pan, Bueno, Moura, Gadelha, Picon, Amaro, Salum (bib0031) 2021; 54
Hu, Wang, Zhang, Wu, Zhou, Li, Wang, Lin, Li, Consortium (bib0017) 2022; 42
.
Qiang, Dong, Liang, Ge, Zhang, Sun, Zhang, Zhang, Gao, Liu (bib0030) 2021; 18
Doria, Beckmann, Arichi, Merchant, Groppo, Turkheimer, Counsell, Murgasova, Aljabar, Nunes (bib0008) 2010; 107
Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson (bib0012) 2016; 536
Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint
Mejia, Nebel, Barber, Choe, Pekar, Caffo, Lindquist (bib0027) 2018; 172
Ball, Aljabar, Zebari, Tusor, Arichi, Merchant, Robinson, Ogundipe, Rueckert, Edwards (bib0002) 2014; 111
Fitzgibbon, Harrison, Jenkinson, Baxter, Robinson, Bastiani, Bozek, Karolis, Grande, Price, Hughes (bib41) 2020; 223
Amico, Goñi (bib0001) 2018; 8
Tobyne, Somers, Brissenden, Michalka, Noyce, Osher (bib0034) 2018; 183
Wang (10.1016/j.neuroimage.2024.120806_bib0038) 2021; 31
Mejia (10.1016/j.neuroimage.2024.120806_bib0027) 2018; 172
Beckmann (10.1016/j.neuroimage.2024.120806_bib0003) 2004; 23
Finn (10.1016/j.neuroimage.2024.120806_bib0010) 2015; 18
Higgins (10.1016/j.neuroimage.2024.120806_bib0015) 2017
Kardan (10.1016/j.neuroimage.2024.120806_bib0021) 2022; 56
Kim (10.1016/j.neuroimage.2024.120806_bib0024) 2023; 44
Qiang (10.1016/j.neuroimage.2024.120806_bib0030) 2021; 18
Byrge (10.1016/j.neuroimage.2024.120806_bib0004) 2019; 3
Tobyne (10.1016/j.neuroimage.2024.120806_bib0034) 2018; 183
Sun (10.1016/j.neuroimage.2024.120806_bib0033) 2022; 259
Horien (10.1016/j.neuroimage.2024.120806_bib0016) 2019; 189
James-Roberts (10.1016/j.neuroimage.2024.120806_bib0019) 1996; 67
Yeo (10.1016/j.neuroimage.2024.120806_bib0039) 2011; 106
Smyser (10.1016/j.neuroimage.2024.120806_bib0032) 2016; 136
Ciarrusta (10.1016/j.neuroimage.2024.120806_bib0005) 2022; 55
Gozdas (10.1016/j.neuroimage.2024.120806_bib0013) 2018; 223
10.1016/j.neuroimage.2024.120806_bib0026
Uchitel (10.1016/j.neuroimage.2024.120806_bib0035) 2022; 91
Zhang (10.1016/j.neuroimage.2024.120806_bib0040) 2022; 148
Miranda-Dominguez (10.1016/j.neuroimage.2024.120806_bib0028) 2014; 9
Fitzgibbon (10.1016/j.neuroimage.2024.120806_bib41) 2020; 223
Amico (10.1016/j.neuroimage.2024.120806_bib0001) 2018; 8
Van Essen (10.1016/j.neuroimage.2024.120806_bib0036) 2012; 22
Ball (10.1016/j.neuroimage.2024.120806_bib0002) 2014; 111
Doria (10.1016/j.neuroimage.2024.120806_bib0008) 2010; 107
Hu (10.1016/j.neuroimage.2024.120806_bib0017) 2022; 42
Sato (10.1016/j.neuroimage.2024.120806_bib0031) 2021; 54
Herzmann (10.1016/j.neuroimage.2024.120806_bib0014) 2019; 29
De Asis-Cruz (10.1016/j.neuroimage.2024.120806_bib0006) 2020; 219
King (10.1016/j.neuroimage.2024.120806_bib0025) 2023; 265
Jenkinson (10.1016/j.neuroimage.2024.120806_bib0020) 2012; 62
Osher (10.1016/j.neuroimage.2024.120806_bib0029) 2016; 26
Delorme (10.1016/j.neuroimage.2024.120806_bib0007) 2007; 34
Kim (10.1016/j.neuroimage.2024.120806_bib0022) 2023; 12
Edwards (10.1016/j.neuroimage.2024.120806_bib0009) 2022; 16
Gao (10.1016/j.neuroimage.2024.120806_bib0011) 2015; 220
Glasser (10.1016/j.neuroimage.2024.120806_bib0012) 2016; 536
Venkatesh (10.1016/j.neuroimage.2024.120806_bib0037) 2020; 207
Kim (10.1016/j.neuroimage.2024.120806_bib0023) 2021; 241
Jalbrzikowski (10.1016/j.neuroimage.2024.120806_bib0018) 2020; 46
References_xml – volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: bib0010
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– volume: 9
  year: 2014
  ident: bib0028
  article-title: Connectotyping: model based fingerprinting of the functional connectome
  publication-title: PLoS ONE
– volume: 31
  start-page: 3701
  year: 2021
  end-page: 3712
  ident: bib0038
  article-title: Individual uniqueness in the neonatal functional connectome
  publication-title: Cereb. Cortex
– volume: 207
  year: 2020
  ident: bib0037
  article-title: Comparing functional connectivity matrices: a geometry-aware approach applied to participant identification
  publication-title: Neuroimage
– volume: 55
  year: 2022
  ident: bib0005
  article-title: The developing brain structural and functional connectome fingerprint
  publication-title: Dev. Cogn. Neurosci.
– volume: 34
  start-page: 1443
  year: 2007
  end-page: 1449
  ident: bib0007
  article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis
  publication-title: Neuroimage
– volume: 111
  start-page: 7456
  year: 2014
  end-page: 7461
  ident: bib0002
  article-title: Rich-club organization of the newborn human brain
  publication-title: Proc. Natl. Acad. Sci.
– volume: 189
  start-page: 676
  year: 2019
  end-page: 687
  ident: bib0016
  article-title: The individual functional connectome is unique and stable over months to years
  publication-title: Neuroimage
– volume: 172
  start-page: 478
  year: 2018
  end-page: 491
  ident: bib0027
  article-title: Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage
  publication-title: Neuroimage
– volume: 183
  start-page: 173
  year: 2018
  end-page: 185
  ident: bib0034
  article-title: Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting
  publication-title: Neuroimage
– volume: 220
  start-page: 1173
  year: 2015
  end-page: 1186
  ident: bib0011
  article-title: Development of human brain cortical network architecture during infancy
  publication-title: Brain Struct. Funct.
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0020
  article-title: Fsl
  publication-title: Neuroimage
– volume: 18
  start-page: 0460b0466
  year: 2021
  ident: bib0030
  article-title: Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder
  publication-title: J. Neural Eng.
– volume: 67
  start-page: 2527
  year: 1996
  end-page: 2540
  ident: bib0019
  article-title: Individual differences, daily fluctuations, and developmental changes in amounts of infant waking, fussing, crying, feeding, and sleeping
  publication-title: Child Dev.
– volume: 12
  start-page: e80878
  year: 2023
  ident: bib0022
  article-title: Towards a more informative representation of the fetal-neonatal brain connectome using variational autoencoder
  publication-title: Elife
– volume: 148
  year: 2022
  ident: bib0040
  article-title: Identification of Autism spectrum disorder based on a novel feature selection method and Variational Autoencoder
  publication-title: Comput. Biol. Med.
– volume: 91
  start-page: 771
  year: 2022
  end-page: 786
  ident: bib0035
  article-title: Early development of sleep and brain functional connectivity in term-born and preterm infants
  publication-title: Pediatr. Res.
– volume: 23
  start-page: 137
  year: 2004
  end-page: 152
  ident: bib0003
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 241
  year: 2021
  ident: bib0023
  article-title: Representation learning of resting state fMRI with variational autoencoder
  publication-title: Neuroimage
– reference: Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint
– volume: 223
  start-page: 3665
  year: 2018
  end-page: 3680
  ident: bib0013
  article-title: Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments?
  publication-title: Brain Struct. Funct.
– volume: 54
  start-page: 6187
  year: 2021
  end-page: 6201
  ident: bib0031
  article-title: Long-term stability of the cortical volumetric profile and the functional human connectome throughout childhood and adolescence
  publication-title: Eur. J. Neurosci.
– volume: 16
  year: 2022
  ident: bib0009
  article-title: The developing human connectome project neonatal data release
  publication-title: Front. Neurosci.
– volume: 8
  start-page: 8254
  year: 2018
  ident: bib0001
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Sci. Rep.
– volume: 22
  start-page: 2241
  year: 2012
  end-page: 2262
  ident: bib0036
  article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases
  publication-title: Cereb. Cortex
– volume: 29
  start-page: 1174
  year: 2019
  end-page: 1184
  ident: bib0014
  article-title: Cerebellar functional connectivity in term-and very preterm-born infants
  publication-title: Cereb. Cortex
– volume: 56
  year: 2022
  ident: bib0021
  article-title: Resting-state functional connectivity identifies individuals and predicts age in 8-to-26-month-olds
  publication-title: Dev. Cogn. Neurosci.
– volume: 3
  start-page: 363
  year: 2019
  end-page: 383
  ident: bib0004
  article-title: High-accuracy individual identification using a “thin slice” of the functional connectome
  publication-title: Netw. Neurosci.
– volume: 26
  start-page: 1668
  year: 2016
  end-page: 1683
  ident: bib0029
  article-title: Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex
  publication-title: Cereb. Cortex
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  ident: bib0039
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
– volume: 136
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0032
  article-title: Prediction of brain maturity in infants using machine-learning algorithms
  publication-title: Neuroimage
– reference: .
– volume: 259
  year: 2022
  ident: bib0033
  article-title: Structural insight into the individual variability architecture of the functional brain connectome
  publication-title: Neuroimage
– volume: 265
  year: 2023
  ident: bib0025
  article-title: The confound of head position in within-session connectome fingerprinting in infants
  publication-title: Neuroimage
– volume: 107
  start-page: 20015
  year: 2010
  end-page: 20020
  ident: bib0008
  article-title: Emergence of resting state networks in the preterm human brain
  publication-title: Proc. Natl. Acad. Sci.
– volume: 46
  start-page: 395
  year: 2020
  end-page: 407
  ident: bib0018
  article-title: Resting-state functional network organization is stable across adolescent development for typical and psychosis spectrum youth
  publication-title: Schizophr. Bull.
– volume: 219
  year: 2020
  ident: bib0006
  article-title: Functional brain connectivity in ex utero premature infants compared to in utero fetuses
  publication-title: Neuroimage
– volume: 223
  start-page: 117303
  year: 2020
  ident: bib41
  article-title: The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants
  publication-title: NeuroImage
– volume: 42
  start-page: 377
  year: 2022
  end-page: 389
  ident: bib0017
  article-title: Existence of functional connectome fingerprint during infancy and its stability over months
  publication-title: J. Neurosci.
– volume: 44
  start-page: 1934
  year: 2023
  end-page: 1948
  ident: bib0024
  article-title: Systematic evaluation of head motion on resting-state functional connectivity MRI in the neonate
  publication-title: Hum. Brain Mapp.
– volume: 536
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib0012
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
– year: 2017
  ident: bib0015
  article-title: beta-vae: learning basic visual concepts with a constrained variational framework
  publication-title: International Conference on Learning Representations
– volume: 183
  start-page: 173
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120806_bib0034
  article-title: Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.007
– volume: 67
  start-page: 2527
  year: 1996
  ident: 10.1016/j.neuroimage.2024.120806_bib0019
  article-title: Individual differences, daily fluctuations, and developmental changes in amounts of infant waking, fussing, crying, feeding, and sleeping
  publication-title: Child Dev.
  doi: 10.2307/1131638
– ident: 10.1016/j.neuroimage.2024.120806_bib0026
– volume: 106
  start-page: 1125
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120806_bib0039
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 55
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120806_bib0005
  article-title: The developing brain structural and functional connectome fingerprint
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2022.101117
– volume: 219
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120806_bib0006
  article-title: Functional brain connectivity in ex utero premature infants compared to in utero fetuses
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117043
– volume: 207
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120806_bib0037
  article-title: Comparing functional connectivity matrices: a geometry-aware approach applied to participant identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116398
– volume: 29
  start-page: 1174
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120806_bib0014
  article-title: Cerebellar functional connectivity in term-and very preterm-born infants
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhy023
– volume: 56
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120806_bib0021
  article-title: Resting-state functional connectivity identifies individuals and predicts age in 8-to-26-month-olds
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2022.101123
– volume: 12
  start-page: e80878
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120806_bib0022
  article-title: Towards a more informative representation of the fetal-neonatal brain connectome using variational autoencoder
  publication-title: Elife
  doi: 10.7554/eLife.80878
– volume: 8
  start-page: 8254
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120806_bib0001
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25089-1
– volume: 111
  start-page: 7456
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120806_bib0002
  article-title: Rich-club organization of the newborn human brain
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1324118111
– volume: 18
  start-page: 1664
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120806_bib0010
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 241
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120806_bib0023
  article-title: Representation learning of resting state fMRI with variational autoencoder
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118423
– volume: 223
  start-page: 117303
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120806_bib41
  article-title: The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117303
– volume: 44
  start-page: 1934
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120806_bib0024
  article-title: Systematic evaluation of head motion on resting-state functional connectivity MRI in the neonate
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.26183
– volume: 23
  start-page: 137
  year: 2004
  ident: 10.1016/j.neuroimage.2024.120806_bib0003
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.822821
– volume: 16
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120806_bib0009
  article-title: The developing human connectome project neonatal data release
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.886772
– volume: 172
  start-page: 478
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120806_bib0027
  article-title: Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.029
– volume: 536
  start-page: 171
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120806_bib0012
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 22
  start-page: 2241
  year: 2012
  ident: 10.1016/j.neuroimage.2024.120806_bib0036
  article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr291
– volume: 223
  start-page: 3665
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120806_bib0013
  article-title: Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments?
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-018-1707-0
– volume: 3
  start-page: 363
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120806_bib0004
  article-title: High-accuracy individual identification using a “thin slice” of the functional connectome
  publication-title: Netw. Neurosci.
  doi: 10.1162/netn_a_00068
– volume: 220
  start-page: 1173
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120806_bib0011
  article-title: Development of human brain cortical network architecture during infancy
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-014-0710-3
– volume: 259
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120806_bib0033
  article-title: Structural insight into the individual variability architecture of the functional brain connectome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119387
– volume: 189
  start-page: 676
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120806_bib0016
  article-title: The individual functional connectome is unique and stable over months to years
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.02.002
– volume: 265
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120806_bib0025
  article-title: The confound of head position in within-session connectome fingerprinting in infants
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119808
– volume: 62
  start-page: 782
  year: 2012
  ident: 10.1016/j.neuroimage.2024.120806_bib0020
  article-title: Fsl
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120806_bib0028
  article-title: Connectotyping: model based fingerprinting of the functional connectome
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0111048
– volume: 107
  start-page: 20015
  year: 2010
  ident: 10.1016/j.neuroimage.2024.120806_bib0008
  article-title: Emergence of resting state networks in the preterm human brain
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1007921107
– volume: 26
  start-page: 1668
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120806_bib0029
  article-title: Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu303
– volume: 148
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120806_bib0040
  article-title: Identification of Autism spectrum disorder based on a novel feature selection method and Variational Autoencoder
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105854
– volume: 18
  start-page: 0460b0466
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120806_bib0030
  article-title: Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac1179
– volume: 136
  start-page: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120806_bib0032
  article-title: Prediction of brain maturity in infants using machine-learning algorithms
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.05.029
– year: 2017
  ident: 10.1016/j.neuroimage.2024.120806_bib0015
  article-title: beta-vae: learning basic visual concepts with a constrained variational framework
– volume: 54
  start-page: 6187
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120806_bib0031
  article-title: Long-term stability of the cortical volumetric profile and the functional human connectome throughout childhood and adolescence
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.15435
– volume: 31
  start-page: 3701
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120806_bib0038
  article-title: Individual uniqueness in the neonatal functional connectome
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhab041
– volume: 42
  start-page: 377
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120806_bib0017
  article-title: Existence of functional connectome fingerprint during infancy and its stability over months
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0480-21.2021
– volume: 34
  start-page: 1443
  year: 2007
  ident: 10.1016/j.neuroimage.2024.120806_bib0007
  article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.004
– volume: 91
  start-page: 771
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120806_bib0035
  article-title: Early development of sleep and brain functional connectivity in term-born and preterm infants
  publication-title: Pediatr. Res.
  doi: 10.1038/s41390-021-01497-4
– volume: 46
  start-page: 395
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120806_bib0018
  article-title: Resting-state functional network organization is stable across adolescent development for typical and psychosis spectrum youth
  publication-title: Schizophr. Bull.
SSID ssj0009148
Score 2.481371
Snippet •The VAE shows significant subject identification accuracy with whole-brain FC profiles, surpassing the identification accuracy obtained with linear...
Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120806
SubjectTerms Adult
Age
Age prediction
Babies
Brain - diagnostic imaging
Brain - growth & development
Brain - physiology
Brain mapping
Brain research
Connectome - methods
Datasets
Deep Learning
DNA fingerprinting
Female
Functional magnetic resonance imaging
Humans
Individual uniqueness
Infant, Newborn
Magnetic Resonance Imaging - methods
Male
Neonate
Neonates
Nerve Net - diagnostic imaging
Nerve Net - physiology
Neural networks
Neurodevelopment
Neuroimaging
Newborn babies
Older people
Phenotypes
Resting-state fMRI
Sensorimotor system
Subject identification
Variables
Variational autoencoder
Young Adult
Young adults
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLYmDrALGmMb2WDypF2z1XXi2HCCaaia1F02JG6WYztQVNxqtEP8-70XO1krDvTAtfFLGr-X5-8lz99HyGfFpIG873MUtMoLD8-cssblVg5rr1TB6pZMZ_xTjC6KH5fl5YrUF_aERXrgOHFfnZGNMYNGCqcKbqxETONg4Ws4xGLcujeQqiumOrpdQPmpbyd2c7XskJNbeEahJhwWXxgYocrRymLUcvavrUmPMefj1smdZZibh3szna6sS-evyG4ClPQ03sgeeeHDa7I9Tp_M98nfXz7Se4cr2m7hyKkJjk76jVj5FPuGaI1aERTbOVqqzzsYQQEcUoDdECaB4gIY3xtSi80xdjG79cf0lDrv5zSJT1zRjqP8Dbk4__772yhPYgu5FZwtcqtqQLAcC0QsW6HQKABbicqUtqms4qJyg7pEFdxB5aQboqKE8KoxVcMsZ56_JVthFvwBwes6WyqwRXL3xkjuDOKiwgBe8KbMSNXNuraJiRwFMaa6azm70f_9pdFfOvorI6y3nEc2jg1sztCx_Xjk025_gCjTKcr0U1GWEdWFhe62rEKShRNNNvgDJ71tgjURrmxofdhFoU7p5U4DJhdcQCXKMvKpPwyJAb_2mOBnSxgDxalAcQCekXcxaPs54AqJ2RhYy7VwXpuk9SNhct2Sj0P9XAIKBdNhH_kb--L9c_jiA3mJp4wdlYdka_Fn6Y8AGS7qj20S-AfvQGMD
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHoAL4ptAQUbimu46dpwYTqWiqpDKpVTqzXJsZwnaZlftLogLv50Z20mJelmJ4yae3ezMZPwmmXlDyHvFagNx3-c40CoXHu45ZY3LbV00XinBmkCmc_ZVnl6IL5fl5R45HnphsKwyxf4Y00O0TkdmSZuzddfNzgEZwHaDCQR6KkfGTyEqnGJw-Oe2zEMxEdvhSp7j6lTNE2u8AmdkdwV3LmSKhThkBQAoOdmiApP_ZKe6i0TvFlTe3_Zr8_uXWS7_2a1OHpGHCWbSo_hPHpM93z8h987Si_Sn5Oe5j6Tf_YKGxo6cmt7RbmzPypdYTUQbnCBBscgjEIDewAoKkJECGAfn6Slui_FpIrVYMmM3qyv_gR5R5_2appEUCzowlz8jFyefvx2f5mkEQ24lZ5vcqgZwLce0EZNZSD8EIC5ZmdK2lVVcVm7elDgbd1652hU4Z0J61ZqqZZYzz5-T_X7V-5cEf9fZUoEsUr63pubOIFoSBlCEN2VGqkHr2iZ-chyTsdRDIdoPfWsvjfbS0V4ZYaPkOnJ07CDzCQ07rkeW7XBgdb3Qyc20M3VrzLytpYNLNrZGPO0AdLUc4uBcZUQNbqGHRlYIvfBF3Q4X8HGUnTj8jtIHgxfqFHRuNCB1ySXkpywj78bTEC7wHZDp_WoLayBllTgygGfkRXTaUQdcIV0bA-l64s4TJU3P9N33QEkOWXUJ2BREi9Hzd7bFq_9SxWvyAD_FAssDsr-53vo3ABQ3zdsQCf4C5FVnwg
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGJ8FeEL8JDGQkXg11nDgxCKENbZqQViFg0t4sx3ZKUZd0Wwviv-cudlKqSaivia9J7fP5u_j8fYS8Vrw0EPc9Q0ErlnmYc8oax2yZVl6pjFcdmc7pRJ6cZZ_P8_MdMunPwmBZZR8Tu0DtWovfyN8CDJFCAvjmHxeXDFWjcHe1l9AwUVrBfegoxm6R3RSZsUZk9_Bo8uXrmoaXZ-FwXC5YybmKtT2h4qtjkJxdwDyGvDHN3vAU4JTcWLA6Xv-NdesmLr1ZXnln1SzMn99mPv9n7Tq-R-5G0EkPgpfcJzu-eUBun8Zt9Yfk1zcfKMCbKe2OeTBqGkdnw2EtNsfaIlqhngTFko-ODvQaWlAAkBSgObhSQ3GRDN8WqcUCGrtsL_w7ekCd9wsaBSqmtOcxf0TOjo--fzphUZCBWSn4kllVAcoVmERiagvJSAb4SxYmt3VhlZCFG1c5KuWOC1e6FFUnpFe1KWpuBffiMRk1beOfEnyus7kCWySAr00pnEHslBnAFN7kCSn6Xtc2spWjaMZc92VpP_V6vDSOlw7jlRA-WC4CY8cWNoc4sEN75NzuLrRXUx2nsHamrI0Z16V08MrGloiuHUCwWkBUHKuEqN4tdH-sFQIx_NBsixd4P9hG6BMgzZbW-70X6hiCrvV6wiTk1XAbggfuCJnGtytoAwmsRAEBkZAnwWmHPhAKyds4WJcb7rzRSZt3mtmPjqAccuwckCqYpoPnbz0Wz_7_Z56TPWwc6in3yWh5tfIvABcuq5dxsv8F0EhjDA
  priority: 102
  providerName: ProQuest
Title Separating group- and individual-level brain signatures in the newborn functional connectome: A deep learning approach
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924003033
https://dx.doi.org/10.1016/j.neuroimage.2024.120806
https://www.ncbi.nlm.nih.gov/pubmed/39179011
https://www.proquest.com/docview/3106366051
https://www.proquest.com/docview/3096664723
https://pubmed.ncbi.nlm.nih.gov/PMC11457411
https://doi.org/10.1016/j.neuroimage.2024.120806
https://doaj.org/article/da8faa0f86d943ac80099d074f332209
UnpaywallVersion publishedVersion
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250901
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250901
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9trQS88D0oG5WReE0V14mTwFOHNhXQqvFRqTxFju2MQpdWrAXBA3_77pwPCJNQ4aVVG18-zr7z7-Lz7wCeJjxW6PetRwWtvMCizSVaGU_Hw8wmScAzR6ZzMpHjafBqFs52wK_3wrTW710eluN1nJ-jdWE0NwwGfIggR-5CV4aIvjvQnU5ORx_comYovJi7Wh7cpxKEYVQn7_ztVK0ZyRH3tyamq8Dzav7k9U2xUt-_qcXit8np-Ba8qR-rzEn5PNiss4H-8Qfj47889224WSFVNiqH1h3YscVduHZSrcXfg6_vbMkbXpwxtzfEY6owbN7s8PIWlJDEMipCwShPxHGIXmALhqiTIZ7H8VcwmlnLF5JMU9aNXi_P7TM2YsbaFauqWpyxmvz8PkyPj96_GHtVFQdPS8HXnk4yhMaCIk-KhzGCCRC0yUiFOo90ImRk_Cyk8rp-ZGIzpFIV0ia5inKuBbdiDzrFsrAPga5rNPZ6pIg1PlexMIoAV6AQiFgV9iCqezLVFcU5VdpYpHUu26f0l1pTUmtaqrUHvJFclTQfW8gc0mBp2hNRt_sD-zGt7D41Ks6V8vNYGrxlpWOC5AZxWy7QlfpJD5J6qKX1Xlj03nii-RY38LyRrfBSiYO2lD6oR3Za-a2LFMG-FBJDXN6DJ81h9Di0jKQKu9xgG4x6JVUdED14UBpCowOREOMbR-m4ZSItJbWPFPOPjtUcA_MQ4S2KDhtr2rovHv2P0D7coF9lauYBdNZfNvYxQsx11ofdwU-On9Es6kN39PL1eILfh0eT07d999qmX_mdS6N0fdM
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjFeEN8EBhgJHgN1nC-DJrTBpo6tFYJN2ptxbKcUdUlZW6b9c_xt3CVOSjQJ9WWvjS9NfOfz7-K73xHySrBUgd-3Pja08kMLa05oZXydBpkVImRZRaYzGMb9k_DzaXS6Rv40tTCYVtn4xMpRm1LjN_K3AENiHgP4Zh-mv3zsGoWnq00LDeVaK5jtimLMFXYc2ssLCOFm2wefQN-vg2B_7_hj33ddBnwdczb3tcgAunGMjDBeA4QdAqiIExXpPNGCx4npZRG2f-0lJjUBtlKIrchVkjPNmeVw3xtkI-ShgOBvY3dv-OXrkvaXhXUxXsT9lDHhconqDLOKsXJ8Bn4D4tQgfMMCgG9xZ4Os-gh09smrOPhqOufmopiqyws1mfyzV-7fIbcdyKU7tVXeJWu2uEduDtwx_n3y-5utKceLEa3KSnyqCkPHbXGYP8FcJpph_wqKKSYV_egMRlAArBRCATDdguKmXH_LpBoTdvS8PLPv6A411k6pa4gxog1v-gNyci2qeUjWi7Kwjwn-r9GRAFkknM9Vyo1CrBYqwDBWRR5JmlmX2rGjY5OOiWzS4H7Kpb4k6kvW-vIIayWnNUPICjK7qNh2PHJ8Vz-U5yPpXIY0Ks2V6uVpbOCRlU4RzRuAfDkHL9wTHhGNWcimjBYcP9xovMIDvG9lHdSqIdSK0luNFUrn8mZyuUA98rK9DM4KT6BUYcsFjIGAOcaGBdwjj2qjbeeACySLYyCddsy5M0ndK8X4R0WIDjF9BMgYRIPW8lfWxZP_v8wLstk_HhzJo4Ph4VNyCwXrXM4tsj4_X9hngEnn2XO38Cn5ft2-5i9STJ0s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkAYviG8yBhgJHs3qOF8GITQY1cbYhAST-uY5tlM6dUlZW6b9a_x13MVJSjUJ9WWvjS9NfOfz7-K73xHySvJMg993DBtascjBmpNGW2ayMHdSRjyvyXQOj5K94-jLIB6skT9tLQymVbY-sXbUtjL4jXwbYEgiEgDffLto0iK-7fY_TH4x7CCFJ61tOw1vIgfu8gLCt-n7_V3Q9esw7H_-8WmPNR0GmEkEnzEjc4BtAqMijNUAXUcAKJJUx6ZIjRRJant5jK1fe6nNbIhtFBInC50W3AjuBNz3BrmZCiExnTAdpAvCXx75MrxYsIxz2WQR-dyymqtydAYeAyLUMHrDQwBuydLWWHcQWNohryLgq4mct-blRF9e6PH4n12yf5fcaeAt3fH2eI-sufI-2ThsDvAfkN_fnScbL4e0LihhVJeWjrqyMDbGLCaaY-cKisklNfHoFEZQgKoUggAw2pLiduy_YlKDqTpmVp25t3SHWucmtGmFMaQtY_pDcnwtinlE1suqdE8I_q81sQRZpJovdCasRpQWaUAvTscBSdtZV6bhRcf2HGPVJsCdqoW-FOpLeX0FhHeSE88NsoLMR1RsNx7ZvesfqvOhapyFsjortO4VWWLhkbXJEMdbAHuFAP_bkwGRrVmotoAWXD7caLTCA7zrZBuQ5cHTitJbrRWqxtlN1WJpBuRldxncFJ496dJVcxgDoXKCrQpEQB57o-3mQEikieMgnS2Z89IkLV8pRz9rKnSI5mPAxCAadpa_si42__8yL8gGeBj1df_o4Cm5jXI-iXOLrM_O5-4ZgNFZ_rxe9ZScXLeb-Qv8TprG
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToK98M0IDGQkXlPFceIk8FQQ04S0CQSVxpPl2M4odGnFUhD89dw5HxAmocJjG1-anO_Ov6vPvwN4WvBcY9x3ITW0ChOHPlcYbUOTx6UrioSXnkzn-EQezZPXp-npDkT9WZjR_r2vw_K8jotz9C7M5uJkymMEOfIK7MoU0fcEducnb2Yf_KZmKsKc-14ePKIWhGnWF-_87VajFckT948WpsvA83L95LVNvdbfv-nl8rfF6fAGvO1fq61J-TzdNOXU_PiD8fFf3vsmXO-QKpu1pnULdlx9G64ed3vxd-DrO9fyhtdnzJ8NCZmuLVsMJ7zCJRUksZKaUDCqE_Ecohc4giHqZIjn0f5qRitr-4ckM1R1Y5rVuXvGZsw6t2ZdV4sz1pOf34X54av3L4_CrotDaKTgTWiKEqGxoMyT8mHMYBIEbTLTqakyUwiZ2ahMqb1ulNncxtSqQrqi0lnFjeBO3INJvardfaDftQZnPdPEGl_pXFhNgCvRCEScTgPI-plUpqM4p04bS9XXsn1Sv9SqSK2qVWsAfJBctzQfW8i8IGMZxhNRt_8C51F1fq-sziutoyqXFh9Zm5wguUXcVgkMpVERQNGbmurPwmL0xhsttniA54Nsh5daHLSl9EFv2aqLWxcKwb4UElNcHsCT4TJGHNpG0rVbbXAMZr2Sug6IAPZbRxh0IApifOMonY9cZKSk8ZV68dGzmmNiniK8RdF48Kat5-LB_wg9hD361JZmHsCk-bJxjxBiNuXjLqr8BGFkd9E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Separating+group-+and+individual-level+brain+signatures+in+the+newborn+functional+connectome%3A+A+deep+learning+approach&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Kim%2C+Jung-Hoon&rft.au=De+Asis-Cruz%2C+Josepheen&rft.au=Limperopoulos%2C+Catherine&rft.date=2024-10-01&rft.issn=1053-8119&rft.volume=299&rft.spage=120806&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120806&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2024_120806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon