Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data

Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior k...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 12; no. 1; p. 359
Main Authors Gao, Shouguo, Wang, Xujing
Format Journal Article
LanguageEnglish
Published London BioMed Central 31.08.2011
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-12-359

Cover

Abstract Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.
AbstractList Abstract Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.
Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.
Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.
Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.
Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.
Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable.BACKGROUNDBayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable.We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information.RESULTSWe introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information.our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.CONCLUSIONour new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.
ArticleNumber 359
Audience Academic
Author Gao, Shouguo
Wang, Xujing
AuthorAffiliation 2 The Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
1 Department of Physics, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA
AuthorAffiliation_xml – name: 2 The Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
– name: 1 Department of Physics, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA
Author_xml – sequence: 1
  givenname: Shouguo
  surname: Gao
  fullname: Gao, Shouguo
  organization: Department of Physics, University of Alabama at Birmingham, The Comprehensive Diabetes Center, University of Alabama at Birmingham
– sequence: 2
  givenname: Xujing
  surname: Wang
  fullname: Wang, Xujing
  email: xujingw@uab.edu
  organization: Department of Physics, University of Alabama at Birmingham, The Comprehensive Diabetes Center, University of Alabama at Birmingham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21884587$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB-wZ4UiWCAWKbaT2MkGqVQ8RqqEeK0tx7lOPfXYU9vptPx6nM4wdCpAyAtbN985sc-9h9medRay7ClGxxg39DWuGC4IRnWBSVHW7YPsYFvau3Pezw5DmCOEWYPqR9k-wU1T1Q07yNznUdioo4j6CvIxaqN_pLOzuVP50mvn80474wYthckvrFsZ6AfItc3jOeRvxQ0ELWxuIa6cv8gXrgej7TDJB7CQw_XSQwiTYy-ieJw9VMIEeLLZj7Lv7999O_1YnH36MDs9OSskLXEscEtUKYkiGNe9JL3o2q5TSglCVMX6RlJJ676pUN1KwQQtaU0ItIxWBFeqqsujbLb27Z2Y8_SQhfA33AnNbwvOD1z4qKUBTkiXbJlQCslKUNLUSDVE9RQhxhSw5IXXXqNdipuVMGZriBGfGsGnpPmUNMeEp0YkzZu1Zjl2C-gl2OiF2bnI7herz_ngrnhJUFnWJBm83Bh4dzlCiHyhgwRjhAU3Bt606Z4UtWUin98j5270NqXLW0QaxDDDCXqxhgaRnqytcumvcrLkJ4S2NWsbWiXq-A9UWj0stEyzp3Sq7whe7QgSE-E6DmIMgc--ftlln92NZJvFr2FMAF0D0rsQPCgubwfTTQlp86-w0T3hf_Rn09OQUDuA_x3aXzU_AT91D9k
CitedBy_id crossref_primary_10_1089_omi_2012_0029
crossref_primary_10_1186_s12864_020_07241_2
crossref_primary_10_2174_1574893615999200728193621
crossref_primary_10_1016_j_ygeno_2014_03_004
crossref_primary_10_1109_ACCESS_2023_3306593
crossref_primary_10_1089_cmb_2021_0403
crossref_primary_10_1186_s12859_022_04891_9
crossref_primary_10_1371_journal_pone_0067410
crossref_primary_10_1109_JBHI_2016_2636448
crossref_primary_10_1186_s12918_015_0226_3
crossref_primary_10_1155_2016_4241293
crossref_primary_10_1186_1471_2105_15_115
crossref_primary_10_1109_TCBB_2018_2872993
crossref_primary_10_1186_1752_0509_7_119
Cites_doi 10.1007/11590316_97
10.1186/1471-2105-7-43
10.1152/ajpendo.00393.2002
10.1016/j.pmr.2008.02.004
10.3233/ISB-00137
10.1371/journal.pcbi.0030129
10.1142/9781860948732_0013
10.1089/106652700750050961
10.1101/gr.1239303
10.1023/A:1007413511361
10.1016/S1097-2765(00)80114-8
10.1007/s00125-004-1368-9
10.1186/1752-0509-2-57
10.1186/1752-0509-4-167
10.1196/annals.1407.002
10.1371/journal.pone.0000988
10.1142/S021972000400048X
10.1677/joe.1.05981
10.1093/abbs/36.5.365
10.1086/504300
10.1007/978-3-540-79450-9_18
10.1093/bib/2.2.126
10.1093/bioinformatics/btg1082
10.1016/S0092-8674(01)00494-9
10.1126/science.1099511
10.1111/j.1399-0004.2006.00708.x
10.1038/msb4100120
10.1101/gr.180801
10.1073/pnas.0832373100
10.1038/ng1370
10.1091/mbc.9.12.3273
10.1093/nar/30.1.31
10.1093/bioinformatics/btp277
10.1126/science.1091317
10.2307/1403615
10.1093/bioinformatics/btl090
10.1093/nar/gki051
10.1023/A:1007465528199
10.1126/science.1087361
10.1186/1471-2105-8-317
ContentType Journal Article
Copyright Gao and Wang; licensee BioMed Central Ltd. 2011
COPYRIGHT 2011 BioMed Central Ltd.
2011 Gao and Wang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2011 Gao and Wang; licensee BioMed Central Ltd. 2011 Gao and Wang; licensee BioMed Central Ltd.
Copyright_xml – notice: Gao and Wang; licensee BioMed Central Ltd. 2011
– notice: COPYRIGHT 2011 BioMed Central Ltd.
– notice: 2011 Gao and Wang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2011 Gao and Wang; licensee BioMed Central Ltd. 2011 Gao and Wang; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-12-359
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE



MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerLink Journals Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 359
ExternalDocumentID oai_doaj_org_article_22ba227aff0c4a62850f82fd60077fe7
10.1186/1471-2105-12-359
PMC3203352
2507136271
A269579864
21884587
10_1186_1471_2105_12_359
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01DK080100
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
ADTOC
UNPAY
ID FETCH-LOGICAL-c631t-192f3c2f2115dc2dab9bbfffa22f47d8c6c65d84059ca7a636522e9764214f453
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:48:07 EDT 2025
Sun Oct 26 03:35:40 EDT 2025
Tue Sep 30 16:57:41 EDT 2025
Thu Oct 02 08:12:29 EDT 2025
Tue Oct 07 05:18:12 EDT 2025
Mon Oct 20 22:14:39 EDT 2025
Mon Oct 20 16:06:24 EDT 2025
Thu Oct 16 14:40:49 EDT 2025
Mon Jul 21 06:03:06 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
Wed Oct 01 06:49:33 EDT 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Markov Chain Monte Carlo
Gene Pair
Bayesian Network
Gene Ontology
Gene Expression Data
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631t-192f3c2f2115dc2dab9bbfffa22f47d8c6c65d84059ca7a636522e9764214f453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/22ba227aff0c4a62850f82fd60077fe7
PMID 21884587
PQID 902807171
PQPubID 44065
ParticipantIDs doaj_primary_oai_doaj_org_article_22ba227aff0c4a62850f82fd60077fe7
unpaywall_primary_10_1186_1471_2105_12_359
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3203352
proquest_miscellaneous_898506093
proquest_journals_902807171
gale_infotracmisc_A269579864
gale_infotracacademiconefile_A269579864
gale_incontextgauss_ISR_A269579864
pubmed_primary_21884587
crossref_citationtrail_10_1186_1471_2105_12_359
crossref_primary_10_1186_1471_2105_12_359
springer_journals_10_1186_1471_2105_12_359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-31
PublicationDateYYYYMMDD 2011-08-31
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-31
  day: 31
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2011
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References P Shannon (4838_CR34) 2003; 13
L Franke (4838_CR38) 2006; 78
RJ Cho (4838_CR55) 1998; 2
S Imoto (4838_CR24) 2004; 2
S Imoto (4838_CR21) 2004; 2
P Le Phillip (4838_CR11) 2004; 4
TK Jenssen (4838_CR53) 2001; 28
CJ Needham (4838_CR30) 2007; 3
X Wang (4838_CR5) 2006
O Gevaert (4838_CR13) 2007; 1115
AH Tong (4838_CR43) 2004; 303
P Le Phillip (4838_CR14) 2004; 4
S Gao (4838_CR56) 2010; 4
M Bansal (4838_CR47) 2007; 3
PT Spellman (4838_CR48) 1998; 9
OG Troyanskaya (4838_CR6) 2003; 100
N Friedman (4838_CR41) 1997; 29
JM Servitja (4838_CR52) 2004; 47
N Friedman (4838_CR8) 2000; 7
JS Ide (4838_CR25) 2002
P Domingos (4838_CR40) 1997; 29
AJ Hartemink (4838_CR15) 2002
A Djebbari (4838_CR19) 2008; 2
C Alfarano (4838_CR49) 2005; 33
I Simon (4838_CR45) 2001; 106
M Oti (4838_CR26) 2007; 71
S Imoto (4838_CR20) 2002; 7
AG Fraser (4838_CR27) 2004; 6
U Wittig (4838_CR37) 2001; 2
A Lechner (4838_CR50) 2003; 284
SL Cao (4838_CR32) 2004; 36
JCY Zhu (4838_CR58) 2001
K Murphy (4838_CR33) 2001
AGME Fraser (4838_CR1) 2004; 6
R Jansen (4838_CR42) 2003; 302
GO Consortium (4838_CR44) 2001; 11
JJ Han (4838_CR7) 2008; 19
G Bastos (4838_CR54) 2005; 3776
D Heckerman (4838_CR31) 1995; 20
R Jansen (4838_CR28) 2003
HW Mewes (4838_CR39) 2002; 30
D Madigan (4838_CR29) 1995; 63
IDS Lee (4838_CR2) 2004; 306
I Lee (4838_CR36) 2007; 2
E Steele (4838_CR12) 2009; 25
AV Werhli (4838_CR23) 2007
CJ Burns (4838_CR51) 2004; 183
D Husmeier (4838_CR22) 2007; 6
I Lee (4838_CR35) 2004; 306
Y Tamada (4838_CR16) 2003; 19
D Heckerman (4838_CR9) 1998
PL Eyad Almasri (4838_CR18) 2008; 4983
GF Cooper (4838_CR10) 1992; 9
T Van den Bulcke (4838_CR46) 2006; 7
RJ Cho (4838_CR57) 1998; 2
GAaXW Xue-wen Chen (4838_CR3) 2006; 22
P Larsen (4838_CR17) 2007; 8
SHT Imoto (4838_CR4) 2004; 2
16543279 - Bioinformatics. 2006 Jun 1;22(11):1367-74
11928473 - Pac Symp Biocomput. 2002;:175-86
14534194 - Bioinformatics. 2003 Oct;19 Suppl 2:ii227-36
15156279 - Acta Biochim Biophys Sin (Shanghai). 2004 May;36(5):365-70
20168994 - PLoS Comput Biol. 2010 Feb;6(2):e1000671
11483584 - Genome Res. 2001 Aug;11(8):1425-33
12531740 - Am J Physiol Endocrinol Metab. 2003 Feb;284(2):E259-66
17727721 - BMC Bioinformatics. 2007;8:317
9702192 - Mol Cell. 1998 Jul;2(1):65-73
11465731 - Brief Bioinform. 2001 May;2(2):126-42
11572776 - Cell. 2001 Sep 21;106(6):697-708
15567862 - Science. 2004 Nov 26;306(5701):1555-8
15272434 - J Bioinform Comput Biol. 2004 Mar;2(1):77-98
17925352 - Ann N Y Acad Sci. 2007 Dec;1115:240-8
14564010 - Science. 2003 Oct 17;302(5644):449-53
12826619 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8348-53
16438721 - BMC Bioinformatics. 2006;7:43
15724284 - In Silico Biol. 2004;4(3):335-53
17951815 - Comput Syst Bioinformatics Conf. 2007;6:85-95
17299415 - Mol Syst Biol. 2007;3:78
11108481 - J Comput Biol. 2000;7(3-4):601-20
17204041 - Clin Genet. 2007 Jan;71(1):1-11
15298336 - Diabetologia. 2004 Apr;47(4):597-613
17784779 - PLoS Comput Biol. 2007 Aug;3(8):e129
21129191 - BMC Syst Biol. 2010;4:167
11928497 - Pac Symp Biocomput. 2002;:437-49
15167932 - Nat Genet. 2004 Jun;36(6):559-64
18601736 - BMC Syst Biol. 2008;2:57
19389730 - Bioinformatics. 2009 Jul 15;25(14):1768-74
15608229 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D418-24
17542777 - Stat Appl Genet Mol Biol. 2007;6:Article15
18625423 - Phys Med Rehabil Clin N Am. 2008 Aug;19(3):661-80, xii
16685651 - Am J Hum Genet. 2006 Jun;78(6):1011-25
11752246 - Nucleic Acids Res. 2002 Jan 1;30(1):31-4
14764870 - Science. 2004 Feb 6;303(5659):808-13
9843569 - Mol Biol Cell. 1998 Dec;9(12):3273-97
17912365 - PLoS One. 2007;2(10):e988
11326270 - Nat Genet. 2001 May;28(1):21-8
14597658 - Genome Res. 2003 Nov;13(11):2498-504
15590970 - J Endocrinol. 2004 Dec;183(3):437-43
References_xml – volume: 3776
  start-page: 611
  year: 2005
  ident: 4838_CR54
  publication-title: Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science
  doi: 10.1007/11590316_97
– volume: 7
  start-page: 175
  year: 2002
  ident: 4838_CR20
  publication-title: Pac Symp Biocomput
– volume: 7
  start-page: 43
  year: 2006
  ident: 4838_CR46
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-43
– volume: 284
  start-page: E259
  year: 2003
  ident: 4838_CR50
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00393.2002
– volume-title: Stat Appl Genet Mol Biol
  year: 2007
  ident: 4838_CR23
– volume: 19
  start-page: 661
  year: 2008
  ident: 4838_CR7
  publication-title: Phys Med Rehabil Clin N Am
  doi: 10.1016/j.pmr.2008.02.004
– volume: 4
  start-page: 335
  year: 2004
  ident: 4838_CR14
  publication-title: In Silico Biology
  doi: 10.3233/ISB-00137
– volume: 3
  start-page: e129
  year: 2007
  ident: 4838_CR30
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030129
– volume: 6
  start-page: 85
  year: 2007
  ident: 4838_CR22
  publication-title: Comput Syst Bioinformatics Conf
  doi: 10.1142/9781860948732_0013
– volume: 7
  start-page: 601
  year: 2000
  ident: 4838_CR8
  publication-title: J Comput Biol
  doi: 10.1089/106652700750050961
– volume: 13
  start-page: 2498
  year: 2003
  ident: 4838_CR34
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
– volume: 29
  start-page: 103
  year: 1997
  ident: 4838_CR40
  publication-title: Machine Learning
  doi: 10.1023/A:1007413511361
– volume: 2
  start-page: 65
  year: 1998
  ident: 4838_CR55
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80114-8
– volume: 47
  start-page: 597
  year: 2004
  ident: 4838_CR52
  publication-title: Diabetologia
  doi: 10.1007/s00125-004-1368-9
– volume: 2
  start-page: 57
  year: 2008
  ident: 4838_CR19
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-2-57
– volume: 4
  start-page: 167
  year: 2010
  ident: 4838_CR56
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-167
– volume: 1115
  start-page: 240
  year: 2007
  ident: 4838_CR13
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1407.002
– volume: 2
  start-page: e988
  year: 2007
  ident: 4838_CR36
  publication-title: PloS one
  doi: 10.1371/journal.pone.0000988
– volume: 2
  start-page: 77
  year: 2004
  ident: 4838_CR24
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S021972000400048X
– volume: 183
  start-page: 437
  year: 2004
  ident: 4838_CR51
  publication-title: J Endocrinol
  doi: 10.1677/joe.1.05981
– start-page: 437
  volume-title: Pac Symp Biocomput
  year: 2002
  ident: 4838_CR15
– volume: 36
  start-page: 365
  year: 2004
  ident: 4838_CR32
  publication-title: Acta Biochim Biophys Sin (Shanghai)
  doi: 10.1093/abbs/36.5.365
– volume: 2
  start-page: 77
  year: 2004
  ident: 4838_CR21
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S021972000400048X
– volume: 9
  start-page: 309
  year: 1992
  ident: 4838_CR10
  publication-title: Machine Learning
– volume: 78
  start-page: 1011
  year: 2006
  ident: 4838_CR38
  publication-title: Am J Hum Genet
  doi: 10.1086/504300
– volume-title: PLoS Comput Biol
  year: 2001
  ident: 4838_CR58
– volume: 4983
  start-page: 184
  year: 2008
  ident: 4838_CR18
  publication-title: Proceeding of the 4th International Symposium on Bioinformatics Research and Applications
  doi: 10.1007/978-3-540-79450-9_18
– volume: 2
  start-page: 126
  year: 2001
  ident: 4838_CR37
  publication-title: Briefings in bioinformatics
  doi: 10.1093/bib/2.2.126
– volume: 19
  start-page: ii227
  issue: Suppl 2
  year: 2003
  ident: 4838_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1082
– volume: 106
  start-page: 697
  year: 2001
  ident: 4838_CR45
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00494-9
– volume-title: Workshop de Teses e Dissertações em IA (WTDIA2002)
  year: 2002
  ident: 4838_CR25
– volume: 306
  start-page: 1555
  year: 2004
  ident: 4838_CR2
  publication-title: Science
  doi: 10.1126/science.1099511
– volume: 2
  start-page: 77
  year: 2004
  ident: 4838_CR4
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S021972000400048X
– volume: 71
  start-page: 1
  year: 2007
  ident: 4838_CR26
  publication-title: Clin Genet
  doi: 10.1111/j.1399-0004.2006.00708.x
– volume: 28
  start-page: 21
  year: 2001
  ident: 4838_CR53
  publication-title: Nat Genet
– volume: 3
  start-page: 122
  year: 2007
  ident: 4838_CR47
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100120
– volume: 11
  start-page: 1425
  year: 2001
  ident: 4838_CR44
  publication-title: Genome Res
  doi: 10.1101/gr.180801
– volume: 100
  start-page: 8348
  year: 2003
  ident: 4838_CR6
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0832373100
– volume-title: Computing Science and Statistics
  year: 2001
  ident: 4838_CR33
– volume: 2
  start-page: 65
  year: 1998
  ident: 4838_CR57
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80114-8
– volume: 6
  start-page: 559
  year: 2004
  ident: 4838_CR1
  publication-title: Nat Genet
  doi: 10.1038/ng1370
– volume: 9
  start-page: 3273
  year: 1998
  ident: 4838_CR48
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.9.12.3273
– volume: 30
  start-page: 31
  year: 2002
  ident: 4838_CR39
  publication-title: Nucleic acids research
  doi: 10.1093/nar/30.1.31
– volume: 306
  start-page: 1555
  year: 2004
  ident: 4838_CR35
  publication-title: Science
  doi: 10.1126/science.1099511
– volume: 25
  start-page: 1768
  year: 2009
  ident: 4838_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp277
– start-page: 449
  volume-title: A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data
  year: 2003
  ident: 4838_CR28
– volume: 4
  start-page: 335
  year: 2004
  ident: 4838_CR11
  publication-title: In Silico Biol
  doi: 10.3233/ISB-00137
– volume: 303
  start-page: 808
  year: 2004
  ident: 4838_CR43
  publication-title: Science
  doi: 10.1126/science.1091317
– volume: 63
  start-page: 215
  year: 1995
  ident: 4838_CR29
  publication-title: International Statistical Review
  doi: 10.2307/1403615
– volume: 22
  start-page: 1367
  year: 2006
  ident: 4838_CR3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl090
– volume: 33
  start-page: D418
  year: 2005
  ident: 4838_CR49
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki051
– volume: 29
  start-page: 131
  year: 1997
  ident: 4838_CR41
  publication-title: Machine Learning
  doi: 10.1023/A:1007465528199
– volume: 20
  start-page: 197
  year: 1995
  ident: 4838_CR31
  publication-title: Machine Learning
– volume: 6
  start-page: 559
  year: 2004
  ident: 4838_CR27
  publication-title: Nat Genet
  doi: 10.1038/ng1370
– volume-title: Gene expression profiling by microarrays - clinical implications
  year: 2006
  ident: 4838_CR5
– volume-title: Learning in Graphical Models
  year: 1998
  ident: 4838_CR9
– volume: 302
  start-page: 449
  year: 2003
  ident: 4838_CR42
  publication-title: Science
  doi: 10.1126/science.1087361
– volume: 8
  start-page: 317
  year: 2007
  ident: 4838_CR17
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-317
– reference: 17925352 - Ann N Y Acad Sci. 2007 Dec;1115:240-8
– reference: 11928473 - Pac Symp Biocomput. 2002;:175-86
– reference: 15272434 - J Bioinform Comput Biol. 2004 Mar;2(1):77-98
– reference: 15590970 - J Endocrinol. 2004 Dec;183(3):437-43
– reference: 9702192 - Mol Cell. 1998 Jul;2(1):65-73
– reference: 15608229 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D418-24
– reference: 12826619 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8348-53
– reference: 9843569 - Mol Biol Cell. 1998 Dec;9(12):3273-97
– reference: 19389730 - Bioinformatics. 2009 Jul 15;25(14):1768-74
– reference: 18601736 - BMC Syst Biol. 2008;2:57
– reference: 11465731 - Brief Bioinform. 2001 May;2(2):126-42
– reference: 11752246 - Nucleic Acids Res. 2002 Jan 1;30(1):31-4
– reference: 15724284 - In Silico Biol. 2004;4(3):335-53
– reference: 17784779 - PLoS Comput Biol. 2007 Aug;3(8):e129
– reference: 17727721 - BMC Bioinformatics. 2007;8:317
– reference: 11326270 - Nat Genet. 2001 May;28(1):21-8
– reference: 21129191 - BMC Syst Biol. 2010;4:167
– reference: 11572776 - Cell. 2001 Sep 21;106(6):697-708
– reference: 18625423 - Phys Med Rehabil Clin N Am. 2008 Aug;19(3):661-80, xii
– reference: 17912365 - PLoS One. 2007;2(10):e988
– reference: 12531740 - Am J Physiol Endocrinol Metab. 2003 Feb;284(2):E259-66
– reference: 14534194 - Bioinformatics. 2003 Oct;19 Suppl 2:ii227-36
– reference: 15298336 - Diabetologia. 2004 Apr;47(4):597-613
– reference: 11483584 - Genome Res. 2001 Aug;11(8):1425-33
– reference: 11928497 - Pac Symp Biocomput. 2002;:437-49
– reference: 16543279 - Bioinformatics. 2006 Jun 1;22(11):1367-74
– reference: 16685651 - Am J Hum Genet. 2006 Jun;78(6):1011-25
– reference: 14764870 - Science. 2004 Feb 6;303(5659):808-13
– reference: 17204041 - Clin Genet. 2007 Jan;71(1):1-11
– reference: 11108481 - J Comput Biol. 2000;7(3-4):601-20
– reference: 14564010 - Science. 2003 Oct 17;302(5644):449-53
– reference: 15167932 - Nat Genet. 2004 Jun;36(6):559-64
– reference: 16438721 - BMC Bioinformatics. 2006;7:43
– reference: 17299415 - Mol Syst Biol. 2007;3:78
– reference: 20168994 - PLoS Comput Biol. 2010 Feb;6(2):e1000671
– reference: 17951815 - Comput Syst Bioinformatics Conf. 2007;6:85-95
– reference: 15567862 - Science. 2004 Nov 26;306(5701):1555-8
– reference: 14597658 - Genome Res. 2003 Nov;13(11):2498-504
– reference: 17542777 - Stat Appl Genet Mol Biol. 2007;6:Article15
– reference: 15156279 - Acta Biochim Biophys Sin (Shanghai). 2004 May;36(5):365-70
SSID ssj0017805
Score 2.1485713
Snippet Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by...
Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself...
Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by...
Abstract Background: Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression...
Abstract Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 359
SubjectTerms Algorithms
Animals
Bayes Theorem
Bayesian statistical decision theory
Bias
Bioinformatics
Biomedical and Life Sciences
Computational biology
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Diabetes
Gene expression
Gene Expression Profiling - methods
Life Sciences
Markov analysis
Markov Chains
Methodology
Methodology Article
Mice
Microarrays
Models, Genetic
Ontology
Pancreas - cytology
Pancreas - metabolism
Probability
Proteins
PubMed
Random variables
Reservoirs
Reverse engineering
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Standard deviation
Studies
Transcriptome analysis
Yeast
Yeasts
SummonAdditionalLinks – databaseName: Openly Available Collection - DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA8yEPVB_LZuShBBHJTbJmmaPm7imIKCH4O9hTRN5uCSjt1b9P73npN-7FbRvfjaJCU559fknOac3yHklS_K2uaygQ_JNalonEmVVzy1jbMq9woObXQUP36Sxyfiw2lxulXqC2PCenrgXnALxmrDWGm8z6wwmPCXecV8g7zqpXcxjzxT1ehMDfcHyNQf84rKPAWnphgvKJVcTM8iXR9ylG4dSJG3_8_deet4-j10cro_vUNudeHCbH6Y5XLriDq6R-4OtiU96Nd0n9xw4QG52Veb3Dwk7efOhJhTBjscBcAthxxM2noKr28vaU_JhHqj0882eh4oWIn00GwcZlzS0EeO01hEByaFwwGGjrqfQ1RtoBh4-oicHL379vY4HeotpFbyfJ2Csee5ZR58wqKxrDF1Vdfee5C_F2WjrLSyaMAjLCprSiO5BOPNgT0jWC68KPhjshPa4J4SyrlsCscqaVQpoN1460tWc2GMyPNKJWQxCl3bgYwca2IsdXRKlNSoJo1q0jnToKaEvJlGXPREHP_oe4h6nPohhXZ8AMDSA7D0dcBKyEtEgUaSjIBROGemW630-69f9AGTeLuppEjI66GTb2H-1gxJDSAF5NWa9dyb9YSv2M6ad0ew6WEXWenIrAP-dp4QOrXiQAyMC67tVlpVSDmYVTwhT3pkTqsG402JQsFCyhlmZ2KZt4Tz75FhnLMMc_ESsj-i-2pSfxf6_oT_azX07H9oaJfcvvrDv0d21pedew4m4rp-EXeDX8vUXko
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEA_1iqgP4ld1bZUgglhY7jabzWYfRHrSUoUWrRb6FrL5qIVj97y7Re-_d2a_eqtYXzeTJclMJpPMzG8Iee2TNDeRsLCRnA25dTqUXsahsc7IyEs4tPGieHIqjs_5p4vkYoucdLkwGFbZ6cRaUdvS4Bv5uEYZgbtH9H7-I8SiUehc7Spo6Laygn1XI4zdItsMgbFGZHt6ePr5rHcrIIB_56uUYhyBZg6BLqmR-xCudONsqiH8_1bUGyfVn1GUvSv1HrlTFXO9_qlns43T6ugBud-amfSgkYuHZMsVj8jtpvDk-jEpv1S6qNPLQNlRkL1Zm45JS0_h9-WCNuhMyELav7vRq4KCwUineu0w-ZIWTRA5revpwKCwO0iko-5XG2BbUIxBfULOjw6_fTgO29ILoRFxtArB7vOxYR6uh4k1zOo8y3PvvWbM89RKI4xILFwOk8zoVItYgB3nwLThLOKeJ_EOGRVl4Z4RGsfCJo5lQsuUQ7v2xqcsj7nWPIoyGZBxt-jKtLjkWB5jpur7iRQK2aSQTSpiCtgUkLd9j3mDyXED7RT52NMhmnb9oVxcqnZzKsZymFiqvZ8YrjGpdOIl8xax-1Pv0oC8QilQiJdRYEDOpa6WS_Xx65k6YAIdnVLwgLxpiXwJ4ze6zW-AVUCIrQHl3oASNrQZNO92wqZahbJUvfgHhPat2BFj5ApXVkslM0QfnGRxQJ42ktnPGuw4yRMJE0kHMjtYlmFLcfW9BhuP2QTT8gKy30n39aD-vej7vfz_l0PPb5zuLrl7_Yq_R0arReVegBm4yl-2m_s3u6RZ_g
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEA9aEfWD-HZtlSCCWFh6eW72Y1ssVVDwUei3kM0mWjiypXeL3n_vzO7e9tYnft1MliQzycxkZn4h5EVUReWZrmEjhTqXdXC5iUbkvg7esGhAaaOj-O69Pj6Rb0_V6XDfgbUwm_F7ZvQeg8MzB7dEdeB6qrxKroGK0l1YVh-O8QJE5l8HIX_Ta6J0Omz-X0_gDRX0c3rkGCO9RW606dytvrn5fEMNHd0htwf7ke73DL9LroR0j1zvX5Rc3SfNh9alrm4MTjEKQjUf6ixpEyn8vrmgPewS8oaOF2r0LFGwBOmBWwWsqqSpzw6n3UM5MCjsDqIWaPg-ZM4mismlD8jJ0evPh8f58KZC7rVgyxwMuig8j-D3qdrz2lVlVcUYHedRFrXx2mtVg9enSu8Kp4UGAy2AzSI5k1Eq8ZBspSaFx4QKoWsVeKmdKSS0u-hjwSshnZOMlSYje-tFt34AHMd3L-a2czyMtsgmi2yyjFtgU0ZejT3Oe7CNv9AeIB9HOoTJ7j6A9Nhh11nOK5hY4WKceemwWnQWDY81gvIXMRQZeY5SYBEII2GmzRfXLhb2zaePdp9rjGAaLTPyciCKDYzfu6FwAVYBsbMmlDsTStipftK8vRY2O5wUC9uh54BPzTJCx1bsiMlvKTTtwpoSYQVnpcjIo14yx1mDgWakMjCRYiKzk2WZtqSzrx2KuOAzrLfLyO5aui8H9edF3x3l_58cevI_f94mNy9v63fI1vKiDU_B3FtWz7qd_gMKFUts
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DkgbCALISEmpW0cx3EeO8Q0kJjGR6XxZDmOPSpCUtpGUP56zomTNeNLSLzGZyl3uTvfxXe_Q-iJieJUBSwDQ9KZTzMtfW546KtMKx4YDoe2TRRfH7OjKX11Gp1uoZO2Fyb9rNJZ6UBDLVDxcLMNPW-6HOwUBb0YzTPTGD1nowCcrA_pS1SD8EXJJbTNIojOB2h7enwy-VA3GTmS9rbyF9t6p1MN4v-zq944qy7WUXaXqdfQlaqYy_VXmecb59XhDfSl5bQpU_k0rFbpUH2_AAL5P0VxE113wS2eNNp4C23p4ja63Iy7XN9B5ZtKFnVTG7hYDBqfuyZQXBoMLJUL3GBCWcXB3d8-PCswhKn4QK61bfnERVO6juspPiAIux3sQGP9zZX1FthWvu6g6eGL98-PfDfwwVcsDFY-RJsmVMRAUhplimQyTdLUGCMJMTTOuGKKRRmkpFGiZCxZyCB61BBQURJQQ6PwLhoUZaHvIxyGLIs0SZjkMYV1aZSJSRpSKWkQJNxDo_ZDC-XQ0O1QjlzUWRFnwopRWDGKgAgQo4eedTvmDRLIH2gPrO50dBbDu35QLs6EcwmCkBQYi6UxY0WlbWUdG05MZicGxEbHHnpsNU9YlI7ClgGdyWq5FC_fvRUTwuz1KmfUQ08dkSnh_ZV0XRUgBQvs1aPc61GCG1G95d1WwYVzY0tRQ_tAwh94CHerdqOtzCt0WS0FTyzm4TgJPXSvsYaOa4geOY04MBL37KQnlv5KMftYQ5yHZGybAT2031rU-Uv9Xuj7nc399Qs9-BfiXXT1_CphDw1Wi0o_hFh0lT5y7uUHPeWDPw
  priority: 102
  providerName: Unpaywall
Title Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data
URI https://link.springer.com/article/10.1186/1471-2105-12-359
https://www.ncbi.nlm.nih.gov/pubmed/21884587
https://www.proquest.com/docview/902807171
https://www.proquest.com/docview/898506093
https://pubmed.ncbi.nlm.nih.gov/PMC3203352
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-12-359
https://doaj.org/article/22ba227aff0c4a62850f82fd60077fe7
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfYJgQ8IL4JG5WFkBCTwhrHcZwHhNpqZVRaNTYqlSfLcewxqUpGP8T633OXpukCY7y0UnyJ7Puw72zf7wh566I4NYHIwJBs5vPMal86Gfoms0YGTsKijYHi8VAcjfhgHI036dEVA2c3hnZYT2o0nXy4-rn8BAb_sTR4KQ4CmGB9CF2iEoAvSrbIDqxTCRZyOOabMwVE7y9zjSrq9aHlDV9oLFIllv_fM_a1JevP65T1meoDcm-RX-rlLz2ZXFu2-o_Iw8rfpJ2Vgjwmd2z-hNxdVaBcPiXF14XOyzwzmPUoKOGkysukhaPw-WJKVzBNKEtab8DRi5yC50i7emkxC5Pmq9vktCysA53C10E1LbVX1U3bnOJl1Gdk1D_81jvyqxoMvhFhMPfBAXShYQ7ixCgzLNNpkqbOOc2Y43EmjTAiyiBKjBKjYy1CAQ6dBR-Hs4A7HoXPyXZe5PYloWEossiyRGgZc2jXzriYpSHXmgdBIj1ysGa6MhVAOdbJmKgyUJFCoZgUikkFTIGYPPK-fuNyBc5xC20X5VjTIax2-aCYnqvKShVjKQws1s61DdeYXdp2krkMQfxjZ2OPvEEtUAickePNnHO9mM3Ul7NT1WECTzyl4B55VxG5AvpvdJXoAFxArK0G5V6DEizbNJp318qm1oahSrQdiMEDj9C6FV_Ey3K5LRYzJROEIWwnoUderDSzHjU4dJJHEgYSN3S2wZZmS37xo0QdD1kb8_M8sr_W7k2n_s30_Vr__yuhV7dzY5fc3-zn75Ht-XRhX4NDOE9bZCsex_Ar-59bZKfTGZwN4L97ODw5hac90WuVWy2tcj6AltHwpPP9NzP1YHY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamITR4QNwJG2AhEGJS1MZxHOcBoQ2YWnaRgE3qm-c49phUJaUXjf4o_iPn5LYGxHjaa21Xts_nc8m5EfLKRXFqApHBQ7KZzzOrfelk6JvMGhk4CUIbDcXDIzE44Z9H0WiN_GpyYTCssuGJJaPOCoPfyHtllRGwPYL3kx8-No1C52rTQaNCxb5dXoDFNns3_Ajkfc3Y3qfjDwO_birgGxEGcx80Ghca5sDwiTLDMp0maeqc04w5HmfSCCOiDMyeKDE61iIUoKFYENqcBdxxbBIBHP8GD4GVwPOJR619F2B7gMYTKkUvAL7vg0UVlXUBsRjqiuQrGwT8LQZW5OCfMZqto_Y22VjkE7280OPxiizcu0vu1Eos3alQd4-s2fw-uVm1tVw-IMWXhc7L5DVgpRSQPa6TPWnhKPx9MaVV7ScECG2_6tHznII6Snf10mJqJ82rEHVaduuBTeFywLul9mcdvptTjHB9SE6uhQaPyHpe5PYJoWEossiyRGgZcxjXzriYpSHXmgdBIj3Say5dmbrqOTbfGKvS-pFCIZkUkkkFTAGZPPK2XTGpKn5cMXcX6djOw1rd5Q_F9EzVT18xlsLBYu1c33CNKat9J5nLsDNA7GzskZeIAoXVOHIM9znTi9lMDb99VTtMoBtVCu6RN_UkV8D-ja6zJ-AWsIBXZ-ZWZyawC9MZ3mzApmp2NVPt4_IIbUdxIUbg5bZYzJRMsLZhPwk98rhCZntq0BIljyQcJO5gtnMt3ZH8_HtZyjxkfUz688h2g-7LTf370rdb_P-XQk-vPO4LsjE4PjxQB8Oj_U1y69JfsEXW59OFfQYK5zx9Xj5zSk6vm6_8BriZkBU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagiOsBcRQILWAhJESlaDeO4ziPbWHVclRclfpmOT5KpZWz2kOw_56ZXG04xWtsR7Znxp7xzHxDyHOf5aVJhAVBcjbm1ulYepnGxjojEy_h0kZD8f2RODjmb06yk_bBbdFFu3cuySanAVGawnI0s74RcSlGCRypMRgrWQ25lxWXyRUOdxtWMNgX-70XAfH6O9fkb0YNrqIasf_Xc_nCxfRz0GTvOb1Jrq_CTK-_6en0wuU0uU1utVol3W3Y4A655MJdcrWpM7m-R6qPKx3qbDI42yiw2rTNvqSVp_D7ak4bMCakGO2f2ehZoKAf0j29dphrSUMTM07r8jkwKRwODOio-97G0waKIaeb5Hjy-sv-QdxWWoiNSJNlDGqeTw3zYA1m1jCry6IsvfeaMc9zK40wIrNgC2aF0bkWqQC1zYEmw1nCPc_S-2QjVME9JDRNhc0cK4SWOYd27Y3PWZlyrXmSFDIio27TlWlhyLEaxlTV5ogUCsmkkEwqYQrIFJGX_YhZA8Hxl757SMe-H4Jn1x-q-alqZVExVsLCcu392HCNOaRjL5m3CNWfe5dH5BlygUJ4jIDxN6d6tViow8-f1C4T6NeUgkfkRdvJVzB_o9t0BtgFRNQa9Nwe9AT5NYPmrY7ZVHt-LFSNqQOWdhIR2rfiQAyJC65aLZQsEGxwXKQRedBwZr9qUNskzyQsJB_w7GBbhi3h7GuNLZ6yMWbhRWSn4-7zSf1503d6_v8nhR79z5-fkmsfXk3Uu8Ojt1vkxvlz_jbZWM5X7jHog8vySS30PwD6P1ai
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DkgbCALISEmpW0cx3EeO8Q0kJjGR6XxZDmOPSpCUtpGUP56zomTNeNLSLzGZyl3uTvfxXe_Q-iJieJUBSwDQ9KZTzMtfW546KtMKx4YDoe2TRRfH7OjKX11Gp1uoZO2Fyb9rNJZ6UBDLVDxcLMNPW-6HOwUBb0YzTPTGD1nowCcrA_pS1SD8EXJJbTNIojOB2h7enwy-VA3GTmS9rbyF9t6p1MN4v-zq944qy7WUXaXqdfQlaqYy_VXmecb59XhDfSl5bQpU_k0rFbpUH2_AAL5P0VxE113wS2eNNp4C23p4ja63Iy7XN9B5ZtKFnVTG7hYDBqfuyZQXBoMLJUL3GBCWcXB3d8-PCswhKn4QK61bfnERVO6juspPiAIux3sQGP9zZX1FthWvu6g6eGL98-PfDfwwVcsDFY-RJsmVMRAUhplimQyTdLUGCMJMTTOuGKKRRmkpFGiZCxZyCB61BBQURJQQ6PwLhoUZaHvIxyGLIs0SZjkMYV1aZSJSRpSKWkQJNxDo_ZDC-XQ0O1QjlzUWRFnwopRWDGKgAgQo4eedTvmDRLIH2gPrO50dBbDu35QLs6EcwmCkBQYi6UxY0WlbWUdG05MZicGxEbHHnpsNU9YlI7ClgGdyWq5FC_fvRUTwuz1KmfUQ08dkSnh_ZV0XRUgBQvs1aPc61GCG1G95d1WwYVzY0tRQ_tAwh94CHerdqOtzCt0WS0FTyzm4TgJPXSvsYaOa4geOY04MBL37KQnlv5KMftYQ5yHZGybAT2031rU-Uv9Xuj7nc399Qs9-BfiXXT1_CphDw1Wi0o_hFh0lT5y7uUHPeWDPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+utilization+of+prior+biological+knowledge+in+the+Bayesian+network+modeling+of+gene+expression+data&rft.jtitle=BMC+bioinformatics&rft.au=Gao%2C+Shouguo&rft.au=Wang%2C+Xujing&rft.date=2011-08-31&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=12&rft.spage=359&rft_id=info:doi/10.1186%2F1471-2105-12-359&rft.externalDocID=A269579864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon