Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data
Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior k...
Saved in:
| Published in | BMC bioinformatics Vol. 12; no. 1; p. 359 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
31.08.2011
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-12-359 |
Cover
| Abstract | Background
Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable.
Results
We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information.
Conclusion
our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance. |
|---|---|
| AbstractList | Abstract Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance. Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance. Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance. Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance. Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance. Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable.BACKGROUNDBayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable.We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information.RESULTSWe introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information.our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.CONCLUSIONour new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance. |
| ArticleNumber | 359 |
| Audience | Academic |
| Author | Gao, Shouguo Wang, Xujing |
| AuthorAffiliation | 2 The Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA 1 Department of Physics, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA |
| AuthorAffiliation_xml | – name: 2 The Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA – name: 1 Department of Physics, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA |
| Author_xml | – sequence: 1 givenname: Shouguo surname: Gao fullname: Gao, Shouguo organization: Department of Physics, University of Alabama at Birmingham, The Comprehensive Diabetes Center, University of Alabama at Birmingham – sequence: 2 givenname: Xujing surname: Wang fullname: Wang, Xujing email: xujingw@uab.edu organization: Department of Physics, University of Alabama at Birmingham, The Comprehensive Diabetes Center, University of Alabama at Birmingham |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21884587$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB-wZ4UiWCAWKbaT2MkGqVQ8RqqEeK0tx7lOPfXYU9vptPx6nM4wdCpAyAtbN985sc-9h9medRay7ClGxxg39DWuGC4IRnWBSVHW7YPsYFvau3Pezw5DmCOEWYPqR9k-wU1T1Q07yNznUdioo4j6CvIxaqN_pLOzuVP50mvn80474wYthckvrFsZ6AfItc3jOeRvxQ0ELWxuIa6cv8gXrgej7TDJB7CQw_XSQwiTYy-ieJw9VMIEeLLZj7Lv7999O_1YnH36MDs9OSskLXEscEtUKYkiGNe9JL3o2q5TSglCVMX6RlJJ676pUN1KwQQtaU0ItIxWBFeqqsujbLb27Z2Y8_SQhfA33AnNbwvOD1z4qKUBTkiXbJlQCslKUNLUSDVE9RQhxhSw5IXXXqNdipuVMGZriBGfGsGnpPmUNMeEp0YkzZu1Zjl2C-gl2OiF2bnI7herz_ngrnhJUFnWJBm83Bh4dzlCiHyhgwRjhAU3Bt606Z4UtWUin98j5270NqXLW0QaxDDDCXqxhgaRnqytcumvcrLkJ4S2NWsbWiXq-A9UWj0stEyzp3Sq7whe7QgSE-E6DmIMgc--ftlln92NZJvFr2FMAF0D0rsQPCgubwfTTQlp86-w0T3hf_Rn09OQUDuA_x3aXzU_AT91D9k |
| CitedBy_id | crossref_primary_10_1089_omi_2012_0029 crossref_primary_10_1186_s12864_020_07241_2 crossref_primary_10_2174_1574893615999200728193621 crossref_primary_10_1016_j_ygeno_2014_03_004 crossref_primary_10_1109_ACCESS_2023_3306593 crossref_primary_10_1089_cmb_2021_0403 crossref_primary_10_1186_s12859_022_04891_9 crossref_primary_10_1371_journal_pone_0067410 crossref_primary_10_1109_JBHI_2016_2636448 crossref_primary_10_1186_s12918_015_0226_3 crossref_primary_10_1155_2016_4241293 crossref_primary_10_1186_1471_2105_15_115 crossref_primary_10_1109_TCBB_2018_2872993 crossref_primary_10_1186_1752_0509_7_119 |
| Cites_doi | 10.1007/11590316_97 10.1186/1471-2105-7-43 10.1152/ajpendo.00393.2002 10.1016/j.pmr.2008.02.004 10.3233/ISB-00137 10.1371/journal.pcbi.0030129 10.1142/9781860948732_0013 10.1089/106652700750050961 10.1101/gr.1239303 10.1023/A:1007413511361 10.1016/S1097-2765(00)80114-8 10.1007/s00125-004-1368-9 10.1186/1752-0509-2-57 10.1186/1752-0509-4-167 10.1196/annals.1407.002 10.1371/journal.pone.0000988 10.1142/S021972000400048X 10.1677/joe.1.05981 10.1093/abbs/36.5.365 10.1086/504300 10.1007/978-3-540-79450-9_18 10.1093/bib/2.2.126 10.1093/bioinformatics/btg1082 10.1016/S0092-8674(01)00494-9 10.1126/science.1099511 10.1111/j.1399-0004.2006.00708.x 10.1038/msb4100120 10.1101/gr.180801 10.1073/pnas.0832373100 10.1038/ng1370 10.1091/mbc.9.12.3273 10.1093/nar/30.1.31 10.1093/bioinformatics/btp277 10.1126/science.1091317 10.2307/1403615 10.1093/bioinformatics/btl090 10.1093/nar/gki051 10.1023/A:1007465528199 10.1126/science.1087361 10.1186/1471-2105-8-317 |
| ContentType | Journal Article |
| Copyright | Gao and Wang; licensee BioMed Central Ltd. 2011 COPYRIGHT 2011 BioMed Central Ltd. 2011 Gao and Wang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2011 Gao and Wang; licensee BioMed Central Ltd. 2011 Gao and Wang; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Gao and Wang; licensee BioMed Central Ltd. 2011 – notice: COPYRIGHT 2011 BioMed Central Ltd. – notice: 2011 Gao and Wang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2011 Gao and Wang; licensee BioMed Central Ltd. 2011 Gao and Wang; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2105-12-359 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Openly Available Collection - DOAJ |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerLink Journals Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 359 |
| ExternalDocumentID | oai_doaj_org_article_22ba227aff0c4a62850f82fd60077fe7 10.1186/1471-2105-12-359 PMC3203352 2507136271 A269579864 21884587 10_1186_1471_2105_12_359 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01DK080100 |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR IPNFZ ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c631t-192f3c2f2115dc2dab9bbfffa22f47d8c6c65d84059ca7a636522e9764214f453 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:48:07 EDT 2025 Sun Oct 26 03:35:40 EDT 2025 Tue Sep 30 16:57:41 EDT 2025 Thu Oct 02 08:12:29 EDT 2025 Tue Oct 07 05:18:12 EDT 2025 Mon Oct 20 22:14:39 EDT 2025 Mon Oct 20 16:06:24 EDT 2025 Thu Oct 16 14:40:49 EDT 2025 Mon Jul 21 06:03:06 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 Wed Oct 01 06:49:33 EDT 2025 Sat Sep 06 07:27:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Markov Chain Monte Carlo Gene Pair Bayesian Network Gene Ontology Gene Expression Data |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c631t-192f3c2f2115dc2dab9bbfffa22f47d8c6c65d84059ca7a636522e9764214f453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/22ba227aff0c4a62850f82fd60077fe7 |
| PMID | 21884587 |
| PQID | 902807171 |
| PQPubID | 44065 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_22ba227aff0c4a62850f82fd60077fe7 unpaywall_primary_10_1186_1471_2105_12_359 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3203352 proquest_miscellaneous_898506093 proquest_journals_902807171 gale_infotracmisc_A269579864 gale_infotracacademiconefile_A269579864 gale_incontextgauss_ISR_A269579864 pubmed_primary_21884587 crossref_citationtrail_10_1186_1471_2105_12_359 crossref_primary_10_1186_1471_2105_12_359 springer_journals_10_1186_1471_2105_12_359 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-08-31 |
| PublicationDateYYYYMMDD | 2011-08-31 |
| PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2011 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | P Shannon (4838_CR34) 2003; 13 L Franke (4838_CR38) 2006; 78 RJ Cho (4838_CR55) 1998; 2 S Imoto (4838_CR24) 2004; 2 S Imoto (4838_CR21) 2004; 2 P Le Phillip (4838_CR11) 2004; 4 TK Jenssen (4838_CR53) 2001; 28 CJ Needham (4838_CR30) 2007; 3 X Wang (4838_CR5) 2006 O Gevaert (4838_CR13) 2007; 1115 AH Tong (4838_CR43) 2004; 303 P Le Phillip (4838_CR14) 2004; 4 S Gao (4838_CR56) 2010; 4 M Bansal (4838_CR47) 2007; 3 PT Spellman (4838_CR48) 1998; 9 OG Troyanskaya (4838_CR6) 2003; 100 N Friedman (4838_CR41) 1997; 29 JM Servitja (4838_CR52) 2004; 47 N Friedman (4838_CR8) 2000; 7 JS Ide (4838_CR25) 2002 P Domingos (4838_CR40) 1997; 29 AJ Hartemink (4838_CR15) 2002 A Djebbari (4838_CR19) 2008; 2 C Alfarano (4838_CR49) 2005; 33 I Simon (4838_CR45) 2001; 106 M Oti (4838_CR26) 2007; 71 S Imoto (4838_CR20) 2002; 7 AG Fraser (4838_CR27) 2004; 6 U Wittig (4838_CR37) 2001; 2 A Lechner (4838_CR50) 2003; 284 SL Cao (4838_CR32) 2004; 36 JCY Zhu (4838_CR58) 2001 K Murphy (4838_CR33) 2001 AGME Fraser (4838_CR1) 2004; 6 R Jansen (4838_CR42) 2003; 302 GO Consortium (4838_CR44) 2001; 11 JJ Han (4838_CR7) 2008; 19 G Bastos (4838_CR54) 2005; 3776 D Heckerman (4838_CR31) 1995; 20 R Jansen (4838_CR28) 2003 HW Mewes (4838_CR39) 2002; 30 D Madigan (4838_CR29) 1995; 63 IDS Lee (4838_CR2) 2004; 306 I Lee (4838_CR36) 2007; 2 E Steele (4838_CR12) 2009; 25 AV Werhli (4838_CR23) 2007 CJ Burns (4838_CR51) 2004; 183 D Husmeier (4838_CR22) 2007; 6 I Lee (4838_CR35) 2004; 306 Y Tamada (4838_CR16) 2003; 19 D Heckerman (4838_CR9) 1998 PL Eyad Almasri (4838_CR18) 2008; 4983 GF Cooper (4838_CR10) 1992; 9 T Van den Bulcke (4838_CR46) 2006; 7 RJ Cho (4838_CR57) 1998; 2 GAaXW Xue-wen Chen (4838_CR3) 2006; 22 P Larsen (4838_CR17) 2007; 8 SHT Imoto (4838_CR4) 2004; 2 16543279 - Bioinformatics. 2006 Jun 1;22(11):1367-74 11928473 - Pac Symp Biocomput. 2002;:175-86 14534194 - Bioinformatics. 2003 Oct;19 Suppl 2:ii227-36 15156279 - Acta Biochim Biophys Sin (Shanghai). 2004 May;36(5):365-70 20168994 - PLoS Comput Biol. 2010 Feb;6(2):e1000671 11483584 - Genome Res. 2001 Aug;11(8):1425-33 12531740 - Am J Physiol Endocrinol Metab. 2003 Feb;284(2):E259-66 17727721 - BMC Bioinformatics. 2007;8:317 9702192 - Mol Cell. 1998 Jul;2(1):65-73 11465731 - Brief Bioinform. 2001 May;2(2):126-42 11572776 - Cell. 2001 Sep 21;106(6):697-708 15567862 - Science. 2004 Nov 26;306(5701):1555-8 15272434 - J Bioinform Comput Biol. 2004 Mar;2(1):77-98 17925352 - Ann N Y Acad Sci. 2007 Dec;1115:240-8 14564010 - Science. 2003 Oct 17;302(5644):449-53 12826619 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8348-53 16438721 - BMC Bioinformatics. 2006;7:43 15724284 - In Silico Biol. 2004;4(3):335-53 17951815 - Comput Syst Bioinformatics Conf. 2007;6:85-95 17299415 - Mol Syst Biol. 2007;3:78 11108481 - J Comput Biol. 2000;7(3-4):601-20 17204041 - Clin Genet. 2007 Jan;71(1):1-11 15298336 - Diabetologia. 2004 Apr;47(4):597-613 17784779 - PLoS Comput Biol. 2007 Aug;3(8):e129 21129191 - BMC Syst Biol. 2010;4:167 11928497 - Pac Symp Biocomput. 2002;:437-49 15167932 - Nat Genet. 2004 Jun;36(6):559-64 18601736 - BMC Syst Biol. 2008;2:57 19389730 - Bioinformatics. 2009 Jul 15;25(14):1768-74 15608229 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D418-24 17542777 - Stat Appl Genet Mol Biol. 2007;6:Article15 18625423 - Phys Med Rehabil Clin N Am. 2008 Aug;19(3):661-80, xii 16685651 - Am J Hum Genet. 2006 Jun;78(6):1011-25 11752246 - Nucleic Acids Res. 2002 Jan 1;30(1):31-4 14764870 - Science. 2004 Feb 6;303(5659):808-13 9843569 - Mol Biol Cell. 1998 Dec;9(12):3273-97 17912365 - PLoS One. 2007;2(10):e988 11326270 - Nat Genet. 2001 May;28(1):21-8 14597658 - Genome Res. 2003 Nov;13(11):2498-504 15590970 - J Endocrinol. 2004 Dec;183(3):437-43 |
| References_xml | – volume: 3776 start-page: 611 year: 2005 ident: 4838_CR54 publication-title: Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science doi: 10.1007/11590316_97 – volume: 7 start-page: 175 year: 2002 ident: 4838_CR20 publication-title: Pac Symp Biocomput – volume: 7 start-page: 43 year: 2006 ident: 4838_CR46 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-43 – volume: 284 start-page: E259 year: 2003 ident: 4838_CR50 publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00393.2002 – volume-title: Stat Appl Genet Mol Biol year: 2007 ident: 4838_CR23 – volume: 19 start-page: 661 year: 2008 ident: 4838_CR7 publication-title: Phys Med Rehabil Clin N Am doi: 10.1016/j.pmr.2008.02.004 – volume: 4 start-page: 335 year: 2004 ident: 4838_CR14 publication-title: In Silico Biology doi: 10.3233/ISB-00137 – volume: 3 start-page: e129 year: 2007 ident: 4838_CR30 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030129 – volume: 6 start-page: 85 year: 2007 ident: 4838_CR22 publication-title: Comput Syst Bioinformatics Conf doi: 10.1142/9781860948732_0013 – volume: 7 start-page: 601 year: 2000 ident: 4838_CR8 publication-title: J Comput Biol doi: 10.1089/106652700750050961 – volume: 13 start-page: 2498 year: 2003 ident: 4838_CR34 publication-title: Genome Res doi: 10.1101/gr.1239303 – volume: 29 start-page: 103 year: 1997 ident: 4838_CR40 publication-title: Machine Learning doi: 10.1023/A:1007413511361 – volume: 2 start-page: 65 year: 1998 ident: 4838_CR55 publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80114-8 – volume: 47 start-page: 597 year: 2004 ident: 4838_CR52 publication-title: Diabetologia doi: 10.1007/s00125-004-1368-9 – volume: 2 start-page: 57 year: 2008 ident: 4838_CR19 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-2-57 – volume: 4 start-page: 167 year: 2010 ident: 4838_CR56 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-167 – volume: 1115 start-page: 240 year: 2007 ident: 4838_CR13 publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1407.002 – volume: 2 start-page: e988 year: 2007 ident: 4838_CR36 publication-title: PloS one doi: 10.1371/journal.pone.0000988 – volume: 2 start-page: 77 year: 2004 ident: 4838_CR24 publication-title: J Bioinform Comput Biol doi: 10.1142/S021972000400048X – volume: 183 start-page: 437 year: 2004 ident: 4838_CR51 publication-title: J Endocrinol doi: 10.1677/joe.1.05981 – start-page: 437 volume-title: Pac Symp Biocomput year: 2002 ident: 4838_CR15 – volume: 36 start-page: 365 year: 2004 ident: 4838_CR32 publication-title: Acta Biochim Biophys Sin (Shanghai) doi: 10.1093/abbs/36.5.365 – volume: 2 start-page: 77 year: 2004 ident: 4838_CR21 publication-title: J Bioinform Comput Biol doi: 10.1142/S021972000400048X – volume: 9 start-page: 309 year: 1992 ident: 4838_CR10 publication-title: Machine Learning – volume: 78 start-page: 1011 year: 2006 ident: 4838_CR38 publication-title: Am J Hum Genet doi: 10.1086/504300 – volume-title: PLoS Comput Biol year: 2001 ident: 4838_CR58 – volume: 4983 start-page: 184 year: 2008 ident: 4838_CR18 publication-title: Proceeding of the 4th International Symposium on Bioinformatics Research and Applications doi: 10.1007/978-3-540-79450-9_18 – volume: 2 start-page: 126 year: 2001 ident: 4838_CR37 publication-title: Briefings in bioinformatics doi: 10.1093/bib/2.2.126 – volume: 19 start-page: ii227 issue: Suppl 2 year: 2003 ident: 4838_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1082 – volume: 106 start-page: 697 year: 2001 ident: 4838_CR45 publication-title: Cell doi: 10.1016/S0092-8674(01)00494-9 – volume-title: Workshop de Teses e Dissertações em IA (WTDIA2002) year: 2002 ident: 4838_CR25 – volume: 306 start-page: 1555 year: 2004 ident: 4838_CR2 publication-title: Science doi: 10.1126/science.1099511 – volume: 2 start-page: 77 year: 2004 ident: 4838_CR4 publication-title: J Bioinform Comput Biol doi: 10.1142/S021972000400048X – volume: 71 start-page: 1 year: 2007 ident: 4838_CR26 publication-title: Clin Genet doi: 10.1111/j.1399-0004.2006.00708.x – volume: 28 start-page: 21 year: 2001 ident: 4838_CR53 publication-title: Nat Genet – volume: 3 start-page: 122 year: 2007 ident: 4838_CR47 publication-title: Mol Syst Biol doi: 10.1038/msb4100120 – volume: 11 start-page: 1425 year: 2001 ident: 4838_CR44 publication-title: Genome Res doi: 10.1101/gr.180801 – volume: 100 start-page: 8348 year: 2003 ident: 4838_CR6 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0832373100 – volume-title: Computing Science and Statistics year: 2001 ident: 4838_CR33 – volume: 2 start-page: 65 year: 1998 ident: 4838_CR57 publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80114-8 – volume: 6 start-page: 559 year: 2004 ident: 4838_CR1 publication-title: Nat Genet doi: 10.1038/ng1370 – volume: 9 start-page: 3273 year: 1998 ident: 4838_CR48 publication-title: Mol Biol Cell doi: 10.1091/mbc.9.12.3273 – volume: 30 start-page: 31 year: 2002 ident: 4838_CR39 publication-title: Nucleic acids research doi: 10.1093/nar/30.1.31 – volume: 306 start-page: 1555 year: 2004 ident: 4838_CR35 publication-title: Science doi: 10.1126/science.1099511 – volume: 25 start-page: 1768 year: 2009 ident: 4838_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp277 – start-page: 449 volume-title: A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data year: 2003 ident: 4838_CR28 – volume: 4 start-page: 335 year: 2004 ident: 4838_CR11 publication-title: In Silico Biol doi: 10.3233/ISB-00137 – volume: 303 start-page: 808 year: 2004 ident: 4838_CR43 publication-title: Science doi: 10.1126/science.1091317 – volume: 63 start-page: 215 year: 1995 ident: 4838_CR29 publication-title: International Statistical Review doi: 10.2307/1403615 – volume: 22 start-page: 1367 year: 2006 ident: 4838_CR3 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl090 – volume: 33 start-page: D418 year: 2005 ident: 4838_CR49 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki051 – volume: 29 start-page: 131 year: 1997 ident: 4838_CR41 publication-title: Machine Learning doi: 10.1023/A:1007465528199 – volume: 20 start-page: 197 year: 1995 ident: 4838_CR31 publication-title: Machine Learning – volume: 6 start-page: 559 year: 2004 ident: 4838_CR27 publication-title: Nat Genet doi: 10.1038/ng1370 – volume-title: Gene expression profiling by microarrays - clinical implications year: 2006 ident: 4838_CR5 – volume-title: Learning in Graphical Models year: 1998 ident: 4838_CR9 – volume: 302 start-page: 449 year: 2003 ident: 4838_CR42 publication-title: Science doi: 10.1126/science.1087361 – volume: 8 start-page: 317 year: 2007 ident: 4838_CR17 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-317 – reference: 17925352 - Ann N Y Acad Sci. 2007 Dec;1115:240-8 – reference: 11928473 - Pac Symp Biocomput. 2002;:175-86 – reference: 15272434 - J Bioinform Comput Biol. 2004 Mar;2(1):77-98 – reference: 15590970 - J Endocrinol. 2004 Dec;183(3):437-43 – reference: 9702192 - Mol Cell. 1998 Jul;2(1):65-73 – reference: 15608229 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D418-24 – reference: 12826619 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8348-53 – reference: 9843569 - Mol Biol Cell. 1998 Dec;9(12):3273-97 – reference: 19389730 - Bioinformatics. 2009 Jul 15;25(14):1768-74 – reference: 18601736 - BMC Syst Biol. 2008;2:57 – reference: 11465731 - Brief Bioinform. 2001 May;2(2):126-42 – reference: 11752246 - Nucleic Acids Res. 2002 Jan 1;30(1):31-4 – reference: 15724284 - In Silico Biol. 2004;4(3):335-53 – reference: 17784779 - PLoS Comput Biol. 2007 Aug;3(8):e129 – reference: 17727721 - BMC Bioinformatics. 2007;8:317 – reference: 11326270 - Nat Genet. 2001 May;28(1):21-8 – reference: 21129191 - BMC Syst Biol. 2010;4:167 – reference: 11572776 - Cell. 2001 Sep 21;106(6):697-708 – reference: 18625423 - Phys Med Rehabil Clin N Am. 2008 Aug;19(3):661-80, xii – reference: 17912365 - PLoS One. 2007;2(10):e988 – reference: 12531740 - Am J Physiol Endocrinol Metab. 2003 Feb;284(2):E259-66 – reference: 14534194 - Bioinformatics. 2003 Oct;19 Suppl 2:ii227-36 – reference: 15298336 - Diabetologia. 2004 Apr;47(4):597-613 – reference: 11483584 - Genome Res. 2001 Aug;11(8):1425-33 – reference: 11928497 - Pac Symp Biocomput. 2002;:437-49 – reference: 16543279 - Bioinformatics. 2006 Jun 1;22(11):1367-74 – reference: 16685651 - Am J Hum Genet. 2006 Jun;78(6):1011-25 – reference: 14764870 - Science. 2004 Feb 6;303(5659):808-13 – reference: 17204041 - Clin Genet. 2007 Jan;71(1):1-11 – reference: 11108481 - J Comput Biol. 2000;7(3-4):601-20 – reference: 14564010 - Science. 2003 Oct 17;302(5644):449-53 – reference: 15167932 - Nat Genet. 2004 Jun;36(6):559-64 – reference: 16438721 - BMC Bioinformatics. 2006;7:43 – reference: 17299415 - Mol Syst Biol. 2007;3:78 – reference: 20168994 - PLoS Comput Biol. 2010 Feb;6(2):e1000671 – reference: 17951815 - Comput Syst Bioinformatics Conf. 2007;6:85-95 – reference: 15567862 - Science. 2004 Nov 26;306(5701):1555-8 – reference: 14597658 - Genome Res. 2003 Nov;13(11):2498-504 – reference: 17542777 - Stat Appl Genet Mol Biol. 2007;6:Article15 – reference: 15156279 - Acta Biochim Biophys Sin (Shanghai). 2004 May;36(5):365-70 |
| SSID | ssj0017805 |
| Score | 2.1485713 |
| Snippet | Background
Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by... Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself... Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by... Abstract Background: Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression... Abstract Background Bayesian Network (BN) is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 359 |
| SubjectTerms | Algorithms Animals Bayes Theorem Bayesian statistical decision theory Bias Bioinformatics Biomedical and Life Sciences Computational biology Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Diabetes Gene expression Gene Expression Profiling - methods Life Sciences Markov analysis Markov Chains Methodology Methodology Article Mice Microarrays Models, Genetic Ontology Pancreas - cytology Pancreas - metabolism Probability Proteins PubMed Random variables Reservoirs Reverse engineering Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Standard deviation Studies Transcriptome analysis Yeast Yeasts |
| SummonAdditionalLinks | – databaseName: Openly Available Collection - DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA8yEPVB_LZuShBBHJTbJmmaPm7imIKCH4O9hTRN5uCSjt1b9P73npN-7FbRvfjaJCU559fknOac3yHklS_K2uaygQ_JNalonEmVVzy1jbMq9woObXQUP36Sxyfiw2lxulXqC2PCenrgXnALxmrDWGm8z6wwmPCXecV8g7zqpXcxjzxT1ehMDfcHyNQf84rKPAWnphgvKJVcTM8iXR9ylG4dSJG3_8_deet4-j10cro_vUNudeHCbH6Y5XLriDq6R-4OtiU96Nd0n9xw4QG52Veb3Dwk7efOhJhTBjscBcAthxxM2noKr28vaU_JhHqj0882eh4oWIn00GwcZlzS0EeO01hEByaFwwGGjrqfQ1RtoBh4-oicHL379vY4HeotpFbyfJ2Csee5ZR58wqKxrDF1Vdfee5C_F2WjrLSyaMAjLCprSiO5BOPNgT0jWC68KPhjshPa4J4SyrlsCscqaVQpoN1460tWc2GMyPNKJWQxCl3bgYwca2IsdXRKlNSoJo1q0jnToKaEvJlGXPREHP_oe4h6nPohhXZ8AMDSA7D0dcBKyEtEgUaSjIBROGemW630-69f9AGTeLuppEjI66GTb2H-1gxJDSAF5NWa9dyb9YSv2M6ad0ew6WEXWenIrAP-dp4QOrXiQAyMC67tVlpVSDmYVTwhT3pkTqsG402JQsFCyhlmZ2KZt4Tz75FhnLMMc_ESsj-i-2pSfxf6_oT_azX07H9oaJfcvvrDv0d21pedew4m4rp-EXeDX8vUXko priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEA_1iqgP4ld1bZUgglhY7jabzWYfRHrSUoUWrRb6FrL5qIVj97y7Re-_d2a_eqtYXzeTJclMJpPMzG8Iee2TNDeRsLCRnA25dTqUXsahsc7IyEs4tPGieHIqjs_5p4vkYoucdLkwGFbZ6cRaUdvS4Bv5uEYZgbtH9H7-I8SiUehc7Spo6Laygn1XI4zdItsMgbFGZHt6ePr5rHcrIIB_56uUYhyBZg6BLqmR-xCudONsqiH8_1bUGyfVn1GUvSv1HrlTFXO9_qlns43T6ugBud-amfSgkYuHZMsVj8jtpvDk-jEpv1S6qNPLQNlRkL1Zm45JS0_h9-WCNuhMyELav7vRq4KCwUineu0w-ZIWTRA5revpwKCwO0iko-5XG2BbUIxBfULOjw6_fTgO29ILoRFxtArB7vOxYR6uh4k1zOo8y3PvvWbM89RKI4xILFwOk8zoVItYgB3nwLThLOKeJ_EOGRVl4Z4RGsfCJo5lQsuUQ7v2xqcsj7nWPIoyGZBxt-jKtLjkWB5jpur7iRQK2aSQTSpiCtgUkLd9j3mDyXED7RT52NMhmnb9oVxcqnZzKsZymFiqvZ8YrjGpdOIl8xax-1Pv0oC8QilQiJdRYEDOpa6WS_Xx65k6YAIdnVLwgLxpiXwJ4ze6zW-AVUCIrQHl3oASNrQZNO92wqZahbJUvfgHhPat2BFj5ApXVkslM0QfnGRxQJ42ktnPGuw4yRMJE0kHMjtYlmFLcfW9BhuP2QTT8gKy30n39aD-vej7vfz_l0PPb5zuLrl7_Yq_R0arReVegBm4yl-2m_s3u6RZ_g priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEA9aEfWD-HZtlSCCWFh6eW72Y1ssVVDwUei3kM0mWjiypXeL3n_vzO7e9tYnft1MliQzycxkZn4h5EVUReWZrmEjhTqXdXC5iUbkvg7esGhAaaOj-O69Pj6Rb0_V6XDfgbUwm_F7ZvQeg8MzB7dEdeB6qrxKroGK0l1YVh-O8QJE5l8HIX_Ta6J0Omz-X0_gDRX0c3rkGCO9RW606dytvrn5fEMNHd0htwf7ke73DL9LroR0j1zvX5Rc3SfNh9alrm4MTjEKQjUf6ixpEyn8vrmgPewS8oaOF2r0LFGwBOmBWwWsqqSpzw6n3UM5MCjsDqIWaPg-ZM4mismlD8jJ0evPh8f58KZC7rVgyxwMuig8j-D3qdrz2lVlVcUYHedRFrXx2mtVg9enSu8Kp4UGAy2AzSI5k1Eq8ZBspSaFx4QKoWsVeKmdKSS0u-hjwSshnZOMlSYje-tFt34AHMd3L-a2czyMtsgmi2yyjFtgU0ZejT3Oe7CNv9AeIB9HOoTJ7j6A9Nhh11nOK5hY4WKceemwWnQWDY81gvIXMRQZeY5SYBEII2GmzRfXLhb2zaePdp9rjGAaLTPyciCKDYzfu6FwAVYBsbMmlDsTStipftK8vRY2O5wUC9uh54BPzTJCx1bsiMlvKTTtwpoSYQVnpcjIo14yx1mDgWakMjCRYiKzk2WZtqSzrx2KuOAzrLfLyO5aui8H9edF3x3l_58cevI_f94mNy9v63fI1vKiDU_B3FtWz7qd_gMKFUts priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DkgbCALISEmpW0cx3EeO8Q0kJjGR6XxZDmOPSpCUtpGUP56zomTNeNLSLzGZyl3uTvfxXe_Q-iJieJUBSwDQ9KZTzMtfW546KtMKx4YDoe2TRRfH7OjKX11Gp1uoZO2Fyb9rNJZ6UBDLVDxcLMNPW-6HOwUBb0YzTPTGD1nowCcrA_pS1SD8EXJJbTNIojOB2h7enwy-VA3GTmS9rbyF9t6p1MN4v-zq944qy7WUXaXqdfQlaqYy_VXmecb59XhDfSl5bQpU_k0rFbpUH2_AAL5P0VxE113wS2eNNp4C23p4ja63Iy7XN9B5ZtKFnVTG7hYDBqfuyZQXBoMLJUL3GBCWcXB3d8-PCswhKn4QK61bfnERVO6juspPiAIux3sQGP9zZX1FthWvu6g6eGL98-PfDfwwVcsDFY-RJsmVMRAUhplimQyTdLUGCMJMTTOuGKKRRmkpFGiZCxZyCB61BBQURJQQ6PwLhoUZaHvIxyGLIs0SZjkMYV1aZSJSRpSKWkQJNxDo_ZDC-XQ0O1QjlzUWRFnwopRWDGKgAgQo4eedTvmDRLIH2gPrO50dBbDu35QLs6EcwmCkBQYi6UxY0WlbWUdG05MZicGxEbHHnpsNU9YlI7ClgGdyWq5FC_fvRUTwuz1KmfUQ08dkSnh_ZV0XRUgBQvs1aPc61GCG1G95d1WwYVzY0tRQ_tAwh94CHerdqOtzCt0WS0FTyzm4TgJPXSvsYaOa4geOY04MBL37KQnlv5KMftYQ5yHZGybAT2031rU-Uv9Xuj7nc399Qs9-BfiXXT1_CphDw1Wi0o_hFh0lT5y7uUHPeWDPw priority: 102 providerName: Unpaywall |
| Title | Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data |
| URI | https://link.springer.com/article/10.1186/1471-2105-12-359 https://www.ncbi.nlm.nih.gov/pubmed/21884587 https://www.proquest.com/docview/902807171 https://www.proquest.com/docview/898506093 https://pubmed.ncbi.nlm.nih.gov/PMC3203352 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-12-359 https://doaj.org/article/22ba227aff0c4a62850f82fd60077fe7 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals Open Access customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfYJgQ8IL4JG5WFkBCTwhrHcZwHhNpqZVRaNTYqlSfLcewxqUpGP8T633OXpukCY7y0UnyJ7Puw72zf7wh566I4NYHIwJBs5vPMal86Gfoms0YGTsKijYHi8VAcjfhgHI036dEVA2c3hnZYT2o0nXy4-rn8BAb_sTR4KQ4CmGB9CF2iEoAvSrbIDqxTCRZyOOabMwVE7y9zjSrq9aHlDV9oLFIllv_fM_a1JevP65T1meoDcm-RX-rlLz2ZXFu2-o_Iw8rfpJ2Vgjwmd2z-hNxdVaBcPiXF14XOyzwzmPUoKOGkysukhaPw-WJKVzBNKEtab8DRi5yC50i7emkxC5Pmq9vktCysA53C10E1LbVX1U3bnOJl1Gdk1D_81jvyqxoMvhFhMPfBAXShYQ7ixCgzLNNpkqbOOc2Y43EmjTAiyiBKjBKjYy1CAQ6dBR-Hs4A7HoXPyXZe5PYloWEossiyRGgZc2jXzriYpSHXmgdBIj1ysGa6MhVAOdbJmKgyUJFCoZgUikkFTIGYPPK-fuNyBc5xC20X5VjTIax2-aCYnqvKShVjKQws1s61DdeYXdp2krkMQfxjZ2OPvEEtUAickePNnHO9mM3Ul7NT1WECTzyl4B55VxG5AvpvdJXoAFxArK0G5V6DEizbNJp318qm1oahSrQdiMEDj9C6FV_Ey3K5LRYzJROEIWwnoUderDSzHjU4dJJHEgYSN3S2wZZmS37xo0QdD1kb8_M8sr_W7k2n_s30_Vr__yuhV7dzY5fc3-zn75Ht-XRhX4NDOE9bZCsex_Ar-59bZKfTGZwN4L97ODw5hac90WuVWy2tcj6AltHwpPP9NzP1YHY |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamITR4QNwJG2AhEGJS1MZxHOcBoQ2YWnaRgE3qm-c49phUJaUXjf4o_iPn5LYGxHjaa21Xts_nc8m5EfLKRXFqApHBQ7KZzzOrfelk6JvMGhk4CUIbDcXDIzE44Z9H0WiN_GpyYTCssuGJJaPOCoPfyHtllRGwPYL3kx8-No1C52rTQaNCxb5dXoDFNns3_Ajkfc3Y3qfjDwO_birgGxEGcx80Ghca5sDwiTLDMp0maeqc04w5HmfSCCOiDMyeKDE61iIUoKFYENqcBdxxbBIBHP8GD4GVwPOJR619F2B7gMYTKkUvAL7vg0UVlXUBsRjqiuQrGwT8LQZW5OCfMZqto_Y22VjkE7280OPxiizcu0vu1Eos3alQd4-s2fw-uVm1tVw-IMWXhc7L5DVgpRSQPa6TPWnhKPx9MaVV7ScECG2_6tHznII6Snf10mJqJ82rEHVaduuBTeFywLul9mcdvptTjHB9SE6uhQaPyHpe5PYJoWEossiyRGgZcxjXzriYpSHXmgdBIj3Say5dmbrqOTbfGKvS-pFCIZkUkkkFTAGZPPK2XTGpKn5cMXcX6djOw1rd5Q_F9EzVT18xlsLBYu1c33CNKat9J5nLsDNA7GzskZeIAoXVOHIM9znTi9lMDb99VTtMoBtVCu6RN_UkV8D-ja6zJ-AWsIBXZ-ZWZyawC9MZ3mzApmp2NVPt4_IIbUdxIUbg5bZYzJRMsLZhPwk98rhCZntq0BIljyQcJO5gtnMt3ZH8_HtZyjxkfUz688h2g-7LTf370rdb_P-XQk-vPO4LsjE4PjxQB8Oj_U1y69JfsEXW59OFfQYK5zx9Xj5zSk6vm6_8BriZkBU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagiOsBcRQILWAhJESlaDeO4ziPbWHVclRclfpmOT5KpZWz2kOw_56ZXG04xWtsR7Znxp7xzHxDyHOf5aVJhAVBcjbm1ulYepnGxjojEy_h0kZD8f2RODjmb06yk_bBbdFFu3cuySanAVGawnI0s74RcSlGCRypMRgrWQ25lxWXyRUOdxtWMNgX-70XAfH6O9fkb0YNrqIasf_Xc_nCxfRz0GTvOb1Jrq_CTK-_6en0wuU0uU1utVol3W3Y4A655MJdcrWpM7m-R6qPKx3qbDI42yiw2rTNvqSVp_D7ak4bMCakGO2f2ehZoKAf0j29dphrSUMTM07r8jkwKRwODOio-97G0waKIaeb5Hjy-sv-QdxWWoiNSJNlDGqeTw3zYA1m1jCry6IsvfeaMc9zK40wIrNgC2aF0bkWqQC1zYEmw1nCPc_S-2QjVME9JDRNhc0cK4SWOYd27Y3PWZlyrXmSFDIio27TlWlhyLEaxlTV5ogUCsmkkEwqYQrIFJGX_YhZA8Hxl757SMe-H4Jn1x-q-alqZVExVsLCcu392HCNOaRjL5m3CNWfe5dH5BlygUJ4jIDxN6d6tViow8-f1C4T6NeUgkfkRdvJVzB_o9t0BtgFRNQa9Nwe9AT5NYPmrY7ZVHt-LFSNqQOWdhIR2rfiQAyJC65aLZQsEGxwXKQRedBwZr9qUNskzyQsJB_w7GBbhi3h7GuNLZ6yMWbhRWSn4-7zSf1503d6_v8nhR79z5-fkmsfXk3Uu8Ojt1vkxvlz_jbZWM5X7jHog8vySS30PwD6P1ai |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DkgbCALISEmpW0cx3EeO8Q0kJjGR6XxZDmOPSpCUtpGUP56zomTNeNLSLzGZyl3uTvfxXe_Q-iJieJUBSwDQ9KZTzMtfW546KtMKx4YDoe2TRRfH7OjKX11Gp1uoZO2Fyb9rNJZ6UBDLVDxcLMNPW-6HOwUBb0YzTPTGD1nowCcrA_pS1SD8EXJJbTNIojOB2h7enwy-VA3GTmS9rbyF9t6p1MN4v-zq944qy7WUXaXqdfQlaqYy_VXmecb59XhDfSl5bQpU_k0rFbpUH2_AAL5P0VxE113wS2eNNp4C23p4ja63Iy7XN9B5ZtKFnVTG7hYDBqfuyZQXBoMLJUL3GBCWcXB3d8-PCswhKn4QK61bfnERVO6juspPiAIux3sQGP9zZX1FthWvu6g6eGL98-PfDfwwVcsDFY-RJsmVMRAUhplimQyTdLUGCMJMTTOuGKKRRmkpFGiZCxZyCB61BBQURJQQ6PwLhoUZaHvIxyGLIs0SZjkMYV1aZSJSRpSKWkQJNxDo_ZDC-XQ0O1QjlzUWRFnwopRWDGKgAgQo4eedTvmDRLIH2gPrO50dBbDu35QLs6EcwmCkBQYi6UxY0WlbWUdG05MZicGxEbHHnpsNU9YlI7ClgGdyWq5FC_fvRUTwuz1KmfUQ08dkSnh_ZV0XRUgBQvs1aPc61GCG1G95d1WwYVzY0tRQ_tAwh94CHerdqOtzCt0WS0FTyzm4TgJPXSvsYaOa4geOY04MBL37KQnlv5KMftYQ5yHZGybAT2031rU-Uv9Xuj7nc399Qs9-BfiXXT1_CphDw1Wi0o_hFh0lT5y7uUHPeWDPw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+utilization+of+prior+biological+knowledge+in+the+Bayesian+network+modeling+of+gene+expression+data&rft.jtitle=BMC+bioinformatics&rft.au=Gao%2C+Shouguo&rft.au=Wang%2C+Xujing&rft.date=2011-08-31&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=12&rft.spage=359&rft_id=info:doi/10.1186%2F1471-2105-12-359&rft.externalDocID=A269579864 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |