Funnel-based optimized formation control for MIMO multi-agent systems under DoS attacks: A DETM quantized method

Combining reinforcement learning (RL) and quantization methods, this article addresses the formation control problem for a class of multi-input multi-output (MIMO) nonlinear multi-agent systems (MASs) subject to denial-of-service (DoS) attacks. Since the information exchange between agents is destro...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal p. 1
Main Authors Xu, Ning, Gao, Zhen, Zhao, Ning, Zhang, Liang
Format Journal Article
LanguageEnglish
Published IEEE 09.10.2025
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2025.3617923

Cover

Abstract Combining reinforcement learning (RL) and quantization methods, this article addresses the formation control problem for a class of multi-input multi-output (MIMO) nonlinear multi-agent systems (MASs) subject to denial-of-service (DoS) attacks. Since the information exchange between agents is destroyed by DoS attacks, the leader's information becomes unavailable. Thus, a distributed formation estimator is designed to obtain the leader's state. Next, by constructing an logarithmic quantizer, a new dynamic event-triggered quantized control strategy is studied to save communication resources. In order to satisfy both transient and steady-state performances, an improved funnel function is embedded in controller design. In addition, based on optimized backstepping technique, an actor-critic architecture is established to achieve optimized secure formation control by RL method. Finally, the simulation results verify the effectiveness of proposed control scheme.
AbstractList Combining reinforcement learning (RL) and quantization methods, this article addresses the formation control problem for a class of multi-input multi-output (MIMO) nonlinear multi-agent systems (MASs) subject to denial-of-service (DoS) attacks. Since the information exchange between agents is destroyed by DoS attacks, the leader's information becomes unavailable. Thus, a distributed formation estimator is designed to obtain the leader's state. Next, by constructing an logarithmic quantizer, a new dynamic event-triggered quantized control strategy is studied to save communication resources. In order to satisfy both transient and steady-state performances, an improved funnel function is embedded in controller design. In addition, based on optimized backstepping technique, an actor-critic architecture is established to achieve optimized secure formation control by RL method. Finally, the simulation results verify the effectiveness of proposed control scheme.
Author Xu, Ning
Gao, Zhen
Zhang, Liang
Zhao, Ning
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0002-0717-1713
  surname: Xu
  fullname: Xu, Ning
  email: hpxuning@163.com
  organization: College of Information Science and Technology, Bohai University, Jinzhou, China
– sequence: 2
  givenname: Zhen
  orcidid: 0009-0001-4054-5836
  surname: Gao
  fullname: Gao, Zhen
  email: ZhenGao186@163.com
  organization: College of Control Science and Engineering, Bohai University, Jinzhou, China
– sequence: 3
  givenname: Ning
  orcidid: 0000-0002-9877-6872
  surname: Zhao
  fullname: Zhao, Ning
  email: zhaoning_hrbeu@163.com
  organization: College of Control Science and Engineering, Bohai University, Jinzhou, China
– sequence: 4
  givenname: Liang
  orcidid: 0000-0002-1907-016X
  surname: Zhang
  fullname: Zhang, Liang
  email: md18638@126.com
  organization: College of Control Science and Engineering, Bohai University, Jinzhou, China
BookMark eNpNkNFOwjAUhhuDiYg8gIkXfYFhT7sV6h0BUQyEC3e_dNupTlmLa3eBT-8mJJqc5Hw5Of9_8V2TgXUWCbkFNgFg6v5lvUsnnPFkIiRMFRcXZMgFn0axlHzwj6_I2PsPxlgXS0DJITmsWmtxH-XaY0ndIVR19d2RcU2tQ-UsLZwNjdv3F7pdb3e0bvehivQb2kD90QesPW1tiQ1duleqQ9DFp3-gc7p8TLf0q9U2_FbWGN5deUMujd57HJ_3iKSrx3TxHG12T-vFfBMVUkBkuJLCqEQVseDYIZSMo-AJ15jHsyKWIu9mxgsDhksoZ1qo3CQgZK6MlGJE4FRbNM77Bk12aKpaN8cMWNZLy3ppWS8tO0vrMnenTIWIf_8ASgkB4gd7d2q9
CODEN IITJAU
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JIOT.2025.3617923
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 1
ExternalDocumentID 10_1109_JIOT_2025_3617923
11199331
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62203064
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
4.4
AAYXX
AGSQL
CITATION
EJD
ID FETCH-LOGICAL-c631-f2963f959c432e63f1d02e3252aeb48c463b63b82cf1f261d8a39bf5136b9f663
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Thu Oct 16 04:42:24 EDT 2025
Sat Oct 25 03:11:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c631-f2963f959c432e63f1d02e3252aeb48c463b63b82cf1f261d8a39bf5136b9f663
ORCID 0000-0002-0717-1713
0009-0001-4054-5836
0000-0002-1907-016X
0000-0002-9877-6872
PageCount 1
ParticipantIDs ieee_primary_11199331
crossref_primary_10_1109_JIOT_2025_3617923
PublicationCentury 2000
PublicationDate 20251009
PublicationDateYYYYMMDD 2025-10-09
PublicationDate_xml – month: 10
  year: 2025
  text: 20251009
  day: 9
PublicationDecade 2020
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001105196
Score 2.355906
Snippet Combining reinforcement learning (RL) and quantization methods, this article addresses the formation control problem for a class of multi-input multi-output...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Denial-of-service attack
denial-of-service attacks
Event detection
event-triggered control
Formation control
Multi-agent systems
Nonlinear dynamical systems
Optimal control
Quantization (signal)
Reinforcement learning
Security
Vectors
Title Funnel-based optimized formation control for MIMO multi-agent systems under DoS attacks: A DETM quantized method
URI https://ieeexplore.ieee.org/document/11199331
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kxfnx8T5RQ6ehHRN0maNt6Eb26DbwQq7lSZNQMR1zvayv94k7ZwKgtDDI6Ql5CX9vZe833sA3Pq6j3OZa6QZpyjQmURZTkMkeGDxS-IstNzheMbGz8F0ES4asrrjwiilXPCZ8qzo7vLzQlb2qKxn9qWBU8ua3u9HrCZr7Q5UsLVGWHNziX3em07mifEASehRg9Oc0B_Y862YisOSURvMtqOoQ0hevaoUntz8StD472EegcPGqoSDehkcgz21PAHtbcUG2GzgU7AaVTauBVnsymFhfhdvLxsjfVEYYRO6bltgPInn0EUcoswysGCd9vkDWuLZGj4WTzArS0vSv4cD-DhMYvheGU25T9alqTsgGQ2ThzFqai4gyShGmpgNqXnIZUCJMiLOfaIoCUmmRBDJgFFhnohIjbVxvvIoo1zoEFMmuDbWyxloLYulOgcwECHnihDBhUFKRQXhmlJm_D1fK-OVdsHdVhnpqs6skTqPxOep1VxqNZc2muuCjp3nXcdmii_-aL8EB_Z1F3XHr0CrXFfq2lgPpbhxq-YTN3HC9g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD3pxfkycnzl4ErK1-aiLt-E2trluByvsVpo0ARHXOdvL_nqTtPMLBKGHEEIIeXn9vZe833sAXHv61k9lqpEOOEFUJxIlKWFIcGrxS_oJs9zhcBoMn-h4zuYVWd1xYZRSLvhMtWzTveWnmSzsVVnb6KWBU8ua3maUUlbStb6uVHxrjwTV26Xv8fZ4NIuMD4hZixik5pj8QJ9v5VQcmgzqYLpZRxlE8tIqctGS618pGv-90H2wV9mVsFsehAOwpRaHoL6p2QArFT4Cy0FhI1uQRa8UZuaH8fq8Nq1PEiOsgtdtDwxH4Qy6mEOUWA4WLBM_v0NLPVvBXvYIkzy3NP072IW9fhTCt8LIyk1ZFqdugGjQj-6HqKq6gGRAfKSxUUnNGZeUYGWafuphRTDDiRK0I2lAhPk6WGpfG_cr7SSEC818Egiujf1yDGqLbKFOAKSCca4wFlwYrFREYK4JCYzH52ll_NImuNkII16WuTVi55N4PLaSi63k4kpyTdCw-_w1sNri0z_6r8DOMAon8WQ0fTgDu3YqF4PHz0EtXxXqwtgSubh0J-gDmUrGQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Funnel-based+optimized+formation+control+for+MIMO+multi-agent+systems+under+DoS+attacks%3A+A+DETM+quantized+method&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Xu%2C+Ning&rft.au=Gao%2C+Zhen&rft.au=Zhao%2C+Ning&rft.au=Zhang%2C+Liang&rft.date=2025-10-09&rft.issn=2327-4662&rft.eissn=2327-4662&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJIOT.2025.3617923&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3617923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon