Funnel-based optimized formation control for MIMO multi-agent systems under DoS attacks: A DETM quantized method
Combining reinforcement learning (RL) and quantization methods, this article addresses the formation control problem for a class of multi-input multi-output (MIMO) nonlinear multi-agent systems (MASs) subject to denial-of-service (DoS) attacks. Since the information exchange between agents is destro...
Saved in:
| Published in | IEEE internet of things journal p. 1 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
09.10.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2327-4662 2327-4662 |
| DOI | 10.1109/JIOT.2025.3617923 |
Cover
| Abstract | Combining reinforcement learning (RL) and quantization methods, this article addresses the formation control problem for a class of multi-input multi-output (MIMO) nonlinear multi-agent systems (MASs) subject to denial-of-service (DoS) attacks. Since the information exchange between agents is destroyed by DoS attacks, the leader's information becomes unavailable. Thus, a distributed formation estimator is designed to obtain the leader's state. Next, by constructing an logarithmic quantizer, a new dynamic event-triggered quantized control strategy is studied to save communication resources. In order to satisfy both transient and steady-state performances, an improved funnel function is embedded in controller design. In addition, based on optimized backstepping technique, an actor-critic architecture is established to achieve optimized secure formation control by RL method. Finally, the simulation results verify the effectiveness of proposed control scheme. |
|---|---|
| AbstractList | Combining reinforcement learning (RL) and quantization methods, this article addresses the formation control problem for a class of multi-input multi-output (MIMO) nonlinear multi-agent systems (MASs) subject to denial-of-service (DoS) attacks. Since the information exchange between agents is destroyed by DoS attacks, the leader's information becomes unavailable. Thus, a distributed formation estimator is designed to obtain the leader's state. Next, by constructing an logarithmic quantizer, a new dynamic event-triggered quantized control strategy is studied to save communication resources. In order to satisfy both transient and steady-state performances, an improved funnel function is embedded in controller design. In addition, based on optimized backstepping technique, an actor-critic architecture is established to achieve optimized secure formation control by RL method. Finally, the simulation results verify the effectiveness of proposed control scheme. |
| Author | Xu, Ning Gao, Zhen Zhang, Liang Zhao, Ning |
| Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0002-0717-1713 surname: Xu fullname: Xu, Ning email: hpxuning@163.com organization: College of Information Science and Technology, Bohai University, Jinzhou, China – sequence: 2 givenname: Zhen orcidid: 0009-0001-4054-5836 surname: Gao fullname: Gao, Zhen email: ZhenGao186@163.com organization: College of Control Science and Engineering, Bohai University, Jinzhou, China – sequence: 3 givenname: Ning orcidid: 0000-0002-9877-6872 surname: Zhao fullname: Zhao, Ning email: zhaoning_hrbeu@163.com organization: College of Control Science and Engineering, Bohai University, Jinzhou, China – sequence: 4 givenname: Liang orcidid: 0000-0002-1907-016X surname: Zhang fullname: Zhang, Liang email: md18638@126.com organization: College of Control Science and Engineering, Bohai University, Jinzhou, China |
| BookMark | eNpNkNFOwjAUhhuDiYg8gIkXfYFhT7sV6h0BUQyEC3e_dNupTlmLa3eBT-8mJJqc5Hw5Of9_8V2TgXUWCbkFNgFg6v5lvUsnnPFkIiRMFRcXZMgFn0axlHzwj6_I2PsPxlgXS0DJITmsWmtxH-XaY0ndIVR19d2RcU2tQ-UsLZwNjdv3F7pdb3e0bvehivQb2kD90QesPW1tiQ1duleqQ9DFp3-gc7p8TLf0q9U2_FbWGN5deUMujd57HJ_3iKSrx3TxHG12T-vFfBMVUkBkuJLCqEQVseDYIZSMo-AJ15jHsyKWIu9mxgsDhksoZ1qo3CQgZK6MlGJE4FRbNM77Bk12aKpaN8cMWNZLy3ppWS8tO0vrMnenTIWIf_8ASgkB4gd7d2q9 |
| CODEN | IITJAU |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/JIOT.2025.3617923 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JIOT_2025_3617923 11199331 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62203064 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE 4.4 AAYXX AGSQL CITATION EJD |
| ID | FETCH-LOGICAL-c631-f2963f959c432e63f1d02e3252aeb48c463b63b82cf1f261d8a39bf5136b9f663 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Thu Oct 16 04:42:24 EDT 2025 Sat Oct 25 03:11:43 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c631-f2963f959c432e63f1d02e3252aeb48c463b63b82cf1f261d8a39bf5136b9f663 |
| ORCID | 0000-0002-0717-1713 0009-0001-4054-5836 0000-0002-1907-016X 0000-0002-9877-6872 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_11199331 crossref_primary_10_1109_JIOT_2025_3617923 |
| PublicationCentury | 2000 |
| PublicationDate | 20251009 |
| PublicationDateYYYYMMDD | 2025-10-09 |
| PublicationDate_xml | – month: 10 year: 2025 text: 20251009 day: 9 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001105196 |
| Score | 2.355906 |
| Snippet | Combining reinforcement learning (RL) and quantization methods, this article addresses the formation control problem for a class of multi-input multi-output... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks Denial-of-service attack denial-of-service attacks Event detection event-triggered control Formation control Multi-agent systems Nonlinear dynamical systems Optimal control Quantization (signal) Reinforcement learning Security Vectors |
| Title | Funnel-based optimized formation control for MIMO multi-agent systems under DoS attacks: A DETM quantized method |
| URI | https://ieeexplore.ieee.org/document/11199331 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kxfnx8T5RQ6ehHRN0maNt6Eb26DbwQq7lSZNQMR1zvayv94k7ZwKgtDDI6Ql5CX9vZe833sA3Pq6j3OZa6QZpyjQmURZTkMkeGDxS-IstNzheMbGz8F0ES4asrrjwiilXPCZ8qzo7vLzQlb2qKxn9qWBU8ua3u9HrCZr7Q5UsLVGWHNziX3em07mifEASehRg9Oc0B_Y862YisOSURvMtqOoQ0hevaoUntz8StD472EegcPGqoSDehkcgz21PAHtbcUG2GzgU7AaVTauBVnsymFhfhdvLxsjfVEYYRO6bltgPInn0EUcoswysGCd9vkDWuLZGj4WTzArS0vSv4cD-DhMYvheGU25T9alqTsgGQ2ThzFqai4gyShGmpgNqXnIZUCJMiLOfaIoCUmmRBDJgFFhnohIjbVxvvIoo1zoEFMmuDbWyxloLYulOgcwECHnihDBhUFKRQXhmlJm_D1fK-OVdsHdVhnpqs6skTqPxOep1VxqNZc2muuCjp3nXcdmii_-aL8EB_Z1F3XHr0CrXFfq2lgPpbhxq-YTN3HC9g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD3pxfkycnzl4ErK1-aiLt-E2trluByvsVpo0ARHXOdvL_nqTtPMLBKGHEEIIeXn9vZe833sAXHv61k9lqpEOOEFUJxIlKWFIcGrxS_oJs9zhcBoMn-h4zuYVWd1xYZRSLvhMtWzTveWnmSzsVVnb6KWBU8ua3maUUlbStb6uVHxrjwTV26Xv8fZ4NIuMD4hZixik5pj8QJ9v5VQcmgzqYLpZRxlE8tIqctGS618pGv-90H2wV9mVsFsehAOwpRaHoL6p2QArFT4Cy0FhI1uQRa8UZuaH8fq8Nq1PEiOsgtdtDwxH4Qy6mEOUWA4WLBM_v0NLPVvBXvYIkzy3NP072IW9fhTCt8LIyk1ZFqdugGjQj-6HqKq6gGRAfKSxUUnNGZeUYGWafuphRTDDiRK0I2lAhPk6WGpfG_cr7SSEC818Egiujf1yDGqLbKFOAKSCca4wFlwYrFREYK4JCYzH52ll_NImuNkII16WuTVi55N4PLaSi63k4kpyTdCw-_w1sNri0z_6r8DOMAon8WQ0fTgDu3YqF4PHz0EtXxXqwtgSubh0J-gDmUrGQw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Funnel-based+optimized+formation+control+for+MIMO+multi-agent+systems+under+DoS+attacks%3A+A+DETM+quantized+method&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Xu%2C+Ning&rft.au=Gao%2C+Zhen&rft.au=Zhao%2C+Ning&rft.au=Zhang%2C+Liang&rft.date=2025-10-09&rft.issn=2327-4662&rft.eissn=2327-4662&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJIOT.2025.3617923&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3617923 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |