Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets

Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (F...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 167; pp. 11 - 22
Main Authors Yoo, Kwangsun, Rosenberg, Monica D., Hsu, Wei-Ting, Zhang, Sheng, Li, Chiang-Shan R., Scheinost, Dustin, Constable, R. Todd, Chun, Marvin M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.02.2018
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2017.11.010

Cover

Abstract Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM. •Functional connectivity can predict individual differences in attention.•We compared different connectivity measures and feature selection algorithms.•Four different data sets permitted both internal and external validation.•For rest data, PLS regression models were numerically better than linear regression.•Pearson’s correlation, accordance, and discordance did not meaningfully differ.
AbstractList Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM.
Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM. •Functional connectivity can predict individual differences in attention.•We compared different connectivity measures and feature selection algorithms.•Four different data sets permitted both internal and external validation.•For rest data, PLS regression models were numerically better than linear regression.•Pearson’s correlation, accordance, and discordance did not meaningfully differ.
Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM.Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM.
Connectome-based predictive modeling (CPM; Finn et al., 2015 ; Shen et al., 2017 ) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence ( Finn et al., 2015 ) and sustained attention ( Rosenberg et al., 2016a ), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson’s correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation ( Meskaldji et al., 2016 ). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N=25; Rosenberg et al., 2016a ). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N=83, including 19 participants who were administered methylphenidate prior to scanning; Rosenberg et al., 2016b ; f al., 2014a), 2) data collected during Attention Network Task performance and rest (N=41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N=113; Rosenberg et al., 2016a ). Models defined using all combinations of functional connectivity measure (Pearson’s correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p’s < 0.05). Models trained on task data outperformed models trained on rest data. Pearson’s correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models ( Rosenberg et al., 2016a ), it is useful to consider accordance features and PLS regression for CPM.
Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM.
Author Rosenberg, Monica D.
Yoo, Kwangsun
Zhang, Sheng
Hsu, Wei-Ting
Li, Chiang-Shan R.
Chun, Marvin M.
Scheinost, Dustin
Constable, R. Todd
AuthorAffiliation 1 Department of Psychology, Yale University, New Haven, CT 06520, USA
5 Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
2 Department of Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA
6 Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
4 Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
3 Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
AuthorAffiliation_xml – name: 5 Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
– name: 1 Department of Psychology, Yale University, New Haven, CT 06520, USA
– name: 6 Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
– name: 3 Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
– name: 4 Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
– name: 2 Department of Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA
Author_xml – sequence: 1
  givenname: Kwangsun
  surname: Yoo
  fullname: Yoo, Kwangsun
  email: kwangsun.yoo@yale.edu
  organization: Department of Psychology, Yale University, New Haven, CT, USA
– sequence: 2
  givenname: Monica D.
  surname: Rosenberg
  fullname: Rosenberg, Monica D.
  organization: Department of Psychology, Yale University, New Haven, CT, USA
– sequence: 3
  givenname: Wei-Ting
  surname: Hsu
  fullname: Hsu, Wei-Ting
  organization: Department of Psychology, Yale University, New Haven, CT, USA
– sequence: 4
  givenname: Sheng
  surname: Zhang
  fullname: Zhang, Sheng
  organization: Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
– sequence: 5
  givenname: Chiang-Shan R.
  surname: Li
  fullname: Li, Chiang-Shan R.
  organization: Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
– sequence: 6
  givenname: Dustin
  surname: Scheinost
  fullname: Scheinost, Dustin
  organization: Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
– sequence: 7
  givenname: R. Todd
  surname: Constable
  fullname: Constable, R. Todd
  organization: Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
– sequence: 8
  givenname: Marvin M.
  surname: Chun
  fullname: Chun, Marvin M.
  organization: Department of Psychology, Yale University, New Haven, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29122720$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2PFCEQhjtmjfuhf8GQePHSLdDTQHsw6sSvZBMveiYMFLOM3TACPcn8CX-ztLPr6JzmBKkqniret66rCx88VBUiuCGYsFebxsMUgxvVGhqKCW8IaTDBj6orgvuu7jtOL-Z719aCkP6yuk5pgzHuyUI8qS5pTyjlFF9Vv5bBe9A5jFCvVAKDthGM09ntAI3BwOD8GgWLVM7gswv-NVqGcaviHDfOWogljuzk9ZxVA9IHotu5vEcWVJ4iJKT8ER08GiHfBVPCOoaUkFG5NM_pafXYqiHBs_vzpvr-8cO35ef69uunL8t3t7VmLc61gVa0ymBDGVMr0xqrLGsZZZRoRo3RnTC9aTnprRC8BCwnxnZmwTveCeDtTfXmwN1OqxGMLl-IapDbWCSNexmUk_9nvLuT67CTnVh0XPQF8PIeEMPPCVKWo0sahkF5CFOSpGct5bgIXUpfnJRuwhSLUkkW62jLMOOLUvX834n-jvJg1XHkP4pFsFK7rGYxy4BukATLeTfkRh53Y27AJSGy7EYBiBPAQ48znr4_PIXiyc5BlEk78LrYGYvV0gR3DuTtCUSX5XJaDT9gfx7iN5nP9bQ
CitedBy_id crossref_primary_10_1371_journal_pbio_3001938
crossref_primary_10_7554_eLife_97150
crossref_primary_10_1109_TCYB_2022_3178370
crossref_primary_10_1093_cercor_bhaa390
crossref_primary_10_1038_s41598_024_60311_3
crossref_primary_10_1007_s00406_021_01344_x
crossref_primary_10_1016_j_jad_2025_01_094
crossref_primary_10_1089_brain_2021_0037
crossref_primary_10_1093_cercor_bhaa282
crossref_primary_10_4239_wjd_v13_i2_110
crossref_primary_10_1093_cercor_bhab099
crossref_primary_10_1016_j_biopsych_2020_02_016
crossref_primary_10_1002_hbm_26753
crossref_primary_10_1162_netn_a_00275
crossref_primary_10_1016_j_nicl_2023_103369
crossref_primary_10_1080_24749508_2024_2430047
crossref_primary_10_1093_cercor_bhac506
crossref_primary_10_3389_fnhum_2019_00012
crossref_primary_10_1017_S0033291722003026
crossref_primary_10_1093_braincomms_fcac213
crossref_primary_10_1093_cercor_bhac189
crossref_primary_10_1016_j_neunet_2025_107335
crossref_primary_10_1162_imag_a_00373
crossref_primary_10_1038_s42003_024_06461_6
crossref_primary_10_1093_cercor_bhz134
crossref_primary_10_1093_cercor_bhae374
crossref_primary_10_1038_s41562_022_01301_1
crossref_primary_10_1038_s41598_018_38406_5
crossref_primary_10_1038_s41531_022_00315_w
crossref_primary_10_1162_netn_a_00302
crossref_primary_10_1186_s12916_024_03784_3
crossref_primary_10_1038_s41386_025_02064_9
crossref_primary_10_1111_ejn_15896
crossref_primary_10_1007_s00221_022_06430_7
crossref_primary_10_1111_ejn_15770
crossref_primary_10_1038_s41380_024_02880_3
crossref_primary_10_1007_s11682_022_00700_2
crossref_primary_10_1093_cvr_cvac116
crossref_primary_10_1109_MSP_2022_3155951
crossref_primary_10_1007_s11760_020_01789_y
crossref_primary_10_1016_j_jad_2024_10_091
crossref_primary_10_1002_hbm_25448
crossref_primary_10_3389_fnhum_2024_1455776
crossref_primary_10_1016_j_neuroimage_2019_116370
crossref_primary_10_1007_s12021_020_09476_6
crossref_primary_10_1093_cercor_bhab024
crossref_primary_10_1016_j_bbr_2022_114121
crossref_primary_10_3389_fnrgo_2022_864938
crossref_primary_10_1073_pnas_1817536116
crossref_primary_10_1016_j_neuroimage_2023_120021
crossref_primary_10_1016_j_dcn_2020_100878
crossref_primary_10_1002_hbm_25042
crossref_primary_10_1016_j_neuroimage_2018_11_057
crossref_primary_10_1016_j_bpsc_2024_10_002
crossref_primary_10_1002_hbm_26498
crossref_primary_10_7554_eLife_97150_3
crossref_primary_10_1134_S0362119722700013
crossref_primary_10_1073_pnas_1912226117
crossref_primary_10_1016_j_neulet_2020_135519
crossref_primary_10_1016_j_neuroimage_2020_117310
crossref_primary_10_1038_s41386_024_01962_8
crossref_primary_10_1016_j_bpsc_2019_11_007
crossref_primary_10_1016_j_physbeh_2020_112940
crossref_primary_10_1089_brain_2020_0798
crossref_primary_10_1002_hbm_25436
crossref_primary_10_1016_j_neuroimage_2019_06_045
crossref_primary_10_1002_hipo_23393
crossref_primary_10_1016_j_neuroimage_2023_120274
crossref_primary_10_1093_ijnp_pyad062
crossref_primary_10_1038_s41598_020_73216_8
crossref_primary_10_4236_jst_2019_94006
crossref_primary_10_1002_hbm_25590
crossref_primary_10_1016_j_nicl_2021_102593
crossref_primary_10_1016_j_cortex_2020_08_006
crossref_primary_10_1038_s41467_018_02887_9
crossref_primary_10_1038_s41398_022_02134_2
crossref_primary_10_3389_fnins_2022_875828
crossref_primary_10_1002_hbm_70158
crossref_primary_10_1016_j_neuroimage_2019_04_060
crossref_primary_10_1016_j_jad_2024_01_177
crossref_primary_10_1016_j_cobeha_2018_08_013
crossref_primary_10_1016_j_metrad_2023_100008
crossref_primary_10_3389_fnins_2019_01282
crossref_primary_10_1016_j_dcn_2020_100855
crossref_primary_10_1016_j_bpsc_2018_06_003
crossref_primary_10_1016_j_neuroimage_2022_119279
crossref_primary_10_1016_j_jad_2024_02_030
crossref_primary_10_1093_scan_nsae007
crossref_primary_10_1002_brb3_1346
crossref_primary_10_1093_scan_nsaa044
crossref_primary_10_1002_hbm_26030
crossref_primary_10_1002_ima_22844
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_1038_s41380_022_01916_w
crossref_primary_10_1016_j_cobeha_2020_12_007
crossref_primary_10_1016_j_cortex_2020_01_022
crossref_primary_10_1016_j_neuroimage_2018_06_001
crossref_primary_10_1016_j_ynstr_2020_100285
crossref_primary_10_3389_fgene_2021_728913
crossref_primary_10_1016_j_biopsych_2022_09_024
crossref_primary_10_1038_s41467_021_25895_8
crossref_primary_10_1093_cercor_bhae178
crossref_primary_10_1016_j_pscychresns_2021_111390
crossref_primary_10_1002_brb3_2105
crossref_primary_10_1007_s11071_023_08328_7
crossref_primary_10_1038_s41380_023_02120_0
crossref_primary_10_1016_j_jneumeth_2025_110406
crossref_primary_10_1016_j_neuroimage_2021_118735
crossref_primary_10_1016_j_biopsych_2023_03_025
crossref_primary_10_1038_s41598_022_10949_8
crossref_primary_10_1088_1741_2552_ac0f4d
crossref_primary_10_1002_hbm_26694
crossref_primary_10_1093_cercor_bhaa383
crossref_primary_10_1002_brb3_2331
crossref_primary_10_1038_s41467_022_29766_8
crossref_primary_10_1016_j_neuroimage_2020_116938
crossref_primary_10_1016_j_neuroimage_2021_117926
crossref_primary_10_1073_pnas_2110811118
crossref_primary_10_1002_brb3_1647
crossref_primary_10_1016_j_pnpbp_2021_110329
crossref_primary_10_4236_ce_2019_1011172
crossref_primary_10_1093_scan_nsy002
crossref_primary_10_1002_jdn_10375
crossref_primary_10_1162_jocn_a_01759
crossref_primary_10_1002_hbm_24947
crossref_primary_10_1002_hbm_25759
Cites_doi 10.1016/j.neuroimage.2005.02.004
10.1038/nn.4179
10.3389/fphys.2012.00015
10.1016/j.tics.2011.11.007
10.1093/brain/awh199
10.1016/0169-7439(93)85002-X
10.1017/S1461145714000674
10.1016/j.neuron.2014.10.047
10.1093/cercor/bhs261
10.1126/science.1131295
10.1007/s11947-014-1381-z
10.1016/j.biopsych.2010.07.003
10.1038/nn.4125
10.1016/S0169-7439(02)00051-5
10.1523/JNEUROSCI.1746-16.2016
10.1137/0905052
10.1016/j.neuroimage.2017.06.006
10.1038/nprot.2016.178
10.1016/j.tics.2017.01.011
10.3174/ajnr.A2894
10.1038/nrn2201
10.1038/nn.3470
10.1038/ncomms8751
10.1371/journal.pone.0140134
10.1016/j.neuroimage.2017.03.064
10.1523/JNEUROSCI.4854-12.2013
10.1016/j.neuroimage.2010.06.016
10.1038/nn.4135
10.1016/j.neuroimage.2011.03.036
10.1037/a0034465
10.1016/j.neuroimage.2016.02.079
10.1016/j.neubiorev.2014.05.009
10.1016/j.neuroimage.2003.10.004
10.1126/science.1138071
10.1016/S0169-7439(02)00138-7
10.1126/science.1171402
10.1016/j.neuroimage.2013.05.079
10.1016/j.neuron.2014.05.014
10.1523/JNEUROSCI.3484-13.2014
10.1016/j.neuron.2015.06.037
10.1016/j.cpr.2006.01.005
10.1016/j.neuroimage.2013.05.081
10.1002/hbm.21058
10.1038/nrn755
10.1001/jama.288.14.1740
10.1016/j.neuroimage.2016.10.020
10.1002/hbm.20022
10.1371/journal.pone.0077089
10.1073/pnas.1216856110
10.1109/TBME.2016.2600248
10.1016/j.tics.2016.03.014
10.3389/fnsys.2012.00062
10.1177/088307389801300904
10.1162/jocn_a_01197
10.1016/j.nicl.2016.10.004
10.3758/s13414-012-0413-x
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Feb 15, 2018
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Feb 15, 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2017.11.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
ProQuest Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 22
ExternalDocumentID PMC5845789
29122720
10_1016_j_neuroimage_2017_11_010
S1053811917309175
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: R01 AA021449
– fundername: NIDA NIH HHS
  grantid: K25 DA040032
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIDA NIH HHS
  grantid: R01 DA023248
– fundername: NIMH NIH HHS
  grantid: R01 MH108591
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ACLOT
~HD
5PM
ID FETCH-LOGICAL-c630t-de383ad0d266abd3dfaf6362621c62ddc58d9d3719f8872ddf71df5d475758e73
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 13:38:04 EDT 2025
Sun Sep 28 01:07:18 EDT 2025
Wed Aug 13 10:37:32 EDT 2025
Wed Feb 19 02:32:31 EST 2025
Tue Jul 01 03:01:54 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Fri Feb 23 02:25:08 EST 2024
Tue Aug 26 20:08:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional connectivity
Predictive model
Attention
Partial least square regression
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-de383ad0d266abd3dfaf6362621c62ddc58d9d3719f8872ddf71df5d475758e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5845789
PMID 29122720
PQID 2012360674
PQPubID 2031077
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5845789
proquest_miscellaneous_1963270291
proquest_journals_2012360674
pubmed_primary_29122720
crossref_citationtrail_10_1016_j_neuroimage_2017_11_010
crossref_primary_10_1016_j_neuroimage_2017_11_010
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_11_010
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_11_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-15
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Mason, Norton, Van Horn, Wegner, Grafton, Macrae (bib37) 2007; 315
Rosenberg, Zhang, Hsu, Scheinost, Finn, Shen, Constable, Li, Chun (bib50) 2016; 36
Choe, Jones, Joel, Muschelli, Belegu, Caffo, Lindquist, van Zijl, Pekar (bib5) 2015; 10
Konrad, Eickhoff (bib30) 2010; 31
Zuo, Xing (bib61) 2014; 45
Gregoriou, Gotts, Zhou, Desimone (bib24) 2009; 324
Wold, Ruhe, Wold, Dunn Iii (bib60) 1984; 5
Corbetta, Shulman (bib10) 2002; 3
Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib26) 2013; 80
Liu, Duyn (bib34) 2013; 110
Karahanoğlu, Van De Ville (bib28) 2015; 6
Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Van Essen, Miller (bib63) 2015; 18
Tagliazucchi, Balenzuela, Fraiman, Chialvo (bib56) 2012; 3
Fox, Greicius (bib20) 2010; 4
Noble, Scheinost, Finn, Shen, Papademetris, McEwen, Bearden, Addington, Goodyear, Cadenhead, Mirzakhanian, Cornblatt, Olvet, Mathalon, McGlashan, Perkins, Belger, Seidman, Thermenos, Tsuang, van Erp, Walker, Hamann, Woods, Cannon, Constable (bib44) 2017; 146
Farr, Hu, Matuskey, Zhang, Abdelghany, Li (bib16) 2014; 22
Rosenberg, Noonan, DeGutis, Esterman (bib49) 2013; 75
Castellanos, PP, Sharp (bib3) 2002; 288
Just, Cherkassky, Keller, Minshew (bib27) 2004; 127
Shen, Tokoglu, Papademetris, Constable (bib54) 2013; 82
Finn, Scheinost, Finn, Shen, Papademetris, Constable (bib18) 2017
Rosenberg, Finn, Scheinost, Papademetris, Shen, Constable, Chun (bib48) 2016; 19
van de Ven, Formisano, Prvulovic, Roeder, Linden (bib57) 2004; 22
Saproo, Serences (bib51) 2014; 34
Buschman, Miller (bib2) 2007; 315
Gießing, Thiel, Alexander-Bloch, Patel, Bullmore (bib23) 2013; 33
Arbabshirani, Plis, Sui, Calhoun (bib1) 2017; 145
Noble, Spann, Tokoglu, Shen, Constable, Scheinost (bib45) 2017
Fox, Raichle (bib21) 2007; 8
Shen, Finn, Scheinost, Rosenberg, Chun, Papademetris, Constable (bib53) 2017; 12
.
Fair, Posner, Nagel, Bathula, Dias, Mills, Blythe, Giwa, Schmitt, Nigg (bib14) 2010; 68
Consortium (bib9) 2012; 6
Meskaldji, Preti, Bolton, Montandon, Rodriguez, Morgenthaler, Giannakopoulos, Haller, Van De Ville (bib42) 2016
Havel, Braun, Rau, Tonn, Fesl, Brückmann, Ilmberger (bib25) 2006; 253
Killory, Bai, Negishi, Vega, Spann, Vestal, Guo, Berman, Danielson, Trejo, Shisler, Novotny, Constable, Blumenfeld (bib29) 2011; 56
Meindl, Teipel, Elmouden, Mueller, Koch, Dietrich, Coates, Reiser, Glaser (bib39) 2009; 31
Pannunzi, Hindriks, Bettinardi, Wenger, Lisofsky, Martensson, Butler, Filevich, Becker, Lochstet, Kühn, Deco (bib46) 2017; 157
Welvaert, Rosseel, Dyck, Mathiak, Mathiak (bib58) 2013; 8
Rosenberg, Finn, Scheinost, Constable, Chun (bib47) 2017; 21
Gabrieli, Ghosh, Whitfield-Gabrieli (bib22) 2015; 85
Cole, Reynolds, Power, Repovs, Anticevic, Braver (bib8) 2013; 16
Mostofsky, Reiss, Lockhart, Denckla (bib43) 1998; 13
Spreng, Stevens, Chamberlain, Gilmore, Schacter (bib55) 2010; 53
Scheinost, Tokoglu, Shen, Finn, Noble, Papademetris, Constable (bib52) 2016; 63
Meskaldji, Preti, Bolton, Montandon, Rodriguez, Morgenthaler, Giannakopoulos, Haller, Van De Ville (bib41) 2016; 12
Esterman, Noonan, Rosenberg, Degutis (bib13) 2013; 23
Castellanos, Proal (bib4) 2012
Mahesh, Jayas, Paliwal, White (bib35) 2015; 8
Rosenberg M.D., Hsu W.-T, Scheinost D., Constable R.T. and Chun M.M., Connectome-based models predict separable components of attention in novel individuals, J. Cogn. Neurosci., in press
Farr, Zhang, Hu, Matuskey, Abdelghany, Malison, Li (bib17) 2014; 17
Krain, Castellanos (bib31) 2006; 26
Fan, McCandliss, Fossella, Flombaum, Posner (bib15) 2005; 26
Mainero, Caramia, Pozzilli, Pisani, Pestalozza, Borriello, Bozzao, Pantano (bib36) 2004; 21
Meehan, Bressler, Tang, Astafiev, Sylvester, Shulman, Corbetta (bib38) 2017
de Jong (bib11) 1993; 18
Laumann, Gordon, Adeyemo, Snyder, Joo, Chen, Gilmore, McDermott, Nelson, Dosenbach, Schlaggar, Mumford, Poldrack, Petersen (bib32) 2015; 87
Meskaldji, Morgenthaler, Van De Ville (bib40) 2015
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib19) 2015; 18
Cole, Bassett, Power, Braver, Petersen (bib7) 2014; 83
Li, Morris, Martin (bib33) 2002; 64
Wentzell, Vega Montoto (bib59) 2003; 65
Chou, Panych, Dickey, Petrella, Chen (bib6) 2012; 33
Dubois, Adolphs (bib12) 2016; 20
Castellanos (10.1016/j.neuroimage.2017.11.010_bib3) 2002; 288
Buschman (10.1016/j.neuroimage.2017.11.010_bib2) 2007; 315
Welvaert (10.1016/j.neuroimage.2017.11.010_bib58) 2013; 8
Killory (10.1016/j.neuroimage.2017.11.010_bib29) 2011; 56
Meskaldji (10.1016/j.neuroimage.2017.11.010_bib40) 2015
Smith (10.1016/j.neuroimage.2017.11.010_bib63) 2015; 18
Noble (10.1016/j.neuroimage.2017.11.010_bib45) 2017
Pannunzi (10.1016/j.neuroimage.2017.11.010_bib46) 2017; 157
Corbetta (10.1016/j.neuroimage.2017.11.010_bib10) 2002; 3
Wold (10.1016/j.neuroimage.2017.11.010_bib60) 1984; 5
Noble (10.1016/j.neuroimage.2017.11.010_bib44) 2017; 146
Rosenberg (10.1016/j.neuroimage.2017.11.010_bib50) 2016; 36
Karahanoğlu (10.1016/j.neuroimage.2017.11.010_bib28) 2015; 6
Laumann (10.1016/j.neuroimage.2017.11.010_bib32) 2015; 87
Wentzell (10.1016/j.neuroimage.2017.11.010_bib59) 2003; 65
Havel (10.1016/j.neuroimage.2017.11.010_bib25) 2006; 253
Mason (10.1016/j.neuroimage.2017.11.010_bib37) 2007; 315
Spreng (10.1016/j.neuroimage.2017.11.010_bib55) 2010; 53
Tagliazucchi (10.1016/j.neuroimage.2017.11.010_bib56) 2012; 3
Gießing (10.1016/j.neuroimage.2017.11.010_bib23) 2013; 33
Meskaldji (10.1016/j.neuroimage.2017.11.010_bib41) 2016; 12
Farr (10.1016/j.neuroimage.2017.11.010_bib16) 2014; 22
Krain (10.1016/j.neuroimage.2017.11.010_bib31) 2006; 26
10.1016/j.neuroimage.2017.11.010_bib62
Gregoriou (10.1016/j.neuroimage.2017.11.010_bib24) 2009; 324
Zuo (10.1016/j.neuroimage.2017.11.010_bib61) 2014; 45
Shen (10.1016/j.neuroimage.2017.11.010_bib53) 2017; 12
Konrad (10.1016/j.neuroimage.2017.11.010_bib30) 2010; 31
Hutchison (10.1016/j.neuroimage.2017.11.010_bib26) 2013; 80
Rosenberg (10.1016/j.neuroimage.2017.11.010_bib48) 2016; 19
Fox (10.1016/j.neuroimage.2017.11.010_bib21) 2007; 8
Scheinost (10.1016/j.neuroimage.2017.11.010_bib52) 2016; 63
van de Ven (10.1016/j.neuroimage.2017.11.010_bib57) 2004; 22
Dubois (10.1016/j.neuroimage.2017.11.010_bib12) 2016; 20
Castellanos (10.1016/j.neuroimage.2017.11.010_bib4) 2012
Fan (10.1016/j.neuroimage.2017.11.010_bib15) 2005; 26
Fox (10.1016/j.neuroimage.2017.11.010_bib20) 2010; 4
de Jong (10.1016/j.neuroimage.2017.11.010_bib11) 1993; 18
Mostofsky (10.1016/j.neuroimage.2017.11.010_bib43) 1998; 13
Meskaldji (10.1016/j.neuroimage.2017.11.010_bib42) 2016
Rosenberg (10.1016/j.neuroimage.2017.11.010_bib47) 2017; 21
Rosenberg (10.1016/j.neuroimage.2017.11.010_bib49) 2013; 75
Esterman (10.1016/j.neuroimage.2017.11.010_bib13) 2013; 23
Cole (10.1016/j.neuroimage.2017.11.010_bib7) 2014; 83
Chou (10.1016/j.neuroimage.2017.11.010_bib6) 2012; 33
Liu (10.1016/j.neuroimage.2017.11.010_bib34) 2013; 110
Fair (10.1016/j.neuroimage.2017.11.010_bib14) 2010; 68
Just (10.1016/j.neuroimage.2017.11.010_bib27) 2004; 127
Farr (10.1016/j.neuroimage.2017.11.010_bib17) 2014; 17
Consortium (10.1016/j.neuroimage.2017.11.010_bib9) 2012; 6
Cole (10.1016/j.neuroimage.2017.11.010_bib8) 2013; 16
Mahesh (10.1016/j.neuroimage.2017.11.010_bib35) 2015; 8
Mainero (10.1016/j.neuroimage.2017.11.010_bib36) 2004; 21
Finn (10.1016/j.neuroimage.2017.11.010_bib19) 2015; 18
Meehan (10.1016/j.neuroimage.2017.11.010_bib38) 2017
Choe (10.1016/j.neuroimage.2017.11.010_bib5) 2015; 10
Shen (10.1016/j.neuroimage.2017.11.010_bib54) 2013; 82
Arbabshirani (10.1016/j.neuroimage.2017.11.010_bib1) 2017; 145
Li (10.1016/j.neuroimage.2017.11.010_bib33) 2002; 64
Gabrieli (10.1016/j.neuroimage.2017.11.010_bib22) 2015; 85
Saproo (10.1016/j.neuroimage.2017.11.010_bib51) 2014; 34
Finn (10.1016/j.neuroimage.2017.11.010_bib18) 2017
Meindl (10.1016/j.neuroimage.2017.11.010_bib39) 2009; 31
References_xml – volume: 6
  start-page: 7751
  year: 2015
  ident: bib28
  article-title: Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks
  publication-title: Nat. Commun.
– year: 2017
  ident: bib18
  article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity?
  publication-title: Neuroimage
– start-page: 26
  year: 2015
  end-page: 29
  ident: bib40
  article-title: New measures of brain functional connectivity by temporal analysis of extreme events
  publication-title: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI)
– start-page: 1311
  year: 2016
  end-page: 1314
  ident: bib42
  article-title: Predicting individual scores from resting state fMRI using partial least squares regression
  publication-title: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)
– volume: 8
  start-page: e77089
  year: 2013
  ident: bib58
  article-title: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data
  publication-title: PLoS One
– volume: 12
  start-page: 506
  year: 2017
  end-page: 518
  ident: bib53
  article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity
  publication-title: Nat. Protoc.
– volume: 87
  start-page: 657
  year: 2015
  end-page: 670
  ident: bib32
  article-title: Functional system and areal organization of a highly sampled individual human brain, 2015
  publication-title: Neuron
– volume: 127
  start-page: 1811
  year: 2004
  end-page: 1821
  ident: bib27
  article-title: Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity
  publication-title: Brain
– volume: 26
  start-page: 433
  year: 2006
  end-page: 444
  ident: bib31
  article-title: Brain development and ADHD
  publication-title: Clin. Psychol. Rev.
– volume: 12
  start-page: 785
  year: 2016
  end-page: 795
  ident: bib41
  article-title: Prediction of long-term memory scores in MCI based on resting-state fMRI
  publication-title: NeuroImage Clin.
– volume: 157
  start-page: 250
  year: 2017
  end-page: 262
  ident: bib46
  article-title: Resting-state fMRI correlations: from link-wise unreliability to whole brain stability
  publication-title: Neuroimage
– volume: 45
  start-page: 100
  year: 2014
  end-page: 118
  ident: bib61
  article-title: Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective
  publication-title: Neurosci. Biobehav. Rev.
– volume: 68
  start-page: 1084
  year: 2010
  end-page: 1091
  ident: bib14
  article-title: Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder
  publication-title: Biol. Psychiatry
– volume: 13
  start-page: 434
  year: 1998
  end-page: 439
  ident: bib43
  article-title: Evaluation of cerebellar size in attention-deficit hyperactivity disorder
  publication-title: J. Child. Neurol.
– volume: 63
  start-page: 2540
  year: 2016
  end-page: 2549
  ident: bib52
  article-title: Fluctuations in global brain activity are associated with changes in whole-brain connectivity of functional networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 146
  start-page: 959
  year: 2017
  end-page: 970
  ident: bib44
  article-title: Multisite reliability of MR-based functional connectivity
  publication-title: Neuroimage
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  ident: bib21
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
– start-page: 1
  year: 2017
  end-page: 19
  ident: bib38
  article-title: Top-down cortical interactions in visuospatial attention
  publication-title: Brain Struct. Funct.
– volume: 23
  start-page: 2712
  year: 2013
  end-page: 2723
  ident: bib13
  article-title: In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention
  publication-title: Cereb. Cortex
– volume: 36
  year: 2016
  ident: bib50
  article-title: Methylphenidate modulates functional network connectivity to enhance attention
  publication-title: J. Neurosci.
– volume: 33
  year: 2012
  ident: bib6
  article-title: Investigation of long-term reproducibility of intrinsic connectivity network mapping: a resting-state fMRI study
  publication-title: Am. J. Neuroradiol.
– start-page: 1
  year: 2017
  end-page: 15
  ident: bib45
  article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility
  publication-title: Cereb. Cortex
– volume: 288
  start-page: 1740
  year: 2002
  end-page: 1748
  ident: bib3
  article-title: Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder
  publication-title: JAMA
– volume: 17
  start-page: 1177
  year: 2014
  end-page: 1191
  ident: bib17
  article-title: The effects of methylphenidate on resting-state striatal, thalamic and global functional connectivity in healthy adults
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 53
  start-page: 303
  year: 2010
  end-page: 317
  ident: bib55
  article-title: Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition
  publication-title: Neuroimage
– volume: 31
  year: 2009
  ident: bib39
  article-title: Test-retest reproducibility of the default-mode network in healthy individuals
  publication-title: Hum. Brain Mapp.
– volume: 75
  start-page: 426
  year: 2013
  end-page: 439
  ident: bib49
  article-title: Sustaining visual attention in the face of distraction: a novel gradual-onset continuous performance task
  publication-title: Atten. Percept. Psychophys.
– volume: 21
  start-page: 858
  year: 2004
  end-page: 867
  ident: bib36
  article-title: fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis
  publication-title: Neuroimage
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  ident: bib26
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
– volume: 4
  start-page: 19
  year: 2010
  ident: bib20
  article-title: Clinical applications of resting state functional connectivity
  publication-title: Front. Syst. Neurosci.
– volume: 83
  start-page: 238
  year: 2014
  end-page: 251
  ident: bib7
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
– volume: 85
  start-page: 11
  year: 2015
  end-page: 26
  ident: bib22
  article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience
  publication-title: Neuron
– volume: 3
  start-page: 15
  year: 2012
  ident: bib56
  article-title: Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis
  publication-title: Front. Physiol.
– volume: 110
  start-page: 4392
  year: 2013
  end-page: 4397
  ident: bib34
  article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: bib19
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– volume: 56
  start-page: 2209
  year: 2011
  end-page: 2217
  ident: bib29
  article-title: Impaired attention and network connectivity in childhood absence epilepsy
  publication-title: Neuroimage
– volume: 82
  start-page: 403
  year: 2013
  end-page: 415
  ident: bib54
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
– volume: 5
  year: 1984
  ident: bib60
  article-title: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses*
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 253
  start-page: 471
  year: 2006
  end-page: 476
  ident: bib25
  article-title: Reproducibility of activation in four motor paradigms
  publication-title: J. Neurol.
– volume: 8
  start-page: 31
  year: 2015
  end-page: 40
  ident: bib35
  article-title: Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of canadian wheat
  publication-title: Food Bioprocess Technol.
– volume: 31
  start-page: 904
  year: 2010
  end-page: 916
  ident: bib30
  article-title: Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder
  publication-title: Hum. Brain Mapp.
– year: 2012
  ident: bib4
  article-title: Large-scale brain systems in ADHD: beyond the prefrontal-striatal model
  publication-title: Trends Cogn. Sci.
– volume: 324
  year: 2009
  ident: bib24
  article-title: High-frequency, long-range coupling between prefrontal and visual cortex during attention
  publication-title: Sci. (80-. )
– volume: 10
  start-page: e0140134
  year: 2015
  ident: bib5
  article-title: Reproducibility and temporal structure in weekly resting-state fMRI over a period of 3.5 years
  publication-title: PLoS One
– reference: Rosenberg M.D., Hsu W.-T, Scheinost D., Constable R.T. and Chun M.M., Connectome-based models predict separable components of attention in novel individuals, J. Cogn. Neurosci., in press,
– volume: 64
  start-page: 79
  year: 2002
  end-page: 89
  ident: bib33
  article-title: Model selection for partial least squares regression
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 18
  start-page: 1565
  year: 2015
  end-page: 1567
  ident: bib63
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nat. Neurosci.
– volume: 26
  start-page: 471
  year: 2005
  end-page: 479
  ident: bib15
  article-title: The activation of attentional networks
  publication-title: Neuroimage
– volume: 65
  start-page: 257
  year: 2003
  end-page: 279
  ident: bib59
  article-title: Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 22
  start-page: 165
  year: 2004
  end-page: 178
  ident: bib57
  article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest
  publication-title: Hum. Brain Mapp.
– volume: 3
  start-page: 215
  year: 2002
  end-page: 229
  ident: bib10
  article-title: Control of goal-directed and stimulus-driven attention in the brain
  publication-title: Nat. Rev. Neurosci.
– volume: 145
  start-page: 137
  year: 2017
  end-page: 165
  ident: bib1
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
– reference: .
– volume: 22
  start-page: 154
  year: 2014
  end-page: 165
  ident: bib16
  article-title: The effects of methylphenidate on cerebral activations to salient stimuli in healthy adults
  publication-title: Exp. Clin. Psychopharmacol.
– volume: 6
  start-page: 62
  year: 2012
  ident: bib9
  article-title: The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
  publication-title: Front. Syst. Neurosci.
– volume: 20
  start-page: 425
  year: 2016
  end-page: 443
  ident: bib12
  article-title: Building a science of individual differences from fMRI
  publication-title: Trends Cogn. Sci.
– volume: 19
  start-page: 165
  year: 2016
  end-page: 171
  ident: bib48
  article-title: A neuromarker of sustained attention from whole-brain functional connectivity
  publication-title: Nat. Neurosci.
– volume: 315
  start-page: 393
  year: 2007
  end-page: 395
  ident: bib37
  article-title: Wandering minds: the default network and stimulus-independent thought
  publication-title: Science
– volume: 33
  year: 2013
  ident: bib23
  article-title: Human brain functional network changes associated with enhanced and impaired attentional task performance
  publication-title: J. Neurosci.
– volume: 34
  year: 2014
  ident: bib51
  article-title: Attention improves transfer of motion information between V1 and MT
  publication-title: J. Neurosci.
– volume: 18
  start-page: 251
  year: 1993
  end-page: 263
  ident: bib11
  article-title: SIMPLS: an alternative approach to partial least squares regression
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 16
  start-page: 1348
  year: 2013
  end-page: 1355
  ident: bib8
  article-title: Multi-task connectivity reveals flexible hubs for adaptive task control
  publication-title: Nat. Neurosci.
– volume: 315
  year: 2007
  ident: bib2
  article-title: Top-Down versus bottom-up control of attention in the prefrontal and posterior parietal cortices
  publication-title: Sci. (80-. )
– volume: 21
  start-page: 290
  year: 2017
  end-page: 302
  ident: bib47
  article-title: Characterizing attention with predictive network models
  publication-title: Trends Cogn. Sci.
– volume: 26
  start-page: 471
  year: 2005
  ident: 10.1016/j.neuroimage.2017.11.010_bib15
  article-title: The activation of attentional networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.004
– start-page: 26
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.010_bib40
  article-title: New measures of brain functional connectivity by temporal analysis of extreme events
– volume: 19
  start-page: 165
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.010_bib48
  article-title: A neuromarker of sustained attention from whole-brain functional connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4179
– volume: 3
  start-page: 15
  year: 2012
  ident: 10.1016/j.neuroimage.2017.11.010_bib56
  article-title: Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2012.00015
– year: 2012
  ident: 10.1016/j.neuroimage.2017.11.010_bib4
  article-title: Large-scale brain systems in ADHD: beyond the prefrontal-striatal model
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2011.11.007
– volume: 127
  start-page: 1811
  year: 2004
  ident: 10.1016/j.neuroimage.2017.11.010_bib27
  article-title: Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity
  publication-title: Brain
  doi: 10.1093/brain/awh199
– volume: 18
  start-page: 251
  year: 1993
  ident: 10.1016/j.neuroimage.2017.11.010_bib11
  article-title: SIMPLS: an alternative approach to partial least squares regression
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(93)85002-X
– start-page: 1311
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.010_bib42
  article-title: Predicting individual scores from resting state fMRI using partial least squares regression
– volume: 17
  start-page: 1177
  year: 2014
  ident: 10.1016/j.neuroimage.2017.11.010_bib17
  article-title: The effects of methylphenidate on resting-state striatal, thalamic and global functional connectivity in healthy adults
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145714000674
– volume: 253
  start-page: 471
  year: 2006
  ident: 10.1016/j.neuroimage.2017.11.010_bib25
  article-title: Reproducibility of activation in four motor paradigms
  publication-title: J. Neurol.
– volume: 85
  start-page: 11
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.010_bib22
  article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.047
– volume: 23
  start-page: 2712
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.010_bib13
  article-title: In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs261
– volume: 315
  start-page: 393
  year: 2007
  ident: 10.1016/j.neuroimage.2017.11.010_bib37
  article-title: Wandering minds: the default network and stimulus-independent thought
  publication-title: Science
  doi: 10.1126/science.1131295
– volume: 8
  start-page: 31
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.010_bib35
  article-title: Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of canadian wheat
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-014-1381-z
– volume: 31
  year: 2009
  ident: 10.1016/j.neuroimage.2017.11.010_bib39
  article-title: Test-retest reproducibility of the default-mode network in healthy individuals
  publication-title: Hum. Brain Mapp.
– volume: 68
  start-page: 1084
  year: 2010
  ident: 10.1016/j.neuroimage.2017.11.010_bib14
  article-title: Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2010.07.003
– volume: 18
  start-page: 1565
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.010_bib63
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4125
– volume: 64
  start-page: 79
  year: 2002
  ident: 10.1016/j.neuroimage.2017.11.010_bib33
  article-title: Model selection for partial least squares regression
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(02)00051-5
– volume: 36
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.010_bib50
  article-title: Methylphenidate modulates functional network connectivity to enhance attention
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1746-16.2016
– volume: 5
  year: 1984
  ident: 10.1016/j.neuroimage.2017.11.010_bib60
  article-title: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses*
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0905052
– volume: 157
  start-page: 250
  year: 2017
  ident: 10.1016/j.neuroimage.2017.11.010_bib46
  article-title: Resting-state fMRI correlations: from link-wise unreliability to whole brain stability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.006
– volume: 12
  start-page: 506
  year: 2017
  ident: 10.1016/j.neuroimage.2017.11.010_bib53
  article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.178
– volume: 21
  start-page: 290
  year: 2017
  ident: 10.1016/j.neuroimage.2017.11.010_bib47
  article-title: Characterizing attention with predictive network models
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2017.01.011
– volume: 33
  year: 2012
  ident: 10.1016/j.neuroimage.2017.11.010_bib6
  article-title: Investigation of long-term reproducibility of intrinsic connectivity network mapping: a resting-state fMRI study
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2894
– volume: 8
  start-page: 700
  year: 2007
  ident: 10.1016/j.neuroimage.2017.11.010_bib21
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2201
– volume: 16
  start-page: 1348
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.010_bib8
  article-title: Multi-task connectivity reveals flexible hubs for adaptive task control
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3470
– volume: 6
  start-page: 7751
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.010_bib28
  article-title: Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8751
– volume: 10
  start-page: e0140134
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.010_bib5
  article-title: Reproducibility and temporal structure in weekly resting-state fMRI over a period of 3.5 years
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140134
– volume: 4
  start-page: 19
  year: 2010
  ident: 10.1016/j.neuroimage.2017.11.010_bib20
  article-title: Clinical applications of resting state functional connectivity
  publication-title: Front. Syst. Neurosci.
– year: 2017
  ident: 10.1016/j.neuroimage.2017.11.010_bib18
  article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.064
– volume: 33
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.010_bib23
  article-title: Human brain functional network changes associated with enhanced and impaired attentional task performance
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4854-12.2013
– volume: 53
  start-page: 303
  year: 2010
  ident: 10.1016/j.neuroimage.2017.11.010_bib55
  article-title: Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.016
– volume: 18
  start-page: 1664
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.010_bib19
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 56
  start-page: 2209
  year: 2011
  ident: 10.1016/j.neuroimage.2017.11.010_bib29
  article-title: Impaired attention and network connectivity in childhood absence epilepsy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.036
– volume: 22
  start-page: 154
  year: 2014
  ident: 10.1016/j.neuroimage.2017.11.010_bib16
  article-title: The effects of methylphenidate on cerebral activations to salient stimuli in healthy adults
  publication-title: Exp. Clin. Psychopharmacol.
  doi: 10.1037/a0034465
– volume: 145
  start-page: 137
  year: 2017
  ident: 10.1016/j.neuroimage.2017.11.010_bib1
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 45
  start-page: 100
  year: 2014
  ident: 10.1016/j.neuroimage.2017.11.010_bib61
  article-title: Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2014.05.009
– volume: 21
  start-page: 858
  year: 2004
  ident: 10.1016/j.neuroimage.2017.11.010_bib36
  article-title: fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.10.004
– volume: 315
  year: 2007
  ident: 10.1016/j.neuroimage.2017.11.010_bib2
  article-title: Top-Down versus bottom-up control of attention in the prefrontal and posterior parietal cortices
  publication-title: Sci. (80-. )
  doi: 10.1126/science.1138071
– volume: 65
  start-page: 257
  year: 2003
  ident: 10.1016/j.neuroimage.2017.11.010_bib59
  article-title: Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(02)00138-7
– volume: 324
  year: 2009
  ident: 10.1016/j.neuroimage.2017.11.010_bib24
  article-title: High-frequency, long-range coupling between prefrontal and visual cortex during attention
  publication-title: Sci. (80-. )
  doi: 10.1126/science.1171402
– volume: 80
  start-page: 360
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.010_bib26
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 83
  start-page: 238
  year: 2014
  ident: 10.1016/j.neuroimage.2017.11.010_bib7
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
– start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2017.11.010_bib38
  article-title: Top-down cortical interactions in visuospatial attention
  publication-title: Brain Struct. Funct.
– volume: 34
  year: 2014
  ident: 10.1016/j.neuroimage.2017.11.010_bib51
  article-title: Attention improves transfer of motion information between V1 and MT
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3484-13.2014
– volume: 87
  start-page: 657
  year: 2015
  ident: 10.1016/j.neuroimage.2017.11.010_bib32
  article-title: Functional system and areal organization of a highly sampled individual human brain, 2015
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.037
– volume: 26
  start-page: 433
  year: 2006
  ident: 10.1016/j.neuroimage.2017.11.010_bib31
  article-title: Brain development and ADHD
  publication-title: Clin. Psychol. Rev.
  doi: 10.1016/j.cpr.2006.01.005
– volume: 82
  start-page: 403
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.010_bib54
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.081
– volume: 31
  start-page: 904
  year: 2010
  ident: 10.1016/j.neuroimage.2017.11.010_bib30
  article-title: Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21058
– volume: 3
  start-page: 215
  year: 2002
  ident: 10.1016/j.neuroimage.2017.11.010_bib10
  article-title: Control of goal-directed and stimulus-driven attention in the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn755
– start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2017.11.010_bib45
  article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility
  publication-title: Cereb. Cortex
– volume: 288
  start-page: 1740
  year: 2002
  ident: 10.1016/j.neuroimage.2017.11.010_bib3
  article-title: Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder
  publication-title: JAMA
  doi: 10.1001/jama.288.14.1740
– volume: 146
  start-page: 959
  year: 2017
  ident: 10.1016/j.neuroimage.2017.11.010_bib44
  article-title: Multisite reliability of MR-based functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.020
– volume: 22
  start-page: 165
  year: 2004
  ident: 10.1016/j.neuroimage.2017.11.010_bib57
  article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20022
– volume: 8
  start-page: e77089
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.010_bib58
  article-title: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0077089
– volume: 110
  start-page: 4392
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.010_bib34
  article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1216856110
– volume: 63
  start-page: 2540
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.010_bib52
  article-title: Fluctuations in global brain activity are associated with changes in whole-brain connectivity of functional networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2600248
– volume: 20
  start-page: 425
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.010_bib12
  article-title: Building a science of individual differences from fMRI
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2016.03.014
– volume: 6
  start-page: 62
  year: 2012
  ident: 10.1016/j.neuroimage.2017.11.010_bib9
  article-title: The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00062
– volume: 13
  start-page: 434
  year: 1998
  ident: 10.1016/j.neuroimage.2017.11.010_bib43
  article-title: Evaluation of cerebellar size in attention-deficit hyperactivity disorder
  publication-title: J. Child. Neurol.
  doi: 10.1177/088307389801300904
– ident: 10.1016/j.neuroimage.2017.11.010_bib62
  doi: 10.1162/jocn_a_01197
– volume: 12
  start-page: 785
  year: 2016
  ident: 10.1016/j.neuroimage.2017.11.010_bib41
  article-title: Prediction of long-term memory scores in MCI based on resting-state fMRI
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2016.10.004
– volume: 75
  start-page: 426
  year: 2013
  ident: 10.1016/j.neuroimage.2017.11.010_bib49
  article-title: Sustaining visual attention in the face of distraction: a novel gradual-onset continuous performance task
  publication-title: Atten. Percept. Psychophys.
  doi: 10.3758/s13414-012-0413-x
SSID ssj0009148
Score 2.5805273
Snippet Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and...
Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and...
Connectome-based predictive modeling (CPM; Finn et al., 2015 ; Shen et al., 2017 ) was recently developed to predict individual differences in traits and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Adult
Algorithms
Attention
Attention - physiology
Attention Deficit Disorder with Hyperactivity - diagnostic imaging
Attention Deficit Disorder with Hyperactivity - physiopathology
Attention deficit hyperactivity disorder
Attention task
Behavior
Brain - diagnostic imaging
Brain - physiology
Brain mapping
Cognitive ability
Connectome - methods
Connectome - standards
Connectome - statistics & numerical data
Datasets as Topic
Discordance
Executive Function - physiology
Functional connectivity
Functional magnetic resonance imaging
Humans
Intelligence
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Magnetic Resonance Imaging - statistics & numerical data
Memory
Methylphenidate
Models, Statistical
Neural networks
Noise
Partial least square regression
Predictive model
Principal components analysis
Psychomotor Performance - physiology
Regression analysis
Reproducibility of Results
Statistical analysis
Studies
Synchronization
Young Adult
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTkK8TOO7YyAj8RraxHFcs6epYiqg7QUm7c1KY1t0Ykm1ZP_G_ubd2U5KgYdKPPbcs2r7fL-7-j4APhiTyyUvVFKKKU9yh36KEqVALwWxXCIAK075zucXxeIy_3olrvZg3ufCUFhl1P1Bp3ttHSmTuJuT9Wo1-Y6zIdyQv8ER9KR4BPsZov1sBPunX74tLja1d9M8ZMQJnhBDDOgJYV6-bOTqBi8vxXnJj1TSk9Jp_41Sf1uhfwZT_oZOZ4dwEM1Kdhp--VPYs_UzeHweH86fw70PaKm65sYmBFyGrW9pkJQd891wEMJY4xiV2_QBkJ_YPLQoRHrfRaVjBIPh30NWhRl98wnmrC8Q2rKy3kzd1Cw0qEayXyejeNTWdu0LuDz7_GO-SGIrhqQq-LRLjEVPtjRTg3heLg03rnQFVbLJ0qrIjKnEzCjDZaocai0kOJkaJ1AQ0BycWclfwqhuavsamChc5YRVQlVpLp0pc1WovEIBkcqiwTQG2W-9rmKdcmqX8Uv3AWnXenNomg4N3RiNhzaGdOBch1odO_Co_nR1n4uK2lMjoOzAezLwbsnsjtzHvTDpqDdaGs84-pQyH8P7YRhvPD3jlLVt7lpNOpOyCFU6hldB9oblIjGjl3XcxC2pHL5A1cS3R-rVT19VHC1R1N7q6L8W9Qae4KcZhbWn4hhG3e2dfYtWW7d8F2_lAyOoRzA
  priority: 102
  providerName: Elsevier
Title Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917309175
https://dx.doi.org/10.1016/j.neuroimage.2017.11.010
https://www.ncbi.nlm.nih.gov/pubmed/29122720
https://www.proquest.com/docview/2012360674
https://www.proquest.com/docview/1963270291
https://pubmed.ncbi.nlm.nih.gov/PMC5845789
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD5im4R4QdwpjMpIvGaqmziu4QGNalO5rJomJvXNSn0RQywpS_bKT-A3c47ttAwQ6lNUO46a-Phc7HO-D-CVtYVc5qXKKjHKs8JjnKJEJTBKQVsu0QCrnOqdT-bl7Lz4sBCLtOHWprTKXicGRW0bQ3vkGKQTTgjq1uLt6ntGrFF0upooNHZgj6MnQtQNciE3oLu8iKVwIs8meEPK5In5XQEv8uISVy0leMkDwvKkOtp_m6e_3c8_syh_M0vH9-Bu8ifZYRSA-3DL1Q_g9kk6MX8IP0Mmi-maS5eRxbJsdUWdpOVYoMFB28UazwhnM2Q-vmbTyE2I7T19SsfI_sVtQ2biEwPrBPMuIIO2rKo3j25qFpmpsTm8J6NE1NZ17SM4Pz76PJ1liYMhM2U-6jLrMISt7MiiIa-WNre-8iVB2Iy5KcfWGjGxyuaSK4_qChu85NYLlAD0AydO5o9ht25q9xSYKL3xwimhDC-kt1WhSlUYlAypHHpKA5D9p9cmAZQTT8Y33WeifdWbSdM0aRi_aJy0AfD1yFUE6dhijOpnV_dFqKg2NVqSLca-WY9Njkp0QLYcvd8Lk04Ko9Ub8R7Ay3U3LnU6v6lq11y3mpQllQ8qPoAnUfbWr4uNYzpSx494QyrXNxCM-M2e-uJLgBNHFxTVtnr2_7_1HO7gjwklrHOxD7vd1bV7gf5YtxzCzsEPPgxLbwh7h9OzT6d0ff9xNsfru6P56dkvpLNAGQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAkaCY9A6ieM1CCFUqLa021Mr7c1k_RBFNFmaVIg_wU_hNzJjJ1kKCO2lVztjxZnxPOKZbwCeWZvLRVaopBTjLMk9xilKlAKjFLTlEg2wyqjeeXZQTI_yD3Mx34CffS0MpVX2OjEoalsb-keOQTrhhKBuzd8svybUNYpuV_sWGlEs9tz3bxiyNa933yF_n6fpzvvD7WnSdRVITJGN28Q6DMpKO7ZomsqFzawvfUGgLCk3RWqtEROrbCa58ngAccBLbr3APaFnM3Eyw3UvweWcrhjx_Mi5XIH88jyW3oksmXCuusyhmE8W8CmPT1BLUEKZfEHYoVS3-29z-Le7-2fW5m9mcOcGXO_8V_Y2CtxN2HDVLbgy627ob8OPkDlj2vrEJWQhLVue0iRpVRba7qCtZLVnhOsZMi1fsu3YCxHH-3YtLSN7G39TMhNXDF0umHcBibRhZbVauq5Y7ISNw2GfjBJfG9c2d-DoQrhzFzarunL3gYnCGy-cEsrwXHpb5qpQuUFJlMqhZzYC2X96bTpAdOrL8UX3mW-f9YppmpiG8ZJGpo2AD5TLCAqyBo3quav7oldU0xot1xq0rwbazjGKDs-a1Fu9MOlOQTV6dZxG8HSYRtVC90Vl5eqzRpNypnJFxUdwL8resF0cTOkKHz_iOakcHiDY8vMz1fGnAF-OLi-aCfXg_6_1BK5OD2f7en_3YO8hXMOJCSXLc7EFm-3pmXuEvmC7eBwOIIOPF33ifwGxNnf_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKK1W8IO5sKWAkeAyskzhegyoEbVctpasKUalvbtYXUdQmS5MK8RN8GF_FjO1kKSC0L321YyvO2HOJz5wh5JkxuZhmhUxKPsyS3EGcInnJIUoBWy7AAMsM8533J8XOYf7-iB8tkZ9dLgzCKjud6BW1qTX-I4cgHXlCQLfmL12ERRxsjd_MviZYQQpvWrtyGmUss2A2PN1YTPLYs9-_QTjXbOxugeyfp-l4-9PmThIrDiS6yIZtYiwEbKUZGjBb5dRkxpWuQMKWlOkiNUbzkZEmE0w6OJzQ4AQzjsN6wesZWZHBvNfIigCrD4HgyrvtycHHOQUwy0NiHs-SEWMy4ooC2syzV56cgQ5BuJl4gcyimNX7b2P5tzP8J6bzNyM5vkluRO-Wvg3b8RZZstVtsrof7-_vkB8eV6Pb-swmaD8NnZ1jJ-pc6ovygCWltaPI-ulxmK_oZqiUCO1dMZeWojUOPzGpDjP6GhjUWc9T2tCymk9dVzTUyYZmv06KsNjGts1dcngl8rlHlqu6sg8I5YXTjlvJpWa5cKbMZSFzDftUSAt-24CI7tMrHenSsWrHqepwcV_UXGgKhQbRlAKhDQjrR84CZcgCY2QnXdWlxIISV2DXFhj7uh8b3abgDi04er3bTCqqr0bND9uAPO27QfHgbVJZ2fqiUai6MZlRsgG5H_Zev1xoTPGCHz7ipV3ZP4Ck5pd7qpPPntwcHGIwInLt_6_1hKzC6Vcfdid7D8l1aB8hkp7xdbLcnl_YR-AottPH8QRScnzVh_4X602C2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectome-based+predictive+modeling+of+attention%3A+Comparing+different+functional+connectivity+features+and+prediction+methods+across+datasets&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Yoo%2C+Kwangsun&rft.au=Rosenberg%2C+Monica+D.&rft.au=Hsu%2C+Wei-Ting&rft.au=Zhang%2C+Sheng&rft.date=2018-02-15&rft.issn=1053-8119&rft.volume=167&rft.spage=11&rft.epage=22&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.11.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2017_11_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon