Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets
Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (F...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 167; pp. 11 - 22 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.02.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2017.11.010 |
Cover
Abstract | Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM.
•Functional connectivity can predict individual differences in attention.•We compared different connectivity measures and feature selection algorithms.•Four different data sets permitted both internal and external validation.•For rest data, PLS regression models were numerically better than linear regression.•Pearson’s correlation, accordance, and discordance did not meaningfully differ. |
---|---|
AbstractList | Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM. Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM. •Functional connectivity can predict individual differences in attention.•We compared different connectivity measures and feature selection algorithms.•Four different data sets permitted both internal and external validation.•For rest data, PLS regression models were numerically better than linear regression.•Pearson’s correlation, accordance, and discordance did not meaningfully differ. Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM.Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM. Connectome-based predictive modeling (CPM; Finn et al., 2015 ; Shen et al., 2017 ) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence ( Finn et al., 2015 ) and sustained attention ( Rosenberg et al., 2016a ), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson’s correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation ( Meskaldji et al., 2016 ). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N=25; Rosenberg et al., 2016a ). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N=83, including 19 participants who were administered methylphenidate prior to scanning; Rosenberg et al., 2016b ; f al., 2014a), 2) data collected during Attention Network Task performance and rest (N=41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N=113; Rosenberg et al., 2016a ). Models defined using all combinations of functional connectivity measure (Pearson’s correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p’s < 0.05). Models trained on task data outperformed models trained on rest data. Pearson’s correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models ( Rosenberg et al., 2016a ), it is useful to consider accordance features and PLS regression for CPM. Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM. |
Author | Rosenberg, Monica D. Yoo, Kwangsun Zhang, Sheng Hsu, Wei-Ting Li, Chiang-Shan R. Chun, Marvin M. Scheinost, Dustin Constable, R. Todd |
AuthorAffiliation | 1 Department of Psychology, Yale University, New Haven, CT 06520, USA 5 Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA 2 Department of Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA 6 Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA 4 Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA 3 Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA |
AuthorAffiliation_xml | – name: 5 Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA – name: 1 Department of Psychology, Yale University, New Haven, CT 06520, USA – name: 6 Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA – name: 3 Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA – name: 4 Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA – name: 2 Department of Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA |
Author_xml | – sequence: 1 givenname: Kwangsun surname: Yoo fullname: Yoo, Kwangsun email: kwangsun.yoo@yale.edu organization: Department of Psychology, Yale University, New Haven, CT, USA – sequence: 2 givenname: Monica D. surname: Rosenberg fullname: Rosenberg, Monica D. organization: Department of Psychology, Yale University, New Haven, CT, USA – sequence: 3 givenname: Wei-Ting surname: Hsu fullname: Hsu, Wei-Ting organization: Department of Psychology, Yale University, New Haven, CT, USA – sequence: 4 givenname: Sheng surname: Zhang fullname: Zhang, Sheng organization: Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA – sequence: 5 givenname: Chiang-Shan R. surname: Li fullname: Li, Chiang-Shan R. organization: Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA – sequence: 6 givenname: Dustin surname: Scheinost fullname: Scheinost, Dustin organization: Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA – sequence: 7 givenname: R. Todd surname: Constable fullname: Constable, R. Todd organization: Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA – sequence: 8 givenname: Marvin M. surname: Chun fullname: Chun, Marvin M. organization: Department of Psychology, Yale University, New Haven, CT, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29122720$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2PFCEQhjtmjfuhf8GQePHSLdDTQHsw6sSvZBMveiYMFLOM3TACPcn8CX-ztLPr6JzmBKkqniret66rCx88VBUiuCGYsFebxsMUgxvVGhqKCW8IaTDBj6orgvuu7jtOL-Z719aCkP6yuk5pgzHuyUI8qS5pTyjlFF9Vv5bBe9A5jFCvVAKDthGM09ntAI3BwOD8GgWLVM7gswv-NVqGcaviHDfOWogljuzk9ZxVA9IHotu5vEcWVJ4iJKT8ER08GiHfBVPCOoaUkFG5NM_pafXYqiHBs_vzpvr-8cO35ef69uunL8t3t7VmLc61gVa0ymBDGVMr0xqrLGsZZZRoRo3RnTC9aTnprRC8BCwnxnZmwTveCeDtTfXmwN1OqxGMLl-IapDbWCSNexmUk_9nvLuT67CTnVh0XPQF8PIeEMPPCVKWo0sahkF5CFOSpGct5bgIXUpfnJRuwhSLUkkW62jLMOOLUvX834n-jvJg1XHkP4pFsFK7rGYxy4BukATLeTfkRh53Y27AJSGy7EYBiBPAQ48znr4_PIXiyc5BlEk78LrYGYvV0gR3DuTtCUSX5XJaDT9gfx7iN5nP9bQ |
CitedBy_id | crossref_primary_10_1371_journal_pbio_3001938 crossref_primary_10_7554_eLife_97150 crossref_primary_10_1109_TCYB_2022_3178370 crossref_primary_10_1093_cercor_bhaa390 crossref_primary_10_1038_s41598_024_60311_3 crossref_primary_10_1007_s00406_021_01344_x crossref_primary_10_1016_j_jad_2025_01_094 crossref_primary_10_1089_brain_2021_0037 crossref_primary_10_1093_cercor_bhaa282 crossref_primary_10_4239_wjd_v13_i2_110 crossref_primary_10_1093_cercor_bhab099 crossref_primary_10_1016_j_biopsych_2020_02_016 crossref_primary_10_1002_hbm_26753 crossref_primary_10_1162_netn_a_00275 crossref_primary_10_1016_j_nicl_2023_103369 crossref_primary_10_1080_24749508_2024_2430047 crossref_primary_10_1093_cercor_bhac506 crossref_primary_10_3389_fnhum_2019_00012 crossref_primary_10_1017_S0033291722003026 crossref_primary_10_1093_braincomms_fcac213 crossref_primary_10_1093_cercor_bhac189 crossref_primary_10_1016_j_neunet_2025_107335 crossref_primary_10_1162_imag_a_00373 crossref_primary_10_1038_s42003_024_06461_6 crossref_primary_10_1093_cercor_bhz134 crossref_primary_10_1093_cercor_bhae374 crossref_primary_10_1038_s41562_022_01301_1 crossref_primary_10_1038_s41598_018_38406_5 crossref_primary_10_1038_s41531_022_00315_w crossref_primary_10_1162_netn_a_00302 crossref_primary_10_1186_s12916_024_03784_3 crossref_primary_10_1038_s41386_025_02064_9 crossref_primary_10_1111_ejn_15896 crossref_primary_10_1007_s00221_022_06430_7 crossref_primary_10_1111_ejn_15770 crossref_primary_10_1038_s41380_024_02880_3 crossref_primary_10_1007_s11682_022_00700_2 crossref_primary_10_1093_cvr_cvac116 crossref_primary_10_1109_MSP_2022_3155951 crossref_primary_10_1007_s11760_020_01789_y crossref_primary_10_1016_j_jad_2024_10_091 crossref_primary_10_1002_hbm_25448 crossref_primary_10_3389_fnhum_2024_1455776 crossref_primary_10_1016_j_neuroimage_2019_116370 crossref_primary_10_1007_s12021_020_09476_6 crossref_primary_10_1093_cercor_bhab024 crossref_primary_10_1016_j_bbr_2022_114121 crossref_primary_10_3389_fnrgo_2022_864938 crossref_primary_10_1073_pnas_1817536116 crossref_primary_10_1016_j_neuroimage_2023_120021 crossref_primary_10_1016_j_dcn_2020_100878 crossref_primary_10_1002_hbm_25042 crossref_primary_10_1016_j_neuroimage_2018_11_057 crossref_primary_10_1016_j_bpsc_2024_10_002 crossref_primary_10_1002_hbm_26498 crossref_primary_10_7554_eLife_97150_3 crossref_primary_10_1134_S0362119722700013 crossref_primary_10_1073_pnas_1912226117 crossref_primary_10_1016_j_neulet_2020_135519 crossref_primary_10_1016_j_neuroimage_2020_117310 crossref_primary_10_1038_s41386_024_01962_8 crossref_primary_10_1016_j_bpsc_2019_11_007 crossref_primary_10_1016_j_physbeh_2020_112940 crossref_primary_10_1089_brain_2020_0798 crossref_primary_10_1002_hbm_25436 crossref_primary_10_1016_j_neuroimage_2019_06_045 crossref_primary_10_1002_hipo_23393 crossref_primary_10_1016_j_neuroimage_2023_120274 crossref_primary_10_1093_ijnp_pyad062 crossref_primary_10_1038_s41598_020_73216_8 crossref_primary_10_4236_jst_2019_94006 crossref_primary_10_1002_hbm_25590 crossref_primary_10_1016_j_nicl_2021_102593 crossref_primary_10_1016_j_cortex_2020_08_006 crossref_primary_10_1038_s41467_018_02887_9 crossref_primary_10_1038_s41398_022_02134_2 crossref_primary_10_3389_fnins_2022_875828 crossref_primary_10_1002_hbm_70158 crossref_primary_10_1016_j_neuroimage_2019_04_060 crossref_primary_10_1016_j_jad_2024_01_177 crossref_primary_10_1016_j_cobeha_2018_08_013 crossref_primary_10_1016_j_metrad_2023_100008 crossref_primary_10_3389_fnins_2019_01282 crossref_primary_10_1016_j_dcn_2020_100855 crossref_primary_10_1016_j_bpsc_2018_06_003 crossref_primary_10_1016_j_neuroimage_2022_119279 crossref_primary_10_1016_j_jad_2024_02_030 crossref_primary_10_1093_scan_nsae007 crossref_primary_10_1002_brb3_1346 crossref_primary_10_1093_scan_nsaa044 crossref_primary_10_1002_hbm_26030 crossref_primary_10_1002_ima_22844 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_1038_s41380_022_01916_w crossref_primary_10_1016_j_cobeha_2020_12_007 crossref_primary_10_1016_j_cortex_2020_01_022 crossref_primary_10_1016_j_neuroimage_2018_06_001 crossref_primary_10_1016_j_ynstr_2020_100285 crossref_primary_10_3389_fgene_2021_728913 crossref_primary_10_1016_j_biopsych_2022_09_024 crossref_primary_10_1038_s41467_021_25895_8 crossref_primary_10_1093_cercor_bhae178 crossref_primary_10_1016_j_pscychresns_2021_111390 crossref_primary_10_1002_brb3_2105 crossref_primary_10_1007_s11071_023_08328_7 crossref_primary_10_1038_s41380_023_02120_0 crossref_primary_10_1016_j_jneumeth_2025_110406 crossref_primary_10_1016_j_neuroimage_2021_118735 crossref_primary_10_1016_j_biopsych_2023_03_025 crossref_primary_10_1038_s41598_022_10949_8 crossref_primary_10_1088_1741_2552_ac0f4d crossref_primary_10_1002_hbm_26694 crossref_primary_10_1093_cercor_bhaa383 crossref_primary_10_1002_brb3_2331 crossref_primary_10_1038_s41467_022_29766_8 crossref_primary_10_1016_j_neuroimage_2020_116938 crossref_primary_10_1016_j_neuroimage_2021_117926 crossref_primary_10_1073_pnas_2110811118 crossref_primary_10_1002_brb3_1647 crossref_primary_10_1016_j_pnpbp_2021_110329 crossref_primary_10_4236_ce_2019_1011172 crossref_primary_10_1093_scan_nsy002 crossref_primary_10_1002_jdn_10375 crossref_primary_10_1162_jocn_a_01759 crossref_primary_10_1002_hbm_24947 crossref_primary_10_1002_hbm_25759 |
Cites_doi | 10.1016/j.neuroimage.2005.02.004 10.1038/nn.4179 10.3389/fphys.2012.00015 10.1016/j.tics.2011.11.007 10.1093/brain/awh199 10.1016/0169-7439(93)85002-X 10.1017/S1461145714000674 10.1016/j.neuron.2014.10.047 10.1093/cercor/bhs261 10.1126/science.1131295 10.1007/s11947-014-1381-z 10.1016/j.biopsych.2010.07.003 10.1038/nn.4125 10.1016/S0169-7439(02)00051-5 10.1523/JNEUROSCI.1746-16.2016 10.1137/0905052 10.1016/j.neuroimage.2017.06.006 10.1038/nprot.2016.178 10.1016/j.tics.2017.01.011 10.3174/ajnr.A2894 10.1038/nrn2201 10.1038/nn.3470 10.1038/ncomms8751 10.1371/journal.pone.0140134 10.1016/j.neuroimage.2017.03.064 10.1523/JNEUROSCI.4854-12.2013 10.1016/j.neuroimage.2010.06.016 10.1038/nn.4135 10.1016/j.neuroimage.2011.03.036 10.1037/a0034465 10.1016/j.neuroimage.2016.02.079 10.1016/j.neubiorev.2014.05.009 10.1016/j.neuroimage.2003.10.004 10.1126/science.1138071 10.1016/S0169-7439(02)00138-7 10.1126/science.1171402 10.1016/j.neuroimage.2013.05.079 10.1016/j.neuron.2014.05.014 10.1523/JNEUROSCI.3484-13.2014 10.1016/j.neuron.2015.06.037 10.1016/j.cpr.2006.01.005 10.1016/j.neuroimage.2013.05.081 10.1002/hbm.21058 10.1038/nrn755 10.1001/jama.288.14.1740 10.1016/j.neuroimage.2016.10.020 10.1002/hbm.20022 10.1371/journal.pone.0077089 10.1073/pnas.1216856110 10.1109/TBME.2016.2600248 10.1016/j.tics.2016.03.014 10.3389/fnsys.2012.00062 10.1177/088307389801300904 10.1162/jocn_a_01197 10.1016/j.nicl.2016.10.004 10.3758/s13414-012-0413-x |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Feb 15, 2018 |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Feb 15, 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2017.11.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database ProQuest Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 22 |
ExternalDocumentID | PMC5845789 29122720 10_1016_j_neuroimage_2017_11_010 S1053811917309175 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Comparative Study Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: R01 AA021449 – fundername: NIDA NIH HHS grantid: K25 DA040032 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NIDA NIH HHS grantid: R01 DA023248 – fundername: NIMH NIH HHS grantid: R01 MH108591 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ACLOT ~HD 5PM |
ID | FETCH-LOGICAL-c630t-de383ad0d266abd3dfaf6362621c62ddc58d9d3719f8872ddf71df5d475758e73 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 13:38:04 EDT 2025 Sun Sep 28 01:07:18 EDT 2025 Wed Aug 13 10:37:32 EDT 2025 Wed Feb 19 02:32:31 EST 2025 Tue Jul 01 03:01:54 EDT 2025 Thu Apr 24 23:00:17 EDT 2025 Fri Feb 23 02:25:08 EST 2024 Tue Aug 26 20:08:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional connectivity Predictive model Attention Partial least square regression |
Language | English |
License | Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-de383ad0d266abd3dfaf6362621c62ddc58d9d3719f8872ddf71df5d475758e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5845789 |
PMID | 29122720 |
PQID | 2012360674 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5845789 proquest_miscellaneous_1963270291 proquest_journals_2012360674 pubmed_primary_29122720 crossref_citationtrail_10_1016_j_neuroimage_2017_11_010 crossref_primary_10_1016_j_neuroimage_2017_11_010 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_11_010 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_11_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-15 |
PublicationDateYYYYMMDD | 2018-02-15 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Mason, Norton, Van Horn, Wegner, Grafton, Macrae (bib37) 2007; 315 Rosenberg, Zhang, Hsu, Scheinost, Finn, Shen, Constable, Li, Chun (bib50) 2016; 36 Choe, Jones, Joel, Muschelli, Belegu, Caffo, Lindquist, van Zijl, Pekar (bib5) 2015; 10 Konrad, Eickhoff (bib30) 2010; 31 Zuo, Xing (bib61) 2014; 45 Gregoriou, Gotts, Zhou, Desimone (bib24) 2009; 324 Wold, Ruhe, Wold, Dunn Iii (bib60) 1984; 5 Corbetta, Shulman (bib10) 2002; 3 Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib26) 2013; 80 Liu, Duyn (bib34) 2013; 110 Karahanoğlu, Van De Ville (bib28) 2015; 6 Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Van Essen, Miller (bib63) 2015; 18 Tagliazucchi, Balenzuela, Fraiman, Chialvo (bib56) 2012; 3 Fox, Greicius (bib20) 2010; 4 Noble, Scheinost, Finn, Shen, Papademetris, McEwen, Bearden, Addington, Goodyear, Cadenhead, Mirzakhanian, Cornblatt, Olvet, Mathalon, McGlashan, Perkins, Belger, Seidman, Thermenos, Tsuang, van Erp, Walker, Hamann, Woods, Cannon, Constable (bib44) 2017; 146 Farr, Hu, Matuskey, Zhang, Abdelghany, Li (bib16) 2014; 22 Rosenberg, Noonan, DeGutis, Esterman (bib49) 2013; 75 Castellanos, PP, Sharp (bib3) 2002; 288 Just, Cherkassky, Keller, Minshew (bib27) 2004; 127 Shen, Tokoglu, Papademetris, Constable (bib54) 2013; 82 Finn, Scheinost, Finn, Shen, Papademetris, Constable (bib18) 2017 Rosenberg, Finn, Scheinost, Papademetris, Shen, Constable, Chun (bib48) 2016; 19 van de Ven, Formisano, Prvulovic, Roeder, Linden (bib57) 2004; 22 Saproo, Serences (bib51) 2014; 34 Buschman, Miller (bib2) 2007; 315 Gießing, Thiel, Alexander-Bloch, Patel, Bullmore (bib23) 2013; 33 Arbabshirani, Plis, Sui, Calhoun (bib1) 2017; 145 Noble, Spann, Tokoglu, Shen, Constable, Scheinost (bib45) 2017 Fox, Raichle (bib21) 2007; 8 Shen, Finn, Scheinost, Rosenberg, Chun, Papademetris, Constable (bib53) 2017; 12 . Fair, Posner, Nagel, Bathula, Dias, Mills, Blythe, Giwa, Schmitt, Nigg (bib14) 2010; 68 Consortium (bib9) 2012; 6 Meskaldji, Preti, Bolton, Montandon, Rodriguez, Morgenthaler, Giannakopoulos, Haller, Van De Ville (bib42) 2016 Havel, Braun, Rau, Tonn, Fesl, Brückmann, Ilmberger (bib25) 2006; 253 Killory, Bai, Negishi, Vega, Spann, Vestal, Guo, Berman, Danielson, Trejo, Shisler, Novotny, Constable, Blumenfeld (bib29) 2011; 56 Meindl, Teipel, Elmouden, Mueller, Koch, Dietrich, Coates, Reiser, Glaser (bib39) 2009; 31 Pannunzi, Hindriks, Bettinardi, Wenger, Lisofsky, Martensson, Butler, Filevich, Becker, Lochstet, Kühn, Deco (bib46) 2017; 157 Welvaert, Rosseel, Dyck, Mathiak, Mathiak (bib58) 2013; 8 Rosenberg, Finn, Scheinost, Constable, Chun (bib47) 2017; 21 Gabrieli, Ghosh, Whitfield-Gabrieli (bib22) 2015; 85 Cole, Reynolds, Power, Repovs, Anticevic, Braver (bib8) 2013; 16 Mostofsky, Reiss, Lockhart, Denckla (bib43) 1998; 13 Spreng, Stevens, Chamberlain, Gilmore, Schacter (bib55) 2010; 53 Scheinost, Tokoglu, Shen, Finn, Noble, Papademetris, Constable (bib52) 2016; 63 Meskaldji, Preti, Bolton, Montandon, Rodriguez, Morgenthaler, Giannakopoulos, Haller, Van De Ville (bib41) 2016; 12 Esterman, Noonan, Rosenberg, Degutis (bib13) 2013; 23 Castellanos, Proal (bib4) 2012 Mahesh, Jayas, Paliwal, White (bib35) 2015; 8 Rosenberg M.D., Hsu W.-T, Scheinost D., Constable R.T. and Chun M.M., Connectome-based models predict separable components of attention in novel individuals, J. Cogn. Neurosci., in press Farr, Zhang, Hu, Matuskey, Abdelghany, Malison, Li (bib17) 2014; 17 Krain, Castellanos (bib31) 2006; 26 Fan, McCandliss, Fossella, Flombaum, Posner (bib15) 2005; 26 Mainero, Caramia, Pozzilli, Pisani, Pestalozza, Borriello, Bozzao, Pantano (bib36) 2004; 21 Meehan, Bressler, Tang, Astafiev, Sylvester, Shulman, Corbetta (bib38) 2017 de Jong (bib11) 1993; 18 Laumann, Gordon, Adeyemo, Snyder, Joo, Chen, Gilmore, McDermott, Nelson, Dosenbach, Schlaggar, Mumford, Poldrack, Petersen (bib32) 2015; 87 Meskaldji, Morgenthaler, Van De Ville (bib40) 2015 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib19) 2015; 18 Cole, Bassett, Power, Braver, Petersen (bib7) 2014; 83 Li, Morris, Martin (bib33) 2002; 64 Wentzell, Vega Montoto (bib59) 2003; 65 Chou, Panych, Dickey, Petrella, Chen (bib6) 2012; 33 Dubois, Adolphs (bib12) 2016; 20 Castellanos (10.1016/j.neuroimage.2017.11.010_bib3) 2002; 288 Buschman (10.1016/j.neuroimage.2017.11.010_bib2) 2007; 315 Welvaert (10.1016/j.neuroimage.2017.11.010_bib58) 2013; 8 Killory (10.1016/j.neuroimage.2017.11.010_bib29) 2011; 56 Meskaldji (10.1016/j.neuroimage.2017.11.010_bib40) 2015 Smith (10.1016/j.neuroimage.2017.11.010_bib63) 2015; 18 Noble (10.1016/j.neuroimage.2017.11.010_bib45) 2017 Pannunzi (10.1016/j.neuroimage.2017.11.010_bib46) 2017; 157 Corbetta (10.1016/j.neuroimage.2017.11.010_bib10) 2002; 3 Wold (10.1016/j.neuroimage.2017.11.010_bib60) 1984; 5 Noble (10.1016/j.neuroimage.2017.11.010_bib44) 2017; 146 Rosenberg (10.1016/j.neuroimage.2017.11.010_bib50) 2016; 36 Karahanoğlu (10.1016/j.neuroimage.2017.11.010_bib28) 2015; 6 Laumann (10.1016/j.neuroimage.2017.11.010_bib32) 2015; 87 Wentzell (10.1016/j.neuroimage.2017.11.010_bib59) 2003; 65 Havel (10.1016/j.neuroimage.2017.11.010_bib25) 2006; 253 Mason (10.1016/j.neuroimage.2017.11.010_bib37) 2007; 315 Spreng (10.1016/j.neuroimage.2017.11.010_bib55) 2010; 53 Tagliazucchi (10.1016/j.neuroimage.2017.11.010_bib56) 2012; 3 Gießing (10.1016/j.neuroimage.2017.11.010_bib23) 2013; 33 Meskaldji (10.1016/j.neuroimage.2017.11.010_bib41) 2016; 12 Farr (10.1016/j.neuroimage.2017.11.010_bib16) 2014; 22 Krain (10.1016/j.neuroimage.2017.11.010_bib31) 2006; 26 10.1016/j.neuroimage.2017.11.010_bib62 Gregoriou (10.1016/j.neuroimage.2017.11.010_bib24) 2009; 324 Zuo (10.1016/j.neuroimage.2017.11.010_bib61) 2014; 45 Shen (10.1016/j.neuroimage.2017.11.010_bib53) 2017; 12 Konrad (10.1016/j.neuroimage.2017.11.010_bib30) 2010; 31 Hutchison (10.1016/j.neuroimage.2017.11.010_bib26) 2013; 80 Rosenberg (10.1016/j.neuroimage.2017.11.010_bib48) 2016; 19 Fox (10.1016/j.neuroimage.2017.11.010_bib21) 2007; 8 Scheinost (10.1016/j.neuroimage.2017.11.010_bib52) 2016; 63 van de Ven (10.1016/j.neuroimage.2017.11.010_bib57) 2004; 22 Dubois (10.1016/j.neuroimage.2017.11.010_bib12) 2016; 20 Castellanos (10.1016/j.neuroimage.2017.11.010_bib4) 2012 Fan (10.1016/j.neuroimage.2017.11.010_bib15) 2005; 26 Fox (10.1016/j.neuroimage.2017.11.010_bib20) 2010; 4 de Jong (10.1016/j.neuroimage.2017.11.010_bib11) 1993; 18 Mostofsky (10.1016/j.neuroimage.2017.11.010_bib43) 1998; 13 Meskaldji (10.1016/j.neuroimage.2017.11.010_bib42) 2016 Rosenberg (10.1016/j.neuroimage.2017.11.010_bib47) 2017; 21 Rosenberg (10.1016/j.neuroimage.2017.11.010_bib49) 2013; 75 Esterman (10.1016/j.neuroimage.2017.11.010_bib13) 2013; 23 Cole (10.1016/j.neuroimage.2017.11.010_bib7) 2014; 83 Chou (10.1016/j.neuroimage.2017.11.010_bib6) 2012; 33 Liu (10.1016/j.neuroimage.2017.11.010_bib34) 2013; 110 Fair (10.1016/j.neuroimage.2017.11.010_bib14) 2010; 68 Just (10.1016/j.neuroimage.2017.11.010_bib27) 2004; 127 Farr (10.1016/j.neuroimage.2017.11.010_bib17) 2014; 17 Consortium (10.1016/j.neuroimage.2017.11.010_bib9) 2012; 6 Cole (10.1016/j.neuroimage.2017.11.010_bib8) 2013; 16 Mahesh (10.1016/j.neuroimage.2017.11.010_bib35) 2015; 8 Mainero (10.1016/j.neuroimage.2017.11.010_bib36) 2004; 21 Finn (10.1016/j.neuroimage.2017.11.010_bib19) 2015; 18 Meehan (10.1016/j.neuroimage.2017.11.010_bib38) 2017 Choe (10.1016/j.neuroimage.2017.11.010_bib5) 2015; 10 Shen (10.1016/j.neuroimage.2017.11.010_bib54) 2013; 82 Arbabshirani (10.1016/j.neuroimage.2017.11.010_bib1) 2017; 145 Li (10.1016/j.neuroimage.2017.11.010_bib33) 2002; 64 Gabrieli (10.1016/j.neuroimage.2017.11.010_bib22) 2015; 85 Saproo (10.1016/j.neuroimage.2017.11.010_bib51) 2014; 34 Finn (10.1016/j.neuroimage.2017.11.010_bib18) 2017 Meindl (10.1016/j.neuroimage.2017.11.010_bib39) 2009; 31 |
References_xml | – volume: 6 start-page: 7751 year: 2015 ident: bib28 article-title: Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks publication-title: Nat. Commun. – year: 2017 ident: bib18 article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity? publication-title: Neuroimage – start-page: 26 year: 2015 end-page: 29 ident: bib40 article-title: New measures of brain functional connectivity by temporal analysis of extreme events publication-title: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) – start-page: 1311 year: 2016 end-page: 1314 ident: bib42 article-title: Predicting individual scores from resting state fMRI using partial least squares regression publication-title: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) – volume: 8 start-page: e77089 year: 2013 ident: bib58 article-title: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data publication-title: PLoS One – volume: 12 start-page: 506 year: 2017 end-page: 518 ident: bib53 article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity publication-title: Nat. Protoc. – volume: 87 start-page: 657 year: 2015 end-page: 670 ident: bib32 article-title: Functional system and areal organization of a highly sampled individual human brain, 2015 publication-title: Neuron – volume: 127 start-page: 1811 year: 2004 end-page: 1821 ident: bib27 article-title: Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity publication-title: Brain – volume: 26 start-page: 433 year: 2006 end-page: 444 ident: bib31 article-title: Brain development and ADHD publication-title: Clin. Psychol. Rev. – volume: 12 start-page: 785 year: 2016 end-page: 795 ident: bib41 article-title: Prediction of long-term memory scores in MCI based on resting-state fMRI publication-title: NeuroImage Clin. – volume: 157 start-page: 250 year: 2017 end-page: 262 ident: bib46 article-title: Resting-state fMRI correlations: from link-wise unreliability to whole brain stability publication-title: Neuroimage – volume: 45 start-page: 100 year: 2014 end-page: 118 ident: bib61 article-title: Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective publication-title: Neurosci. Biobehav. Rev. – volume: 68 start-page: 1084 year: 2010 end-page: 1091 ident: bib14 article-title: Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder publication-title: Biol. Psychiatry – volume: 13 start-page: 434 year: 1998 end-page: 439 ident: bib43 article-title: Evaluation of cerebellar size in attention-deficit hyperactivity disorder publication-title: J. Child. Neurol. – volume: 63 start-page: 2540 year: 2016 end-page: 2549 ident: bib52 article-title: Fluctuations in global brain activity are associated with changes in whole-brain connectivity of functional networks publication-title: IEEE Trans. Biomed. Eng. – volume: 146 start-page: 959 year: 2017 end-page: 970 ident: bib44 article-title: Multisite reliability of MR-based functional connectivity publication-title: Neuroimage – volume: 8 start-page: 700 year: 2007 end-page: 711 ident: bib21 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. – start-page: 1 year: 2017 end-page: 19 ident: bib38 article-title: Top-down cortical interactions in visuospatial attention publication-title: Brain Struct. Funct. – volume: 23 start-page: 2712 year: 2013 end-page: 2723 ident: bib13 article-title: In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention publication-title: Cereb. Cortex – volume: 36 year: 2016 ident: bib50 article-title: Methylphenidate modulates functional network connectivity to enhance attention publication-title: J. Neurosci. – volume: 33 year: 2012 ident: bib6 article-title: Investigation of long-term reproducibility of intrinsic connectivity network mapping: a resting-state fMRI study publication-title: Am. J. Neuroradiol. – start-page: 1 year: 2017 end-page: 15 ident: bib45 article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility publication-title: Cereb. Cortex – volume: 288 start-page: 1740 year: 2002 end-page: 1748 ident: bib3 article-title: Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder publication-title: JAMA – volume: 17 start-page: 1177 year: 2014 end-page: 1191 ident: bib17 article-title: The effects of methylphenidate on resting-state striatal, thalamic and global functional connectivity in healthy adults publication-title: Int. J. Neuropsychopharmacol. – volume: 53 start-page: 303 year: 2010 end-page: 317 ident: bib55 article-title: Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition publication-title: Neuroimage – volume: 31 year: 2009 ident: bib39 article-title: Test-retest reproducibility of the default-mode network in healthy individuals publication-title: Hum. Brain Mapp. – volume: 75 start-page: 426 year: 2013 end-page: 439 ident: bib49 article-title: Sustaining visual attention in the face of distraction: a novel gradual-onset continuous performance task publication-title: Atten. Percept. Psychophys. – volume: 21 start-page: 858 year: 2004 end-page: 867 ident: bib36 article-title: fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis publication-title: Neuroimage – volume: 80 start-page: 360 year: 2013 end-page: 378 ident: bib26 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage – volume: 4 start-page: 19 year: 2010 ident: bib20 article-title: Clinical applications of resting state functional connectivity publication-title: Front. Syst. Neurosci. – volume: 83 start-page: 238 year: 2014 end-page: 251 ident: bib7 article-title: Intrinsic and task-evoked network architectures of the human brain publication-title: Neuron – volume: 85 start-page: 11 year: 2015 end-page: 26 ident: bib22 article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience publication-title: Neuron – volume: 3 start-page: 15 year: 2012 ident: bib56 article-title: Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis publication-title: Front. Physiol. – volume: 110 start-page: 4392 year: 2013 end-page: 4397 ident: bib34 article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: bib19 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 56 start-page: 2209 year: 2011 end-page: 2217 ident: bib29 article-title: Impaired attention and network connectivity in childhood absence epilepsy publication-title: Neuroimage – volume: 82 start-page: 403 year: 2013 end-page: 415 ident: bib54 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage – volume: 5 year: 1984 ident: bib60 article-title: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses* publication-title: SIAM J. Sci. Stat. Comput. – volume: 253 start-page: 471 year: 2006 end-page: 476 ident: bib25 article-title: Reproducibility of activation in four motor paradigms publication-title: J. Neurol. – volume: 8 start-page: 31 year: 2015 end-page: 40 ident: bib35 article-title: Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of canadian wheat publication-title: Food Bioprocess Technol. – volume: 31 start-page: 904 year: 2010 end-page: 916 ident: bib30 article-title: Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder publication-title: Hum. Brain Mapp. – year: 2012 ident: bib4 article-title: Large-scale brain systems in ADHD: beyond the prefrontal-striatal model publication-title: Trends Cogn. Sci. – volume: 324 year: 2009 ident: bib24 article-title: High-frequency, long-range coupling between prefrontal and visual cortex during attention publication-title: Sci. (80-. ) – volume: 10 start-page: e0140134 year: 2015 ident: bib5 article-title: Reproducibility and temporal structure in weekly resting-state fMRI over a period of 3.5 years publication-title: PLoS One – reference: Rosenberg M.D., Hsu W.-T, Scheinost D., Constable R.T. and Chun M.M., Connectome-based models predict separable components of attention in novel individuals, J. Cogn. Neurosci., in press, – volume: 64 start-page: 79 year: 2002 end-page: 89 ident: bib33 article-title: Model selection for partial least squares regression publication-title: Chemom. Intell. Lab. Syst. – volume: 18 start-page: 1565 year: 2015 end-page: 1567 ident: bib63 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. – volume: 26 start-page: 471 year: 2005 end-page: 479 ident: bib15 article-title: The activation of attentional networks publication-title: Neuroimage – volume: 65 start-page: 257 year: 2003 end-page: 279 ident: bib59 article-title: Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures publication-title: Chemom. Intell. Lab. Syst. – volume: 22 start-page: 165 year: 2004 end-page: 178 ident: bib57 article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest publication-title: Hum. Brain Mapp. – volume: 3 start-page: 215 year: 2002 end-page: 229 ident: bib10 article-title: Control of goal-directed and stimulus-driven attention in the brain publication-title: Nat. Rev. Neurosci. – volume: 145 start-page: 137 year: 2017 end-page: 165 ident: bib1 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage – reference: . – volume: 22 start-page: 154 year: 2014 end-page: 165 ident: bib16 article-title: The effects of methylphenidate on cerebral activations to salient stimuli in healthy adults publication-title: Exp. Clin. Psychopharmacol. – volume: 6 start-page: 62 year: 2012 ident: bib9 article-title: The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Front. Syst. Neurosci. – volume: 20 start-page: 425 year: 2016 end-page: 443 ident: bib12 article-title: Building a science of individual differences from fMRI publication-title: Trends Cogn. Sci. – volume: 19 start-page: 165 year: 2016 end-page: 171 ident: bib48 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. – volume: 315 start-page: 393 year: 2007 end-page: 395 ident: bib37 article-title: Wandering minds: the default network and stimulus-independent thought publication-title: Science – volume: 33 year: 2013 ident: bib23 article-title: Human brain functional network changes associated with enhanced and impaired attentional task performance publication-title: J. Neurosci. – volume: 34 year: 2014 ident: bib51 article-title: Attention improves transfer of motion information between V1 and MT publication-title: J. Neurosci. – volume: 18 start-page: 251 year: 1993 end-page: 263 ident: bib11 article-title: SIMPLS: an alternative approach to partial least squares regression publication-title: Chemom. Intell. Lab. Syst. – volume: 16 start-page: 1348 year: 2013 end-page: 1355 ident: bib8 article-title: Multi-task connectivity reveals flexible hubs for adaptive task control publication-title: Nat. Neurosci. – volume: 315 year: 2007 ident: bib2 article-title: Top-Down versus bottom-up control of attention in the prefrontal and posterior parietal cortices publication-title: Sci. (80-. ) – volume: 21 start-page: 290 year: 2017 end-page: 302 ident: bib47 article-title: Characterizing attention with predictive network models publication-title: Trends Cogn. Sci. – volume: 26 start-page: 471 year: 2005 ident: 10.1016/j.neuroimage.2017.11.010_bib15 article-title: The activation of attentional networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.004 – start-page: 26 year: 2015 ident: 10.1016/j.neuroimage.2017.11.010_bib40 article-title: New measures of brain functional connectivity by temporal analysis of extreme events – volume: 19 start-page: 165 year: 2016 ident: 10.1016/j.neuroimage.2017.11.010_bib48 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4179 – volume: 3 start-page: 15 year: 2012 ident: 10.1016/j.neuroimage.2017.11.010_bib56 article-title: Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis publication-title: Front. Physiol. doi: 10.3389/fphys.2012.00015 – year: 2012 ident: 10.1016/j.neuroimage.2017.11.010_bib4 article-title: Large-scale brain systems in ADHD: beyond the prefrontal-striatal model publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2011.11.007 – volume: 127 start-page: 1811 year: 2004 ident: 10.1016/j.neuroimage.2017.11.010_bib27 article-title: Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity publication-title: Brain doi: 10.1093/brain/awh199 – volume: 18 start-page: 251 year: 1993 ident: 10.1016/j.neuroimage.2017.11.010_bib11 article-title: SIMPLS: an alternative approach to partial least squares regression publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(93)85002-X – start-page: 1311 year: 2016 ident: 10.1016/j.neuroimage.2017.11.010_bib42 article-title: Predicting individual scores from resting state fMRI using partial least squares regression – volume: 17 start-page: 1177 year: 2014 ident: 10.1016/j.neuroimage.2017.11.010_bib17 article-title: The effects of methylphenidate on resting-state striatal, thalamic and global functional connectivity in healthy adults publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145714000674 – volume: 253 start-page: 471 year: 2006 ident: 10.1016/j.neuroimage.2017.11.010_bib25 article-title: Reproducibility of activation in four motor paradigms publication-title: J. Neurol. – volume: 85 start-page: 11 year: 2015 ident: 10.1016/j.neuroimage.2017.11.010_bib22 article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience publication-title: Neuron doi: 10.1016/j.neuron.2014.10.047 – volume: 23 start-page: 2712 year: 2013 ident: 10.1016/j.neuroimage.2017.11.010_bib13 article-title: In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs261 – volume: 315 start-page: 393 year: 2007 ident: 10.1016/j.neuroimage.2017.11.010_bib37 article-title: Wandering minds: the default network and stimulus-independent thought publication-title: Science doi: 10.1126/science.1131295 – volume: 8 start-page: 31 year: 2015 ident: 10.1016/j.neuroimage.2017.11.010_bib35 article-title: Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of canadian wheat publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-014-1381-z – volume: 31 year: 2009 ident: 10.1016/j.neuroimage.2017.11.010_bib39 article-title: Test-retest reproducibility of the default-mode network in healthy individuals publication-title: Hum. Brain Mapp. – volume: 68 start-page: 1084 year: 2010 ident: 10.1016/j.neuroimage.2017.11.010_bib14 article-title: Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2010.07.003 – volume: 18 start-page: 1565 year: 2015 ident: 10.1016/j.neuroimage.2017.11.010_bib63 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. doi: 10.1038/nn.4125 – volume: 64 start-page: 79 year: 2002 ident: 10.1016/j.neuroimage.2017.11.010_bib33 article-title: Model selection for partial least squares regression publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(02)00051-5 – volume: 36 year: 2016 ident: 10.1016/j.neuroimage.2017.11.010_bib50 article-title: Methylphenidate modulates functional network connectivity to enhance attention publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1746-16.2016 – volume: 5 year: 1984 ident: 10.1016/j.neuroimage.2017.11.010_bib60 article-title: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses* publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0905052 – volume: 157 start-page: 250 year: 2017 ident: 10.1016/j.neuroimage.2017.11.010_bib46 article-title: Resting-state fMRI correlations: from link-wise unreliability to whole brain stability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.006 – volume: 12 start-page: 506 year: 2017 ident: 10.1016/j.neuroimage.2017.11.010_bib53 article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.178 – volume: 21 start-page: 290 year: 2017 ident: 10.1016/j.neuroimage.2017.11.010_bib47 article-title: Characterizing attention with predictive network models publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2017.01.011 – volume: 33 year: 2012 ident: 10.1016/j.neuroimage.2017.11.010_bib6 article-title: Investigation of long-term reproducibility of intrinsic connectivity network mapping: a resting-state fMRI study publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A2894 – volume: 8 start-page: 700 year: 2007 ident: 10.1016/j.neuroimage.2017.11.010_bib21 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2201 – volume: 16 start-page: 1348 year: 2013 ident: 10.1016/j.neuroimage.2017.11.010_bib8 article-title: Multi-task connectivity reveals flexible hubs for adaptive task control publication-title: Nat. Neurosci. doi: 10.1038/nn.3470 – volume: 6 start-page: 7751 year: 2015 ident: 10.1016/j.neuroimage.2017.11.010_bib28 article-title: Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks publication-title: Nat. Commun. doi: 10.1038/ncomms8751 – volume: 10 start-page: e0140134 year: 2015 ident: 10.1016/j.neuroimage.2017.11.010_bib5 article-title: Reproducibility and temporal structure in weekly resting-state fMRI over a period of 3.5 years publication-title: PLoS One doi: 10.1371/journal.pone.0140134 – volume: 4 start-page: 19 year: 2010 ident: 10.1016/j.neuroimage.2017.11.010_bib20 article-title: Clinical applications of resting state functional connectivity publication-title: Front. Syst. Neurosci. – year: 2017 ident: 10.1016/j.neuroimage.2017.11.010_bib18 article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.064 – volume: 33 year: 2013 ident: 10.1016/j.neuroimage.2017.11.010_bib23 article-title: Human brain functional network changes associated with enhanced and impaired attentional task performance publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4854-12.2013 – volume: 53 start-page: 303 year: 2010 ident: 10.1016/j.neuroimage.2017.11.010_bib55 article-title: Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.016 – volume: 18 start-page: 1664 year: 2015 ident: 10.1016/j.neuroimage.2017.11.010_bib19 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 56 start-page: 2209 year: 2011 ident: 10.1016/j.neuroimage.2017.11.010_bib29 article-title: Impaired attention and network connectivity in childhood absence epilepsy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.03.036 – volume: 22 start-page: 154 year: 2014 ident: 10.1016/j.neuroimage.2017.11.010_bib16 article-title: The effects of methylphenidate on cerebral activations to salient stimuli in healthy adults publication-title: Exp. Clin. Psychopharmacol. doi: 10.1037/a0034465 – volume: 145 start-page: 137 year: 2017 ident: 10.1016/j.neuroimage.2017.11.010_bib1 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 45 start-page: 100 year: 2014 ident: 10.1016/j.neuroimage.2017.11.010_bib61 article-title: Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2014.05.009 – volume: 21 start-page: 858 year: 2004 ident: 10.1016/j.neuroimage.2017.11.010_bib36 article-title: fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.10.004 – volume: 315 year: 2007 ident: 10.1016/j.neuroimage.2017.11.010_bib2 article-title: Top-Down versus bottom-up control of attention in the prefrontal and posterior parietal cortices publication-title: Sci. (80-. ) doi: 10.1126/science.1138071 – volume: 65 start-page: 257 year: 2003 ident: 10.1016/j.neuroimage.2017.11.010_bib59 article-title: Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(02)00138-7 – volume: 324 year: 2009 ident: 10.1016/j.neuroimage.2017.11.010_bib24 article-title: High-frequency, long-range coupling between prefrontal and visual cortex during attention publication-title: Sci. (80-. ) doi: 10.1126/science.1171402 – volume: 80 start-page: 360 year: 2013 ident: 10.1016/j.neuroimage.2017.11.010_bib26 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 83 start-page: 238 year: 2014 ident: 10.1016/j.neuroimage.2017.11.010_bib7 article-title: Intrinsic and task-evoked network architectures of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2014.05.014 – start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2017.11.010_bib38 article-title: Top-down cortical interactions in visuospatial attention publication-title: Brain Struct. Funct. – volume: 34 year: 2014 ident: 10.1016/j.neuroimage.2017.11.010_bib51 article-title: Attention improves transfer of motion information between V1 and MT publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3484-13.2014 – volume: 87 start-page: 657 year: 2015 ident: 10.1016/j.neuroimage.2017.11.010_bib32 article-title: Functional system and areal organization of a highly sampled individual human brain, 2015 publication-title: Neuron doi: 10.1016/j.neuron.2015.06.037 – volume: 26 start-page: 433 year: 2006 ident: 10.1016/j.neuroimage.2017.11.010_bib31 article-title: Brain development and ADHD publication-title: Clin. Psychol. Rev. doi: 10.1016/j.cpr.2006.01.005 – volume: 82 start-page: 403 year: 2013 ident: 10.1016/j.neuroimage.2017.11.010_bib54 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.081 – volume: 31 start-page: 904 year: 2010 ident: 10.1016/j.neuroimage.2017.11.010_bib30 article-title: Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21058 – volume: 3 start-page: 215 year: 2002 ident: 10.1016/j.neuroimage.2017.11.010_bib10 article-title: Control of goal-directed and stimulus-driven attention in the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn755 – start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2017.11.010_bib45 article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility publication-title: Cereb. Cortex – volume: 288 start-page: 1740 year: 2002 ident: 10.1016/j.neuroimage.2017.11.010_bib3 article-title: Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder publication-title: JAMA doi: 10.1001/jama.288.14.1740 – volume: 146 start-page: 959 year: 2017 ident: 10.1016/j.neuroimage.2017.11.010_bib44 article-title: Multisite reliability of MR-based functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.020 – volume: 22 start-page: 165 year: 2004 ident: 10.1016/j.neuroimage.2017.11.010_bib57 article-title: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20022 – volume: 8 start-page: e77089 year: 2013 ident: 10.1016/j.neuroimage.2017.11.010_bib58 article-title: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data publication-title: PLoS One doi: 10.1371/journal.pone.0077089 – volume: 110 start-page: 4392 year: 2013 ident: 10.1016/j.neuroimage.2017.11.010_bib34 article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1216856110 – volume: 63 start-page: 2540 year: 2016 ident: 10.1016/j.neuroimage.2017.11.010_bib52 article-title: Fluctuations in global brain activity are associated with changes in whole-brain connectivity of functional networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2600248 – volume: 20 start-page: 425 year: 2016 ident: 10.1016/j.neuroimage.2017.11.010_bib12 article-title: Building a science of individual differences from fMRI publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2016.03.014 – volume: 6 start-page: 62 year: 2012 ident: 10.1016/j.neuroimage.2017.11.010_bib9 article-title: The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00062 – volume: 13 start-page: 434 year: 1998 ident: 10.1016/j.neuroimage.2017.11.010_bib43 article-title: Evaluation of cerebellar size in attention-deficit hyperactivity disorder publication-title: J. Child. Neurol. doi: 10.1177/088307389801300904 – ident: 10.1016/j.neuroimage.2017.11.010_bib62 doi: 10.1162/jocn_a_01197 – volume: 12 start-page: 785 year: 2016 ident: 10.1016/j.neuroimage.2017.11.010_bib41 article-title: Prediction of long-term memory scores in MCI based on resting-state fMRI publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2016.10.004 – volume: 75 start-page: 426 year: 2013 ident: 10.1016/j.neuroimage.2017.11.010_bib49 article-title: Sustaining visual attention in the face of distraction: a novel gradual-onset continuous performance task publication-title: Atten. Percept. Psychophys. doi: 10.3758/s13414-012-0413-x |
SSID | ssj0009148 |
Score | 2.5805273 |
Snippet | Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and... Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and... Connectome-based predictive modeling (CPM; Finn et al., 2015 ; Shen et al., 2017 ) was recently developed to predict individual differences in traits and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11 |
SubjectTerms | Adult Algorithms Attention Attention - physiology Attention Deficit Disorder with Hyperactivity - diagnostic imaging Attention Deficit Disorder with Hyperactivity - physiopathology Attention deficit hyperactivity disorder Attention task Behavior Brain - diagnostic imaging Brain - physiology Brain mapping Cognitive ability Connectome - methods Connectome - standards Connectome - statistics & numerical data Datasets as Topic Discordance Executive Function - physiology Functional connectivity Functional magnetic resonance imaging Humans Intelligence Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - standards Magnetic Resonance Imaging - statistics & numerical data Memory Methylphenidate Models, Statistical Neural networks Noise Partial least square regression Predictive model Principal components analysis Psychomotor Performance - physiology Regression analysis Reproducibility of Results Statistical analysis Studies Synchronization Young Adult |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTkK8TOO7YyAj8RraxHFcs6epYiqg7QUm7c1KY1t0Ykm1ZP_G_ubd2U5KgYdKPPbcs2r7fL-7-j4APhiTyyUvVFKKKU9yh36KEqVALwWxXCIAK075zucXxeIy_3olrvZg3ufCUFhl1P1Bp3ttHSmTuJuT9Wo1-Y6zIdyQv8ER9KR4BPsZov1sBPunX74tLja1d9M8ZMQJnhBDDOgJYV6-bOTqBi8vxXnJj1TSk9Jp_41Sf1uhfwZT_oZOZ4dwEM1Kdhp--VPYs_UzeHweH86fw70PaKm65sYmBFyGrW9pkJQd891wEMJY4xiV2_QBkJ_YPLQoRHrfRaVjBIPh30NWhRl98wnmrC8Q2rKy3kzd1Cw0qEayXyejeNTWdu0LuDz7_GO-SGIrhqQq-LRLjEVPtjRTg3heLg03rnQFVbLJ0qrIjKnEzCjDZaocai0kOJkaJ1AQ0BycWclfwqhuavsamChc5YRVQlVpLp0pc1WovEIBkcqiwTQG2W-9rmKdcmqX8Uv3AWnXenNomg4N3RiNhzaGdOBch1odO_Co_nR1n4uK2lMjoOzAezLwbsnsjtzHvTDpqDdaGs84-pQyH8P7YRhvPD3jlLVt7lpNOpOyCFU6hldB9oblIjGjl3XcxC2pHL5A1cS3R-rVT19VHC1R1N7q6L8W9Qae4KcZhbWn4hhG3e2dfYtWW7d8F2_lAyOoRzA priority: 102 providerName: Elsevier |
Title | Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917309175 https://dx.doi.org/10.1016/j.neuroimage.2017.11.010 https://www.ncbi.nlm.nih.gov/pubmed/29122720 https://www.proquest.com/docview/2012360674 https://www.proquest.com/docview/1963270291 https://pubmed.ncbi.nlm.nih.gov/PMC5845789 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD5im4R4QdwpjMpIvGaqmziu4QGNalO5rJomJvXNSn0RQywpS_bKT-A3c47ttAwQ6lNUO46a-Phc7HO-D-CVtYVc5qXKKjHKs8JjnKJEJTBKQVsu0QCrnOqdT-bl7Lz4sBCLtOHWprTKXicGRW0bQ3vkGKQTTgjq1uLt6ntGrFF0upooNHZgj6MnQtQNciE3oLu8iKVwIs8meEPK5In5XQEv8uISVy0leMkDwvKkOtp_m6e_3c8_syh_M0vH9-Bu8ifZYRSA-3DL1Q_g9kk6MX8IP0Mmi-maS5eRxbJsdUWdpOVYoMFB28UazwhnM2Q-vmbTyE2I7T19SsfI_sVtQ2biEwPrBPMuIIO2rKo3j25qFpmpsTm8J6NE1NZ17SM4Pz76PJ1liYMhM2U-6jLrMISt7MiiIa-WNre-8iVB2Iy5KcfWGjGxyuaSK4_qChu85NYLlAD0AydO5o9ht25q9xSYKL3xwimhDC-kt1WhSlUYlAypHHpKA5D9p9cmAZQTT8Y33WeifdWbSdM0aRi_aJy0AfD1yFUE6dhijOpnV_dFqKg2NVqSLca-WY9Njkp0QLYcvd8Lk04Ko9Ub8R7Ay3U3LnU6v6lq11y3mpQllQ8qPoAnUfbWr4uNYzpSx494QyrXNxCM-M2e-uJLgBNHFxTVtnr2_7_1HO7gjwklrHOxD7vd1bV7gf5YtxzCzsEPPgxLbwh7h9OzT6d0ff9xNsfru6P56dkvpLNAGQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAkaCY9A6ieM1CCFUqLa021Mr7c1k_RBFNFmaVIg_wU_hNzJjJ1kKCO2lVztjxZnxPOKZbwCeWZvLRVaopBTjLMk9xilKlAKjFLTlEg2wyqjeeXZQTI_yD3Mx34CffS0MpVX2OjEoalsb-keOQTrhhKBuzd8svybUNYpuV_sWGlEs9tz3bxiyNa933yF_n6fpzvvD7WnSdRVITJGN28Q6DMpKO7ZomsqFzawvfUGgLCk3RWqtEROrbCa58ngAccBLbr3APaFnM3Eyw3UvweWcrhjx_Mi5XIH88jyW3oksmXCuusyhmE8W8CmPT1BLUEKZfEHYoVS3-29z-Le7-2fW5m9mcOcGXO_8V_Y2CtxN2HDVLbgy627ob8OPkDlj2vrEJWQhLVue0iRpVRba7qCtZLVnhOsZMi1fsu3YCxHH-3YtLSN7G39TMhNXDF0umHcBibRhZbVauq5Y7ISNw2GfjBJfG9c2d-DoQrhzFzarunL3gYnCGy-cEsrwXHpb5qpQuUFJlMqhZzYC2X96bTpAdOrL8UX3mW-f9YppmpiG8ZJGpo2AD5TLCAqyBo3quav7oldU0xot1xq0rwbazjGKDs-a1Fu9MOlOQTV6dZxG8HSYRtVC90Vl5eqzRpNypnJFxUdwL8resF0cTOkKHz_iOakcHiDY8vMz1fGnAF-OLi-aCfXg_6_1BK5OD2f7en_3YO8hXMOJCSXLc7EFm-3pmXuEvmC7eBwOIIOPF33ifwGxNnf_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKK1W8IO5sKWAkeAyskzhegyoEbVctpasKUalvbtYXUdQmS5MK8RN8GF_FjO1kKSC0L321YyvO2HOJz5wh5JkxuZhmhUxKPsyS3EGcInnJIUoBWy7AAMsM8533J8XOYf7-iB8tkZ9dLgzCKjud6BW1qTX-I4cgHXlCQLfmL12ERRxsjd_MviZYQQpvWrtyGmUss2A2PN1YTPLYs9-_QTjXbOxugeyfp-l4-9PmThIrDiS6yIZtYiwEbKUZGjBb5dRkxpWuQMKWlOkiNUbzkZEmE0w6OJzQ4AQzjsN6wesZWZHBvNfIigCrD4HgyrvtycHHOQUwy0NiHs-SEWMy4ooC2syzV56cgQ5BuJl4gcyimNX7b2P5tzP8J6bzNyM5vkluRO-Wvg3b8RZZstVtsrof7-_vkB8eV6Pb-swmaD8NnZ1jJ-pc6ovygCWltaPI-ulxmK_oZqiUCO1dMZeWojUOPzGpDjP6GhjUWc9T2tCymk9dVzTUyYZmv06KsNjGts1dcngl8rlHlqu6sg8I5YXTjlvJpWa5cKbMZSFzDftUSAt-24CI7tMrHenSsWrHqepwcV_UXGgKhQbRlAKhDQjrR84CZcgCY2QnXdWlxIISV2DXFhj7uh8b3abgDi04er3bTCqqr0bND9uAPO27QfHgbVJZ2fqiUai6MZlRsgG5H_Zev1xoTPGCHz7ipV3ZP4Ck5pd7qpPPntwcHGIwInLt_6_1hKzC6Vcfdid7D8l1aB8hkp7xdbLcnl_YR-AottPH8QRScnzVh_4X602C2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectome-based+predictive+modeling+of+attention%3A+Comparing+different+functional+connectivity+features+and+prediction+methods+across+datasets&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Yoo%2C+Kwangsun&rft.au=Rosenberg%2C+Monica+D.&rft.au=Hsu%2C+Wei-Ting&rft.au=Zhang%2C+Sheng&rft.date=2018-02-15&rft.issn=1053-8119&rft.volume=167&rft.spage=11&rft.epage=22&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.11.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2017_11_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |