Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies

Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, i...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 188; pp. 14 - 25
Main Authors Fong, Angus Ho Ching, Yoo, Kwangsun, Rosenberg, Monica D., Zhang, Sheng, Li, Chiang-Shan R., Scheinost, Dustin, Constable, R. Todd, Chun, Marvin M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2018.11.057

Cover

Abstract Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, including attention. Here, we show that DFC predicts attention performance across individuals. Sliding-window FC matrices were generated from fMRI data collected during rest and attention task performance by calculating Pearson's r between every pair of nodes of a whole-brain atlas within overlapping 10–60s time segments. Next, variance in r values across windows was taken to quantify temporal variability in the strength of each connection, resulting in a DFC connectome for each individual. In a leave-one-subject-out-cross-validation approach, partial-least-square-regression (PLSR) models were then trained to predict attention task performance from DFC matrices. Predicted and observed attention scores were significantly correlated, indicating successful out-of-sample predictions across rest and task conditions. Combining DFC and static FC features numerically improves predictions over either model alone, but the improvement was not statistically significant. Moreover, dynamic and combined models generalized to two independent data sets (participants performing the Attention Network Task and the stop-signal task). Edges with significant PLSR coefficients concentrated in visual, motor, and executive-control brain networks; moreover, most of these coefficients were negative. Thus, better attention may rely on more stable, i.e. less variable, information flow between brain regions. •Temporal variability in functional connectivity predicts attention task performance.•Dynamic functional connectivity can be measured during task performance or rest.•Models generalized across 3 completely independent studies.•Higher functional connectivity variability generally predicts worse attention.
AbstractList Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, including attention. Here, we show that DFC predicts attention performance across individuals. Sliding-window FC matrices were generated from fMRI data collected during rest and attention task performance by calculating Pearson’s r between every pair of nodes of a whole-brain atlas within overlapping 10–60s time segments. Next, variance in r values across windows was taken to quantify temporal variability in the strength of each connection, resulting in a DFC connectome for each individual. In a leave-one-subject-out-cross-validation approach, partial-least-square-regression (PLSR) models were then trained to predict attention task performance from DFC matrices. Predicted and observed attention scores were significantly correlated, indicating successful out-of-sample predictions across rest and task conditions. Combining DFC and static FC features numerically improves predictions over either model alone, but the improvement was not statistically significant. Moreover, dynamic and combined models generalized to two independent data sets (participants performing the Attention Network Task and the stop-signal task). Edges with significant PLSR coefficients concentrated in visual, motor, and executive-control brain networks; moreover, most of these coefficients were negative. Thus, better attention may rely on more stable, i.e. less variable, information flow between brain regions.
Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, including attention. Here, we show that DFC predicts attention performance across individuals. Sliding-window FC matrices were generated from fMRI data collected during rest and attention task performance by calculating Pearson's r between every pair of nodes of a whole-brain atlas within overlapping 10–60s time segments. Next, variance in r values across windows was taken to quantify temporal variability in the strength of each connection, resulting in a DFC connectome for each individual. In a leave-one-subject-out-cross-validation approach, partial-least-square-regression (PLSR) models were then trained to predict attention task performance from DFC matrices. Predicted and observed attention scores were significantly correlated, indicating successful out-of-sample predictions across rest and task conditions. Combining DFC and static FC features numerically improves predictions over either model alone, but the improvement was not statistically significant. Moreover, dynamic and combined models generalized to two independent data sets (participants performing the Attention Network Task and the stop-signal task). Edges with significant PLSR coefficients concentrated in visual, motor, and executive-control brain networks; moreover, most of these coefficients were negative. Thus, better attention may rely on more stable, i.e. less variable, information flow between brain regions. •Temporal variability in functional connectivity predicts attention task performance.•Dynamic functional connectivity can be measured during task performance or rest.•Models generalized across 3 completely independent studies.•Higher functional connectivity variability generally predicts worse attention.
Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, including attention. Here, we show that DFC predicts attention performance across individuals. Sliding-window FC matrices were generated from fMRI data collected during rest and attention task performance by calculating Pearson's r between every pair of nodes of a whole-brain atlas within overlapping 10-60s time segments. Next, variance in r values across windows was taken to quantify temporal variability in the strength of each connection, resulting in a DFC connectome for each individual. In a leave-one-subject-out-cross-validation approach, partial-least-square-regression (PLSR) models were then trained to predict attention task performance from DFC matrices. Predicted and observed attention scores were significantly correlated, indicating successful out-of-sample predictions across rest and task conditions. Combining DFC and static FC features numerically improves predictions over either model alone, but the improvement was not statistically significant. Moreover, dynamic and combined models generalized to two independent data sets (participants performing the Attention Network Task and the stop-signal task). Edges with significant PLSR coefficients concentrated in visual, motor, and executive-control brain networks; moreover, most of these coefficients were negative. Thus, better attention may rely on more stable, i.e. less variable, information flow between brain regions.Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, including attention. Here, we show that DFC predicts attention performance across individuals. Sliding-window FC matrices were generated from fMRI data collected during rest and attention task performance by calculating Pearson's r between every pair of nodes of a whole-brain atlas within overlapping 10-60s time segments. Next, variance in r values across windows was taken to quantify temporal variability in the strength of each connection, resulting in a DFC connectome for each individual. In a leave-one-subject-out-cross-validation approach, partial-least-square-regression (PLSR) models were then trained to predict attention task performance from DFC matrices. Predicted and observed attention scores were significantly correlated, indicating successful out-of-sample predictions across rest and task conditions. Combining DFC and static FC features numerically improves predictions over either model alone, but the improvement was not statistically significant. Moreover, dynamic and combined models generalized to two independent data sets (participants performing the Attention Network Task and the stop-signal task). Edges with significant PLSR coefficients concentrated in visual, motor, and executive-control brain networks; moreover, most of these coefficients were negative. Thus, better attention may rely on more stable, i.e. less variable, information flow between brain regions.
Author Rosenberg, Monica D.
Fong, Angus Ho Ching
Yoo, Kwangsun
Zhang, Sheng
Li, Chiang-Shan R.
Chun, Marvin M.
Scheinost, Dustin
Constable, R. Todd
AuthorAffiliation a Department of Psychology, Yale University
f Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
b Department of Psychiatry, Yale School of Medicine
d Interdepartmental Neuroscience Program, Yale University
c Department of Neuroscience, Yale School of Medicine
e Department of Radiology and Biomedical Imaging, Yale School of Medicine
AuthorAffiliation_xml – name: a Department of Psychology, Yale University
– name: e Department of Radiology and Biomedical Imaging, Yale School of Medicine
– name: b Department of Psychiatry, Yale School of Medicine
– name: f Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
– name: c Department of Neuroscience, Yale School of Medicine
– name: d Interdepartmental Neuroscience Program, Yale University
Author_xml – sequence: 1
  givenname: Angus Ho Ching
  surname: Fong
  fullname: Fong, Angus Ho Ching
  email: hoching.fong@yale.edu
  organization: Department of Psychology, Yale University, USA
– sequence: 2
  givenname: Kwangsun
  surname: Yoo
  fullname: Yoo, Kwangsun
  organization: Department of Psychology, Yale University, USA
– sequence: 3
  givenname: Monica D.
  surname: Rosenberg
  fullname: Rosenberg, Monica D.
  organization: Department of Psychology, Yale University, USA
– sequence: 4
  givenname: Sheng
  surname: Zhang
  fullname: Zhang, Sheng
  organization: Department of Psychiatry, Yale School of Medicine, USA
– sequence: 5
  givenname: Chiang-Shan R.
  surname: Li
  fullname: Li, Chiang-Shan R.
  organization: Department of Psychiatry, Yale School of Medicine, USA
– sequence: 6
  givenname: Dustin
  surname: Scheinost
  fullname: Scheinost, Dustin
  organization: Department of Radiology and Biomedical Imaging, Yale School of Medicine, USA
– sequence: 7
  givenname: R. Todd
  surname: Constable
  fullname: Constable, R. Todd
  organization: Interdepartmental Neuroscience Program, Yale University, USA
– sequence: 8
  givenname: Marvin M.
  surname: Chun
  fullname: Chun, Marvin M.
  organization: Department of Psychology, Yale University, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30521950$$D View this record in MEDLINE/PubMed
BookMark eNqVkkmP1DAQhSM0iFngLyBLXLh0cGVxnAuCGVZpJC5wthy73LgnbQc7aRSJH49DDzT0qTl5e-9T1StfZmfOO8wyAjQHCuzFJnc4BW-3co15QYHnADmtmwfZBdC2XrV1U5wt-7pccYD2PLuMcUMpbaHij7LzktYFtDW9yH68mZ3cWkXM5NRovZM9Ud45TIedHWeip2Ddmowy3pEBg_FhK51CIp0mAeNIhoDaqjES63Sy6CkRtDUGAybdck3kOKJb4ESq4GMkcZy0xfg4e2hkH_HJ_XqVfXn39vPNh9Xtp_cfb17frhQr6bhSHKHVVJtOGewKxY1htDNYdAxqjgyhoqZqVFtVaIqC8bLlZcOwQ9PVrdLlVdbuuZMb5Pxd9r0YQgovzAKoWBIVG3FIVCyJCgCREk3el3vvMHVb1Co1EuTB76UV_744-1Ws_U6wikJRsgR4fg8I_tuUEhNbGxX2vXTopygKqOs0Fc4gSZ8dSTd-Cmkki4o3ULKKF0n19O-K_pTye6iHkn-FHdAIZUe55J8KtP0pPfMjwH_Edb23YprnzmIQUdnlI2gb0p8S2ttTIK-OIKq3zirZ3-F8GuIn1mcDRQ
CitedBy_id crossref_primary_10_3389_fneur_2019_01052
crossref_primary_10_1002_hbm_25036
crossref_primary_10_1016_j_neuroimage_2022_119489
crossref_primary_10_1007_s11571_023_10054_0
crossref_primary_10_1016_j_neuroimage_2020_116896
crossref_primary_10_1016_j_jneumeth_2024_110275
crossref_primary_10_1093_cercor_bhac214
crossref_primary_10_1016_j_bbr_2021_113130
crossref_primary_10_1016_j_sleep_2024_12_013
crossref_primary_10_1093_cercor_bhaa282
crossref_primary_10_1016_j_neuroimage_2020_117290
crossref_primary_10_1007_s11571_023_09931_5
crossref_primary_10_1016_j_neuroimage_2023_120246
crossref_primary_10_1038_s41467_024_55317_4
crossref_primary_10_1093_cercor_bhad392
crossref_primary_10_1002_hbm_26511
crossref_primary_10_1080_27706710_2022_2147404
crossref_primary_10_1162_netn_a_00314
crossref_primary_10_3390_brainsci11050582
crossref_primary_10_1162_netn_a_00432
crossref_primary_10_3389_fnins_2020_00167
crossref_primary_10_1016_j_neuroimage_2021_118722
crossref_primary_10_1109_JBHI_2021_3119940
crossref_primary_10_1016_j_neuroimage_2020_117296
crossref_primary_10_1073_pnas_2022288118
crossref_primary_10_1080_02656736_2020_1735536
crossref_primary_10_1002_hbm_24721
crossref_primary_10_1093_cercor_bhac189
crossref_primary_10_1007_s11357_023_00934_y
crossref_primary_10_1038_s42003_024_06461_6
crossref_primary_10_1093_cercor_bhz134
crossref_primary_10_3390_mi15060732
crossref_primary_10_1002_brb3_1698
crossref_primary_10_1002_jnr_25005
crossref_primary_10_3389_fnins_2023_1248610
crossref_primary_10_1111_adb_13446
crossref_primary_10_1016_j_neuroimage_2023_120006
crossref_primary_10_1016_j_neuroimage_2019_116370
crossref_primary_10_1002_hbm_24913
crossref_primary_10_1186_s12916_023_03208_8
crossref_primary_10_1016_j_neuroimage_2022_119253
crossref_primary_10_1038_s41598_022_25016_5
crossref_primary_10_1016_j_cmpb_2021_106249
crossref_primary_10_1038_s42003_024_05927_x
crossref_primary_10_1111_jcpp_13585
crossref_primary_10_1038_s41562_023_01670_1
crossref_primary_10_1016_j_neuroscience_2020_02_032
crossref_primary_10_1016_j_neuroimage_2020_116621
crossref_primary_10_1038_s41380_024_02683_6
crossref_primary_10_1038_s41398_023_02540_0
crossref_primary_10_1016_j_tins_2020_06_005
crossref_primary_10_3758_s13414_022_02574_4
crossref_primary_10_1093_cercor_bhac247
crossref_primary_10_1038_s41467_021_25876_x
crossref_primary_10_1021_acschemneuro_2c00461
crossref_primary_10_1016_j_neuroimage_2021_118072
crossref_primary_10_1016_j_neuroimage_2021_118193
crossref_primary_10_1002_hbm_26561
crossref_primary_10_1038_s42003_024_06506_w
crossref_primary_10_1093_ijnp_pyad062
crossref_primary_10_1038_s41598_020_73216_8
crossref_primary_10_1016_j_neuroimage_2022_118993
crossref_primary_10_1080_23273798_2022_2129084
crossref_primary_10_1214_23_BA1377
crossref_primary_10_1002_brb3_3015
crossref_primary_10_1016_j_cobeha_2021_02_005
crossref_primary_10_1109_TBME_2020_3011363
crossref_primary_10_1142_S0129065724500187
crossref_primary_10_1162_imag_a_00443
crossref_primary_10_1007_s12311_021_01241_y
crossref_primary_10_1038_s42003_022_03196_0
crossref_primary_10_1016_j_neuroscience_2021_11_018
crossref_primary_10_1089_neur_2022_0068
crossref_primary_10_1002_hbm_25225
crossref_primary_10_1002_brb3_2157
crossref_primary_10_1016_j_neuroimage_2021_117829
crossref_primary_10_1002_hbm_24807
crossref_primary_10_1016_j_neuroscience_2024_11_024
crossref_primary_10_1016_j_cobeha_2020_12_007
crossref_primary_10_1002_hbm_25732
crossref_primary_10_1080_10400419_2022_2108265
crossref_primary_10_1016_j_pnpbp_2024_111225
crossref_primary_10_1038_s41398_021_01706_y
crossref_primary_10_3389_fnins_2021_660187
crossref_primary_10_1002_ima_22396
crossref_primary_10_1016_j_neuroimage_2022_119589
crossref_primary_10_1016_j_pscychresns_2021_111390
crossref_primary_10_1016_j_bpsc_2021_11_016
crossref_primary_10_1007_s11071_023_08328_7
crossref_primary_10_1016_j_neuropsychologia_2021_108066
crossref_primary_10_1002_aur_2974
crossref_primary_10_1016_j_neuroimage_2023_120205
crossref_primary_10_1002_qub2_70
crossref_primary_10_1016_j_neuroimage_2021_118177
crossref_primary_10_1162_imag_a_00267
crossref_primary_10_1038_s41598_022_18543_8
crossref_primary_10_1038_s41467_022_29766_8
crossref_primary_10_1002_hbm_25124
crossref_primary_10_1007_s12035_020_01995_2
crossref_primary_10_1016_j_intell_2024_101807
crossref_primary_10_1016_j_neulet_2020_134874
crossref_primary_10_1016_j_bbr_2021_113618
crossref_primary_10_1016_j_nicl_2020_102556
crossref_primary_10_1016_j_bpsc_2024_11_006
crossref_primary_10_1016_j_neuroscience_2019_11_049
crossref_primary_10_3389_fnins_2022_890596
Cites_doi 10.1016/j.nicl.2014.07.003
10.1016/j.neuropsychologia.2016.04.023
10.1089/brain.2015.0389
10.1016/j.neuroimage.2013.05.079
10.1038/nn.4478
10.1007/s11682-015-9408-2
10.1016/j.neuron.2014.10.047
10.1523/JNEUROSCI.2062-14.2014
10.3389/fnhum.2015.00418
10.1038/nn.4179
10.1093/cercor/bhr099
10.1016/j.neuroimage.2015.11.055
10.1037/a0034465
10.1038/nn.4135
10.3389/fnagi.2018.00094
10.1038/srep46072
10.1016/j.neuroimage.2014.02.014
10.1016/j.neuroimage.2014.06.052
10.3389/fnins.2015.00285
10.1016/j.neuroimage.2009.12.011
10.1016/j.neuron.2018.03.035
10.3758/s13414-012-0413-x
10.1016/j.neuroimage.2014.06.044
10.3389/fneur.2014.00175
10.1093/scan/nsy002
10.1093/cercor/bhs352
10.3389/fnins.2014.00138
10.1371/journal.pone.0039731
10.1038/mp.2015.198
10.1523/JNEUROSCI.1746-16.2016
10.1073/pnas.1312902110
10.1038/nprot.2016.178
10.1016/j.neuroimage.2016.10.006
10.1016/j.schres.2015.11.021
10.1002/hbm.23676
10.1017/S1461145714000674
10.1016/j.neuroimage.2017.03.020
10.1016/j.neuroimage.2016.02.079
10.1002/hbm.22290
10.1038/embor.2012.207
10.1002/hbm.23890
10.1016/j.neuroimage.2016.04.051
10.1016/j.neuron.2014.05.014
10.1093/cercor/bhs261
10.1016/j.tics.2017.01.011
10.1177/1541931214581200
10.1016/j.neuroimage.2017.11.010
10.1089/brain.2014.0248
10.1016/j.neuroimage.2013.05.081
10.1016/j.neuroimage.2017.12.030
10.1038/s41467-018-03462-y
10.1016/j.neuroimage.2005.02.004
10.1016/j.neuroimage.2014.11.054
10.1038/nrn2201
10.1162/jocn_a_01197
10.1523/JNEUROSCI.4638-14.2015
10.1093/cercor/bhw265
10.1016/j.neuroimage.2016.10.020
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
2018. The Authors
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2018. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.neuroimage.2018.11.057
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

ProQuest One Psychology

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 25
ExternalDocumentID 10.1016/j.neuroimage.2018.11.057
PMC6401236
30521950
10_1016_j_neuroimage_2018_11_057
S1053811918321384
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: R01 AA021449
– fundername: NIDA NIH HHS
  grantid: K25 DA040032
– fundername: NIDA NIH HHS
  grantid: R01 DA023248
– fundername: NIMH NIH HHS
  grantid: R01 MH108591
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
AAYXX
CITATION
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c630t-c8e19d0dfbcfeb2c8ff60bfe2b6158e6e140f47c944ef2268398376ebefb59cd3
IEDL.DBID BENPR
ISSN 1053-8119
1095-9572
IngestDate Tue Aug 19 18:13:54 EDT 2025
Tue Sep 30 16:54:12 EDT 2025
Sun Sep 28 10:41:10 EDT 2025
Tue Oct 07 06:44:51 EDT 2025
Mon Jul 21 05:26:43 EDT 2025
Sat Oct 25 06:10:05 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Fri Feb 23 02:48:26 EST 2024
Tue Oct 14 19:39:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dynamic functional connectivity
Predictive modeling
Sustained attention
Partial least squares regression
Individual differences
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-c8e19d0dfbcfeb2c8ff60bfe2b6158e6e140f47c944ef2268398376ebefb59cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2018.11.057
PMID 30521950
PQID 2187136482
PQPubID 2031077
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_neuroimage_2018_11_057
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6401236
proquest_miscellaneous_2155148861
proquest_journals_2187136482
pubmed_primary_30521950
crossref_citationtrail_10_1016_j_neuroimage_2018_11_057
crossref_primary_10_1016_j_neuroimage_2018_11_057
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_11_057
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_11_057
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Li, Zhu, Jiang, Jin, Zhang, Guo, Zhang, Hu, Li, Liu (bib31) 2014; 35
Rosenberg, Zhang, Hsu, Scheinost, Finn, Shen, Constable, Li, Chun (bib50) 2016; 36
Jin, Jia, Lanka, Rangaprakash, Li, Liu, Hu, Deshpande (bib24) 2017; 38
O'Halloran, Cao, Ruddy, Jollans, Albaugh, Aleni, Whelan (bib40) 2018; 169
Price, Wee, Gao, Shen (bib43) 2014
Rosenberg, Finn, Scheinost, Papademetris, Shen, Constable, Chun (bib49) 2016; 19
Rosenberg, Hsu, Scheinost, Todd Constable, Chun (bib52) 2017; 30
Preti, Bolton, Van De Ville (bib42) 2016
Reinen, Chén, Hutchison, Yeo, Anderson, Sabuncu, Holmes (bib46) 2018; 9
Douw, Wakeman, Tanaka, Liu, Stufflebeam (bib7) 2016
Farr, Hu, Matuskey, Zhang, Abdelghany, Li (bib12) 2014; 22
Li, Zhang, Liang, Liang, Wang, Cai (bib32) 2017; 7
Jones, Vemuri, Murphy, Gunter, Senjem, Machulda, Przybelski, Gregg, Kantarci, Knopman, Boeve, Petersen, Jack (bib25) 2012; 7
Fan, McCandliss, Fossella, Flombaum, Posner (bib11) 2005; 26
Gabrieli, Ghosh, Whitfield-Gabrieli (bib17) 2015; 85
Poole, Robinson, Singleton, DeGutis, Milberg, McGlinchey, Esterman (bib41) 2016; 86
Rosipal, Trejo (bib65) 2001; 2
Noble, Scheinost, Finn, Shen, Papademetris, McEwen, Bearden, Addington, Goodyear, Cadenhead, Mirzakhanian, Cornblatt, Olvet, Mathalon, McGlashan, Perkins, Belger, Seidman, Thermenos, Tsuang, van Erp, Walker, Hamann, Woods, Cannon, Constable (bib39) 2017; 146
Arbabshirani, Plis, Sui, Calhoun (bib2) 2017; 145
Cole, Bassett, Power, Braver, Petersen (bib5) 2014; 83
Kessler, van Loo, Wardenaar, Bossarte, Brenner, Cai, Zaslavsky (bib26) 2016; 21
Shen, Tokoglu, Papademetris, Constable (bib53) 2013; 82
Ciric, Wolf, Power, Roalf, Baum, Ruparel (bib4) 2017; 154
Weber, Hahn, Hilger, Fiebach (bib57) 2017; 146
Esterman, Noonan, Rosenberg, Degutis (bib9) 2013; 23
Kucyi, Salomons, Davis (bib28) 2013; 110
Rosenberg, Finn, Scheinost, Constable, Chun (bib51) 2017; 21
Farr, Zhang, Hu, Matuskey, Abdelghany, Malison, Li (bib13) 2014; 17
Fox, Raichle (bib16) 2007; 8
Wee, Yang, Yap, Shen (bib59) 2016; 10
Gonzalez-Castillo, Handwerker, Robinson, Hoy, Buchanan, Saad, Bandettini (bib18) 2014; 8
Rosenberg, Noonan, DeGutis, Esterman (bib48) 2013; 75
Shen, Finn, Scheinost, Rosenberg, Chun, Papademetris, Constable (bib54) 2017; 12
Liu, Liao, Xia, He (bib35) 2018; 39
Van Helden (bib56) 2013; 14
Laufs, Rodionov, Thornton, Duncan, Lemieux, Tagliazucchi (bib29) 2014; 5
Lin, Rosenberg, Yoo, Hsu, O'Connell, Chun (bib33) 2018; 10
Yang, Craddock, Margulies, Yan, Milham (bib63) 2014; 93
Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bib55) 2012; 22
Hsu, Rosenberg, Scheinost, Constable, Chun (bib21) 2018; 13
Damaraju, Allen, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, Vaidya, van Erp, Calhoun (bib6) 2014; 5
Revelle (bib47) 2018
Chang, Glover (bib3) 2010; 50
Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib1) 2014; 24
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib15) 2015; 18
Hindriks, Adhikari, Murayama, Ganzetti, Mantini, Logothetis, Deco (bib20) 2016; 127
Mittner, Boekel, Tucker, Turner, Heathcote, Forstmann (bib38) 2014; 34
Figueroa, Youmans, Shaw (bib14) 2014; 58
Madhyastha, Askren, Boord, Grabowski (bib36) 2015; 5
Yoo, Rosenberg, Hsu, Zhang, Li, Scheinost, Chun (bib64) 2018; 167
Gratton, Laumann, Nielsen, Greene, Gordon, Gilmore, Petersen (bib19) 2018; 98
Qin, Chen, Hu, Zeng, Fan, Chen, Shen (bib44) 2015; 9
Yaesoubi, Miller, Calhoun (bib62) 2015; 107
Falahpour, Thompson, Abbott, Jahedi, Mulvey, Datko, Liu, Müller (bib10) 2016; 6
Hutchison, Morton (bib22) 2015; 35
Kucyi, Davis (bib27) 2014; 100
Woo, Chang, Lindquist, Wager (bib60) 2017; 20
Laumann, Snyder, Mitra, Gordon, Gratton, Adeyemo, Gilmore, Nelson, Berg, Greene (bib30) 2016, 4719-4732
Xu, Lindquist (bib61) 2015; 9
Matsui, Murakami, Ohki (bib37) 2017
Rashid, Arbabshirani, Damaraju, Cetin, Miller, Pearlson, Calhoun (bib45) 2016; 134
Lindquist, Xu, Nebel, Caffo (bib34) 2014; 101
Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib23) 2013; 80
Du, Pearlson, Yu, He, Lin, Sui, Wu, Calhoun (bib8) 2016; 170
Wee, Yang, Yap, Shen (bib58) 2013
Kucyi (10.1016/j.neuroimage.2018.11.057_bib28) 2013; 110
Lindquist (10.1016/j.neuroimage.2018.11.057_bib34) 2014; 101
Lin (10.1016/j.neuroimage.2018.11.057_bib33) 2018; 10
Rosenberg (10.1016/j.neuroimage.2018.11.057_bib50) 2016; 36
Noble (10.1016/j.neuroimage.2018.11.057_bib39) 2017; 146
Li (10.1016/j.neuroimage.2018.11.057_bib32) 2017; 7
Liu (10.1016/j.neuroimage.2018.11.057_bib35) 2018; 39
Rashid (10.1016/j.neuroimage.2018.11.057_bib45) 2016; 134
Hutchison (10.1016/j.neuroimage.2018.11.057_bib23) 2013; 80
Revelle (10.1016/j.neuroimage.2018.11.057_bib47) 2018
Preti (10.1016/j.neuroimage.2018.11.057_bib42) 2016
Shirer (10.1016/j.neuroimage.2018.11.057_bib55) 2012; 22
Woo (10.1016/j.neuroimage.2018.11.057_bib60) 2017; 20
Li (10.1016/j.neuroimage.2018.11.057_bib31) 2014; 35
Mittner (10.1016/j.neuroimage.2018.11.057_bib38) 2014; 34
Cole (10.1016/j.neuroimage.2018.11.057_bib5) 2014; 83
Wee (10.1016/j.neuroimage.2018.11.057_bib59) 2016; 10
Jones (10.1016/j.neuroimage.2018.11.057_bib25) 2012; 7
Gonzalez-Castillo (10.1016/j.neuroimage.2018.11.057_bib18) 2014; 8
Damaraju (10.1016/j.neuroimage.2018.11.057_bib6) 2014; 5
Douw (10.1016/j.neuroimage.2018.11.057_bib7) 2016
Rosenberg (10.1016/j.neuroimage.2018.11.057_bib49) 2016; 19
Gratton (10.1016/j.neuroimage.2018.11.057_bib19) 2018; 98
Yaesoubi (10.1016/j.neuroimage.2018.11.057_bib62) 2015; 107
Du (10.1016/j.neuroimage.2018.11.057_bib8) 2016; 170
Rosenberg (10.1016/j.neuroimage.2018.11.057_bib51) 2017; 21
Laufs (10.1016/j.neuroimage.2018.11.057_bib29) 2014; 5
Rosipal (10.1016/j.neuroimage.2018.11.057_bib65) 2001; 2
Shen (10.1016/j.neuroimage.2018.11.057_bib53) 2013; 82
Jin (10.1016/j.neuroimage.2018.11.057_bib24) 2017; 38
Finn (10.1016/j.neuroimage.2018.11.057_bib15) 2015; 18
Shen (10.1016/j.neuroimage.2018.11.057_bib54) 2017; 12
O'Halloran (10.1016/j.neuroimage.2018.11.057_bib40) 2018; 169
Wee (10.1016/j.neuroimage.2018.11.057_bib58) 2013
Chang (10.1016/j.neuroimage.2018.11.057_bib3) 2010; 50
Falahpour (10.1016/j.neuroimage.2018.11.057_bib10) 2016; 6
Qin (10.1016/j.neuroimage.2018.11.057_bib44) 2015; 9
Esterman (10.1016/j.neuroimage.2018.11.057_bib9) 2013; 23
Fox (10.1016/j.neuroimage.2018.11.057_bib16) 2007; 8
Weber (10.1016/j.neuroimage.2018.11.057_bib57) 2017; 146
Laumann (10.1016/j.neuroimage.2018.11.057_bib30) 2016
Arbabshirani (10.1016/j.neuroimage.2018.11.057_bib2) 2017; 145
Farr (10.1016/j.neuroimage.2018.11.057_bib13) 2014; 17
Figueroa (10.1016/j.neuroimage.2018.11.057_bib14) 2014; 58
Poole (10.1016/j.neuroimage.2018.11.057_bib41) 2016; 86
Allen (10.1016/j.neuroimage.2018.11.057_bib1) 2014; 24
Hsu (10.1016/j.neuroimage.2018.11.057_bib21) 2018; 13
Ciric (10.1016/j.neuroimage.2018.11.057_bib4) 2017; 154
Madhyastha (10.1016/j.neuroimage.2018.11.057_bib36) 2015; 5
Rosenberg (10.1016/j.neuroimage.2018.11.057_bib48) 2013; 75
Matsui (10.1016/j.neuroimage.2018.11.057_bib37) 2017
Yang (10.1016/j.neuroimage.2018.11.057_bib63) 2014; 93
Hindriks (10.1016/j.neuroimage.2018.11.057_bib20) 2016; 127
Kucyi (10.1016/j.neuroimage.2018.11.057_bib27) 2014; 100
Yoo (10.1016/j.neuroimage.2018.11.057_bib64) 2018; 167
Hutchison (10.1016/j.neuroimage.2018.11.057_bib22) 2015; 35
Farr (10.1016/j.neuroimage.2018.11.057_bib12) 2014; 22
Price (10.1016/j.neuroimage.2018.11.057_bib43) 2014
Xu (10.1016/j.neuroimage.2018.11.057_bib61) 2015; 9
Van Helden (10.1016/j.neuroimage.2018.11.057_bib56) 2013; 14
Reinen (10.1016/j.neuroimage.2018.11.057_bib46) 2018; 9
Fan (10.1016/j.neuroimage.2018.11.057_bib11) 2005; 26
Kessler (10.1016/j.neuroimage.2018.11.057_bib26) 2016; 21
Gabrieli (10.1016/j.neuroimage.2018.11.057_bib17) 2015; 85
Rosenberg (10.1016/j.neuroimage.2018.11.057_bib52) 2017; 30
References_xml – volume: 9
  year: 2015
  ident: bib61
  article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data
  publication-title: Front. Neurosci.
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: bib15
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– volume: 14
  start-page: 104
  year: 2013
  ident: bib56
  article-title: Data-driven hypotheses
  publication-title: EMBO Rep.
– volume: 83
  start-page: 238
  year: 2014
  end-page: 251
  ident: bib5
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
– volume: 39
  start-page: 902
  year: 2018
  end-page: 915
  ident: bib35
  article-title: Chronnectome fingerprinting: identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns
  publication-title: Hum. Brain Mapp.
– volume: 93
  start-page: 124
  year: 2014
  end-page: 137
  ident: bib63
  article-title: Common intrinsic connectivity states among posteromedial cortex subdivisions: insights from analysis of temporal dynamics
  publication-title: Neuroimage
– volume: 8
  start-page: 1
  year: 2014
  end-page: 19
  ident: bib18
  article-title: The spatial structure of resting state connectivity stability on the scale of minutes
  publication-title: Front. Neurosci.
– volume: 110
  start-page: 18692
  year: 2013
  end-page: 18697
  ident: bib28
  article-title: Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks
  publication-title: Proc. Natl. Acad. Sci.
– year: 2016, 4719-4732
  ident: bib30
  article-title: On the stability of bold fmri correlations
  publication-title: Cerebr. Cortex
– volume: 38
  start-page: 4479
  year: 2017
  end-page: 4496
  ident: bib24
  article-title: Dynamic brain connectivity is a better predictor of PTSD than static connectivity
  publication-title: Hum. Brain Mapp.
– start-page: 12
  year: 2016
  end-page: 21
  ident: bib7
  article-title: State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility
  publication-title: J. Neurosci.
– volume: 58
  start-page: 954
  year: 2014
  end-page: 958
  ident: bib14
  article-title: Cognitive flexibility and sustained attention: see something, say something (even when it's not there)
  publication-title: Proc. Hum. Factors Ergon. Soc. Annu. Meet.
– volume: 35
  start-page: 6849
  year: 2015
  end-page: 6859
  ident: bib22
  article-title: Tracking the Brain's functional coupling dynamics over development
  publication-title: J. Neurosci.
– start-page: 139
  year: 2013
  end-page: 146
  ident: bib58
  article-title: Temporally dynamic resting-state functional connectivity networks for early mci identification
  publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging
– volume: 24
  start-page: 663
  year: 2014
  end-page: 676
  ident: bib1
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebr. Cortex
– start-page: 177
  year: 2014
  end-page: 184
  ident: bib43
  article-title: Multiple-network classification of childhood autism using functional connectivity dynamics
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention
– volume: 82
  start-page: 403
  year: 2013
  end-page: 415
  ident: bib53
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
– volume: 26
  start-page: 471
  year: 2005
  end-page: 479
  ident: bib11
  article-title: The activation of attentional networks
  publication-title: Neuroimage
– volume: 22
  start-page: 158
  year: 2012
  end-page: 165
  ident: bib55
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cerebr. Cortex
– year: 2017
  ident: bib37
  article-title: Neuronal Origin of the Temporal Dynamics of Spontaneous BOLD Activity Correlation
– volume: 75
  start-page: 426
  year: 2013
  end-page: 439
  ident: bib48
  article-title: Sustaining visual attention in the face of distraction: a novel gradual-onset continuous performance task
  publication-title: Atten. Percept. Psychophys.
– volume: 146
  start-page: 959
  year: 2017
  end-page: 970
  ident: bib39
  article-title: Multisite reliability of MR-based functional connectivity
  publication-title: Neuroimage
– start-page: 1053
  year: 2016
  end-page: 8119
  ident: bib42
  article-title: The dynamic functional connectome: state-of-the-art and perspectives
  publication-title: Neuroimage
– volume: 30
  start-page: 160
  year: 2017
  end-page: 173
  ident: bib52
  article-title: Connectome-based Models Predict Separable Components of Attention in Novel Individuals
  publication-title: J. Cognit. Neurosci.
– volume: 10
  start-page: 342
  year: 2016
  end-page: 356
  ident: bib59
  article-title: Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification
  publication-title: Brain Imaging Behav.
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  ident: bib6
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: Neuroimage: Clin.
– volume: 107
  start-page: 85
  year: 2015
  end-page: 94
  ident: bib62
  article-title: Mutually temporally independent connectivity patterns: a new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender
  publication-title: Neuroimage
– volume: 35
  start-page: 1761
  year: 2014
  end-page: 1778
  ident: bib31
  article-title: Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients
  publication-title: Hum. Brain Mapp.
– volume: 6
  start-page: 403
  year: 2016
  end-page: 414
  ident: bib10
  article-title: Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intraindividual variability across time
  publication-title: Brain Connect.
– volume: 19
  start-page: 165
  year: 2016
  end-page: 171
  ident: bib49
  article-title: A neuromarker of sustained attention from whole-brain functional connectivity
  publication-title: Nat. Neurosci.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib29
  article-title: Altered fMRI connectivity dynamics in temporal lobe epilepsy might explain seizure semiology
  publication-title: Front. Neurol.
– volume: 34
  start-page: 16286
  year: 2014
  end-page: 16295
  ident: bib38
  article-title: When the brain takes a break: a modelbased analysis of mind wandering
  publication-title: J. Neurosci.
– volume: 98
  start-page: 439
  year: 2018
  end-page: 452
  ident: bib19
  article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation
  publication-title: Neuron
– volume: 7
  start-page: e39731
  year: 2012
  ident: bib25
  article-title: Non-stationarity in the resting brain's modular architecture
  publication-title: PloS One
– volume: 169
  start-page: 395
  year: 2018
  end-page: 406
  ident: bib40
  article-title: Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology
  publication-title: Neuroimage
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  ident: bib16
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
– volume: 17
  start-page: 1177
  year: 2014
  end-page: 1191
  ident: bib13
  article-title: The effects of methylphenidate on resting-state striatal, thalamic and global functional connectivity in healthy adults
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 36
  year: 2016
  ident: bib50
  article-title: Methylphenidate modulates functional network connectivity to enhance attention
  publication-title: J. Neurosci.
– volume: 10
  start-page: 94
  year: 2018
  ident: bib33
  article-title: Resting-state functional connectivity predicts cognitive impairment related to Alzheimer's Disease
  publication-title: Front. Aging Neurosci.
– volume: 170
  start-page: 55
  year: 2016
  end-page: 65
  ident: bib8
  article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach
  publication-title: Schizophr. Res.
– volume: 100
  start-page: 471
  year: 2014
  end-page: 480
  ident: bib27
  article-title: Dynamic functional connectivity of the default mode network tracks daydreaming
  publication-title: Neuroimage
– volume: 21
  start-page: 1366
  year: 2016
  end-page: 1371
  ident: bib26
  article-title: Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports
  publication-title: Mol. Psychiatr.
– volume: 22
  start-page: 154
  year: 2014
  end-page: 165
  ident: bib12
  article-title: The effects of methylphenidate on cerebral activations to salient stimuli in healthy adults
  publication-title: Exp. Clin. Psychopharmacol
– volume: 85
  start-page: 11
  year: 2015
  end-page: 26
  ident: bib17
  article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience
  publication-title: Neuron
– year: 2018
  ident: bib47
  article-title: Psych: Procedures for Personality and Psychological Research
– volume: 145
  start-page: 137
  year: 2017
  end-page: 165
  ident: bib2
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
– volume: 134
  start-page: 645
  year: 2016
  end-page: 657
  ident: bib45
  article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fmri brain connectivity
  publication-title: Neuroimage
– volume: 21
  start-page: 290
  year: 2017
  end-page: 302
  ident: bib51
  article-title: Characterizing attention with predictive network models
  publication-title: Trends Cognit. Sci.
– volume: 23
  start-page: 2712
  year: 2013
  end-page: 2723
  ident: bib9
  article-title: In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention
  publication-title: Cerebr. Cortex
– volume: 127
  start-page: 242
  year: 2016
  end-page: 256
  ident: bib20
  article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
  publication-title: Neuroimage
– volume: 13
  start-page: 224
  year: 2018
  end-page: 232
  ident: bib21
  article-title: Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals
  publication-title: Soc. Cognit. Affect Neurosci.
– volume: 86
  start-page: 176
  year: 2016
  end-page: 182
  ident: bib41
  article-title: Intrinsic functional connectivity predicts individual differences in distractibility
  publication-title: Neuropsychologia
– volume: 146
  start-page: 404
  year: 2017
  end-page: 418
  ident: bib57
  article-title: Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory
  publication-title: Neuroimage
– volume: 7
  start-page: 46072
  year: 2017
  ident: bib32
  article-title: High transition frequencies of dynamic functional connectivity states in the creative brain
  publication-title: Sci. Rep.
– volume: 154
  start-page: 174
  year: 2017
  end-page: 187
  ident: bib4
  article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity
  publication-title: Neuroimage
– volume: 101
  start-page: 531
  year: 2014
  end-page: 546
  ident: bib34
  article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach
  publication-title: Neuroimage
– volume: 9
  year: 2015
  ident: bib44
  article-title: Predicting individual brain maturity using dynamic functional connectivity
  publication-title: Front. Hum. Neurosci.
– volume: 9
  start-page: 1157
  year: 2018
  ident: bib46
  article-title: The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis
  publication-title: Nat. Commun.
– volume: 5
  start-page: 45
  year: 2015
  end-page: 59
  ident: bib36
  article-title: Dynamic connectivity at rest predicts attention task performance
  publication-title: Brain Connect.
– volume: 2
  start-page: 97
  year: 2001
  end-page: 123
  ident: bib65
  article-title: Kernel partial least square regression in reproducing kernel Hilbert space
  publication-title: J. Mach. Learn. Res.
– volume: 50
  start-page: 81
  year: 2010
  end-page: 98
  ident: bib3
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: Neuroimage
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  ident: bib23
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
– volume: 12
  start-page: 506
  year: 2017
  end-page: 518
  ident: bib54
  article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity
  publication-title: Nat. Protoc.
– volume: 20
  start-page: 365
  year: 2017
  end-page: 377
  ident: bib60
  article-title: Building better biomarkers: brain models in translational neuroimaging
  publication-title: Nat. Neurosci.
– volume: 167
  start-page: 11
  year: 2018
  end-page: 22
  ident: bib64
  article-title: Connectome-based predictive modeling of attention: comparing different functional connectivity features and prediction methods across datasets
  publication-title: Neuroimage
– volume: 5
  start-page: 298
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib6
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: Neuroimage: Clin.
  doi: 10.1016/j.nicl.2014.07.003
– volume: 86
  start-page: 176
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib41
  article-title: Intrinsic functional connectivity predicts individual differences in distractibility
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2016.04.023
– start-page: 1053
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib42
  article-title: The dynamic functional connectome: state-of-the-art and perspectives
  publication-title: Neuroimage
– volume: 6
  start-page: 403
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib10
  article-title: Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intraindividual variability across time
  publication-title: Brain Connect.
  doi: 10.1089/brain.2015.0389
– volume: 80
  start-page: 360
  year: 2013
  ident: 10.1016/j.neuroimage.2018.11.057_bib23
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– start-page: 177
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib43
  article-title: Multiple-network classification of childhood autism using functional connectivity dynamics
– volume: 20
  start-page: 365
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.057_bib60
  article-title: Building better biomarkers: brain models in translational neuroimaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4478
– volume: 10
  start-page: 342
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib59
  article-title: Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9408-2
– volume: 85
  start-page: 11
  year: 2015
  ident: 10.1016/j.neuroimage.2018.11.057_bib17
  article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.047
– volume: 34
  start-page: 16286
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib38
  article-title: When the brain takes a break: a modelbased analysis of mind wandering
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2062-14.2014
– volume: 9
  year: 2015
  ident: 10.1016/j.neuroimage.2018.11.057_bib44
  article-title: Predicting individual brain maturity using dynamic functional connectivity
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00418
– volume: 19
  start-page: 165
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib49
  article-title: A neuromarker of sustained attention from whole-brain functional connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4179
– volume: 22
  start-page: 158
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2018.11.057_bib55
  article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhr099
– volume: 127
  start-page: 242
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib20
  article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.055
– volume: 22
  start-page: 154
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib12
  article-title: The effects of methylphenidate on cerebral activations to salient stimuli in healthy adults
  publication-title: Exp. Clin. Psychopharmacol
  doi: 10.1037/a0034465
– volume: 18
  start-page: 1664
  year: 2015
  ident: 10.1016/j.neuroimage.2018.11.057_bib15
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 10
  start-page: 94
  year: 2018
  ident: 10.1016/j.neuroimage.2018.11.057_bib33
  article-title: Resting-state functional connectivity predicts cognitive impairment related to Alzheimer's Disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00094
– volume: 7
  start-page: 46072
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.057_bib32
  article-title: High transition frequencies of dynamic functional connectivity states in the creative brain
  publication-title: Sci. Rep.
  doi: 10.1038/srep46072
– volume: 93
  start-page: 124
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib63
  article-title: Common intrinsic connectivity states among posteromedial cortex subdivisions: insights from analysis of temporal dynamics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.02.014
– volume: 101
  start-page: 531
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib34
  article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.052
– start-page: 139
  year: 2013
  ident: 10.1016/j.neuroimage.2018.11.057_bib58
  article-title: Temporally dynamic resting-state functional connectivity networks for early mci identification
– volume: 9
  year: 2015
  ident: 10.1016/j.neuroimage.2018.11.057_bib61
  article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00285
– volume: 50
  start-page: 81
  year: 2010
  ident: 10.1016/j.neuroimage.2018.11.057_bib3
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.011
– year: 2017
  ident: 10.1016/j.neuroimage.2018.11.057_bib37
– volume: 98
  start-page: 439
  issue: 2
  year: 2018
  ident: 10.1016/j.neuroimage.2018.11.057_bib19
  article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.03.035
– volume: 75
  start-page: 426
  year: 2013
  ident: 10.1016/j.neuroimage.2018.11.057_bib48
  article-title: Sustaining visual attention in the face of distraction: a novel gradual-onset continuous performance task
  publication-title: Atten. Percept. Psychophys.
  doi: 10.3758/s13414-012-0413-x
– volume: 100
  start-page: 471
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib27
  article-title: Dynamic functional connectivity of the default mode network tracks daydreaming
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.044
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib29
  article-title: Altered fMRI connectivity dynamics in temporal lobe epilepsy might explain seizure semiology
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2014.00175
– volume: 13
  start-page: 224
  issue: 2
  year: 2018
  ident: 10.1016/j.neuroimage.2018.11.057_bib21
  article-title: Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals
  publication-title: Soc. Cognit. Affect Neurosci.
  doi: 10.1093/scan/nsy002
– volume: 24
  start-page: 663
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib1
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhs352
– volume: 8
  start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib18
  article-title: The spatial structure of resting state connectivity stability on the scale of minutes
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00138
– volume: 7
  start-page: e39731
  year: 2012
  ident: 10.1016/j.neuroimage.2018.11.057_bib25
  article-title: Non-stationarity in the resting brain's modular architecture
  publication-title: PloS One
  doi: 10.1371/journal.pone.0039731
– volume: 21
  start-page: 1366
  issue: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib26
  article-title: Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports
  publication-title: Mol. Psychiatr.
  doi: 10.1038/mp.2015.198
– year: 2018
  ident: 10.1016/j.neuroimage.2018.11.057_bib47
– volume: 36
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib50
  article-title: Methylphenidate modulates functional network connectivity to enhance attention
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1746-16.2016
– volume: 110
  start-page: 18692
  year: 2013
  ident: 10.1016/j.neuroimage.2018.11.057_bib28
  article-title: Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1312902110
– volume: 12
  start-page: 506
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.057_bib54
  article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.178
– volume: 146
  start-page: 404
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.057_bib57
  article-title: Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.006
– volume: 170
  start-page: 55
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib8
  article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2015.11.021
– volume: 38
  start-page: 4479
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.057_bib24
  article-title: Dynamic brain connectivity is a better predictor of PTSD than static connectivity
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23676
– volume: 17
  start-page: 1177
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib13
  article-title: The effects of methylphenidate on resting-state striatal, thalamic and global functional connectivity in healthy adults
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145714000674
– volume: 154
  start-page: 174
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.057_bib4
  article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.020
– volume: 145
  start-page: 137
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.057_bib2
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 35
  start-page: 1761
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib31
  article-title: Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22290
– volume: 14
  start-page: 104
  issue: 2
  year: 2013
  ident: 10.1016/j.neuroimage.2018.11.057_bib56
  article-title: Data-driven hypotheses
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2012.207
– volume: 39
  start-page: 902
  year: 2018
  ident: 10.1016/j.neuroimage.2018.11.057_bib35
  article-title: Chronnectome fingerprinting: identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23890
– volume: 134
  start-page: 645
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib45
  article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fmri brain connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.051
– volume: 83
  start-page: 238
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib5
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
– volume: 23
  start-page: 2712
  year: 2013
  ident: 10.1016/j.neuroimage.2018.11.057_bib9
  article-title: In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhs261
– volume: 21
  start-page: 290
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.057_bib51
  article-title: Characterizing attention with predictive network models
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2017.01.011
– volume: 58
  start-page: 954
  year: 2014
  ident: 10.1016/j.neuroimage.2018.11.057_bib14
  article-title: Cognitive flexibility and sustained attention: see something, say something (even when it's not there)
  publication-title: Proc. Hum. Factors Ergon. Soc. Annu. Meet.
  doi: 10.1177/1541931214581200
– volume: 167
  start-page: 11
  year: 2018
  ident: 10.1016/j.neuroimage.2018.11.057_bib64
  article-title: Connectome-based predictive modeling of attention: comparing different functional connectivity features and prediction methods across datasets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.11.010
– volume: 5
  start-page: 45
  year: 2015
  ident: 10.1016/j.neuroimage.2018.11.057_bib36
  article-title: Dynamic connectivity at rest predicts attention task performance
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0248
– volume: 82
  start-page: 403
  year: 2013
  ident: 10.1016/j.neuroimage.2018.11.057_bib53
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.081
– volume: 169
  start-page: 395
  year: 2018
  ident: 10.1016/j.neuroimage.2018.11.057_bib40
  article-title: Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.030
– volume: 2
  start-page: 97
  year: 2001
  ident: 10.1016/j.neuroimage.2018.11.057_bib65
  article-title: Kernel partial least square regression in reproducing kernel Hilbert space
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 1157
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2018.11.057_bib46
  article-title: The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03462-y
– volume: 26
  start-page: 471
  year: 2005
  ident: 10.1016/j.neuroimage.2018.11.057_bib11
  article-title: The activation of attentional networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.004
– start-page: 12
  issue: 17
  year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib7
  article-title: State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility
  publication-title: J. Neurosci.
– volume: 107
  start-page: 85
  year: 2015
  ident: 10.1016/j.neuroimage.2018.11.057_bib62
  article-title: Mutually temporally independent connectivity patterns: a new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.054
– volume: 8
  start-page: 700
  year: 2007
  ident: 10.1016/j.neuroimage.2018.11.057_bib16
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2201
– volume: 30
  start-page: 160
  issue: 2
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.057_bib52
  article-title: Connectome-based Models Predict Separable Components of Attention in Novel Individuals
  publication-title: J. Cognit. Neurosci.
  doi: 10.1162/jocn_a_01197
– volume: 35
  start-page: 6849
  year: 2015
  ident: 10.1016/j.neuroimage.2018.11.057_bib22
  article-title: Tracking the Brain's functional coupling dynamics over development
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4638-14.2015
– year: 2016
  ident: 10.1016/j.neuroimage.2018.11.057_bib30
  article-title: On the stability of bold fmri correlations
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhw265
– volume: 146
  start-page: 959
  year: 2017
  ident: 10.1016/j.neuroimage.2018.11.057_bib39
  article-title: Multisite reliability of MR-based functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.020
SSID ssj0009148
Score 2.6020367
Snippet Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14
SubjectTerms Algorithms
Alzheimer's disease
Attention - physiology
Attention task
Behavior
Brain - physiology
Brain mapping
Cognitive ability
Dynamic functional connectivity
Functional magnetic resonance imaging
Humans
Individual differences
Individuality
Magnetic Resonance Imaging
Mathematical models
Models, Neurological
Motor task performance
Neural networks
Neural Pathways - physiology
Partial least squares regression
Predictive modeling
Regression analysis
Rest - physiology
Sensorimotor integration
Statistical analysis
Sustained attention
Task Performance and Analysis
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhh6aX0jZ9uEmKAr06a1uyLdFTSRpCILmkgdyELEvU7cYxWS-lUPrbM2PJ3i7pYSFH2xqDZkbzsL-ZIeQTy8rMOJbFrJZ5zE1tYg3CiJ0T4CzTHJzYAJC9LM6u-flNfrNFjsdaGIRVBtvvbfpgrcOdWeDmrGua2RVEBuBuIN_AYTtMYE9QzkucYnD0dwXzkCn35XA5i3F1QPN4jNfQM7K5hZOLIC9xhP080VH930U9DkEfIyl3lm2nf__S8_k_bur0JXkR4kv6xW_hFdmy7Wvy7CL8Qd8lf078CHqKDs1_B6QGwS7Gj5Ggvm6R9nrxk3arqgKq25riHA_a3ePL-gVtplouOo5ZAaMDtyn27BxQlFQPW6QLj1Z8Q65Pv347PovDBIbYFCzpYyNsKuukdpVxkIIb4VyRVM5mFQRCwhYW0jPHSyM5tw4COYi2IOEtQDFclUtTs7dku71r7XtCS861MyWW0houIS-xtTOpYYl0Os90GZFyZLoyoT05TsmYqxGH9kOtxKVQXJC9KBBXRNKJsvMtOjagkaNc1ViCCkZTgR_ZgPbzRLumqhtS749qpIK5WCiIs8qUFVxkETmcHsNBx783urV3S1yDwa0QRRqRd17rpu0yLMGWeQJMXNPHaQE2EV9_0jbfh2biBR-6-EUkmzR3Yy5-eBIn9shzuJIe0LdPtvv7pT2ACK-vPg5H-AFe1lXv
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OPdB78VuvekoEX7v0I2kSfDrU4xA8FFw4n0KaJrje2ltuu4jiH--kaXquh7L6uNtOIZPpzG-a38wAPC8LXhhXFmnZSJZS05hU42akzgkMljnDINYTZE-q4xl9c8pOdyCLtTAb5_c9D6vv6zj_gm-XJ2KJqe-5yfg12K0You8J7M5O3h1-7A81WZmKvJ_lkWd-BCHjkbzzt0f9KSJdRZxXiZM31u1Sf_uqF4tfotLRLXgf1xPIKGfTdVdPzfffWj3-y4Jvw80BopLDYFN3YMe2d-H62-EQ_h78eBWm2BMfE8OnRGI8X8aESRQklD6STq_OyPKyMIHotiF-FAhZXviHdSsyH8vBSJzUgn4L_ya-7WdPxCS6VxtZBcLjfZgdvf7w8jgdhjikpiqzLjXC5rLJGlcbh1m8Ec5VWe1sUSOWEraymOE5yo2k1DrEggjYMGeu0LZczaRpygcwac9buw-EU6qd4b4a11CJqY1tnMlNmUmnWaF5AjxupDJDh3M_aGOhIpXts7pUrvLKxQRIoXITyEfJZejysYWMjLaiYhUr-l2FG7qF7ItRdkA6AcFsKX0QTVMNHmelEKrxvKyoKBJ4Nl5GX-EPgHRrz9f-Ho-PhajyBB4GSx6XW_oqbskyVOKGjY83-D7km1fa-ae-H3lF-0aACRTj27C1Fh_9j9Bj2MNfMlABD2DSXaztE8SGXf10cAc_AffKZes
  priority: 102
  providerName: Unpaywall
Title Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918321384
https://dx.doi.org/10.1016/j.neuroimage.2018.11.057
https://www.ncbi.nlm.nih.gov/pubmed/30521950
https://www.proquest.com/docview/2187136482
https://www.proquest.com/docview/2155148861
https://pubmed.ncbi.nlm.nih.gov/PMC6401236
https://doi.org/10.1016/j.neuroimage.2018.11.057
UnpaywallVersion publishedVersion
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB_uWlC_iM8z51lW8GvOPDYvRKSed9RXKIeF-ilsNrtYrWnumiKC-Lc7k01SjxPplwSS3cDuzO7MZH_zG4Bnvhd5Uvue7RdJYHNZSFugMGytYzSWboBGrAHIpuFkxt_Ng_kepF0uDMEquz2x2aiLlaR_5M_RFGE8FfLYe1Vd2FQ1ik5XuxIaoi2tULxsKMb2YegRM9YAhq9P0-n5lobX5SY5LvDt2HWTFttjEF8Ng-TiO65jgnzFx8TuSWbr3wbrukN6HVd5c1NW4ucPsVz-ZbTO7sDt1ttkY6Med2FPlffgxsf2PP0-_HpjCtIzMm_mryCTBH2RpqgEM1mMrBbrb6za5hgwURaMqnqw6pI-Vq_Zos_sYl3RFdyC8DEjBs8GU8lEM0S2NtjFBzA7O_10MrHbegy2DH2ntmWs3KRwCp1LjQG5jLUOnVwrL0e3KFahwmBN80gmnCuNbh36Xhj-hqgmOg8SWfgPYVCuSvUIWMS50DKixFrJE4xSVKGlK30n0SLwRGRB1E16JluycqqZscw6VNrXbCuujMSFsUyG4rLA7XtWhrBjhz5JJ9esS0jFLTRDq7JD3xd939ZpMc7Ijr2POjXK2s1jnW1V3YKn_Wtc9nSWI0q12lAbcnXjOHQtODBa1w_Xp4TsJHBwEq_oY9-AKMWvvikXXxpq8ZA3nH4WeL3m7jyLh_8fy2O4hY0Tg987gkF9uVFP0KGr8xHsH_928RrNoxEMxyfnH6Z0f_t-ko7aFYz3WTodf_4DeKtXyQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1EuiDeBAkaCYyAP52GhCgFttaXtCqFW6s11HFtsu82GblbVSvw2fhszsZOlKkJ76TXJRLJnMo_4m28IeRNHWaRMHPlxyROfqVL5EpThG5NDsAwTCGItQHaYDo7Y1-PkeIX87nphEFbZ-cTWUZcThf_I30MognoqZXn0sf7p49QoPF3tRmhIN1qh3Gwpxlxjx56eX0IJN93c3QJ9v42ine3DLwPfTRnwVRoHja9yHfIyKE2hDJSZKjcmDQqjowKCfa5TDSWIYZnijGkDyQpkFFDUpbB4UyRclTG89xZZYzHjUPytfd4efvu-oP0NmW3GS2I_D0PusEQWYdYyVo7OwW8gxCx_h2yiGCb_HSCvJ8DXcZzrs6qW80s5Hv8VJHfukbsuu6WfrDneJyu6ekBuH7jz-4fk19a8kucjRTGc2r-QVCHURtkhFtR2TdJGTs9ovehpoLIqKU4RofUFvqyZ0lHfSUa7IS_g8uAyRcbQFsNJZbtEOrVYyUfk6EY085isVpNKPyU0Y0walWEjr2IcqiJdGhWqOOBGJpHMPJJ1my6UI0fHGR1j0aHgTsVCXQLVBbWTAHV5JOwla0sQsoQM7_QqugZYcNkCotgSsh96WZck2eRnSemNzoyEc1ZTsfi0PPK6vw1uBs-OZKUnM3wGU-s8T0OPPLFW1y83xgZwngSwiVfssX8AKcyv3qlGP1oq85S1HIIeiXrLXXoXn_1_La_I-uDwYF_s7w73npM7IMgtdnCDrDYXM_0CksmmeOm-WEpObtpJ_AE57JBD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qheqL-G206gr6GJtkNx-LiIjn0VotPli4t7jZ7OLpNXc2OcqBf5l_nTPZJGepyL30NckEdmcyv5nsb2YAnvMojbTlkc9LGftCl9pXqAzf2gzBMowRxFqC7FGyfyw-TOLJFvzua2GIVtn7xNZRl3NN_8j3EIown0pEFu3ZjhbxeTR-s_jp0wQpOmntx2k4Ezk0qzNM3-rXByPU9YsoGr__8m7f7yYM-DrhQePrzISyDEpbaIspps6sTYLCmqhAoM9MYjD9sCLVUghjMVDBaAITugQXbotY6pLje6_A1ZRzSXTCdJKuG_6GwpXhxdzPwlB2LCLHLWt7VU5P0GMQuSx7SX1ECSD_DY0XQ9-LDM5ry2qhVmdqNvsLHsc34UYX17K3zhBvwZapbsPOp-7k_g78Gq0qdTLVjIDU_X9kmkg22o2vYK5ekjWq_sEW62oGpqqS0fwQtjillzU1mw41ZKwf74LODi8z6hXasjeZapfIaseSvAvHl6KXe7BdzSvzAFgqhLI6pRJeLSTmQ6a0OtQ8kFbFkUo9SPtNz3XXFp2mc8zynv_2PV-rKyd1YdaUo7o8CAfJhWsNsoGM7PWa96Wv6KxzxK8NZF8Nsl145MKeDaV3ezPKOzdV5-uPyoNnw210MHRqpCozX9IzFFRnWRJ6cN9Z3bBcTqXfMg5wE8_Z4_AANS8_f6eafmubmCei7R7oQTRY7sa7-PD_a3kKO-ga8o8HR4eP4DrKSUca3IXt5nRpHmMU2RRP2s-VwdfL9g9_AG2sjd0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OPdB78VuvekoEX7v0I2kSfDrU4xA8FFw4n0KaJrje2ltuu4jiH--kaXquh7L6uNtOIZPpzG-a38wAPC8LXhhXFmnZSJZS05hU42akzgkMljnDINYTZE-q4xl9c8pOdyCLtTAb5_c9D6vv6zj_gm-XJ2KJqe-5yfg12K0You8J7M5O3h1-7A81WZmKvJ_lkWd-BCHjkbzzt0f9KSJdRZxXiZM31u1Sf_uqF4tfotLRLXgf1xPIKGfTdVdPzfffWj3-y4Jvw80BopLDYFN3YMe2d-H62-EQ_h78eBWm2BMfE8OnRGI8X8aESRQklD6STq_OyPKyMIHotiF-FAhZXviHdSsyH8vBSJzUgn4L_ya-7WdPxCS6VxtZBcLjfZgdvf7w8jgdhjikpiqzLjXC5rLJGlcbh1m8Ec5VWe1sUSOWEraymOE5yo2k1DrEggjYMGeu0LZczaRpygcwac9buw-EU6qd4b4a11CJqY1tnMlNmUmnWaF5AjxupDJDh3M_aGOhIpXts7pUrvLKxQRIoXITyEfJZejysYWMjLaiYhUr-l2FG7qF7ItRdkA6AcFsKX0QTVMNHmelEKrxvKyoKBJ4Nl5GX-EPgHRrz9f-Ho-PhajyBB4GSx6XW_oqbskyVOKGjY83-D7km1fa-ae-H3lF-0aACRTj27C1Fh_9j9Bj2MNfMlABD2DSXaztE8SGXf10cAc_AffKZes
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+functional+connectivity+during+task+performance+and+rest+predicts+individual+differences+in+attention+across+studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Fong%2C+Angus+Ho+Ching&rft.au=Yoo%2C+Kwangsun&rft.au=Rosenberg%2C+Monica+D.&rft.au=Zhang%2C+Sheng&rft.date=2019-03-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=188&rft.spage=14&rft.epage=25&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.11.057&rft.externalDocID=S1053811918321384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon