Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies
Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, i...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 188; pp. 14 - 25 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.03.2019
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2018.11.057 |
Cover
| Abstract | Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, including attention. Here, we show that DFC predicts attention performance across individuals. Sliding-window FC matrices were generated from fMRI data collected during rest and attention task performance by calculating Pearson's r between every pair of nodes of a whole-brain atlas within overlapping 10–60s time segments. Next, variance in r values across windows was taken to quantify temporal variability in the strength of each connection, resulting in a DFC connectome for each individual. In a leave-one-subject-out-cross-validation approach, partial-least-square-regression (PLSR) models were then trained to predict attention task performance from DFC matrices. Predicted and observed attention scores were significantly correlated, indicating successful out-of-sample predictions across rest and task conditions. Combining DFC and static FC features numerically improves predictions over either model alone, but the improvement was not statistically significant. Moreover, dynamic and combined models generalized to two independent data sets (participants performing the Attention Network Task and the stop-signal task). Edges with significant PLSR coefficients concentrated in visual, motor, and executive-control brain networks; moreover, most of these coefficients were negative. Thus, better attention may rely on more stable, i.e. less variable, information flow between brain regions.
•Temporal variability in functional connectivity predicts attention task performance.•Dynamic functional connectivity can be measured during task performance or rest.•Models generalized across 3 completely independent studies.•Higher functional connectivity variability generally predicts worse attention. |
|---|---|
| AbstractList | Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, including attention. Here, we show that DFC predicts attention performance across individuals. Sliding-window FC matrices were generated from fMRI data collected during rest and attention task performance by calculating Pearson’s r between every pair of nodes of a whole-brain atlas within overlapping 10–60s time segments. Next, variance in r values across windows was taken to quantify temporal variability in the strength of each connection, resulting in a DFC connectome for each individual. In a leave-one-subject-out-cross-validation approach, partial-least-square-regression (PLSR) models were then trained to predict attention task performance from DFC matrices. Predicted and observed attention scores were significantly correlated, indicating successful out-of-sample predictions across rest and task conditions. Combining DFC and static FC features numerically improves predictions over either model alone, but the improvement was not statistically significant. Moreover, dynamic and combined models generalized to two independent data sets (participants performing the Attention Network Task and the stop-signal task). Edges with significant PLSR coefficients concentrated in visual, motor, and executive-control brain networks; moreover, most of these coefficients were negative. Thus, better attention may rely on more stable, i.e. less variable, information flow between brain regions. Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, including attention. Here, we show that DFC predicts attention performance across individuals. Sliding-window FC matrices were generated from fMRI data collected during rest and attention task performance by calculating Pearson's r between every pair of nodes of a whole-brain atlas within overlapping 10–60s time segments. Next, variance in r values across windows was taken to quantify temporal variability in the strength of each connection, resulting in a DFC connectome for each individual. In a leave-one-subject-out-cross-validation approach, partial-least-square-regression (PLSR) models were then trained to predict attention task performance from DFC matrices. Predicted and observed attention scores were significantly correlated, indicating successful out-of-sample predictions across rest and task conditions. Combining DFC and static FC features numerically improves predictions over either model alone, but the improvement was not statistically significant. Moreover, dynamic and combined models generalized to two independent data sets (participants performing the Attention Network Task and the stop-signal task). Edges with significant PLSR coefficients concentrated in visual, motor, and executive-control brain networks; moreover, most of these coefficients were negative. Thus, better attention may rely on more stable, i.e. less variable, information flow between brain regions. •Temporal variability in functional connectivity predicts attention task performance.•Dynamic functional connectivity can be measured during task performance or rest.•Models generalized across 3 completely independent studies.•Higher functional connectivity variability generally predicts worse attention. Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, including attention. Here, we show that DFC predicts attention performance across individuals. Sliding-window FC matrices were generated from fMRI data collected during rest and attention task performance by calculating Pearson's r between every pair of nodes of a whole-brain atlas within overlapping 10-60s time segments. Next, variance in r values across windows was taken to quantify temporal variability in the strength of each connection, resulting in a DFC connectome for each individual. In a leave-one-subject-out-cross-validation approach, partial-least-square-regression (PLSR) models were then trained to predict attention task performance from DFC matrices. Predicted and observed attention scores were significantly correlated, indicating successful out-of-sample predictions across rest and task conditions. Combining DFC and static FC features numerically improves predictions over either model alone, but the improvement was not statistically significant. Moreover, dynamic and combined models generalized to two independent data sets (participants performing the Attention Network Task and the stop-signal task). Edges with significant PLSR coefficients concentrated in visual, motor, and executive-control brain networks; moreover, most of these coefficients were negative. Thus, better attention may rely on more stable, i.e. less variable, information flow between brain regions.Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure. Recent work has demonstrated that static, i.e. time-invariant resting-state and task-based FC predicts individual differences in behavior, including attention. Here, we show that DFC predicts attention performance across individuals. Sliding-window FC matrices were generated from fMRI data collected during rest and attention task performance by calculating Pearson's r between every pair of nodes of a whole-brain atlas within overlapping 10-60s time segments. Next, variance in r values across windows was taken to quantify temporal variability in the strength of each connection, resulting in a DFC connectome for each individual. In a leave-one-subject-out-cross-validation approach, partial-least-square-regression (PLSR) models were then trained to predict attention task performance from DFC matrices. Predicted and observed attention scores were significantly correlated, indicating successful out-of-sample predictions across rest and task conditions. Combining DFC and static FC features numerically improves predictions over either model alone, but the improvement was not statistically significant. Moreover, dynamic and combined models generalized to two independent data sets (participants performing the Attention Network Task and the stop-signal task). Edges with significant PLSR coefficients concentrated in visual, motor, and executive-control brain networks; moreover, most of these coefficients were negative. Thus, better attention may rely on more stable, i.e. less variable, information flow between brain regions. |
| Author | Rosenberg, Monica D. Fong, Angus Ho Ching Yoo, Kwangsun Zhang, Sheng Li, Chiang-Shan R. Chun, Marvin M. Scheinost, Dustin Constable, R. Todd |
| AuthorAffiliation | a Department of Psychology, Yale University f Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA b Department of Psychiatry, Yale School of Medicine d Interdepartmental Neuroscience Program, Yale University c Department of Neuroscience, Yale School of Medicine e Department of Radiology and Biomedical Imaging, Yale School of Medicine |
| AuthorAffiliation_xml | – name: a Department of Psychology, Yale University – name: e Department of Radiology and Biomedical Imaging, Yale School of Medicine – name: b Department of Psychiatry, Yale School of Medicine – name: f Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA – name: c Department of Neuroscience, Yale School of Medicine – name: d Interdepartmental Neuroscience Program, Yale University |
| Author_xml | – sequence: 1 givenname: Angus Ho Ching surname: Fong fullname: Fong, Angus Ho Ching email: hoching.fong@yale.edu organization: Department of Psychology, Yale University, USA – sequence: 2 givenname: Kwangsun surname: Yoo fullname: Yoo, Kwangsun organization: Department of Psychology, Yale University, USA – sequence: 3 givenname: Monica D. surname: Rosenberg fullname: Rosenberg, Monica D. organization: Department of Psychology, Yale University, USA – sequence: 4 givenname: Sheng surname: Zhang fullname: Zhang, Sheng organization: Department of Psychiatry, Yale School of Medicine, USA – sequence: 5 givenname: Chiang-Shan R. surname: Li fullname: Li, Chiang-Shan R. organization: Department of Psychiatry, Yale School of Medicine, USA – sequence: 6 givenname: Dustin surname: Scheinost fullname: Scheinost, Dustin organization: Department of Radiology and Biomedical Imaging, Yale School of Medicine, USA – sequence: 7 givenname: R. Todd surname: Constable fullname: Constable, R. Todd organization: Interdepartmental Neuroscience Program, Yale University, USA – sequence: 8 givenname: Marvin M. surname: Chun fullname: Chun, Marvin M. organization: Department of Psychology, Yale University, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30521950$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkkmP1DAQhSM0iFngLyBLXLh0cGVxnAuCGVZpJC5wthy73LgnbQc7aRSJH49DDzT0qTl5e-9T1StfZmfOO8wyAjQHCuzFJnc4BW-3co15QYHnADmtmwfZBdC2XrV1U5wt-7pccYD2PLuMcUMpbaHij7LzktYFtDW9yH68mZ3cWkXM5NRovZM9Ud45TIedHWeip2Ddmowy3pEBg_FhK51CIp0mAeNIhoDaqjES63Sy6CkRtDUGAybdck3kOKJb4ESq4GMkcZy0xfg4e2hkH_HJ_XqVfXn39vPNh9Xtp_cfb17frhQr6bhSHKHVVJtOGewKxY1htDNYdAxqjgyhoqZqVFtVaIqC8bLlZcOwQ9PVrdLlVdbuuZMb5Pxd9r0YQgovzAKoWBIVG3FIVCyJCgCREk3el3vvMHVb1Co1EuTB76UV_744-1Ws_U6wikJRsgR4fg8I_tuUEhNbGxX2vXTopygKqOs0Fc4gSZ8dSTd-Cmkki4o3ULKKF0n19O-K_pTye6iHkn-FHdAIZUe55J8KtP0pPfMjwH_Edb23YprnzmIQUdnlI2gb0p8S2ttTIK-OIKq3zirZ3-F8GuIn1mcDRQ |
| CitedBy_id | crossref_primary_10_3389_fneur_2019_01052 crossref_primary_10_1002_hbm_25036 crossref_primary_10_1016_j_neuroimage_2022_119489 crossref_primary_10_1007_s11571_023_10054_0 crossref_primary_10_1016_j_neuroimage_2020_116896 crossref_primary_10_1016_j_jneumeth_2024_110275 crossref_primary_10_1093_cercor_bhac214 crossref_primary_10_1016_j_bbr_2021_113130 crossref_primary_10_1016_j_sleep_2024_12_013 crossref_primary_10_1093_cercor_bhaa282 crossref_primary_10_1016_j_neuroimage_2020_117290 crossref_primary_10_1007_s11571_023_09931_5 crossref_primary_10_1016_j_neuroimage_2023_120246 crossref_primary_10_1038_s41467_024_55317_4 crossref_primary_10_1093_cercor_bhad392 crossref_primary_10_1002_hbm_26511 crossref_primary_10_1080_27706710_2022_2147404 crossref_primary_10_1162_netn_a_00314 crossref_primary_10_3390_brainsci11050582 crossref_primary_10_1162_netn_a_00432 crossref_primary_10_3389_fnins_2020_00167 crossref_primary_10_1016_j_neuroimage_2021_118722 crossref_primary_10_1109_JBHI_2021_3119940 crossref_primary_10_1016_j_neuroimage_2020_117296 crossref_primary_10_1073_pnas_2022288118 crossref_primary_10_1080_02656736_2020_1735536 crossref_primary_10_1002_hbm_24721 crossref_primary_10_1093_cercor_bhac189 crossref_primary_10_1007_s11357_023_00934_y crossref_primary_10_1038_s42003_024_06461_6 crossref_primary_10_1093_cercor_bhz134 crossref_primary_10_3390_mi15060732 crossref_primary_10_1002_brb3_1698 crossref_primary_10_1002_jnr_25005 crossref_primary_10_3389_fnins_2023_1248610 crossref_primary_10_1111_adb_13446 crossref_primary_10_1016_j_neuroimage_2023_120006 crossref_primary_10_1016_j_neuroimage_2019_116370 crossref_primary_10_1002_hbm_24913 crossref_primary_10_1186_s12916_023_03208_8 crossref_primary_10_1016_j_neuroimage_2022_119253 crossref_primary_10_1038_s41598_022_25016_5 crossref_primary_10_1016_j_cmpb_2021_106249 crossref_primary_10_1038_s42003_024_05927_x crossref_primary_10_1111_jcpp_13585 crossref_primary_10_1038_s41562_023_01670_1 crossref_primary_10_1016_j_neuroscience_2020_02_032 crossref_primary_10_1016_j_neuroimage_2020_116621 crossref_primary_10_1038_s41380_024_02683_6 crossref_primary_10_1038_s41398_023_02540_0 crossref_primary_10_1016_j_tins_2020_06_005 crossref_primary_10_3758_s13414_022_02574_4 crossref_primary_10_1093_cercor_bhac247 crossref_primary_10_1038_s41467_021_25876_x crossref_primary_10_1021_acschemneuro_2c00461 crossref_primary_10_1016_j_neuroimage_2021_118072 crossref_primary_10_1016_j_neuroimage_2021_118193 crossref_primary_10_1002_hbm_26561 crossref_primary_10_1038_s42003_024_06506_w crossref_primary_10_1093_ijnp_pyad062 crossref_primary_10_1038_s41598_020_73216_8 crossref_primary_10_1016_j_neuroimage_2022_118993 crossref_primary_10_1080_23273798_2022_2129084 crossref_primary_10_1214_23_BA1377 crossref_primary_10_1002_brb3_3015 crossref_primary_10_1016_j_cobeha_2021_02_005 crossref_primary_10_1109_TBME_2020_3011363 crossref_primary_10_1142_S0129065724500187 crossref_primary_10_1162_imag_a_00443 crossref_primary_10_1007_s12311_021_01241_y crossref_primary_10_1038_s42003_022_03196_0 crossref_primary_10_1016_j_neuroscience_2021_11_018 crossref_primary_10_1089_neur_2022_0068 crossref_primary_10_1002_hbm_25225 crossref_primary_10_1002_brb3_2157 crossref_primary_10_1016_j_neuroimage_2021_117829 crossref_primary_10_1002_hbm_24807 crossref_primary_10_1016_j_neuroscience_2024_11_024 crossref_primary_10_1016_j_cobeha_2020_12_007 crossref_primary_10_1002_hbm_25732 crossref_primary_10_1080_10400419_2022_2108265 crossref_primary_10_1016_j_pnpbp_2024_111225 crossref_primary_10_1038_s41398_021_01706_y crossref_primary_10_3389_fnins_2021_660187 crossref_primary_10_1002_ima_22396 crossref_primary_10_1016_j_neuroimage_2022_119589 crossref_primary_10_1016_j_pscychresns_2021_111390 crossref_primary_10_1016_j_bpsc_2021_11_016 crossref_primary_10_1007_s11071_023_08328_7 crossref_primary_10_1016_j_neuropsychologia_2021_108066 crossref_primary_10_1002_aur_2974 crossref_primary_10_1016_j_neuroimage_2023_120205 crossref_primary_10_1002_qub2_70 crossref_primary_10_1016_j_neuroimage_2021_118177 crossref_primary_10_1162_imag_a_00267 crossref_primary_10_1038_s41598_022_18543_8 crossref_primary_10_1038_s41467_022_29766_8 crossref_primary_10_1002_hbm_25124 crossref_primary_10_1007_s12035_020_01995_2 crossref_primary_10_1016_j_intell_2024_101807 crossref_primary_10_1016_j_neulet_2020_134874 crossref_primary_10_1016_j_bbr_2021_113618 crossref_primary_10_1016_j_nicl_2020_102556 crossref_primary_10_1016_j_bpsc_2024_11_006 crossref_primary_10_1016_j_neuroscience_2019_11_049 crossref_primary_10_3389_fnins_2022_890596 |
| Cites_doi | 10.1016/j.nicl.2014.07.003 10.1016/j.neuropsychologia.2016.04.023 10.1089/brain.2015.0389 10.1016/j.neuroimage.2013.05.079 10.1038/nn.4478 10.1007/s11682-015-9408-2 10.1016/j.neuron.2014.10.047 10.1523/JNEUROSCI.2062-14.2014 10.3389/fnhum.2015.00418 10.1038/nn.4179 10.1093/cercor/bhr099 10.1016/j.neuroimage.2015.11.055 10.1037/a0034465 10.1038/nn.4135 10.3389/fnagi.2018.00094 10.1038/srep46072 10.1016/j.neuroimage.2014.02.014 10.1016/j.neuroimage.2014.06.052 10.3389/fnins.2015.00285 10.1016/j.neuroimage.2009.12.011 10.1016/j.neuron.2018.03.035 10.3758/s13414-012-0413-x 10.1016/j.neuroimage.2014.06.044 10.3389/fneur.2014.00175 10.1093/scan/nsy002 10.1093/cercor/bhs352 10.3389/fnins.2014.00138 10.1371/journal.pone.0039731 10.1038/mp.2015.198 10.1523/JNEUROSCI.1746-16.2016 10.1073/pnas.1312902110 10.1038/nprot.2016.178 10.1016/j.neuroimage.2016.10.006 10.1016/j.schres.2015.11.021 10.1002/hbm.23676 10.1017/S1461145714000674 10.1016/j.neuroimage.2017.03.020 10.1016/j.neuroimage.2016.02.079 10.1002/hbm.22290 10.1038/embor.2012.207 10.1002/hbm.23890 10.1016/j.neuroimage.2016.04.051 10.1016/j.neuron.2014.05.014 10.1093/cercor/bhs261 10.1016/j.tics.2017.01.011 10.1177/1541931214581200 10.1016/j.neuroimage.2017.11.010 10.1089/brain.2014.0248 10.1016/j.neuroimage.2013.05.081 10.1016/j.neuroimage.2017.12.030 10.1038/s41467-018-03462-y 10.1016/j.neuroimage.2005.02.004 10.1016/j.neuroimage.2014.11.054 10.1038/nrn2201 10.1162/jocn_a_01197 10.1523/JNEUROSCI.4638-14.2015 10.1093/cercor/bhw265 10.1016/j.neuroimage.2016.10.020 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. 2018. The Authors |
| Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2018. The Authors |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.neuroimage.2018.11.057 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 25 |
| ExternalDocumentID | 10.1016/j.neuroimage.2018.11.057 PMC6401236 30521950 10_1016_j_neuroimage_2018_11_057 S1053811918321384 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: R01 AA021449 – fundername: NIDA NIH HHS grantid: K25 DA040032 – fundername: NIDA NIH HHS grantid: R01 DA023248 – fundername: NIMH NIH HHS grantid: R01 MH108591 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 AAYXX CITATION AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c630t-c8e19d0dfbcfeb2c8ff60bfe2b6158e6e140f47c944ef2268398376ebefb59cd3 |
| IEDL.DBID | BENPR |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Aug 19 18:13:54 EDT 2025 Tue Sep 30 16:54:12 EDT 2025 Sun Sep 28 10:41:10 EDT 2025 Tue Oct 07 06:44:51 EDT 2025 Mon Jul 21 05:26:43 EDT 2025 Sat Oct 25 06:10:05 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Fri Feb 23 02:48:26 EST 2024 Tue Oct 14 19:39:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic functional connectivity Predictive modeling Sustained attention Partial least squares regression Individual differences |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c630t-c8e19d0dfbcfeb2c8ff60bfe2b6158e6e140f47c944ef2268398376ebefb59cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2018.11.057 |
| PMID | 30521950 |
| PQID | 2187136482 |
| PQPubID | 2031077 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2018_11_057 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6401236 proquest_miscellaneous_2155148861 proquest_journals_2187136482 pubmed_primary_30521950 crossref_citationtrail_10_1016_j_neuroimage_2018_11_057 crossref_primary_10_1016_j_neuroimage_2018_11_057 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_11_057 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_11_057 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Li, Zhu, Jiang, Jin, Zhang, Guo, Zhang, Hu, Li, Liu (bib31) 2014; 35 Rosenberg, Zhang, Hsu, Scheinost, Finn, Shen, Constable, Li, Chun (bib50) 2016; 36 Jin, Jia, Lanka, Rangaprakash, Li, Liu, Hu, Deshpande (bib24) 2017; 38 O'Halloran, Cao, Ruddy, Jollans, Albaugh, Aleni, Whelan (bib40) 2018; 169 Price, Wee, Gao, Shen (bib43) 2014 Rosenberg, Finn, Scheinost, Papademetris, Shen, Constable, Chun (bib49) 2016; 19 Rosenberg, Hsu, Scheinost, Todd Constable, Chun (bib52) 2017; 30 Preti, Bolton, Van De Ville (bib42) 2016 Reinen, Chén, Hutchison, Yeo, Anderson, Sabuncu, Holmes (bib46) 2018; 9 Douw, Wakeman, Tanaka, Liu, Stufflebeam (bib7) 2016 Farr, Hu, Matuskey, Zhang, Abdelghany, Li (bib12) 2014; 22 Li, Zhang, Liang, Liang, Wang, Cai (bib32) 2017; 7 Jones, Vemuri, Murphy, Gunter, Senjem, Machulda, Przybelski, Gregg, Kantarci, Knopman, Boeve, Petersen, Jack (bib25) 2012; 7 Fan, McCandliss, Fossella, Flombaum, Posner (bib11) 2005; 26 Gabrieli, Ghosh, Whitfield-Gabrieli (bib17) 2015; 85 Poole, Robinson, Singleton, DeGutis, Milberg, McGlinchey, Esterman (bib41) 2016; 86 Rosipal, Trejo (bib65) 2001; 2 Noble, Scheinost, Finn, Shen, Papademetris, McEwen, Bearden, Addington, Goodyear, Cadenhead, Mirzakhanian, Cornblatt, Olvet, Mathalon, McGlashan, Perkins, Belger, Seidman, Thermenos, Tsuang, van Erp, Walker, Hamann, Woods, Cannon, Constable (bib39) 2017; 146 Arbabshirani, Plis, Sui, Calhoun (bib2) 2017; 145 Cole, Bassett, Power, Braver, Petersen (bib5) 2014; 83 Kessler, van Loo, Wardenaar, Bossarte, Brenner, Cai, Zaslavsky (bib26) 2016; 21 Shen, Tokoglu, Papademetris, Constable (bib53) 2013; 82 Ciric, Wolf, Power, Roalf, Baum, Ruparel (bib4) 2017; 154 Weber, Hahn, Hilger, Fiebach (bib57) 2017; 146 Esterman, Noonan, Rosenberg, Degutis (bib9) 2013; 23 Kucyi, Salomons, Davis (bib28) 2013; 110 Rosenberg, Finn, Scheinost, Constable, Chun (bib51) 2017; 21 Farr, Zhang, Hu, Matuskey, Abdelghany, Malison, Li (bib13) 2014; 17 Fox, Raichle (bib16) 2007; 8 Wee, Yang, Yap, Shen (bib59) 2016; 10 Gonzalez-Castillo, Handwerker, Robinson, Hoy, Buchanan, Saad, Bandettini (bib18) 2014; 8 Rosenberg, Noonan, DeGutis, Esterman (bib48) 2013; 75 Shen, Finn, Scheinost, Rosenberg, Chun, Papademetris, Constable (bib54) 2017; 12 Liu, Liao, Xia, He (bib35) 2018; 39 Van Helden (bib56) 2013; 14 Laufs, Rodionov, Thornton, Duncan, Lemieux, Tagliazucchi (bib29) 2014; 5 Lin, Rosenberg, Yoo, Hsu, O'Connell, Chun (bib33) 2018; 10 Yang, Craddock, Margulies, Yan, Milham (bib63) 2014; 93 Shirer, Ryali, Rykhlevskaia, Menon, Greicius (bib55) 2012; 22 Hsu, Rosenberg, Scheinost, Constable, Chun (bib21) 2018; 13 Damaraju, Allen, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, Vaidya, van Erp, Calhoun (bib6) 2014; 5 Revelle (bib47) 2018 Chang, Glover (bib3) 2010; 50 Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib1) 2014; 24 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib15) 2015; 18 Hindriks, Adhikari, Murayama, Ganzetti, Mantini, Logothetis, Deco (bib20) 2016; 127 Mittner, Boekel, Tucker, Turner, Heathcote, Forstmann (bib38) 2014; 34 Figueroa, Youmans, Shaw (bib14) 2014; 58 Madhyastha, Askren, Boord, Grabowski (bib36) 2015; 5 Yoo, Rosenberg, Hsu, Zhang, Li, Scheinost, Chun (bib64) 2018; 167 Gratton, Laumann, Nielsen, Greene, Gordon, Gilmore, Petersen (bib19) 2018; 98 Qin, Chen, Hu, Zeng, Fan, Chen, Shen (bib44) 2015; 9 Yaesoubi, Miller, Calhoun (bib62) 2015; 107 Falahpour, Thompson, Abbott, Jahedi, Mulvey, Datko, Liu, Müller (bib10) 2016; 6 Hutchison, Morton (bib22) 2015; 35 Kucyi, Davis (bib27) 2014; 100 Woo, Chang, Lindquist, Wager (bib60) 2017; 20 Laumann, Snyder, Mitra, Gordon, Gratton, Adeyemo, Gilmore, Nelson, Berg, Greene (bib30) 2016, 4719-4732 Xu, Lindquist (bib61) 2015; 9 Matsui, Murakami, Ohki (bib37) 2017 Rashid, Arbabshirani, Damaraju, Cetin, Miller, Pearlson, Calhoun (bib45) 2016; 134 Lindquist, Xu, Nebel, Caffo (bib34) 2014; 101 Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo, Handwerker, Keilholz, Kiviniemi, Leopold, de Pasquale, Sporns, Walter, Chang (bib23) 2013; 80 Du, Pearlson, Yu, He, Lin, Sui, Wu, Calhoun (bib8) 2016; 170 Wee, Yang, Yap, Shen (bib58) 2013 Kucyi (10.1016/j.neuroimage.2018.11.057_bib28) 2013; 110 Lindquist (10.1016/j.neuroimage.2018.11.057_bib34) 2014; 101 Lin (10.1016/j.neuroimage.2018.11.057_bib33) 2018; 10 Rosenberg (10.1016/j.neuroimage.2018.11.057_bib50) 2016; 36 Noble (10.1016/j.neuroimage.2018.11.057_bib39) 2017; 146 Li (10.1016/j.neuroimage.2018.11.057_bib32) 2017; 7 Liu (10.1016/j.neuroimage.2018.11.057_bib35) 2018; 39 Rashid (10.1016/j.neuroimage.2018.11.057_bib45) 2016; 134 Hutchison (10.1016/j.neuroimage.2018.11.057_bib23) 2013; 80 Revelle (10.1016/j.neuroimage.2018.11.057_bib47) 2018 Preti (10.1016/j.neuroimage.2018.11.057_bib42) 2016 Shirer (10.1016/j.neuroimage.2018.11.057_bib55) 2012; 22 Woo (10.1016/j.neuroimage.2018.11.057_bib60) 2017; 20 Li (10.1016/j.neuroimage.2018.11.057_bib31) 2014; 35 Mittner (10.1016/j.neuroimage.2018.11.057_bib38) 2014; 34 Cole (10.1016/j.neuroimage.2018.11.057_bib5) 2014; 83 Wee (10.1016/j.neuroimage.2018.11.057_bib59) 2016; 10 Jones (10.1016/j.neuroimage.2018.11.057_bib25) 2012; 7 Gonzalez-Castillo (10.1016/j.neuroimage.2018.11.057_bib18) 2014; 8 Damaraju (10.1016/j.neuroimage.2018.11.057_bib6) 2014; 5 Douw (10.1016/j.neuroimage.2018.11.057_bib7) 2016 Rosenberg (10.1016/j.neuroimage.2018.11.057_bib49) 2016; 19 Gratton (10.1016/j.neuroimage.2018.11.057_bib19) 2018; 98 Yaesoubi (10.1016/j.neuroimage.2018.11.057_bib62) 2015; 107 Du (10.1016/j.neuroimage.2018.11.057_bib8) 2016; 170 Rosenberg (10.1016/j.neuroimage.2018.11.057_bib51) 2017; 21 Laufs (10.1016/j.neuroimage.2018.11.057_bib29) 2014; 5 Rosipal (10.1016/j.neuroimage.2018.11.057_bib65) 2001; 2 Shen (10.1016/j.neuroimage.2018.11.057_bib53) 2013; 82 Jin (10.1016/j.neuroimage.2018.11.057_bib24) 2017; 38 Finn (10.1016/j.neuroimage.2018.11.057_bib15) 2015; 18 Shen (10.1016/j.neuroimage.2018.11.057_bib54) 2017; 12 O'Halloran (10.1016/j.neuroimage.2018.11.057_bib40) 2018; 169 Wee (10.1016/j.neuroimage.2018.11.057_bib58) 2013 Chang (10.1016/j.neuroimage.2018.11.057_bib3) 2010; 50 Falahpour (10.1016/j.neuroimage.2018.11.057_bib10) 2016; 6 Qin (10.1016/j.neuroimage.2018.11.057_bib44) 2015; 9 Esterman (10.1016/j.neuroimage.2018.11.057_bib9) 2013; 23 Fox (10.1016/j.neuroimage.2018.11.057_bib16) 2007; 8 Weber (10.1016/j.neuroimage.2018.11.057_bib57) 2017; 146 Laumann (10.1016/j.neuroimage.2018.11.057_bib30) 2016 Arbabshirani (10.1016/j.neuroimage.2018.11.057_bib2) 2017; 145 Farr (10.1016/j.neuroimage.2018.11.057_bib13) 2014; 17 Figueroa (10.1016/j.neuroimage.2018.11.057_bib14) 2014; 58 Poole (10.1016/j.neuroimage.2018.11.057_bib41) 2016; 86 Allen (10.1016/j.neuroimage.2018.11.057_bib1) 2014; 24 Hsu (10.1016/j.neuroimage.2018.11.057_bib21) 2018; 13 Ciric (10.1016/j.neuroimage.2018.11.057_bib4) 2017; 154 Madhyastha (10.1016/j.neuroimage.2018.11.057_bib36) 2015; 5 Rosenberg (10.1016/j.neuroimage.2018.11.057_bib48) 2013; 75 Matsui (10.1016/j.neuroimage.2018.11.057_bib37) 2017 Yang (10.1016/j.neuroimage.2018.11.057_bib63) 2014; 93 Hindriks (10.1016/j.neuroimage.2018.11.057_bib20) 2016; 127 Kucyi (10.1016/j.neuroimage.2018.11.057_bib27) 2014; 100 Yoo (10.1016/j.neuroimage.2018.11.057_bib64) 2018; 167 Hutchison (10.1016/j.neuroimage.2018.11.057_bib22) 2015; 35 Farr (10.1016/j.neuroimage.2018.11.057_bib12) 2014; 22 Price (10.1016/j.neuroimage.2018.11.057_bib43) 2014 Xu (10.1016/j.neuroimage.2018.11.057_bib61) 2015; 9 Van Helden (10.1016/j.neuroimage.2018.11.057_bib56) 2013; 14 Reinen (10.1016/j.neuroimage.2018.11.057_bib46) 2018; 9 Fan (10.1016/j.neuroimage.2018.11.057_bib11) 2005; 26 Kessler (10.1016/j.neuroimage.2018.11.057_bib26) 2016; 21 Gabrieli (10.1016/j.neuroimage.2018.11.057_bib17) 2015; 85 Rosenberg (10.1016/j.neuroimage.2018.11.057_bib52) 2017; 30 |
| References_xml | – volume: 9 year: 2015 ident: bib61 article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data publication-title: Front. Neurosci. – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: bib15 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 14 start-page: 104 year: 2013 ident: bib56 article-title: Data-driven hypotheses publication-title: EMBO Rep. – volume: 83 start-page: 238 year: 2014 end-page: 251 ident: bib5 article-title: Intrinsic and task-evoked network architectures of the human brain publication-title: Neuron – volume: 39 start-page: 902 year: 2018 end-page: 915 ident: bib35 article-title: Chronnectome fingerprinting: identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns publication-title: Hum. Brain Mapp. – volume: 93 start-page: 124 year: 2014 end-page: 137 ident: bib63 article-title: Common intrinsic connectivity states among posteromedial cortex subdivisions: insights from analysis of temporal dynamics publication-title: Neuroimage – volume: 8 start-page: 1 year: 2014 end-page: 19 ident: bib18 article-title: The spatial structure of resting state connectivity stability on the scale of minutes publication-title: Front. Neurosci. – volume: 110 start-page: 18692 year: 2013 end-page: 18697 ident: bib28 article-title: Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks publication-title: Proc. Natl. Acad. Sci. – year: 2016, 4719-4732 ident: bib30 article-title: On the stability of bold fmri correlations publication-title: Cerebr. Cortex – volume: 38 start-page: 4479 year: 2017 end-page: 4496 ident: bib24 article-title: Dynamic brain connectivity is a better predictor of PTSD than static connectivity publication-title: Hum. Brain Mapp. – start-page: 12 year: 2016 end-page: 21 ident: bib7 article-title: State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility publication-title: J. Neurosci. – volume: 58 start-page: 954 year: 2014 end-page: 958 ident: bib14 article-title: Cognitive flexibility and sustained attention: see something, say something (even when it's not there) publication-title: Proc. Hum. Factors Ergon. Soc. Annu. Meet. – volume: 35 start-page: 6849 year: 2015 end-page: 6859 ident: bib22 article-title: Tracking the Brain's functional coupling dynamics over development publication-title: J. Neurosci. – start-page: 139 year: 2013 end-page: 146 ident: bib58 article-title: Temporally dynamic resting-state functional connectivity networks for early mci identification publication-title: Proceedings of the International Workshop on Machine Learning in Medical Imaging – volume: 24 start-page: 663 year: 2014 end-page: 676 ident: bib1 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cerebr. Cortex – start-page: 177 year: 2014 end-page: 184 ident: bib43 article-title: Multiple-network classification of childhood autism using functional connectivity dynamics publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention – volume: 82 start-page: 403 year: 2013 end-page: 415 ident: bib53 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage – volume: 26 start-page: 471 year: 2005 end-page: 479 ident: bib11 article-title: The activation of attentional networks publication-title: Neuroimage – volume: 22 start-page: 158 year: 2012 end-page: 165 ident: bib55 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cerebr. Cortex – year: 2017 ident: bib37 article-title: Neuronal Origin of the Temporal Dynamics of Spontaneous BOLD Activity Correlation – volume: 75 start-page: 426 year: 2013 end-page: 439 ident: bib48 article-title: Sustaining visual attention in the face of distraction: a novel gradual-onset continuous performance task publication-title: Atten. Percept. Psychophys. – volume: 146 start-page: 959 year: 2017 end-page: 970 ident: bib39 article-title: Multisite reliability of MR-based functional connectivity publication-title: Neuroimage – start-page: 1053 year: 2016 end-page: 8119 ident: bib42 article-title: The dynamic functional connectome: state-of-the-art and perspectives publication-title: Neuroimage – volume: 30 start-page: 160 year: 2017 end-page: 173 ident: bib52 article-title: Connectome-based Models Predict Separable Components of Attention in Novel Individuals publication-title: J. Cognit. Neurosci. – volume: 10 start-page: 342 year: 2016 end-page: 356 ident: bib59 article-title: Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification publication-title: Brain Imaging Behav. – volume: 5 start-page: 298 year: 2014 end-page: 308 ident: bib6 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: Neuroimage: Clin. – volume: 107 start-page: 85 year: 2015 end-page: 94 ident: bib62 article-title: Mutually temporally independent connectivity patterns: a new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender publication-title: Neuroimage – volume: 35 start-page: 1761 year: 2014 end-page: 1778 ident: bib31 article-title: Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients publication-title: Hum. Brain Mapp. – volume: 6 start-page: 403 year: 2016 end-page: 414 ident: bib10 article-title: Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intraindividual variability across time publication-title: Brain Connect. – volume: 19 start-page: 165 year: 2016 end-page: 171 ident: bib49 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. – volume: 5 start-page: 1 year: 2014 end-page: 13 ident: bib29 article-title: Altered fMRI connectivity dynamics in temporal lobe epilepsy might explain seizure semiology publication-title: Front. Neurol. – volume: 34 start-page: 16286 year: 2014 end-page: 16295 ident: bib38 article-title: When the brain takes a break: a modelbased analysis of mind wandering publication-title: J. Neurosci. – volume: 98 start-page: 439 year: 2018 end-page: 452 ident: bib19 article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation publication-title: Neuron – volume: 7 start-page: e39731 year: 2012 ident: bib25 article-title: Non-stationarity in the resting brain's modular architecture publication-title: PloS One – volume: 169 start-page: 395 year: 2018 end-page: 406 ident: bib40 article-title: Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology publication-title: Neuroimage – volume: 8 start-page: 700 year: 2007 end-page: 711 ident: bib16 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. – volume: 17 start-page: 1177 year: 2014 end-page: 1191 ident: bib13 article-title: The effects of methylphenidate on resting-state striatal, thalamic and global functional connectivity in healthy adults publication-title: Int. J. Neuropsychopharmacol. – volume: 36 year: 2016 ident: bib50 article-title: Methylphenidate modulates functional network connectivity to enhance attention publication-title: J. Neurosci. – volume: 10 start-page: 94 year: 2018 ident: bib33 article-title: Resting-state functional connectivity predicts cognitive impairment related to Alzheimer's Disease publication-title: Front. Aging Neurosci. – volume: 170 start-page: 55 year: 2016 end-page: 65 ident: bib8 article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach publication-title: Schizophr. Res. – volume: 100 start-page: 471 year: 2014 end-page: 480 ident: bib27 article-title: Dynamic functional connectivity of the default mode network tracks daydreaming publication-title: Neuroimage – volume: 21 start-page: 1366 year: 2016 end-page: 1371 ident: bib26 article-title: Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports publication-title: Mol. Psychiatr. – volume: 22 start-page: 154 year: 2014 end-page: 165 ident: bib12 article-title: The effects of methylphenidate on cerebral activations to salient stimuli in healthy adults publication-title: Exp. Clin. Psychopharmacol – volume: 85 start-page: 11 year: 2015 end-page: 26 ident: bib17 article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience publication-title: Neuron – year: 2018 ident: bib47 article-title: Psych: Procedures for Personality and Psychological Research – volume: 145 start-page: 137 year: 2017 end-page: 165 ident: bib2 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage – volume: 134 start-page: 645 year: 2016 end-page: 657 ident: bib45 article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fmri brain connectivity publication-title: Neuroimage – volume: 21 start-page: 290 year: 2017 end-page: 302 ident: bib51 article-title: Characterizing attention with predictive network models publication-title: Trends Cognit. Sci. – volume: 23 start-page: 2712 year: 2013 end-page: 2723 ident: bib9 article-title: In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention publication-title: Cerebr. Cortex – volume: 127 start-page: 242 year: 2016 end-page: 256 ident: bib20 article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? publication-title: Neuroimage – volume: 13 start-page: 224 year: 2018 end-page: 232 ident: bib21 article-title: Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals publication-title: Soc. Cognit. Affect Neurosci. – volume: 86 start-page: 176 year: 2016 end-page: 182 ident: bib41 article-title: Intrinsic functional connectivity predicts individual differences in distractibility publication-title: Neuropsychologia – volume: 146 start-page: 404 year: 2017 end-page: 418 ident: bib57 article-title: Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory publication-title: Neuroimage – volume: 7 start-page: 46072 year: 2017 ident: bib32 article-title: High transition frequencies of dynamic functional connectivity states in the creative brain publication-title: Sci. Rep. – volume: 154 start-page: 174 year: 2017 end-page: 187 ident: bib4 article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity publication-title: Neuroimage – volume: 101 start-page: 531 year: 2014 end-page: 546 ident: bib34 article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach publication-title: Neuroimage – volume: 9 year: 2015 ident: bib44 article-title: Predicting individual brain maturity using dynamic functional connectivity publication-title: Front. Hum. Neurosci. – volume: 9 start-page: 1157 year: 2018 ident: bib46 article-title: The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis publication-title: Nat. Commun. – volume: 5 start-page: 45 year: 2015 end-page: 59 ident: bib36 article-title: Dynamic connectivity at rest predicts attention task performance publication-title: Brain Connect. – volume: 2 start-page: 97 year: 2001 end-page: 123 ident: bib65 article-title: Kernel partial least square regression in reproducing kernel Hilbert space publication-title: J. Mach. Learn. Res. – volume: 50 start-page: 81 year: 2010 end-page: 98 ident: bib3 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: Neuroimage – volume: 80 start-page: 360 year: 2013 end-page: 378 ident: bib23 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage – volume: 12 start-page: 506 year: 2017 end-page: 518 ident: bib54 article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity publication-title: Nat. Protoc. – volume: 20 start-page: 365 year: 2017 end-page: 377 ident: bib60 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. – volume: 167 start-page: 11 year: 2018 end-page: 22 ident: bib64 article-title: Connectome-based predictive modeling of attention: comparing different functional connectivity features and prediction methods across datasets publication-title: Neuroimage – volume: 5 start-page: 298 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib6 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: Neuroimage: Clin. doi: 10.1016/j.nicl.2014.07.003 – volume: 86 start-page: 176 year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib41 article-title: Intrinsic functional connectivity predicts individual differences in distractibility publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2016.04.023 – start-page: 1053 year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib42 article-title: The dynamic functional connectome: state-of-the-art and perspectives publication-title: Neuroimage – volume: 6 start-page: 403 year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib10 article-title: Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intraindividual variability across time publication-title: Brain Connect. doi: 10.1089/brain.2015.0389 – volume: 80 start-page: 360 year: 2013 ident: 10.1016/j.neuroimage.2018.11.057_bib23 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.079 – start-page: 177 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib43 article-title: Multiple-network classification of childhood autism using functional connectivity dynamics – volume: 20 start-page: 365 year: 2017 ident: 10.1016/j.neuroimage.2018.11.057_bib60 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. doi: 10.1038/nn.4478 – volume: 10 start-page: 342 year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib59 article-title: Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification publication-title: Brain Imaging Behav. doi: 10.1007/s11682-015-9408-2 – volume: 85 start-page: 11 year: 2015 ident: 10.1016/j.neuroimage.2018.11.057_bib17 article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience publication-title: Neuron doi: 10.1016/j.neuron.2014.10.047 – volume: 34 start-page: 16286 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib38 article-title: When the brain takes a break: a modelbased analysis of mind wandering publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2062-14.2014 – volume: 9 year: 2015 ident: 10.1016/j.neuroimage.2018.11.057_bib44 article-title: Predicting individual brain maturity using dynamic functional connectivity publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00418 – volume: 19 start-page: 165 year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib49 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4179 – volume: 22 start-page: 158 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2018.11.057_bib55 article-title: Decoding subject-driven cognitive states with whole-brain connectivity patterns publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhr099 – volume: 127 start-page: 242 year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib20 article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.055 – volume: 22 start-page: 154 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib12 article-title: The effects of methylphenidate on cerebral activations to salient stimuli in healthy adults publication-title: Exp. Clin. Psychopharmacol doi: 10.1037/a0034465 – volume: 18 start-page: 1664 year: 2015 ident: 10.1016/j.neuroimage.2018.11.057_bib15 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 10 start-page: 94 year: 2018 ident: 10.1016/j.neuroimage.2018.11.057_bib33 article-title: Resting-state functional connectivity predicts cognitive impairment related to Alzheimer's Disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00094 – volume: 7 start-page: 46072 year: 2017 ident: 10.1016/j.neuroimage.2018.11.057_bib32 article-title: High transition frequencies of dynamic functional connectivity states in the creative brain publication-title: Sci. Rep. doi: 10.1038/srep46072 – volume: 93 start-page: 124 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib63 article-title: Common intrinsic connectivity states among posteromedial cortex subdivisions: insights from analysis of temporal dynamics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.02.014 – volume: 101 start-page: 531 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib34 article-title: Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.052 – start-page: 139 year: 2013 ident: 10.1016/j.neuroimage.2018.11.057_bib58 article-title: Temporally dynamic resting-state functional connectivity networks for early mci identification – volume: 9 year: 2015 ident: 10.1016/j.neuroimage.2018.11.057_bib61 article-title: Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00285 – volume: 50 start-page: 81 year: 2010 ident: 10.1016/j.neuroimage.2018.11.057_bib3 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.011 – year: 2017 ident: 10.1016/j.neuroimage.2018.11.057_bib37 – volume: 98 start-page: 439 issue: 2 year: 2018 ident: 10.1016/j.neuroimage.2018.11.057_bib19 article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation publication-title: Neuron doi: 10.1016/j.neuron.2018.03.035 – volume: 75 start-page: 426 year: 2013 ident: 10.1016/j.neuroimage.2018.11.057_bib48 article-title: Sustaining visual attention in the face of distraction: a novel gradual-onset continuous performance task publication-title: Atten. Percept. Psychophys. doi: 10.3758/s13414-012-0413-x – volume: 100 start-page: 471 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib27 article-title: Dynamic functional connectivity of the default mode network tracks daydreaming publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.044 – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib29 article-title: Altered fMRI connectivity dynamics in temporal lobe epilepsy might explain seizure semiology publication-title: Front. Neurol. doi: 10.3389/fneur.2014.00175 – volume: 13 start-page: 224 issue: 2 year: 2018 ident: 10.1016/j.neuroimage.2018.11.057_bib21 article-title: Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals publication-title: Soc. Cognit. Affect Neurosci. doi: 10.1093/scan/nsy002 – volume: 24 start-page: 663 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib1 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhs352 – volume: 8 start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib18 article-title: The spatial structure of resting state connectivity stability on the scale of minutes publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00138 – volume: 7 start-page: e39731 year: 2012 ident: 10.1016/j.neuroimage.2018.11.057_bib25 article-title: Non-stationarity in the resting brain's modular architecture publication-title: PloS One doi: 10.1371/journal.pone.0039731 – volume: 21 start-page: 1366 issue: 10 year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib26 article-title: Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports publication-title: Mol. Psychiatr. doi: 10.1038/mp.2015.198 – year: 2018 ident: 10.1016/j.neuroimage.2018.11.057_bib47 – volume: 36 year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib50 article-title: Methylphenidate modulates functional network connectivity to enhance attention publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1746-16.2016 – volume: 110 start-page: 18692 year: 2013 ident: 10.1016/j.neuroimage.2018.11.057_bib28 article-title: Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1312902110 – volume: 12 start-page: 506 year: 2017 ident: 10.1016/j.neuroimage.2018.11.057_bib54 article-title: Using connectome-based predictive modeling to predict individual behavior from brain connectivity publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.178 – volume: 146 start-page: 404 year: 2017 ident: 10.1016/j.neuroimage.2018.11.057_bib57 article-title: Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.006 – volume: 170 start-page: 55 issue: 1 year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib8 article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach publication-title: Schizophr. Res. doi: 10.1016/j.schres.2015.11.021 – volume: 38 start-page: 4479 year: 2017 ident: 10.1016/j.neuroimage.2018.11.057_bib24 article-title: Dynamic brain connectivity is a better predictor of PTSD than static connectivity publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23676 – volume: 17 start-page: 1177 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib13 article-title: The effects of methylphenidate on resting-state striatal, thalamic and global functional connectivity in healthy adults publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145714000674 – volume: 154 start-page: 174 year: 2017 ident: 10.1016/j.neuroimage.2018.11.057_bib4 article-title: Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.020 – volume: 145 start-page: 137 year: 2017 ident: 10.1016/j.neuroimage.2018.11.057_bib2 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 35 start-page: 1761 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib31 article-title: Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22290 – volume: 14 start-page: 104 issue: 2 year: 2013 ident: 10.1016/j.neuroimage.2018.11.057_bib56 article-title: Data-driven hypotheses publication-title: EMBO Rep. doi: 10.1038/embor.2012.207 – volume: 39 start-page: 902 year: 2018 ident: 10.1016/j.neuroimage.2018.11.057_bib35 article-title: Chronnectome fingerprinting: identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23890 – volume: 134 start-page: 645 year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib45 article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fmri brain connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.051 – volume: 83 start-page: 238 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib5 article-title: Intrinsic and task-evoked network architectures of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2014.05.014 – volume: 23 start-page: 2712 year: 2013 ident: 10.1016/j.neuroimage.2018.11.057_bib9 article-title: In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhs261 – volume: 21 start-page: 290 year: 2017 ident: 10.1016/j.neuroimage.2018.11.057_bib51 article-title: Characterizing attention with predictive network models publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2017.01.011 – volume: 58 start-page: 954 year: 2014 ident: 10.1016/j.neuroimage.2018.11.057_bib14 article-title: Cognitive flexibility and sustained attention: see something, say something (even when it's not there) publication-title: Proc. Hum. Factors Ergon. Soc. Annu. Meet. doi: 10.1177/1541931214581200 – volume: 167 start-page: 11 year: 2018 ident: 10.1016/j.neuroimage.2018.11.057_bib64 article-title: Connectome-based predictive modeling of attention: comparing different functional connectivity features and prediction methods across datasets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.11.010 – volume: 5 start-page: 45 year: 2015 ident: 10.1016/j.neuroimage.2018.11.057_bib36 article-title: Dynamic connectivity at rest predicts attention task performance publication-title: Brain Connect. doi: 10.1089/brain.2014.0248 – volume: 82 start-page: 403 year: 2013 ident: 10.1016/j.neuroimage.2018.11.057_bib53 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.081 – volume: 169 start-page: 395 year: 2018 ident: 10.1016/j.neuroimage.2018.11.057_bib40 article-title: Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.030 – volume: 2 start-page: 97 year: 2001 ident: 10.1016/j.neuroimage.2018.11.057_bib65 article-title: Kernel partial least square regression in reproducing kernel Hilbert space publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 1157 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2018.11.057_bib46 article-title: The human cortex possesses a reconfigurable dynamic network architecture that is disrupted in psychosis publication-title: Nat. Commun. doi: 10.1038/s41467-018-03462-y – volume: 26 start-page: 471 year: 2005 ident: 10.1016/j.neuroimage.2018.11.057_bib11 article-title: The activation of attentional networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.004 – start-page: 12 issue: 17 year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib7 article-title: State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility publication-title: J. Neurosci. – volume: 107 start-page: 85 year: 2015 ident: 10.1016/j.neuroimage.2018.11.057_bib62 article-title: Mutually temporally independent connectivity patterns: a new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.054 – volume: 8 start-page: 700 year: 2007 ident: 10.1016/j.neuroimage.2018.11.057_bib16 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2201 – volume: 30 start-page: 160 issue: 2 year: 2017 ident: 10.1016/j.neuroimage.2018.11.057_bib52 article-title: Connectome-based Models Predict Separable Components of Attention in Novel Individuals publication-title: J. Cognit. Neurosci. doi: 10.1162/jocn_a_01197 – volume: 35 start-page: 6849 year: 2015 ident: 10.1016/j.neuroimage.2018.11.057_bib22 article-title: Tracking the Brain's functional coupling dynamics over development publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4638-14.2015 – year: 2016 ident: 10.1016/j.neuroimage.2018.11.057_bib30 article-title: On the stability of bold fmri correlations publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhw265 – volume: 146 start-page: 959 year: 2017 ident: 10.1016/j.neuroimage.2018.11.057_bib39 article-title: Multisite reliability of MR-based functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.020 |
| SSID | ssj0009148 |
| Score | 2.6020367 |
| Snippet | Dynamic functional connectivity (DFC) aims to maximize resolvable information from functional brain scans by considering temporal changes in network structure.... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 14 |
| SubjectTerms | Algorithms Alzheimer's disease Attention - physiology Attention task Behavior Brain - physiology Brain mapping Cognitive ability Dynamic functional connectivity Functional magnetic resonance imaging Humans Individual differences Individuality Magnetic Resonance Imaging Mathematical models Models, Neurological Motor task performance Neural networks Neural Pathways - physiology Partial least squares regression Predictive modeling Regression analysis Rest - physiology Sensorimotor integration Statistical analysis Sustained attention Task Performance and Analysis |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhh6aX0jZ9uEmKAr06a1uyLdFTSRpCILmkgdyELEvU7cYxWS-lUPrbM2PJ3i7pYSFH2xqDZkbzsL-ZIeQTy8rMOJbFrJZ5zE1tYg3CiJ0T4CzTHJzYAJC9LM6u-flNfrNFjsdaGIRVBtvvbfpgrcOdWeDmrGua2RVEBuBuIN_AYTtMYE9QzkucYnD0dwXzkCn35XA5i3F1QPN4jNfQM7K5hZOLIC9xhP080VH930U9DkEfIyl3lm2nf__S8_k_bur0JXkR4kv6xW_hFdmy7Wvy7CL8Qd8lf078CHqKDs1_B6QGwS7Gj5Ggvm6R9nrxk3arqgKq25riHA_a3ePL-gVtplouOo5ZAaMDtyn27BxQlFQPW6QLj1Z8Q65Pv347PovDBIbYFCzpYyNsKuukdpVxkIIb4VyRVM5mFQRCwhYW0jPHSyM5tw4COYi2IOEtQDFclUtTs7dku71r7XtCS861MyWW0houIS-xtTOpYYl0Os90GZFyZLoyoT05TsmYqxGH9kOtxKVQXJC9KBBXRNKJsvMtOjagkaNc1ViCCkZTgR_ZgPbzRLumqhtS749qpIK5WCiIs8qUFVxkETmcHsNBx783urV3S1yDwa0QRRqRd17rpu0yLMGWeQJMXNPHaQE2EV9_0jbfh2biBR-6-EUkmzR3Yy5-eBIn9shzuJIe0LdPtvv7pT2ACK-vPg5H-AFe1lXv priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OPdB78VuvekoEX7v0I2kSfDrU4xA8FFw4n0KaJrje2ltuu4jiH--kaXquh7L6uNtOIZPpzG-a38wAPC8LXhhXFmnZSJZS05hU42akzgkMljnDINYTZE-q4xl9c8pOdyCLtTAb5_c9D6vv6zj_gm-XJ2KJqe-5yfg12K0You8J7M5O3h1-7A81WZmKvJ_lkWd-BCHjkbzzt0f9KSJdRZxXiZM31u1Sf_uqF4tfotLRLXgf1xPIKGfTdVdPzfffWj3-y4Jvw80BopLDYFN3YMe2d-H62-EQ_h78eBWm2BMfE8OnRGI8X8aESRQklD6STq_OyPKyMIHotiF-FAhZXviHdSsyH8vBSJzUgn4L_ya-7WdPxCS6VxtZBcLjfZgdvf7w8jgdhjikpiqzLjXC5rLJGlcbh1m8Ec5VWe1sUSOWEraymOE5yo2k1DrEggjYMGeu0LZczaRpygcwac9buw-EU6qd4b4a11CJqY1tnMlNmUmnWaF5AjxupDJDh3M_aGOhIpXts7pUrvLKxQRIoXITyEfJZejysYWMjLaiYhUr-l2FG7qF7ItRdkA6AcFsKX0QTVMNHmelEKrxvKyoKBJ4Nl5GX-EPgHRrz9f-Ho-PhajyBB4GSx6XW_oqbskyVOKGjY83-D7km1fa-ae-H3lF-0aACRTj27C1Fh_9j9Bj2MNfMlABD2DSXaztE8SGXf10cAc_AffKZes priority: 102 providerName: Unpaywall |
| Title | Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918321384 https://dx.doi.org/10.1016/j.neuroimage.2018.11.057 https://www.ncbi.nlm.nih.gov/pubmed/30521950 https://www.proquest.com/docview/2187136482 https://www.proquest.com/docview/2155148861 https://pubmed.ncbi.nlm.nih.gov/PMC6401236 https://doi.org/10.1016/j.neuroimage.2018.11.057 |
| UnpaywallVersion | publishedVersion |
| Volume | 188 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB_uWlC_iM8z51lW8GvOPDYvRKSed9RXKIeF-ilsNrtYrWnumiKC-Lc7k01SjxPplwSS3cDuzO7MZH_zG4Bnvhd5Uvue7RdJYHNZSFugMGytYzSWboBGrAHIpuFkxt_Ng_kepF0uDMEquz2x2aiLlaR_5M_RFGE8FfLYe1Vd2FQ1ik5XuxIaoi2tULxsKMb2YegRM9YAhq9P0-n5lobX5SY5LvDt2HWTFttjEF8Ng-TiO65jgnzFx8TuSWbr3wbrukN6HVd5c1NW4ucPsVz-ZbTO7sDt1ttkY6Med2FPlffgxsf2PP0-_HpjCtIzMm_mryCTBH2RpqgEM1mMrBbrb6za5hgwURaMqnqw6pI-Vq_Zos_sYl3RFdyC8DEjBs8GU8lEM0S2NtjFBzA7O_10MrHbegy2DH2ntmWs3KRwCp1LjQG5jLUOnVwrL0e3KFahwmBN80gmnCuNbh36Xhj-hqgmOg8SWfgPYVCuSvUIWMS50DKixFrJE4xSVKGlK30n0SLwRGRB1E16JluycqqZscw6VNrXbCuujMSFsUyG4rLA7XtWhrBjhz5JJ9esS0jFLTRDq7JD3xd939ZpMc7Ijr2POjXK2s1jnW1V3YKn_Wtc9nSWI0q12lAbcnXjOHQtODBa1w_Xp4TsJHBwEq_oY9-AKMWvvikXXxpq8ZA3nH4WeL3m7jyLh_8fy2O4hY0Tg987gkF9uVFP0KGr8xHsH_928RrNoxEMxyfnH6Z0f_t-ko7aFYz3WTodf_4DeKtXyQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1EuiDeBAkaCYyAP52GhCgFttaXtCqFW6s11HFtsu82GblbVSvw2fhszsZOlKkJ76TXJRLJnMo_4m28IeRNHWaRMHPlxyROfqVL5EpThG5NDsAwTCGItQHaYDo7Y1-PkeIX87nphEFbZ-cTWUZcThf_I30MognoqZXn0sf7p49QoPF3tRmhIN1qh3Gwpxlxjx56eX0IJN93c3QJ9v42ine3DLwPfTRnwVRoHja9yHfIyKE2hDJSZKjcmDQqjowKCfa5TDSWIYZnijGkDyQpkFFDUpbB4UyRclTG89xZZYzHjUPytfd4efvu-oP0NmW3GS2I_D0PusEQWYdYyVo7OwW8gxCx_h2yiGCb_HSCvJ8DXcZzrs6qW80s5Hv8VJHfukbsuu6WfrDneJyu6ekBuH7jz-4fk19a8kucjRTGc2r-QVCHURtkhFtR2TdJGTs9ovehpoLIqKU4RofUFvqyZ0lHfSUa7IS_g8uAyRcbQFsNJZbtEOrVYyUfk6EY085isVpNKPyU0Y0walWEjr2IcqiJdGhWqOOBGJpHMPJJ1my6UI0fHGR1j0aHgTsVCXQLVBbWTAHV5JOwla0sQsoQM7_QqugZYcNkCotgSsh96WZck2eRnSemNzoyEc1ZTsfi0PPK6vw1uBs-OZKUnM3wGU-s8T0OPPLFW1y83xgZwngSwiVfssX8AKcyv3qlGP1oq85S1HIIeiXrLXXoXn_1_La_I-uDwYF_s7w73npM7IMgtdnCDrDYXM_0CksmmeOm-WEpObtpJ_AE57JBD |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qheqL-G206gr6GJtkNx-LiIjn0VotPli4t7jZ7OLpNXc2OcqBf5l_nTPZJGepyL30NckEdmcyv5nsb2YAnvMojbTlkc9LGftCl9pXqAzf2gzBMowRxFqC7FGyfyw-TOLJFvzua2GIVtn7xNZRl3NN_8j3EIown0pEFu3ZjhbxeTR-s_jp0wQpOmntx2k4Ezk0qzNM3-rXByPU9YsoGr__8m7f7yYM-DrhQePrzISyDEpbaIspps6sTYLCmqhAoM9MYjD9sCLVUghjMVDBaAITugQXbotY6pLje6_A1ZRzSXTCdJKuG_6GwpXhxdzPwlB2LCLHLWt7VU5P0GMQuSx7SX1ECSD_DY0XQ9-LDM5ry2qhVmdqNvsLHsc34UYX17K3zhBvwZapbsPOp-7k_g78Gq0qdTLVjIDU_X9kmkg22o2vYK5ekjWq_sEW62oGpqqS0fwQtjillzU1mw41ZKwf74LODi8z6hXasjeZapfIaseSvAvHl6KXe7BdzSvzAFgqhLI6pRJeLSTmQ6a0OtQ8kFbFkUo9SPtNz3XXFp2mc8zynv_2PV-rKyd1YdaUo7o8CAfJhWsNsoGM7PWa96Wv6KxzxK8NZF8Nsl145MKeDaV3ezPKOzdV5-uPyoNnw210MHRqpCozX9IzFFRnWRJ6cN9Z3bBcTqXfMg5wE8_Z4_AANS8_f6eafmubmCei7R7oQTRY7sa7-PD_a3kKO-ga8o8HR4eP4DrKSUca3IXt5nRpHmMU2RRP2s-VwdfL9g9_AG2sjd0 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OPdB78VuvekoEX7v0I2kSfDrU4xA8FFw4n0KaJrje2ltuu4jiH--kaXquh7L6uNtOIZPpzG-a38wAPC8LXhhXFmnZSJZS05hU42akzgkMljnDINYTZE-q4xl9c8pOdyCLtTAb5_c9D6vv6zj_gm-XJ2KJqe-5yfg12K0You8J7M5O3h1-7A81WZmKvJ_lkWd-BCHjkbzzt0f9KSJdRZxXiZM31u1Sf_uqF4tfotLRLXgf1xPIKGfTdVdPzfffWj3-y4Jvw80BopLDYFN3YMe2d-H62-EQ_h78eBWm2BMfE8OnRGI8X8aESRQklD6STq_OyPKyMIHotiF-FAhZXviHdSsyH8vBSJzUgn4L_ya-7WdPxCS6VxtZBcLjfZgdvf7w8jgdhjikpiqzLjXC5rLJGlcbh1m8Ec5VWe1sUSOWEraymOE5yo2k1DrEggjYMGeu0LZczaRpygcwac9buw-EU6qd4b4a11CJqY1tnMlNmUmnWaF5AjxupDJDh3M_aGOhIpXts7pUrvLKxQRIoXITyEfJZejysYWMjLaiYhUr-l2FG7qF7ItRdkA6AcFsKX0QTVMNHmelEKrxvKyoKBJ4Nl5GX-EPgHRrz9f-Ho-PhajyBB4GSx6XW_oqbskyVOKGjY83-D7km1fa-ae-H3lF-0aACRTj27C1Fh_9j9Bj2MNfMlABD2DSXaztE8SGXf10cAc_AffKZes |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+functional+connectivity+during+task+performance+and+rest+predicts+individual+differences+in+attention+across+studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Fong%2C+Angus+Ho+Ching&rft.au=Yoo%2C+Kwangsun&rft.au=Rosenberg%2C+Monica+D.&rft.au=Zhang%2C+Sheng&rft.date=2019-03-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=188&rft.spage=14&rft.epage=25&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.11.057&rft.externalDocID=S1053811918321384 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |