Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow
When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstruc...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 242; p. 118451 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.11.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2021.118451 |
Cover
Abstract | When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods. |
---|---|
AbstractList | When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods. When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods. |
ArticleNumber | 118451 |
Author | Cai, Leon Yeh, Fang-Cheng Schilling, Kurt G. Hansen, Colin Yang, Qi Anderson, Adam W. Landman, Bennett A. Rheault, Francois Tax, Chantal M.W. |
AuthorAffiliation | c Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom d Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States a Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States b Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States e Department of Neurological Surgery, University of Pittsburgh, United States f Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States |
AuthorAffiliation_xml | – name: c Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom – name: a Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States – name: b Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States – name: d Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States – name: e Department of Neurological Surgery, University of Pittsburgh, United States – name: f Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States |
Author_xml | – sequence: 1 givenname: Kurt G. surname: Schilling fullname: Schilling, Kurt G. email: kurt.g.schilling.1@vumc.org organization: Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States – sequence: 2 givenname: Chantal M.W. surname: Tax fullname: Tax, Chantal M.W. organization: Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom – sequence: 3 givenname: Francois surname: Rheault fullname: Rheault, Francois organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States – sequence: 4 givenname: Colin surname: Hansen fullname: Hansen, Colin organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States – sequence: 5 givenname: Qi surname: Yang fullname: Yang, Qi organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States – sequence: 6 givenname: Fang-Cheng surname: Yeh fullname: Yeh, Fang-Cheng organization: Department of Neurological Surgery, University of Pittsburgh, United States – sequence: 7 givenname: Leon surname: Cai fullname: Cai, Leon organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States – sequence: 8 givenname: Adam W. surname: Anderson fullname: Anderson, Adam W. organization: Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States – sequence: 9 givenname: Bennett A. surname: Landman fullname: Landman, Bennett A. organization: Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34358660$$D View this record in MEDLINE/PubMed |
BookMark | eNqdkstu1DAUhiNURC_wCigSGxadwY6dizcIqChUqsQG1taJc5Lx1GNP7WRGw8vxajhNGToViwopUmyf__90bqfJkXUWkySlZE4JLd4t5xYH7_QKOpxnJKNzSiue02fJCSUin4m8zI7Gc85mFaXiODkNYUkIEZRXL5JjxlleFQU5SX5d6hp92ntQves8rBe7tB5sYzAN2K3Q9tBrZ9MG12ibkMZjUGBt9GDbourDebqJEffgDup20EHf-TwGZ4bxeJ42um2HML4GWK2Ntl1kLXCFByG0o_UnTB6wzT_z2Tp_0xq3fZk8b8EEfHX_P0t-XH7-fvF1dv3ty9XFx-uZKhjpZwLKvKw4KsEYEg4Z5Hle1qrCBrK6qYCTsiwEAVqLtgEADsAoE1AD50y17Cy5mriNg6Vc-9h6v5MOtLx7cL6T4HutDEoCNWGqQV6qLHpJXQmoVJmJIufIRBZZYmINdg27LRizB1IixwHLpfw7YDkOWE4Djt73k3c91CtsVGyIB3OQ0GHE6oXs3EaKWDkhI-DtPcC72wFDL1c6KDQGLLohyCzPBc_ix6L0zSPp0g3exjZHVWwWL2g1ql4_zGifyp8di4JqEijvQvDY_ke1e6vS0wLE2rR5CuDTBMC4GxuNXgal0SpstI_LGoennwL58Aii4vJqBeYGd09D_AZj2jPn |
CitedBy_id | crossref_primary_10_1007_s00429_022_02503_z crossref_primary_10_1097_RLI_0000000000001015 crossref_primary_10_1162_imag_a_00108 crossref_primary_10_3389_fradi_2022_866974 crossref_primary_10_1002_hbm_26169 crossref_primary_10_1016_j_mri_2024_03_033 crossref_primary_10_1002_hbm_26580 crossref_primary_10_1016_j_neuroimage_2022_118909 crossref_primary_10_2139_ssrn_4077955 crossref_primary_10_1038_s44220_024_00334_x crossref_primary_10_1016_j_neuroimage_2023_120248 crossref_primary_10_1007_s00429_022_02518_6 crossref_primary_10_1016_j_neuroimage_2022_119550 crossref_primary_10_1016_j_nbas_2023_100067 crossref_primary_10_1002_hbm_26390 crossref_primary_10_1007_s00429_023_02642_x crossref_primary_10_3389_fninf_2023_1191200 crossref_primary_10_3389_fnins_2024_1394681 crossref_primary_10_1016_j_jns_2024_123065 crossref_primary_10_1002_mrm_30429 crossref_primary_10_1038_s41597_024_03058_w crossref_primary_10_1162_imag_a_00050 crossref_primary_10_3389_fnimg_2024_1359589 crossref_primary_10_1016_j_mri_2024_05_009 crossref_primary_10_1038_s41467_022_32595_4 crossref_primary_10_7554_eLife_82088 crossref_primary_10_1016_j_media_2023_102761 crossref_primary_10_3390_diagnostics13050911 crossref_primary_10_1038_s41598_023_31819_x |
Cites_doi | 10.1371/journal.pone.0083847 10.1002/hbm.24579 10.1016/S1053-8119(03)00336-7 10.1088/1741-2552/ab6aad 10.1016/j.neuroimage.2020.116923 10.1038/s41597-019-0073-y 10.3389/fnana.2018.00094 10.1016/j.neuroimage.2019.01.077 10.1016/j.neuroimage.2018.07.070 10.1002/mrm.10331 10.1002/hbm.24917 10.3389/fnana.2016.00058 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q 10.1109/TMI.2010.2045126 10.1038/s41598-019-40666-8 10.1016/j.neuroimage.2011.09.015 10.1002/hbm.24241 10.1007/s00701-019-03899-0 10.1097/RMR.0b013e31821e56ac 10.1016/j.neuroimage.2020.117406 10.1016/j.neuroimage.2010.11.047 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1109/TMI.2013.2285500 10.1007/s00429-016-1298-6 10.1002/nbm.3017 10.1016/j.neuroimage.2013.04.127 10.1016/j.pscychresns.2011.05.012 10.1038/s41598-020-74054-4 10.1016/j.mri.2013.03.004 10.3389/fnint.2019.00024 10.1002/mrm.20426 10.1371/journal.pone.0080713 10.1038/srep37847 10.1002/nbm.1543 10.1002/mrm.28243 10.1016/j.neuroimage.2016.11.066 10.1371/journal.pone.0049790 10.1089/brain.2012.0112 10.1016/j.media.2019.101559 10.1002/nbm.3787 10.1007/s11682-016-9670-y 10.1186/s12938-020-0748-9 10.1038/s41597-020-0493-8 10.1016/j.neuroimage.2019.116137 10.1016/j.media.2020.101761 10.1016/j.neuroimage.2007.02.056 10.1016/j.neuroimage.2020.116704 10.1016/j.neuroimage.2006.07.037 10.1016/j.nicl.2017.06.011 10.1093/cercor/bhr268 10.1002/nbm.3785 10.1002/mrm.28678 10.1002/jmri.21053 10.1007/s00429-019-01856-2 10.1016/j.neuroimage.2016.09.029 10.1016/j.neuroimage.2017.07.015 10.1016/j.neuroimage.2006.02.024 10.1109/TMI.2019.2895020 10.1002/jmri.21049 10.1016/j.neuroimage.2018.05.047 10.1016/j.neuroimage.2018.05.027 10.1016/j.nicl.2018.08.021 10.1162/jocn.2007.19.9.1498 10.1016/j.neuroimage.2020.117128 10.1016/j.neuroimage.2019.05.051 10.3389/fninf.2014.00008 10.1002/nbm.779 10.1186/s12938-020-00786-z 10.3348/kjr.2018.19.4.777 10.1200/CCI.19.00141 10.1002/nbm.3841 10.1002/jmri.10377 10.1073/pnas.1410767112 10.1016/j.neuroimage.2018.08.071 10.1016/j.neuroimage.2017.10.046 10.1016/j.neuroimage.2019.06.020 10.1016/j.neuroimage.2018.08.073 10.1016/j.neuroimage.2012.02.071 10.1016/j.neuroimage.2017.08.047 10.1016/j.neuroimage.2020.117329 10.1016/j.neuroimage.2008.05.002 10.1016/j.neuroimage.2007.02.049 10.1002/mrm.20283 10.1016/j.cortex.2012.09.005 10.1007/s00429-020-02056-z 10.1111/joim.12482 10.1016/j.neuroimage.2012.06.081 10.1016/j.neuron.2013.11.012 10.1038/nmeth.3098 10.1007/s00429-011-0372-3 10.1007/s00429-015-1179-4 10.1002/mrm.20033 10.1002/mrm.10171 10.1016/j.nicl.2019.101883 10.1016/j.neuroimage.2016.04.041 10.1148/radiology.201.3.8939209 10.1109/TMI.2007.906785 10.1016/j.neuroimage.2020.116534 10.1016/j.neuroimage.2010.03.046 10.1016/j.neuroimage.2012.01.056 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Nov 15, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Nov 15, 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.1016/j.neuroimage.2021.118451 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest - Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 118451 |
ExternalDocumentID | oai_doaj_org_article_0ab03cde47c243c0b89a8c729654e392 10.1016/j.neuroimage.2021.118451 PMC9933001 34358660 10_1016_j_neuroimage_2021_118451 S1053811921007254 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB017230 – fundername: Wellcome Trust – fundername: NCRR NIH HHS grantid: UL1 RR024975 – fundername: Wellcome Trust grantid: 215944/Z/19/Z – fundername: NIBIB NIH HHS grantid: T32 EB001628 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACLOT ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EFLBG EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- SEW WUQ XPP ZMT ~HD 0SF ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c630t-9a75784ec933e04a2a5557bc8eda2bd8a4077690a1b9fdaaa4aa3139aba443cf3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:24:29 EDT 2025 Wed Aug 20 00:15:40 EDT 2025 Tue Sep 30 17:16:32 EDT 2025 Sun Sep 28 09:04:43 EDT 2025 Wed Aug 13 03:34:14 EDT 2025 Wed Feb 19 02:25:23 EST 2025 Wed Oct 01 03:43:36 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Fri Feb 23 02:46:51 EST 2024 Tue Aug 26 18:33:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reproducibility White matter Tractography Bundle segmentation Harmonization |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-9a75784ec933e04a2a5557bc8eda2bd8a4077690a1b9fdaaa4aa3139aba443cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2021.118451 |
PMID | 34358660 |
PQID | 2569046183 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0ab03cde47c243c0b89a8c729654e392 unpaywall_primary_10_1016_j_neuroimage_2021_118451 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9933001 proquest_miscellaneous_2559429423 proquest_journals_2569046183 pubmed_primary_34358660 crossref_primary_10_1016_j_neuroimage_2021_118451 crossref_citationtrail_10_1016_j_neuroimage_2021_118451 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118451 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118451 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Jones, Cercignani (bib0037) 2010; 23 Schilling, Rheault, Petit, Hansen, Nath, Yeh (bib0085) 2021 Forkel, Thiebaut de Schotten, Kawadler, Dell'Acqua, Danek, Catani (bib0018) 2014; 56 Jones, Horsfield, Simmons (bib0039) 1999; 42 Mandonnet, Sarubbo, Petit (bib0054) 2018; 12 Andersson, Skare, Ashburner (bib0002) 2003; 20 Ros, Gullmar, Stenzel, Mentzel, Reichenbach (bib0079) 2013; 8 Nath, Schilling, Parvathaneni, Huo, Blaber, Hainline (bib0061) 2019 Jones, Grisot, Augustinack, Magnain, Boas, Fischl (bib0045) 2020 Essayed, Zhang, Unadkat, Cosgrove, Golby, O'Donnell (bib0015) 2017; 15 Canales-Rodriguez, Legarreta, Pizzolato, Rensonnet, Girard, Patino (bib0006) 2018; 184 Mirzaalian, Ning, Savadjiev, Pasternak, Bouix, Michailovich (bib0059) 2018; 12 Chamberland, Raven, Genc, Duffy, Descoteaux, Parker (bib0008) 2019; 200 Prckovska, Roebroeck, Pullens, Vilanova, ter Haar Romeny (bib0072) 2008; 11 Tax, Grussu, Kaden, Ning, Rudrapatna, Evans (bib0088) 2019 Pfefferbaum, Adalsteinsson, Sullivan (bib0070) 2003; 18 Daducci, Canales-Rodríguez, Descoteaux, Garyfallidis, Gur, Lin (bib0013) 2014; 33 Vollmar, O'Muircheartaigh, Barker, Symms, Thompson, Kumari (bib0099) 2010; 51 Landman, Huang, Gifford, Vikram, Lim, Farrell (bib0048) 2011; 54 Jones, Horsfield, Simmons (bib0040) 1999; 42 Heiervang, Behrens, Mackay, Robson, Johansen-Berg (bib0029) 2006; 33 Fortin, Parker, Tunç, Watanabe, Elliott, Ruparel (bib0019) 2017; 161 Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0033) 2012; 62 Chang, Jones, Pierpaoli (bib0011) 2005; 53 Jones, Knosche, Turner (bib0041) 2013; 73 Cai, Yang, Kanakaraj, Nath, Newton, Edmonson (bib0005) 2020 Guevara, Roman, Houenou, Duclap, Poupon, Mangin (bib0025) 2017; 147 Tournier, Smith, Raffelt, Tabbara, Dhollander, Pietsch (bib0094) 2019; 202 Schilling, Gao, Janve, Stepniewska, Landman, Anderson (bib0082) 2017; 30 Tournier, Yeh, Calamante, Cho, Connelly, Lin (bib0095) 2008; 42 Alexander, Dyrby, Nilsson, Zhang (bib0001) 2019; 32 Yeh, Wedeen, Tseng (bib0109) 2010; 29 Ning, Bonet-Carne, Grussu, Sepehrband, Kaden, Veraart (bib0065) 2020; 221 Chen, Zhang, Li, Wee, Wu, Shen (bib0012) 2016; 6 (bib0098) 2018 O'Donnell, Westin (bib0067) 2007; 26 Tax, Grussu, Kaden, Ning, Rudrapatna, John Evans (bib0089) 2019; 195 Chamberland, Tax, Jones (bib0009) 2018; 20 Jones, Alexander, Bowtell, Cercignani, Dell'Acqua, McHugh (bib0035) 2018; 182 Maffei, Sarubbo, Jovicich (bib0050) 2019; 9 Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay (bib0086) 2006; 31 Zhang, Hoffmann, Karayumak, Rathi, Golby, O'Donnell (bib0113) 2019; 11766 Prohl, Scherrer, Tomas-Fernandez, Filip-Dhima, Kapur, Velasco-Annis (bib0074) 2019; 13 Farrell, Landman, Jones, Smith, Prince, van Zijl (bib0016) 2007; 26 Schilling, Rheault, Petit, Hansen, Nath, Yeh (bib0084) 2020 Mancini, Vos, Vakharia, O'Keeffe, Trimmel, Barkhof (bib0053) 2019; 23 Pestilli, Yeatman, Rokem, Kay, Wandell (bib0069) 2014; 11 Griswold, Jakob, Heidemann, Nittka, Jellus, Wang (bib0024) 2002; 47 Hau J., Sarubbo S., Houde J.C., Corsini F., Girard G., Deledalle C., et al. Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain structure & function. 2017;222(4):1645–62. doi: 10.1007/s00429-016-1298-6. PubMed PMID: 27581617. Mars, Sallet, Schuffelgen, Jbabdi, Toni, Rushworth (bib0056) 2012; 22 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson (bib0023) 2013; 80 Yeatman, Dougherty, Myall, Wandell, Feldman (bib0106) 2012; 7 Magnotta, Matsui, Liu, Johnson, Long, Bolster (bib0052) 2012; 2 Wasserthal, Neher, Hirjak, Maier-Hein (bib0105) 2019; 58 Sarubbo, Petit, De Benedictis, Chioffi, Ptito, Dyrby (bib0081) 2019; 224 Schilling, Janve, Gao, Stepniewska, Landman, Anderson (bib0083) 2018; 165 Marcus, Wang, Parker, Csernansky, Morris, Buckner (bib0055) 2007; 19 Moyer, Ver Steeg, Tax, Thompson (bib0060) 2020; 84 Rheault, De Benedictis, Daducci, Maffei, Tax, Romascano (bib0077) 2020 Landman, Farrell, Jones, Smith, Prince, Mori (bib0047) 2007; 36 Papinutto, Maule, Jovicich (bib0068) 2013; 31 Guevara, Duclap, Poupon, Marrakchi-Kacem, Fillard, Le Bihan (bib0026) 2012; 61 Jones, Basser (bib0036) 2004; 52 Jones (bib0042) 2003; 49 (bib0030) 2019 Novikov, Fieremans, Jespersen, Kiselev (bib0066) 2018 Rheault, Poulin, Valcourt Caron, St-Onge, Descoteaux (bib0078) 2020; 17 Yeh, Panesar, Fernandes, Meola, Yoshino, Fernandez-Miranda (bib0107) 2018; 178 Sotiropoulos, Behrens, Jbabdi (bib0087) 2012; 60 Mirzaalian, Ning, Savadjiev, Pasternak, Bouix, Michailovich (bib0058) 2016; 135 Pruessmann, Weiger, Scheidegger, Boesiger (bib0075) 1999; 42 Yeh (bib0110) 2020; 223 Pierpaoli, Jezzard, Basser, Barnett, Chiro (bib0071) 1996; 201 Jack, Bernstein, Fox, Thompson, Alexander, Harvey (bib0032) 2008; 27 Avesani, McPherson, Hayashi, Caiafa, Henschel, Garyfallidis (bib0003) 2019; 6 Ning, Bonet-Carne, Grussu, Sepehrband, Kaden, Veraart (bib0064) 2020; 221 Tournier, Calamante, Connelly (bib0093) 2013; 26 Jones (bib0044) 2010; 21 Vanderweyen D.C., Theaud G., Sidhu J., Rheault F., Sarubbo S., Descoteaux M., et al. The role of diffusion tractography in refining glial tumor resection. Brain Structure and Function. 2020;225(4):1413–36. doi: 10.1007/s00429-020-02056-z. Hau, Sarubbo, Perchey, Crivello, Zago, Mellet (bib0028) 2016; 10 Neubert, Mars, Thomas, Sallet, Rushworth (bib0063) 2014; 81 (bib0103) 2018 Chandio, Risacher, Pestilli, Bullock, Yeh, Koudoro (bib0010) 2020; 10 Huynh, Chen, Wu, Shen, Yap (bib0031) 2019; 38 Yeh, Verstynen, Wang, Fernandez-Miranda, Tseng (bib0108) 2013; 8 Teipel, Reuter, Stieltjes, Acosta-Cabronero, Ernemann, Fellgiebel (bib0091) 2011; 194 Wasserthal, Neher, Maier-Hein (bib0104) 2018; 183 Jeurissen, Descoteaux, Mori, Leemans (bib0034) 2019; 32 Koller, Rudrapatna, Chamberland, Raven, Parker, Tax (bib0046) 2021; 225 Vazquez, Lopez-Lopez, Houenou, Poupon, Mangin, Ladra (bib0097) 2020; 19 Zhong, Wang, Li, Xue, Liu, Wang (bib0116) 2020; 19 Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki (bib0102) 2016; 221 Zhang, Noh, Juvekar, Frisken, Rigolo, Norton (bib0114) 2020; 4 Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud (bib0101) 2020; 217 De Luca, Ianus, Leemans, Palombo, Shemesh, Zhang (bib0014) 2021 Raffelt, Tournier, Smith, Vaughan, Jackson, Ridgway (bib0076) 2017; 144 Neubert, Mars, Sallet, Rushworth (bib0062) 2015; 112 Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub (bib0100) 2007; 36 Magnotta, Matsui, Liu, Johnson, Long, Bolster (bib0051) 2012; 2 Zhang, Cetin Karayumak, Hoffmann, Rathi, Golby, O'Donnell (bib0112) 2020; 65 Jones, Chitnis, Job, Khong, Leung, Marenco (bib0038) 2007 Galluzzi, Marizzoni, Babiloni, Albani, Antelmi, Bagnoli (bib0020) 2016; 279 Min, Park, Choi, Jahng, Moon (bib0057) 2018; 19 Tax, Szczepankiewicz, Nilsson, Jones (bib0090) 2020; 210 Garyfallidis, Cote, Rheault, Sidhu, Hau, Petit (bib0022) 2018; 170 Tong, He, Gong, Li, Liang, Qian (bib0092) 2020; 7 Fekonja, Wang, Bährend, Rosenstock, Rösler, Wallmeroth (bib0017) 2019; 161 Zöllei, Jaimes, Saliba, Grant, Yendiki (bib0117) 2019; 199 Garyfallidis, Brett, Amirbekian, Rokem, van der Walt, Descoteaux (bib0021) 2014; 8 Sarubbo, De Benedictis, Maldonado, Basso, Duffau (bib0080) 2013; 218 Yu, Linn, Cook, Phillips, McInnis, Fava (bib0111) 2018; 39 Zhang, Wu, Norton, Rathi, Golby, O'Donnell (bib0115) 2019; 40 Lori, Akbudak, Shimony, Cull, Snyder, Guillory (bib0049) 2002; 15 Cai, Yang, Hansen, Nath, Ramadass, Johnson (bib0004) 2021 Jones (bib0043) 2004; 51 Cetin Karayumak, Bouix, Ning, James, Crow, Shenton (bib0007) 2019; 184 Prohl, Scherrer, Tomas-Fernandez, Filip-Dhima, Kapur, Velasco-Annis (bib0073) 2019; 13 Wakana (10.1016/j.neuroimage.2021.118451_bib0100) 2007; 36 Jones (10.1016/j.neuroimage.2021.118451_bib0042) 2003; 49 Sarubbo (10.1016/j.neuroimage.2021.118451_bib0080) 2013; 218 Cai (10.1016/j.neuroimage.2021.118451_bib0004) 2021 Jones (10.1016/j.neuroimage.2021.118451_bib0044) 2010; 21 Yeh (10.1016/j.neuroimage.2021.118451_bib0108) 2013; 8 Daducci (10.1016/j.neuroimage.2021.118451_bib0013) 2014; 33 Magnotta (10.1016/j.neuroimage.2021.118451_bib0051) 2012; 2 Yeh (10.1016/j.neuroimage.2021.118451_bib0110) 2020; 223 Prohl (10.1016/j.neuroimage.2021.118451_bib0074) 2019; 13 Raffelt (10.1016/j.neuroimage.2021.118451_bib0076) 2017; 144 Pierpaoli (10.1016/j.neuroimage.2021.118451_bib0071) 1996; 201 Ros (10.1016/j.neuroimage.2021.118451_bib0079) 2013; 8 Pruessmann (10.1016/j.neuroimage.2021.118451_bib0075) 1999; 42 De Luca (10.1016/j.neuroimage.2021.118451_bib0014) 2021 Mars (10.1016/j.neuroimage.2021.118451_bib0056) 2012; 22 Fekonja (10.1016/j.neuroimage.2021.118451_bib0017) 2019; 161 Wasserthal (10.1016/j.neuroimage.2021.118451_bib0104) 2018; 183 Papinutto (10.1016/j.neuroimage.2021.118451_bib0068) 2013; 31 Prohl (10.1016/j.neuroimage.2021.118451_bib0073) 2019; 13 Huynh (10.1016/j.neuroimage.2021.118451_bib0031) 2019; 38 Jones (10.1016/j.neuroimage.2021.118451_bib0037) 2010; 23 Sotiropoulos (10.1016/j.neuroimage.2021.118451_bib0087) 2012; 60 (10.1016/j.neuroimage.2021.118451_bib0103) 2018 Chen (10.1016/j.neuroimage.2021.118451_bib0012) 2016; 6 Tournier (10.1016/j.neuroimage.2021.118451_bib0093) 2013; 26 Zhong (10.1016/j.neuroimage.2021.118451_bib0116) 2020; 19 Griswold (10.1016/j.neuroimage.2021.118451_bib0024) 2002; 47 Landman (10.1016/j.neuroimage.2021.118451_bib0047) 2007; 36 Ning (10.1016/j.neuroimage.2021.118451_bib0065) 2020; 221 Pfefferbaum (10.1016/j.neuroimage.2021.118451_bib0070) 2003; 18 Moyer (10.1016/j.neuroimage.2021.118451_bib0060) 2020; 84 Sarubbo (10.1016/j.neuroimage.2021.118451_bib0081) 2019; 224 Zhang (10.1016/j.neuroimage.2021.118451_bib0113) 2019; 11766 Landman (10.1016/j.neuroimage.2021.118451_bib0048) 2011; 54 Tournier (10.1016/j.neuroimage.2021.118451_bib0095) 2008; 42 Forkel (10.1016/j.neuroimage.2021.118451_bib0018) 2014; 56 O'Donnell (10.1016/j.neuroimage.2021.118451_bib0067) 2007; 26 Wasserthal (10.1016/j.neuroimage.2021.118451_bib0105) 2019; 58 Min (10.1016/j.neuroimage.2021.118451_bib0057) 2018; 19 Chang (10.1016/j.neuroimage.2021.118451_bib0011) 2005; 53 Nath (10.1016/j.neuroimage.2021.118451_bib0061) 2019 Tong (10.1016/j.neuroimage.2021.118451_bib0092) 2020; 7 Zhang (10.1016/j.neuroimage.2021.118451_bib0112) 2020; 65 Jones (10.1016/j.neuroimage.2021.118451_bib0038) 2007 Yeatman (10.1016/j.neuroimage.2021.118451_bib0106) 2012; 7 Fortin (10.1016/j.neuroimage.2021.118451_bib0019) 2017; 161 Mirzaalian (10.1016/j.neuroimage.2021.118451_bib0059) 2018; 12 Koller (10.1016/j.neuroimage.2021.118451_bib0046) 2021; 225 Mandonnet (10.1016/j.neuroimage.2021.118451_bib0054) 2018; 12 Mancini (10.1016/j.neuroimage.2021.118451_bib0053) 2019; 23 Farrell (10.1016/j.neuroimage.2021.118451_bib0016) 2007; 26 Guevara (10.1016/j.neuroimage.2021.118451_bib0025) 2017; 147 Maffei (10.1016/j.neuroimage.2021.118451_bib0050) 2019; 9 Prckovska (10.1016/j.neuroimage.2021.118451_bib0072) 2008; 11 Cai (10.1016/j.neuroimage.2021.118451_bib0005) 2020 Warrington (10.1016/j.neuroimage.2021.118451_bib0101) 2020; 217 Galluzzi (10.1016/j.neuroimage.2021.118451_bib0020) 2016; 279 Pestilli (10.1016/j.neuroimage.2021.118451_bib0069) 2014; 11 Wassermann (10.1016/j.neuroimage.2021.118451_bib0102) 2016; 221 Novikov (10.1016/j.neuroimage.2021.118451_bib0066) 2018 Zöllei (10.1016/j.neuroimage.2021.118451_bib0117) 2019; 199 Garyfallidis (10.1016/j.neuroimage.2021.118451_bib0021) 2014; 8 Andersson (10.1016/j.neuroimage.2021.118451_bib0002) 2003; 20 (10.1016/j.neuroimage.2021.118451_bib0098) 2018 Chamberland (10.1016/j.neuroimage.2021.118451_bib0008) 2019; 200 Schilling (10.1016/j.neuroimage.2021.118451_bib0083) 2018; 165 Heiervang (10.1016/j.neuroimage.2021.118451_bib0029) 2006; 33 Guevara (10.1016/j.neuroimage.2021.118451_bib0026) 2012; 61 Neubert (10.1016/j.neuroimage.2021.118451_bib0063) 2014; 81 Yeh (10.1016/j.neuroimage.2021.118451_bib0107) 2018; 178 Marcus (10.1016/j.neuroimage.2021.118451_bib0055) 2007; 19 Schilling (10.1016/j.neuroimage.2021.118451_bib0082) 2017; 30 Tax (10.1016/j.neuroimage.2021.118451_bib0089) 2019; 195 Chamberland (10.1016/j.neuroimage.2021.118451_bib0009) 2018; 20 Jones (10.1016/j.neuroimage.2021.118451_bib0045) 2020 Rheault (10.1016/j.neuroimage.2021.118451_bib0077) 2020 Tournier (10.1016/j.neuroimage.2021.118451_bib0094) 2019; 202 Jones (10.1016/j.neuroimage.2021.118451_bib0040) 1999; 42 Chandio (10.1016/j.neuroimage.2021.118451_bib0010) 2020; 10 Jones (10.1016/j.neuroimage.2021.118451_bib0035) 2018; 182 Vazquez (10.1016/j.neuroimage.2021.118451_bib0097) 2020; 19 Mirzaalian (10.1016/j.neuroimage.2021.118451_bib0058) 2016; 135 10.1016/j.neuroimage.2021.118451_bib0096 Neubert (10.1016/j.neuroimage.2021.118451_bib0062) 2015; 112 Essayed (10.1016/j.neuroimage.2021.118451_bib0015) 2017; 15 Jones (10.1016/j.neuroimage.2021.118451_bib0041) 2013; 73 Ning (10.1016/j.neuroimage.2021.118451_bib0064) 2020; 221 Schilling (10.1016/j.neuroimage.2021.118451_bib0085) 2021 (10.1016/j.neuroimage.2021.118451_bib0030) 2019 Yeh (10.1016/j.neuroimage.2021.118451_bib0109) 2010; 29 Teipel (10.1016/j.neuroimage.2021.118451_bib0091) 2011; 194 Vollmar (10.1016/j.neuroimage.2021.118451_bib0099) 2010; 51 Canales-Rodriguez (10.1016/j.neuroimage.2021.118451_bib0006) 2018; 184 Avesani (10.1016/j.neuroimage.2021.118451_bib0003) 2019; 6 Cetin Karayumak (10.1016/j.neuroimage.2021.118451_bib0007) 2019; 184 Magnotta (10.1016/j.neuroimage.2021.118451_bib0052) 2012; 2 Rheault (10.1016/j.neuroimage.2021.118451_bib0078) 2020; 17 Glasser (10.1016/j.neuroimage.2021.118451_bib0023) 2013; 80 10.1016/j.neuroimage.2021.118451_bib0027 Yu (10.1016/j.neuroimage.2021.118451_bib0111) 2018; 39 Jones (10.1016/j.neuroimage.2021.118451_bib0036) 2004; 52 Jack (10.1016/j.neuroimage.2021.118451_bib0032) 2008; 27 Jenkinson (10.1016/j.neuroimage.2021.118451_bib0033) 2012; 62 Alexander (10.1016/j.neuroimage.2021.118451_bib0001) 2019; 32 Zhang (10.1016/j.neuroimage.2021.118451_bib0115) 2019; 40 Zhang (10.1016/j.neuroimage.2021.118451_bib0114) 2020; 4 Jones (10.1016/j.neuroimage.2021.118451_bib0043) 2004; 51 Hau (10.1016/j.neuroimage.2021.118451_bib0028) 2016; 10 Tax (10.1016/j.neuroimage.2021.118451_bib0088) 2019 Smith (10.1016/j.neuroimage.2021.118451_bib0086) 2006; 31 Jeurissen (10.1016/j.neuroimage.2021.118451_bib0034) 2019; 32 Jones (10.1016/j.neuroimage.2021.118451_bib0039) 1999; 42 Schilling (10.1016/j.neuroimage.2021.118451_bib0084) 2020 Tax (10.1016/j.neuroimage.2021.118451_bib0090) 2020; 210 Garyfallidis (10.1016/j.neuroimage.2021.118451_bib0022) 2018; 170 Lori (10.1016/j.neuroimage.2021.118451_bib0049) 2002; 15 |
References_xml | – volume: 32 start-page: e3785 year: 2019 ident: bib0034 article-title: Diffusion MRI fiber tractography of the brain publication-title: NMR Biomed. – volume: 36 start-page: 1123 year: 2007 end-page: 1138 ident: bib0047 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: Neuroimage – volume: 61 start-page: 1083 year: 2012 end-page: 1099 ident: bib0026 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: Neuroimage – year: 2021 ident: bib0014 article-title: On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge publication-title: bioRxiv – volume: 170 start-page: 283 year: 2018 end-page: 295 ident: bib0022 article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering publication-title: Neuroimage – volume: 20 start-page: 458 year: 2018 end-page: 465 ident: bib0009 article-title: Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware publication-title: Neuroimage Clin – volume: 42 start-page: 952 year: 1999 end-page: 962 ident: bib0075 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn. Reson. Med. – volume: 194 start-page: 363 year: 2011 end-page: 371 ident: bib0091 article-title: Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study publication-title: Psychiatry Res.: Neuroimaging – year: 2020 ident: bib0077 article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility publication-title: Hum. Brain Mapp. – volume: 26 start-page: 1562 year: 2007 end-page: 1575 ident: bib0067 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE Trans. Med. Imaging – volume: 200 start-page: 89 year: 2019 end-page: 100 ident: bib0008 article-title: Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain publication-title: Neuroimage – year: 2007 ident: bib0038 publication-title: What happens when nine different groups analyze the same DT-MRI data set using voxel-based methods – volume: 65 year: 2020 ident: bib0112 article-title: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation publication-title: Med. Image Anal. – volume: 279 start-page: 576 year: 2016 end-page: 591 ident: bib0020 article-title: Clinical and biomarker profiling of prodromal Alzheimer's disease in workpackage 5 of the Innovative Medicines Initiative PharmaCog project: a 'European ADNI study' publication-title: J. Intern. Med. – volume: 49 start-page: 7 year: 2003 end-page: 12 ident: bib0042 article-title: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med. – volume: 54 start-page: 2854 year: 2011 end-page: 2866 ident: bib0048 article-title: Multi-parametric neuroimaging reproducibility: a 3-T resource study publication-title: Neuroimage – volume: 15 start-page: 494 year: 2002 end-page: 515 ident: bib0049 article-title: Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results publication-title: NMR Biomed. – volume: 38 start-page: 1599 year: 2019 end-page: 1609 ident: bib0031 article-title: Multi-Site Harmonization of Diffusion MRI Data via Method of Moments publication-title: IEEE Trans. Med. Imaging – volume: 224 start-page: 1553 year: 2019 end-page: 1567 ident: bib0081 article-title: Uncovering the inferior fronto-occipital fascicle and its topological organization in non-human primates: the missing connection for language evolution publication-title: Brain Struct. Funct. – volume: 47 start-page: 1202 year: 2002 end-page: 1210 ident: bib0024 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn. Reson. Med. – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bib0033 article-title: Fsl publication-title: Neuroimage – volume: 52 start-page: 979 year: 2004 end-page: 993 ident: bib0036 article-title: "Squashing peanuts and smashing pumpkins": how noise distorts diffusion-weighted MR data publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med. – volume: 42 start-page: 617 year: 2008 end-page: 625 ident: bib0095 article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data publication-title: Neuroimage – volume: 112 start-page: E2695 year: 2015 end-page: E2704 ident: bib0062 article-title: Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 223 year: 2020 ident: bib0110 article-title: Shape analysis of the human association pathways publication-title: Neuroimage – volume: 161 start-page: 1125 year: 2019 end-page: 1137 ident: bib0017 article-title: Manual for clinical language tractography publication-title: Acta Neurochir. (Wien) – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: bib0002 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage – volume: 51 start-page: 1384 year: 2010 end-page: 1394 ident: bib0099 article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners publication-title: Neuroimage – volume: 178 start-page: 57 year: 2018 end-page: 68 ident: bib0107 article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology publication-title: Neuroimage – volume: 13 start-page: 24 year: 2019 ident: bib0073 article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study publication-title: Front. Integr. Neurosci. – volume: 217 year: 2020 ident: bib0101 article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage – volume: 31 start-page: 827 year: 2013 end-page: 839 ident: bib0068 article-title: Reproducibility and biases in high field brain diffusion MRI: an evaluation of acquisition and analysis variables publication-title: Magn. Reson. Imaging – reference: Vanderweyen D.C., Theaud G., Sidhu J., Rheault F., Sarubbo S., Descoteaux M., et al. The role of diffusion tractography in refining glial tumor resection. Brain Structure and Function. 2020;225(4):1413–36. doi: 10.1007/s00429-020-02056-z. – volume: 6 start-page: 69 year: 2019 ident: bib0003 article-title: The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services publication-title: Sci. Data – year: 2019 ident: bib0061 article-title: Tractography reproducibility challenge with empirical data (TraCED): the 2017 ISMRM diffusion study group challenge publication-title: J. Magn. Reson. Imaging – volume: 53 start-page: 1088 year: 2005 end-page: 1095 ident: bib0011 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magn. Reson. Med. – volume: 201 start-page: 637 year: 1996 end-page: 648 ident: bib0071 article-title: Diffusion Tensor MR Imaging of the Human Brain publication-title: Radiology – volume: 39 start-page: 4213 year: 2018 end-page: 4227 ident: bib0111 article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data publication-title: Hum. Brain Mapp. – year: 2019 ident: bib0030 publication-title: Longitudinal Harmonization for Improving Tractography in Baby Diffusion MRI. Computational Diffusion MRI – volume: 161 start-page: 149 year: 2017 end-page: 170 ident: bib0019 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: Neuroimage – volume: 19 start-page: 1498 year: 2007 end-page: 1507 ident: bib0055 article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults publication-title: J. Cogn. Neurosci. – volume: 19 start-page: 777 year: 2018 end-page: 782 ident: bib0057 article-title: Inter-Vendor and Inter-Session Reliability of Diffusion Tensor Imaging: implications for Multicenter Clinical Imaging Studies publication-title: Korean J. Radiol. – reference: Hau J., Sarubbo S., Houde J.C., Corsini F., Girard G., Deledalle C., et al. Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain structure & function. 2017;222(4):1645–62. doi: 10.1007/s00429-016-1298-6. PubMed PMID: 27581617. – volume: 221 start-page: 4705 year: 2016 end-page: 4721 ident: bib0102 article-title: The white matter query language: a novel approach for describing human white matter anatomy publication-title: Brain Struct. Funct. – volume: 51 start-page: 807 year: 2004 end-page: 815 ident: bib0043 article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med. – year: 2018 ident: bib0103 article-title: Tract Orientation Mapping for Bundle-Specific Tractography publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI – volume: 26 start-page: 756 year: 2007 end-page: 767 ident: bib0016 article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T publication-title: J. Magn. Reson. Imaging – volume: 23 year: 2019 ident: bib0053 article-title: Automated fiber tract reconstruction for surgery planning: extensive validation in language-related white matter tracts publication-title: Neuroimage Clin. – volume: 10 start-page: 17149 year: 2020 ident: bib0010 article-title: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations publication-title: Sci. Rep. – volume: 7 start-page: e49790 year: 2012 ident: bib0106 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS One – year: 2021 ident: bib0004 article-title: PreQual: an automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images publication-title: Magn. Reson. Med. – volume: 8 start-page: e83847 year: 2013 ident: bib0079 article-title: Atlas-guided cluster analysis of large tractography datasets publication-title: PLoS One – volume: 29 start-page: 1626 year: 2010 end-page: 1635 ident: bib0109 article-title: Generalized q-sampling imaging publication-title: IEEE Trans. Med. Imaging – volume: 199 start-page: 1 year: 2019 end-page: 17 ident: bib0117 article-title: TRActs constrained by UnderLying INfant anatomy (TRACULInA): an automated probabilistic tractography tool with anatomical priors for use in the newborn brain publication-title: Neuroimage – volume: 23 start-page: 803 year: 2010 end-page: 820 ident: bib0037 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed. – year: 2020 ident: bib0005 article-title: MASiVar: multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging publication-title: bioRxiv – volume: 21 start-page: 87 year: 2010 end-page: 99 ident: bib0044 article-title: Precision and accuracy in diffusion tensor magnetic resonance imaging publication-title: Top. Magn. Reson. Imaging. – volume: 26 start-page: 1775 year: 2013 end-page: 1786 ident: bib0093 article-title: Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging publication-title: NMR Biomed. – volume: 184 start-page: 140 year: 2018 end-page: 160 ident: bib0006 article-title: Sparse wars: a survey and comparative study of spherical deconvolution algorithms for diffusion MRI publication-title: Neuroimage – volume: 9 start-page: 4046 year: 2019 ident: bib0050 article-title: Diffusion-based tractography atlas of the human acoustic radiation publication-title: Sci. Rep. – volume: 7 start-page: 157 year: 2020 ident: bib0092 article-title: Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings publication-title: Sci. Data – year: 2019 ident: bib0088 article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms publication-title: Neuroimage – volume: 18 start-page: 427 year: 2003 end-page: 433 ident: bib0070 article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain publication-title: J. Magn. Reson. Imaging – volume: 165 start-page: 200 year: 2018 end-page: 221 ident: bib0083 article-title: Histological validation of diffusion MRI fiber orientation distributions and dispersion publication-title: Neuroimage – volume: 19 start-page: 42 year: 2020 ident: bib0097 article-title: Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information publication-title: Biomed. Eng. Online – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bib0032 article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging – volume: 195 start-page: 285 year: 2019 end-page: 299 ident: bib0089 article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms publication-title: Neuroimage – volume: 84 start-page: 2174 year: 2020 end-page: 2189 ident: bib0060 article-title: Scanner invariant representations for diffusion MRI harmonization publication-title: Magn. Reson. Med. – volume: 8 start-page: 8 year: 2014 ident: bib0021 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front Neuroinform – volume: 32 start-page: e3841 year: 2019 ident: bib0001 article-title: Imaging brain microstructure with diffusion MRI: practicality and applications publication-title: NMR Biomed. – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0023 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – volume: 60 start-page: 1412 year: 2012 end-page: 1425 ident: bib0087 article-title: Ball and rackets: inferring fiber fanning from diffusion-weighted MRI publication-title: Neuroimage – volume: 40 start-page: 3041 year: 2019 end-page: 3057 ident: bib0115 article-title: Test–retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering publication-title: Hum. Brain Mapp. – volume: 6 start-page: 37847 year: 2016 ident: bib0012 article-title: Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing publication-title: Sci. Rep. – volume: 11 start-page: 1058 year: 2014 end-page: 1063 ident: bib0069 article-title: Evaluation and statistical inference for human connectomes publication-title: Nat. Methods – volume: 73 start-page: 239 year: 2013 end-page: 254 ident: bib0041 article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI publication-title: Neuroimage – volume: 42 start-page: 515 year: 1999 end-page: 525 ident: bib0039 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn. Reson. Med. – volume: 22 start-page: 1894 year: 2012 end-page: 1903 ident: bib0056 article-title: Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks publication-title: Cereb. Cortex – volume: 135 start-page: 311 year: 2016 end-page: 323 ident: bib0058 article-title: Inter-site and inter-scanner diffusion MRI data harmonization publication-title: Neuroimage – volume: 184 start-page: 180 year: 2019 end-page: 200 ident: bib0007 article-title: Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters publication-title: Neuroimage – volume: 11766 start-page: 599 year: 2019 end-page: 608 ident: bib0113 article-title: Deep white matter analysis: fast, consistent tractography segmentation across populations and dMRI acquisitions publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 33 start-page: 384 year: 2014 end-page: 399 ident: bib0013 article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI publication-title: IEEE Trans. Med. Imaging – volume: 202 year: 2019 ident: bib0094 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage – volume: 12 start-page: 284 year: 2018 end-page: 295 ident: bib0059 article-title: Multi-site harmonization of diffusion MRI data in a registration framework publication-title: Brain Imaging Behav. – volume: 221 year: 2020 ident: bib0064 article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results publication-title: Neuroimage – volume: 17 year: 2020 ident: bib0078 article-title: Common misconceptions, hidden biases and modern challenges of dMRI tractography publication-title: J. Neural Eng. – volume: 225 year: 2021 ident: bib0046 article-title: MICRA: microstructural image compilation with repeated acquisitions publication-title: Neuroimage – volume: 11 start-page: 9 year: 2008 end-page: 17 ident: bib0072 article-title: Optimal acquisition schemes in high angular resolution diffusion weighted imaging publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 144 start-page: 58 year: 2017 end-page: 73 ident: bib0076 article-title: Investigating white matter fibre density and morphology using fixel-based analysis publication-title: Neuroimage – year: 2020 ident: bib0045 article-title: Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain publication-title: Neuroimage – year: 2021 ident: bib0085 article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset? publication-title: bioRxiv – volume: 147 start-page: 703 year: 2017 end-page: 725 ident: bib0025 article-title: Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography publication-title: Neuroimage – volume: 36 start-page: 630 year: 2007 end-page: 644 ident: bib0100 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage – volume: 183 start-page: 239 year: 2018 end-page: 253 ident: bib0104 article-title: TractSeg - Fast and accurate white matter tract segmentation publication-title: Neuroimage – volume: 30 year: 2017 ident: bib0082 article-title: Can increased spatial resolution solve the crossing fiber problem for diffusion MRI? publication-title: NMR Biomed. – volume: 42 start-page: 515 year: 1999 end-page: 525 ident: bib0040 article-title: Optimal Strategies for Measuring Diffusion in Anisotropic Systems by Magnetic Resonance Imaging publication-title: Magn. Reson. Med. – volume: 19 start-page: 4 year: 2020 ident: bib0116 article-title: Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development publication-title: Biomed. Eng. Online – volume: 15 start-page: 659 year: 2017 end-page: 672 ident: bib0015 article-title: White matter tractography for neurosurgical planning: a topography-based review of the current state of the art publication-title: Neuroimage Clin – volume: 4 start-page: 299 year: 2020 end-page: 309 ident: bib0114 article-title: SlicerDMRI: diffusion MRI and Tractography Research Software for Brain Cancer Surgery Planning and Visualization publication-title: JCO Clin. Cancer Inform. – start-page: e3998 year: 2018 ident: bib0066 article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation publication-title: NMR Biomed. – volume: 31 start-page: 1487 year: 2006 end-page: 1505 ident: bib0086 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: Neuroimage – volume: 13 year: 2019 ident: bib0074 article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study publication-title: Front. Integr. Neurosci. – volume: 2 start-page: 345 year: 2012 end-page: 355 ident: bib0052 article-title: Multicenter reliability of diffusion tensor imaging publication-title: Brain Connect – volume: 218 start-page: 21 year: 2013 end-page: 37 ident: bib0080 article-title: Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle publication-title: Brain Struct. Funct. – volume: 10 start-page: 58 year: 2016 ident: bib0028 article-title: Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: anatomical Stem-Based Virtual Dissection publication-title: Front. Neuroanat. – volume: 81 start-page: 700 year: 2014 end-page: 713 ident: bib0063 article-title: Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex publication-title: Neuron – volume: 210 year: 2020 ident: bib0090 article-title: The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain publication-title: Neuroimage – volume: 33 start-page: 867 year: 2006 end-page: 877 ident: bib0029 article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures publication-title: Neuroimage – volume: 12 start-page: 94 year: 2018 ident: bib0054 article-title: The Nomenclature of Human White Matter Association Pathways: proposal for a Systematic Taxonomic Anatomical Classification publication-title: Front. Neuroanat. – volume: 221 year: 2020 ident: bib0065 article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results publication-title: Neuroimage – volume: 58 year: 2019 ident: bib0105 article-title: Combined tract segmentation and orientation mapping for bundle-specific tractography publication-title: Med. Image Anal. – volume: 2 start-page: 345 year: 2012 end-page: 355 ident: bib0051 article-title: Multicenter reliability of diffusion tensor imaging publication-title: Brain Connect – year: 2018 ident: bib0098 publication-title: Inter-Scanner Harmonization of High Angular Resolution DW-MRI Using Null Space Deep Learning – volume: 182 start-page: 8 year: 2018 end-page: 38 ident: bib0035 article-title: Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI publication-title: Neuroimage – year: 2020 ident: bib0084 article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset? publication-title: bioRxiv – volume: 56 start-page: 73 year: 2014 end-page: 84 ident: bib0018 article-title: The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography publication-title: Cortex – volume: 8 start-page: e80713 year: 2013 ident: bib0108 article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy publication-title: PLoS One – volume: 8 start-page: e83847 issue: 12 year: 2013 ident: 10.1016/j.neuroimage.2021.118451_bib0079 article-title: Atlas-guided cluster analysis of large tractography datasets publication-title: PLoS One doi: 10.1371/journal.pone.0083847 – volume: 40 start-page: 3041 issue: 10 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0115 article-title: Test–retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24579 – volume: 20 start-page: 870 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2021.118451_bib0002 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00336-7 – start-page: e3998 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0066 article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation publication-title: NMR Biomed. – volume: 17 issue: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0078 article-title: Common misconceptions, hidden biases and modern challenges of dMRI tractography publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab6aad – year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0084 article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset? publication-title: bioRxiv – volume: 217 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0101 article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116923 – volume: 6 start-page: 69 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0003 article-title: The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services publication-title: Sci. Data doi: 10.1038/s41597-019-0073-y – volume: 12 start-page: 94 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0054 article-title: The Nomenclature of Human White Matter Association Pathways: proposal for a Systematic Taxonomic Anatomical Classification publication-title: Front. Neuroanat. doi: 10.3389/fnana.2018.00094 – volume: 11 start-page: 9 issue: Pt 2 year: 2008 ident: 10.1016/j.neuroimage.2021.118451_bib0072 article-title: Optimal acquisition schemes in high angular resolution diffusion weighted imaging publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 195 start-page: 285 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0089 article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.077 – year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0005 article-title: MASiVar: multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging publication-title: bioRxiv – volume: 183 start-page: 239 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0104 article-title: TractSeg - Fast and accurate white matter tract segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.070 – volume: 49 start-page: 7 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2021.118451_bib0042 article-title: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med. doi: 10.1002/mrm.10331 – year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0077 article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24917 – volume: 10 start-page: 58 year: 2016 ident: 10.1016/j.neuroimage.2021.118451_bib0028 article-title: Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: anatomical Stem-Based Virtual Dissection publication-title: Front. Neuroanat. doi: 10.3389/fnana.2016.00058 – volume: 42 start-page: 515 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2021.118451_bib0039 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q – volume: 29 start-page: 1626 issue: 9 year: 2010 ident: 10.1016/j.neuroimage.2021.118451_bib0109 article-title: Generalized q-sampling imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2045126 – volume: 9 start-page: 4046 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0050 article-title: Diffusion-based tractography atlas of the human acoustic radiation publication-title: Sci. Rep. doi: 10.1038/s41598-019-40666-8 – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2021.118451_bib0033 article-title: Fsl publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 39 start-page: 4213 issue: 11 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0111 article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24241 – year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0061 article-title: Tractography reproducibility challenge with empirical data (TraCED): the 2017 ISMRM diffusion study group challenge publication-title: J. Magn. Reson. Imaging – volume: 161 start-page: 1125 issue: 6 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0017 article-title: Manual for clinical language tractography publication-title: Acta Neurochir. (Wien) doi: 10.1007/s00701-019-03899-0 – volume: 21 start-page: 87 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2021.118451_bib0044 article-title: Precision and accuracy in diffusion tensor magnetic resonance imaging publication-title: Top. Magn. Reson. Imaging. doi: 10.1097/RMR.0b013e31821e56ac – volume: 225 year: 2021 ident: 10.1016/j.neuroimage.2021.118451_bib0046 article-title: MICRA: microstructural image compilation with repeated acquisitions publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117406 – volume: 54 start-page: 2854 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2021.118451_bib0048 article-title: Multi-parametric neuroimaging reproducibility: a 3-T resource study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.047 – volume: 42 start-page: 952 issue: 5 year: 1999 ident: 10.1016/j.neuroimage.2021.118451_bib0075 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 33 start-page: 384 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2021.118451_bib0013 article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2285500 – year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0103 article-title: Tract Orientation Mapping for Bundle-Specific Tractography – ident: 10.1016/j.neuroimage.2021.118451_bib0027 doi: 10.1007/s00429-016-1298-6 – volume: 26 start-page: 1775 issue: 12 year: 2013 ident: 10.1016/j.neuroimage.2021.118451_bib0093 article-title: Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging publication-title: NMR Biomed. doi: 10.1002/nbm.3017 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2021.118451_bib0023 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 194 start-page: 363 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2021.118451_bib0091 article-title: Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study publication-title: Psychiatry Res.: Neuroimaging doi: 10.1016/j.pscychresns.2011.05.012 – volume: 10 start-page: 17149 issue: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0010 article-title: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations publication-title: Sci. Rep. doi: 10.1038/s41598-020-74054-4 – volume: 31 start-page: 827 issue: 6 year: 2013 ident: 10.1016/j.neuroimage.2021.118451_bib0068 article-title: Reproducibility and biases in high field brain diffusion MRI: an evaluation of acquisition and analysis variables publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2013.03.004 – volume: 13 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0074 article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study publication-title: Front. Integr. Neurosci. doi: 10.3389/fnint.2019.00024 – volume: 53 start-page: 1088 issue: 5 year: 2005 ident: 10.1016/j.neuroimage.2021.118451_bib0011 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20426 – volume: 42 start-page: 515 year: 1999 ident: 10.1016/j.neuroimage.2021.118451_bib0040 article-title: Optimal Strategies for Measuring Diffusion in Anisotropic Systems by Magnetic Resonance Imaging publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q – volume: 8 start-page: e80713 issue: 11 year: 2013 ident: 10.1016/j.neuroimage.2021.118451_bib0108 article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy publication-title: PLoS One doi: 10.1371/journal.pone.0080713 – volume: 11766 start-page: 599 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0113 article-title: Deep white matter analysis: fast, consistent tractography segmentation across populations and dMRI acquisitions publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 6 start-page: 37847 issue: 1 year: 2016 ident: 10.1016/j.neuroimage.2021.118451_bib0012 article-title: Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing publication-title: Sci. Rep. doi: 10.1038/srep37847 – year: 2021 ident: 10.1016/j.neuroimage.2021.118451_bib0014 article-title: On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge publication-title: bioRxiv – volume: 23 start-page: 803 issue: 7 year: 2010 ident: 10.1016/j.neuroimage.2021.118451_bib0037 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed. doi: 10.1002/nbm.1543 – volume: 84 start-page: 2174 issue: 4 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0060 article-title: Scanner invariant representations for diffusion MRI harmonization publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28243 – volume: 147 start-page: 703 year: 2017 ident: 10.1016/j.neuroimage.2021.118451_bib0025 article-title: Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.066 – volume: 7 start-page: e49790 issue: 11 year: 2012 ident: 10.1016/j.neuroimage.2021.118451_bib0106 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS One doi: 10.1371/journal.pone.0049790 – volume: 2 start-page: 345 issue: 6 year: 2012 ident: 10.1016/j.neuroimage.2021.118451_bib0052 article-title: Multicenter reliability of diffusion tensor imaging publication-title: Brain Connect doi: 10.1089/brain.2012.0112 – volume: 58 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0105 article-title: Combined tract segmentation and orientation mapping for bundle-specific tractography publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101559 – volume: 30 issue: 12 year: 2017 ident: 10.1016/j.neuroimage.2021.118451_bib0082 article-title: Can increased spatial resolution solve the crossing fiber problem for diffusion MRI? publication-title: NMR Biomed. doi: 10.1002/nbm.3787 – volume: 12 start-page: 284 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0059 article-title: Multi-site harmonization of diffusion MRI data in a registration framework publication-title: Brain Imaging Behav. doi: 10.1007/s11682-016-9670-y – volume: 19 start-page: 4 issue: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0116 article-title: Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development publication-title: Biomed. Eng. Online doi: 10.1186/s12938-020-0748-9 – volume: 7 start-page: 157 issue: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0092 article-title: Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings publication-title: Sci. Data doi: 10.1038/s41597-020-0493-8 – volume: 202 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0094 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116137 – volume: 65 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0112 article-title: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101761 – volume: 36 start-page: 1123 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2021.118451_bib0047 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.056 – year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0045 article-title: Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116704 – volume: 33 start-page: 867 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2021.118451_bib0029 article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.07.037 – year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0030 – year: 2021 ident: 10.1016/j.neuroimage.2021.118451_bib0085 article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset? publication-title: bioRxiv – volume: 15 start-page: 659 year: 2017 ident: 10.1016/j.neuroimage.2021.118451_bib0015 article-title: White matter tractography for neurosurgical planning: a topography-based review of the current state of the art publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2017.06.011 – volume: 22 start-page: 1894 issue: 8 year: 2012 ident: 10.1016/j.neuroimage.2021.118451_bib0056 article-title: Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr268 – volume: 32 start-page: e3785 issue: 4 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0034 article-title: Diffusion MRI fiber tractography of the brain publication-title: NMR Biomed. doi: 10.1002/nbm.3785 – year: 2021 ident: 10.1016/j.neuroimage.2021.118451_bib0004 article-title: PreQual: an automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28678 – volume: 13 start-page: 24 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0073 article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study publication-title: Front. Integr. Neurosci. doi: 10.3389/fnint.2019.00024 – volume: 26 start-page: 756 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2021.118451_bib0016 article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21053 – volume: 224 start-page: 1553 issue: 4 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0081 article-title: Uncovering the inferior fronto-occipital fascicle and its topological organization in non-human primates: the missing connection for language evolution publication-title: Brain Struct. Funct. doi: 10.1007/s00429-019-01856-2 – volume: 144 start-page: 58 issue: PtA year: 2017 ident: 10.1016/j.neuroimage.2021.118451_bib0076 article-title: Investigating white matter fibre density and morphology using fixel-based analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.09.029 – volume: 170 start-page: 283 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0022 article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.015 – volume: 31 start-page: 1487 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2021.118451_bib0086 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.02.024 – volume: 38 start-page: 1599 issue: 7 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0031 article-title: Multi-Site Harmonization of Diffusion MRI Data via Method of Moments publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2895020 – volume: 27 start-page: 685 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2021.118451_bib0032 article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 182 start-page: 8 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0035 article-title: Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.047 – volume: 178 start-page: 57 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0107 article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.027 – volume: 20 start-page: 458 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0009 article-title: Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.08.021 – volume: 19 start-page: 1498 issue: 9 year: 2007 ident: 10.1016/j.neuroimage.2021.118451_bib0055 article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2007.19.9.1498 – volume: 221 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0064 article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117128 – volume: 199 start-page: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0117 article-title: TRActs constrained by UnderLying INfant anatomy (TRACULInA): an automated probabilistic tractography tool with anatomical priors for use in the newborn brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.051 – volume: 8 start-page: 8 year: 2014 ident: 10.1016/j.neuroimage.2021.118451_bib0021 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front Neuroinform doi: 10.3389/fninf.2014.00008 – year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0098 – volume: 15 start-page: 494 issue: 7–8 year: 2002 ident: 10.1016/j.neuroimage.2021.118451_bib0049 article-title: Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results publication-title: NMR Biomed. doi: 10.1002/nbm.779 – volume: 19 start-page: 42 issue: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0097 article-title: Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information publication-title: Biomed. Eng. Online doi: 10.1186/s12938-020-00786-z – volume: 19 start-page: 777 issue: 4 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0057 article-title: Inter-Vendor and Inter-Session Reliability of Diffusion Tensor Imaging: implications for Multicenter Clinical Imaging Studies publication-title: Korean J. Radiol. doi: 10.3348/kjr.2018.19.4.777 – volume: 4 start-page: 299 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0114 article-title: SlicerDMRI: diffusion MRI and Tractography Research Software for Brain Cancer Surgery Planning and Visualization publication-title: JCO Clin. Cancer Inform. doi: 10.1200/CCI.19.00141 – volume: 32 start-page: e3841 issue: 4 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0001 article-title: Imaging brain microstructure with diffusion MRI: practicality and applications publication-title: NMR Biomed. doi: 10.1002/nbm.3841 – volume: 18 start-page: 427 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2021.118451_bib0070 article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.10377 – volume: 112 start-page: E2695 issue: 20 year: 2015 ident: 10.1016/j.neuroimage.2021.118451_bib0062 article-title: Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1410767112 – volume: 184 start-page: 140 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0006 article-title: Sparse wars: a survey and comparative study of spherical deconvolution algorithms for diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.08.071 – volume: 165 start-page: 200 year: 2018 ident: 10.1016/j.neuroimage.2021.118451_bib0083 article-title: Histological validation of diffusion MRI fiber orientation distributions and dispersion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.046 – volume: 200 start-page: 89 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0008 article-title: Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.06.020 – volume: 184 start-page: 180 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0007 article-title: Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.08.073 – volume: 61 start-page: 1083 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2021.118451_bib0026 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.071 – volume: 161 start-page: 149 year: 2017 ident: 10.1016/j.neuroimage.2021.118451_bib0019 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.047 – volume: 223 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0110 article-title: Shape analysis of the human association pathways publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117329 – volume: 42 start-page: 617 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2021.118451_bib0095 article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.05.002 – volume: 2 start-page: 345 issue: 6 year: 2012 ident: 10.1016/j.neuroimage.2021.118451_bib0051 article-title: Multicenter reliability of diffusion tensor imaging publication-title: Brain Connect doi: 10.1089/brain.2012.0112 – volume: 36 start-page: 630 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2021.118451_bib0100 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.049 – volume: 52 start-page: 979 issue: 5 year: 2004 ident: 10.1016/j.neuroimage.2021.118451_bib0036 article-title: "Squashing peanuts and smashing pumpkins": how noise distorts diffusion-weighted MR data publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med. doi: 10.1002/mrm.20283 – volume: 56 start-page: 73 year: 2014 ident: 10.1016/j.neuroimage.2021.118451_bib0018 article-title: The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography publication-title: Cortex doi: 10.1016/j.cortex.2012.09.005 – ident: 10.1016/j.neuroimage.2021.118451_bib0096 doi: 10.1007/s00429-020-02056-z – volume: 279 start-page: 576 issue: 6 year: 2016 ident: 10.1016/j.neuroimage.2021.118451_bib0020 article-title: Clinical and biomarker profiling of prodromal Alzheimer's disease in workpackage 5 of the Innovative Medicines Initiative PharmaCog project: a 'European ADNI study' publication-title: J. Intern. Med. doi: 10.1111/joim.12482 – volume: 73 start-page: 239 year: 2013 ident: 10.1016/j.neuroimage.2021.118451_bib0041 article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.081 – volume: 81 start-page: 700 issue: 3 year: 2014 ident: 10.1016/j.neuroimage.2021.118451_bib0063 article-title: Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex publication-title: Neuron doi: 10.1016/j.neuron.2013.11.012 – volume: 11 start-page: 1058 issue: 10 year: 2014 ident: 10.1016/j.neuroimage.2021.118451_bib0069 article-title: Evaluation and statistical inference for human connectomes publication-title: Nat. Methods doi: 10.1038/nmeth.3098 – volume: 218 start-page: 21 issue: 1 year: 2013 ident: 10.1016/j.neuroimage.2021.118451_bib0080 article-title: Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle publication-title: Brain Struct. Funct. doi: 10.1007/s00429-011-0372-3 – volume: 221 start-page: 4705 issue: 9 year: 2016 ident: 10.1016/j.neuroimage.2021.118451_bib0102 article-title: The white matter query language: a novel approach for describing human white matter anatomy publication-title: Brain Struct. Funct. doi: 10.1007/s00429-015-1179-4 – volume: 51 start-page: 807 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2021.118451_bib0043 article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med. doi: 10.1002/mrm.20033 – volume: 47 start-page: 1202 issue: 6 year: 2002 ident: 10.1016/j.neuroimage.2021.118451_bib0024 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10171 – volume: 23 year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0053 article-title: Automated fiber tract reconstruction for surgery planning: extensive validation in language-related white matter tracts publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2019.101883 – volume: 135 start-page: 311 year: 2016 ident: 10.1016/j.neuroimage.2021.118451_bib0058 article-title: Inter-site and inter-scanner diffusion MRI data harmonization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.041 – volume: 221 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0065 article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117128 – volume: 201 start-page: 637 year: 1996 ident: 10.1016/j.neuroimage.2021.118451_bib0071 article-title: Diffusion Tensor MR Imaging of the Human Brain publication-title: Radiology doi: 10.1148/radiology.201.3.8939209 – volume: 26 start-page: 1562 issue: 11 year: 2007 ident: 10.1016/j.neuroimage.2021.118451_bib0067 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.906785 – volume: 210 year: 2020 ident: 10.1016/j.neuroimage.2021.118451_bib0090 article-title: The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116534 – year: 2019 ident: 10.1016/j.neuroimage.2021.118451_bib0088 article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.077 – volume: 51 start-page: 1384 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2021.118451_bib0099 article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.046 – year: 2007 ident: 10.1016/j.neuroimage.2021.118451_bib0038 – volume: 60 start-page: 1412 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2021.118451_bib0087 article-title: Ball and rackets: inferring fiber fanning from diffusion-weighted MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.056 |
SSID | ssj0009148 |
Score | 2.5375333 |
Snippet | When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to... |
SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118451 |
SubjectTerms | Anisotropy Bundle segmentation Datasets Diffusion Diffusion Tensor Imaging - methods Harmonization Humans Image Processing, Computer-Assisted Investigations Neural networks Reproducibility Reproducibility of Results Scanners Segmentation Substantia alba Substantia grisea Tractography Variation White matter White Matter - diagnostic imaging |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8SZQkJE4NsKJnYfFCRCrCqmcqNRbNHacdtGut5CNqv66_jVmEidsVCT2wG13HVtez-tzPPOZsXdNnhYNoH3nWrtYaWnjMs91bBQF71QWZX_QfvItPz5VX8-ys52rvignbKAHHhbuvQAjpK2dKmyqpBWm1FBahIR5phwGd_K-GMbGzdRIt4soP-TtDNlcPTvkco02invCNEFPUaosmQWjnrN_FpNuY87bqZP3On8J11ewWu3EpcVD9iAASv5x-COP2B3nH7O7J-HI_Am7WVBOCN9SNVSgp-amI2oF3rrzdSg98ny4Dbfl-LHF5fbYJ-R6HHF0iPVm5zvYn91ySPbiuF0P2nvE6baVjl6_8RYoU92f41gXbu1mTZQyvw3lnziWr_86H0oYa1abq6fsdPHl--fjONzaENtcim2sgSjylbNaSicUpJBlWWFs6WpITV2CIgYhLSAxuqkBQAFIxKFgQKGAG_mMHfiNdy8YzzXCm7SWiLEKJSzopnA6MwLqEpXBJhErRvFVNlCa080aq2rMXftR_RF8RYKvBsFHLJl6Xg60Hnv0-UQaMj1PxNz9D6iuVVDX6l_qGjE96lc11r6it8aBlntM4MPUN-CjAffs2ftwVOcq-Km2QsCriXK_lBF7OzWjh6FjI_Bu09EzmUbUgqYbseeD9k9rIBFto20LlMTMLmaLNG_xy4uexVzTqzSB00onC9pbFC__hyhesfs0JBWWJtkhO9j-6txrRJhb86Z3Jr8BDD-AiQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHoAL4k2gICNxbNgktpNYnKBiVSGVC1TqLZo4zjZoN7vtJqq49K_1rzGTOGmjcliJ2yZ-yOt5eBx_85mxj2UcJSWgfcdaW19qYfw0jrWfS1q8I5Gk3UH7yY_4-FR-P1Nne-xoyIUhWKXz_b1P77y1ezNzsznbVNXsJ0YGuNwQnxfRXyviBCX2L9TpT9e3MA8dyj4dTgmfajs0T4_x6jgjqxVaLu4UoxD9RypVOFmiOib_yUp1PxK9D6h82NYb-HMFy-Wd1Wr-hD12YSb_0v-Tp2zP1s_YgxN3kP6c3cwJKcIbypFypNU8b4lwgW_tYuUSkmre35G75fhzi0KosY1DgBxydJPF-s4zmIu26iFgHDfxTqcPOd3B0tJHOb4Fwq_XC-zr3K7spIiA9I1LCsW-6uKf4yEYWblcX71gp_Nvv46OfXeXg29iETS-BiLOl9ZoIWwgIQKlVJKb1BYQ5UUKkniFdABhrssCACSAwOgUcpBSmFK8ZPv1uravGY81Bj1RITDySmRgQJeJ1SoPoEhNJE3osWQQX2Yc0Tndt7HMBkTb7-xW8BkJPusF77FwbLnpyT52aPOVNGSsT3Td3Yv15SJz-poFkAfCFFYmOEJhgjzVkBrc18RKWoxQPaYH_cqGjFj04dhRtcMAPo9tJ5azY-uDQZ0z5722GYbBmoj4U-GxD2Mx-h06TILarluqozTGMmjQHnvVa_84BwJjcLT4ACUxsYvJJE1L6uq84zbX9IEtwGFFowXtLIo3_zUTb9kjeqI801AdsP3msrXvMOBs8vedR_kLWriFXw priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqrQRceD8CBRmJY1M5sfOwOBXEqkJqBRIrlVM0cZx2y262dBNV8Of4a8wkTmgoQgu3zSZjORnP-Etm5hvGXpVxmJSA9h1rbX2lpfHTONZ-rmjzDmWStoH2w6P4YKbeH0fHW0z0tTCj-H2bh9XyOs6XaF34NhcGaOOpoprp7ZhCShO2PTv6sP-5DWpG0k-DtpdHIKgFYZT0yTt_G2q0I7XE_aON6TrwvJ4_ebOpzuHbJSwWVzan6R32sb-tLifly15T53vm-2-Mj_9y33fZbYdU-X63tO6xLVvdZzcOXSz-AfsxpWQTXlOZleO95nlDnA18bU-Wrqap4l2b3TXHn2vUY4UyLolkl6OnLVZXjsF8beZdFhm_sL1Z7HJq49LQdz2-BkqBr05wrFO7tKNTlItfu7pSHKsq_jgfykQrF6vLh2w2fffp7YHv2kH4Jpai9jUQ976yRktphYIQoihKcpPaAsK8SEERNZEWEOS6LABAAUgEuJCDUtKU8hGbVKvKPmE81oibwkIieEuUMKDLxOooF1CkJlQm8FjSL4nMOK50atmxyPqkuLPsl34y0k_W6cdjwSB53vGFbCDzhlbdcD0xfrd_4ILInAPJBORCmsKqBGcojchTDanBV6M4UhZBrsd0v2azvqgWtwEcaL7BBF4Psg54dYBqQ-md3kQy5wDXGSJpTVz-qfTYy-E0ui6KR0FlVw1dE2mEQ-gTPPa4s6jhGUiE8eg0BGpiZGujhzQ-U81PW3p0Td_oBE4rHKxyY1U8_R-hZ-wWHVGFahDtsEl90djnCFXr_IXzTj8ByySVWg priority: 102 providerName: Unpaywall |
Title | Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921007254 https://dx.doi.org/10.1016/j.neuroimage.2021.118451 https://www.ncbi.nlm.nih.gov/pubmed/34358660 https://www.proquest.com/docview/2569046183 https://www.proquest.com/docview/2559429423 https://pubmed.ncbi.nlm.nih.gov/PMC9933001 https://doi.org/10.1016/j.neuroimage.2021.118451 https://doaj.org/article/0ab03cde47c243c0b89a8c729654e392 |
UnpaywallVersion | publishedVersion |
Volume | 242 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1095-9572 dateEnd: 20250804 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250804 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbYJgEviDuFUQWJxwWS2LlYPKAOrRqgVROiUnmKThynK2qTbmk08cJf469xTuKki4ZQn9rUF7k5F3-2z_nM2Nss8MIM0L4DKbUtJFd2FATSTgRN3h4Po_qg_WwSnE7Fl5k_MxtupQmrbH1i7ajTQtEe-XucmiWRg0f84_rSpluj6HTVXKGxxw5chCqk1eEs3JLuuqJJhfO5HWEFE8nTxHfVfJGLFVotrhI9F31HJHy3Nz3VLP69Weo2Cr0dTHmvytfw6xqWyxsz1fghe2AgpjVqdOIRu6Pzx-zumTlEf8L-jClKxNpQfpQhrLaSisgWrFLPVyYZKbea-3FLC7-WKIAc25jojyMLXWRa3HgGdVktmvAvCxfwRp-PLLp_paINOasEil3P59jXhV7pXhEF0W9MQij2laf_HA-FkGXL4vopm45Pvn86tc09DrYKuLOxJRBpvtBKcq4dAR74vh8mKtIpeEkagSBOIemAm8gsBQABwBGZQgJCcJXxZ2w_L3L9glmBRMDjpRxRVygcBTILtfQTB9JIeUK5Axa24ouVITmnuzaWcRvN9jPeCj4mwceN4AfM7VquG6KPHdock4Z09Ymqu_6huJrHxvJjBxKHq1SLEEfIlZNEEiKFa5rAFxrR6YDJVr_iNhsW_Td2tNhhAB-6tgYxNUhox9aHrTrHxnOV8dbOBuxNV4w-hw6SINdFRXV8iTgGjXnAnjfa370Djvgbrd1BSfTsoveS-iX54qLmNZe0uebgsLzOgnYWxcv__5dX7D5VpiRS1z9k-5urSr9GNLlJhmzv3W93WDuOITsYff56OsHP45PJ-bdhvUODT9PJ-ejHX9NdgP8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkBgviG8KA4wEb4tIYufDQgjxVXVs3dMm9S04jtMVtUnXJKr2T_Ev8K9xlzjpoiHUl721dc5yc-efz_bd7wh5m_pukEqY374Q2uKCKSv0fWHFHBdvlwVhfdE-PvFHZ_zHxJvskN9tLgyGVbaYWAN1kis8I38PS7NAcvCQfVpeWFg1Cm9X2xIajVkc6cs1bNmKj4ffQL_vXHf4_fTryDJVBSzlM7u0hEQKd64VbOW1zaUrPc8LYhXqRLpxEkqODDfClk4s0kRKyaVk4CfJWHLOVMqg31vkNmc2R67-YBJsSH4d3qTeecwKHUeYyKEmnqzmp5wtACVgV-o6gFUh95zeclhXDeitite93uvBm3tVtpSXazmfX1kZh_fJPePS0s-NDT4gOzp7SO6MzaX9I_JniFEptMR8LEOQTeMKyR1ooacLk_yU0aYeb0HhYwEKz0DGRJscUIDkJL_yXaqLataEm9GVbufPAcV6LxUeANJCYqx8NoW-zvVC95owaL80CajQV5b8czwYspbO8_VjcnYjGn5CdrM8088I9QU4WG7CwMsLuK2kSAMtvNiWSahcrpwBCVr1RcqQqmNtj3nURs_9ijaKj1DxUaP4AXE6yWVDLLKFzBe0kO55pAavf8hX08ggTWTL2GYq0TyAETJlx6GQoYI9lO9xDd7wgIjWvqI2-xbWC-hotsUAPnSyxkNrPK8tpfdbc44MUhbRZl4PyJuuGTAOL65kpvMKn_EE-E0AHgPytLH-7h0w8PcBXWzQRG9e9F5SvyWbndc86gIP82wYltvNoK1V8fz__-U12Rudjo-j48OToxfkLgpiAqvj7ZPdclXpl-DJlvGrGj4o-XnTePUXp2C4Lg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkAYviJ-jMMBI8LZoSWwnsRBCwKg2xiYemNS34DhOV9QmXdNo2r_GC_8ad4mTLhpCfdlbW8eWm7v7fLa_uyPkTRb4YabAvgMpjcMl004UBNJJOC7ePguj-qL9-CQ4OOVfR2K0QX63sTBIq2wxsQbqtNB4Rr4HS7PE5OAR28ssLeL7_vDD_NzBClJ409qW02hU5MhcXsD2rXx_uA-yfuv7wy8_Ph84tsKAowPmLh2pMJ07Nxq29cblyldCiDDRkUmVn6SR4pjtRrrKS2SWKqW4Ugx8JpUozpnOGIx7i9wOGWdIJwtH4Srhr8ebMDzBnMjzpGURNdyyOlflZAaIATtU3wPcirjwektjXUGgt0Je94CvEznvVPlcXV6o6fTKKjm8T-5Z95Z-bPTxAdkw-UOydWwv8B-RP0NkqNAlxmbZZNk0qTDRAy3NeGYDoXLa1OYtKXwsQfg59LHMk10K8JwWV74rfV5NGuoZXZjWlnYp1n6p8DCQlgp58_kYxjozM9NrQgL_0gajwlh5-s_5IH0tmxYXj8npjUj4CdnMi9w8JTSQ4Gz5KQOPL-SuVjILjRSJq9JI-1x7AxK24ou1TbCOdT6mccuk-xWvBB-j4ONG8APidT3nTZKRNfp8Qg3pnsc04fUPxWIcW9SJXZW4TKeGhzBDpt0kkirSsJ8KBDfgGQ-IbPUrbiNxYe2AgSZrTOBd19d6a40XtmbvnVadY4uaZbyy8QF53TUD3uEllspNUeEzQoIPBUAyINuN9nfvAMxQANK4IImeXfReUr8ln5zVOdUlHuy5MC2_s6C1RfHs___lFdkCpIq_HZ4cPSd3sR_Gsnpih2wuF5V5AU7tMnlZowclP28arv4CFwW8aQ |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqrQRceD8CBRmJY1M5sfOwOBXEqkJqBRIrlVM0cZx2y262dBNV8Of4a8wkTmgoQgu3zSZjORnP-Etm5hvGXpVxmJSA9h1rbX2lpfHTONZ-rmjzDmWStoH2w6P4YKbeH0fHW0z0tTCj-H2bh9XyOs6XaF34NhcGaOOpoprp7ZhCShO2PTv6sP-5DWpG0k-DtpdHIKgFYZT0yTt_G2q0I7XE_aON6TrwvJ4_ebOpzuHbJSwWVzan6R32sb-tLifly15T53vm-2-Mj_9y33fZbYdU-X63tO6xLVvdZzcOXSz-AfsxpWQTXlOZleO95nlDnA18bU-Wrqap4l2b3TXHn2vUY4UyLolkl6OnLVZXjsF8beZdFhm_sL1Z7HJq49LQdz2-BkqBr05wrFO7tKNTlItfu7pSHKsq_jgfykQrF6vLh2w2fffp7YHv2kH4Jpai9jUQ976yRktphYIQoihKcpPaAsK8SEERNZEWEOS6LABAAUgEuJCDUtKU8hGbVKvKPmE81oibwkIieEuUMKDLxOooF1CkJlQm8FjSL4nMOK50atmxyPqkuLPsl34y0k_W6cdjwSB53vGFbCDzhlbdcD0xfrd_4ILInAPJBORCmsKqBGcojchTDanBV6M4UhZBrsd0v2azvqgWtwEcaL7BBF4Psg54dYBqQ-md3kQy5wDXGSJpTVz-qfTYy-E0ui6KR0FlVw1dE2mEQ-gTPPa4s6jhGUiE8eg0BGpiZGujhzQ-U81PW3p0Td_oBE4rHKxyY1U8_R-hZ-wWHVGFahDtsEl90djnCFXr_IXzTj8ByySVWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fiber+tractography+bundle+segmentation+depends+on+scanner+effects%2C+vendor+effects%2C+acquisition+resolution%2C+diffusion+sampling+scheme%2C+diffusion+sensitization%2C+and+bundle+segmentation+workflow&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Schilling%2C+Kurt+G.&rft.au=Tax%2C+Chantal+M.W.&rft.au=Rheault%2C+Francois&rft.au=Hansen%2C+Colin&rft.date=2021-11-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=242&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118451&rft.externalDocID=S1053811921007254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |