Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow

When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstruc...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 242; p. 118451
Main Authors Schilling, Kurt G., Tax, Chantal M.W., Rheault, Francois, Hansen, Colin, Yang, Qi, Yeh, Fang-Cheng, Cai, Leon, Anderson, Adam W., Landman, Bennett A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.11.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2021.118451

Cover

Abstract When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.
AbstractList When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.
When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.
ArticleNumber 118451
Author Cai, Leon
Yeh, Fang-Cheng
Schilling, Kurt G.
Hansen, Colin
Yang, Qi
Anderson, Adam W.
Landman, Bennett A.
Rheault, Francois
Tax, Chantal M.W.
AuthorAffiliation c Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
d Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
a Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States
b Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
e Department of Neurological Surgery, University of Pittsburgh, United States
f Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
AuthorAffiliation_xml – name: c Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
– name: a Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States
– name: b Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
– name: d Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
– name: e Department of Neurological Surgery, University of Pittsburgh, United States
– name: f Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
Author_xml – sequence: 1
  givenname: Kurt G.
  surname: Schilling
  fullname: Schilling, Kurt G.
  email: kurt.g.schilling.1@vumc.org
  organization: Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States
– sequence: 2
  givenname: Chantal M.W.
  surname: Tax
  fullname: Tax, Chantal M.W.
  organization: Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
– sequence: 3
  givenname: Francois
  surname: Rheault
  fullname: Rheault, Francois
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
– sequence: 4
  givenname: Colin
  surname: Hansen
  fullname: Hansen, Colin
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
– sequence: 5
  givenname: Qi
  surname: Yang
  fullname: Yang, Qi
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
– sequence: 6
  givenname: Fang-Cheng
  surname: Yeh
  fullname: Yeh, Fang-Cheng
  organization: Department of Neurological Surgery, University of Pittsburgh, United States
– sequence: 7
  givenname: Leon
  surname: Cai
  fullname: Cai, Leon
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
– sequence: 8
  givenname: Adam W.
  surname: Anderson
  fullname: Anderson, Adam W.
  organization: Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States
– sequence: 9
  givenname: Bennett A.
  surname: Landman
  fullname: Landman, Bennett A.
  organization: Department of Radiology & Radiological Science, Vanderbilt University Medical Center, Nashville, TN, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34358660$$D View this record in MEDLINE/PubMed
BookMark eNqdkstu1DAUhiNURC_wCigSGxadwY6dizcIqChUqsQG1taJc5Lx1GNP7WRGw8vxajhNGToViwopUmyf__90bqfJkXUWkySlZE4JLd4t5xYH7_QKOpxnJKNzSiue02fJCSUin4m8zI7Gc85mFaXiODkNYUkIEZRXL5JjxlleFQU5SX5d6hp92ntQves8rBe7tB5sYzAN2K3Q9tBrZ9MG12ibkMZjUGBt9GDbourDebqJEffgDup20EHf-TwGZ4bxeJ42um2HML4GWK2Ntl1kLXCFByG0o_UnTB6wzT_z2Tp_0xq3fZk8b8EEfHX_P0t-XH7-fvF1dv3ty9XFx-uZKhjpZwLKvKw4KsEYEg4Z5Hle1qrCBrK6qYCTsiwEAVqLtgEADsAoE1AD50y17Cy5mriNg6Vc-9h6v5MOtLx7cL6T4HutDEoCNWGqQV6qLHpJXQmoVJmJIufIRBZZYmINdg27LRizB1IixwHLpfw7YDkOWE4Djt73k3c91CtsVGyIB3OQ0GHE6oXs3EaKWDkhI-DtPcC72wFDL1c6KDQGLLohyCzPBc_ix6L0zSPp0g3exjZHVWwWL2g1ql4_zGifyp8di4JqEijvQvDY_ke1e6vS0wLE2rR5CuDTBMC4GxuNXgal0SpstI_LGoennwL58Aii4vJqBeYGd09D_AZj2jPn
CitedBy_id crossref_primary_10_1007_s00429_022_02503_z
crossref_primary_10_1097_RLI_0000000000001015
crossref_primary_10_1162_imag_a_00108
crossref_primary_10_3389_fradi_2022_866974
crossref_primary_10_1002_hbm_26169
crossref_primary_10_1016_j_mri_2024_03_033
crossref_primary_10_1002_hbm_26580
crossref_primary_10_1016_j_neuroimage_2022_118909
crossref_primary_10_2139_ssrn_4077955
crossref_primary_10_1038_s44220_024_00334_x
crossref_primary_10_1016_j_neuroimage_2023_120248
crossref_primary_10_1007_s00429_022_02518_6
crossref_primary_10_1016_j_neuroimage_2022_119550
crossref_primary_10_1016_j_nbas_2023_100067
crossref_primary_10_1002_hbm_26390
crossref_primary_10_1007_s00429_023_02642_x
crossref_primary_10_3389_fninf_2023_1191200
crossref_primary_10_3389_fnins_2024_1394681
crossref_primary_10_1016_j_jns_2024_123065
crossref_primary_10_1002_mrm_30429
crossref_primary_10_1038_s41597_024_03058_w
crossref_primary_10_1162_imag_a_00050
crossref_primary_10_3389_fnimg_2024_1359589
crossref_primary_10_1016_j_mri_2024_05_009
crossref_primary_10_1038_s41467_022_32595_4
crossref_primary_10_7554_eLife_82088
crossref_primary_10_1016_j_media_2023_102761
crossref_primary_10_3390_diagnostics13050911
crossref_primary_10_1038_s41598_023_31819_x
Cites_doi 10.1371/journal.pone.0083847
10.1002/hbm.24579
10.1016/S1053-8119(03)00336-7
10.1088/1741-2552/ab6aad
10.1016/j.neuroimage.2020.116923
10.1038/s41597-019-0073-y
10.3389/fnana.2018.00094
10.1016/j.neuroimage.2019.01.077
10.1016/j.neuroimage.2018.07.070
10.1002/mrm.10331
10.1002/hbm.24917
10.3389/fnana.2016.00058
10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
10.1109/TMI.2010.2045126
10.1038/s41598-019-40666-8
10.1016/j.neuroimage.2011.09.015
10.1002/hbm.24241
10.1007/s00701-019-03899-0
10.1097/RMR.0b013e31821e56ac
10.1016/j.neuroimage.2020.117406
10.1016/j.neuroimage.2010.11.047
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1109/TMI.2013.2285500
10.1007/s00429-016-1298-6
10.1002/nbm.3017
10.1016/j.neuroimage.2013.04.127
10.1016/j.pscychresns.2011.05.012
10.1038/s41598-020-74054-4
10.1016/j.mri.2013.03.004
10.3389/fnint.2019.00024
10.1002/mrm.20426
10.1371/journal.pone.0080713
10.1038/srep37847
10.1002/nbm.1543
10.1002/mrm.28243
10.1016/j.neuroimage.2016.11.066
10.1371/journal.pone.0049790
10.1089/brain.2012.0112
10.1016/j.media.2019.101559
10.1002/nbm.3787
10.1007/s11682-016-9670-y
10.1186/s12938-020-0748-9
10.1038/s41597-020-0493-8
10.1016/j.neuroimage.2019.116137
10.1016/j.media.2020.101761
10.1016/j.neuroimage.2007.02.056
10.1016/j.neuroimage.2020.116704
10.1016/j.neuroimage.2006.07.037
10.1016/j.nicl.2017.06.011
10.1093/cercor/bhr268
10.1002/nbm.3785
10.1002/mrm.28678
10.1002/jmri.21053
10.1007/s00429-019-01856-2
10.1016/j.neuroimage.2016.09.029
10.1016/j.neuroimage.2017.07.015
10.1016/j.neuroimage.2006.02.024
10.1109/TMI.2019.2895020
10.1002/jmri.21049
10.1016/j.neuroimage.2018.05.047
10.1016/j.neuroimage.2018.05.027
10.1016/j.nicl.2018.08.021
10.1162/jocn.2007.19.9.1498
10.1016/j.neuroimage.2020.117128
10.1016/j.neuroimage.2019.05.051
10.3389/fninf.2014.00008
10.1002/nbm.779
10.1186/s12938-020-00786-z
10.3348/kjr.2018.19.4.777
10.1200/CCI.19.00141
10.1002/nbm.3841
10.1002/jmri.10377
10.1073/pnas.1410767112
10.1016/j.neuroimage.2018.08.071
10.1016/j.neuroimage.2017.10.046
10.1016/j.neuroimage.2019.06.020
10.1016/j.neuroimage.2018.08.073
10.1016/j.neuroimage.2012.02.071
10.1016/j.neuroimage.2017.08.047
10.1016/j.neuroimage.2020.117329
10.1016/j.neuroimage.2008.05.002
10.1016/j.neuroimage.2007.02.049
10.1002/mrm.20283
10.1016/j.cortex.2012.09.005
10.1007/s00429-020-02056-z
10.1111/joim.12482
10.1016/j.neuroimage.2012.06.081
10.1016/j.neuron.2013.11.012
10.1038/nmeth.3098
10.1007/s00429-011-0372-3
10.1007/s00429-015-1179-4
10.1002/mrm.20033
10.1002/mrm.10171
10.1016/j.nicl.2019.101883
10.1016/j.neuroimage.2016.04.041
10.1148/radiology.201.3.8939209
10.1109/TMI.2007.906785
10.1016/j.neuroimage.2020.116534
10.1016/j.neuroimage.2010.03.046
10.1016/j.neuroimage.2012.01.056
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Nov 15, 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Nov 15, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.neuroimage.2021.118451
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest - Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology

MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 118451
ExternalDocumentID oai_doaj_org_article_0ab03cde47c243c0b89a8c729654e392
10.1016/j.neuroimage.2021.118451
PMC9933001
34358660
10_1016_j_neuroimage_2021_118451
S1053811921007254
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB017230
– fundername: Wellcome Trust
– fundername: NCRR NIH HHS
  grantid: UL1 RR024975
– fundername: Wellcome Trust
  grantid: 215944/Z/19/Z
– fundername: NIBIB NIH HHS
  grantid: T32 EB001628
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACLOT
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
SEW
WUQ
XPP
ZMT
~HD
0SF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c630t-9a75784ec933e04a2a5557bc8eda2bd8a4077690a1b9fdaaa4aa3139aba443cf3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:24:29 EDT 2025
Wed Aug 20 00:15:40 EDT 2025
Tue Sep 30 17:16:32 EDT 2025
Sun Sep 28 09:04:43 EDT 2025
Wed Aug 13 03:34:14 EDT 2025
Wed Feb 19 02:25:23 EST 2025
Wed Oct 01 03:43:36 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 23 02:46:51 EST 2024
Tue Aug 26 18:33:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Reproducibility
White matter
Tractography
Bundle segmentation
Harmonization
Language English
License This is an open access article under the CC BY license.
Copyright © 2021. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-9a75784ec933e04a2a5557bc8eda2bd8a4077690a1b9fdaaa4aa3139aba443cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2021.118451
PMID 34358660
PQID 2569046183
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_0ab03cde47c243c0b89a8c729654e392
unpaywall_primary_10_1016_j_neuroimage_2021_118451
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9933001
proquest_miscellaneous_2559429423
proquest_journals_2569046183
pubmed_primary_34358660
crossref_primary_10_1016_j_neuroimage_2021_118451
crossref_citationtrail_10_1016_j_neuroimage_2021_118451
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118451
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Jones, Cercignani (bib0037) 2010; 23
Schilling, Rheault, Petit, Hansen, Nath, Yeh (bib0085) 2021
Forkel, Thiebaut de Schotten, Kawadler, Dell'Acqua, Danek, Catani (bib0018) 2014; 56
Jones, Horsfield, Simmons (bib0039) 1999; 42
Mandonnet, Sarubbo, Petit (bib0054) 2018; 12
Andersson, Skare, Ashburner (bib0002) 2003; 20
Ros, Gullmar, Stenzel, Mentzel, Reichenbach (bib0079) 2013; 8
Nath, Schilling, Parvathaneni, Huo, Blaber, Hainline (bib0061) 2019
Jones, Grisot, Augustinack, Magnain, Boas, Fischl (bib0045) 2020
Essayed, Zhang, Unadkat, Cosgrove, Golby, O'Donnell (bib0015) 2017; 15
Canales-Rodriguez, Legarreta, Pizzolato, Rensonnet, Girard, Patino (bib0006) 2018; 184
Mirzaalian, Ning, Savadjiev, Pasternak, Bouix, Michailovich (bib0059) 2018; 12
Chamberland, Raven, Genc, Duffy, Descoteaux, Parker (bib0008) 2019; 200
Prckovska, Roebroeck, Pullens, Vilanova, ter Haar Romeny (bib0072) 2008; 11
Tax, Grussu, Kaden, Ning, Rudrapatna, Evans (bib0088) 2019
Pfefferbaum, Adalsteinsson, Sullivan (bib0070) 2003; 18
Daducci, Canales-Rodríguez, Descoteaux, Garyfallidis, Gur, Lin (bib0013) 2014; 33
Vollmar, O'Muircheartaigh, Barker, Symms, Thompson, Kumari (bib0099) 2010; 51
Landman, Huang, Gifford, Vikram, Lim, Farrell (bib0048) 2011; 54
Jones, Horsfield, Simmons (bib0040) 1999; 42
Heiervang, Behrens, Mackay, Robson, Johansen-Berg (bib0029) 2006; 33
Fortin, Parker, Tunç, Watanabe, Elliott, Ruparel (bib0019) 2017; 161
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0033) 2012; 62
Chang, Jones, Pierpaoli (bib0011) 2005; 53
Jones, Knosche, Turner (bib0041) 2013; 73
Cai, Yang, Kanakaraj, Nath, Newton, Edmonson (bib0005) 2020
Guevara, Roman, Houenou, Duclap, Poupon, Mangin (bib0025) 2017; 147
Tournier, Smith, Raffelt, Tabbara, Dhollander, Pietsch (bib0094) 2019; 202
Schilling, Gao, Janve, Stepniewska, Landman, Anderson (bib0082) 2017; 30
Tournier, Yeh, Calamante, Cho, Connelly, Lin (bib0095) 2008; 42
Alexander, Dyrby, Nilsson, Zhang (bib0001) 2019; 32
Yeh, Wedeen, Tseng (bib0109) 2010; 29
Ning, Bonet-Carne, Grussu, Sepehrband, Kaden, Veraart (bib0065) 2020; 221
Chen, Zhang, Li, Wee, Wu, Shen (bib0012) 2016; 6
(bib0098) 2018
O'Donnell, Westin (bib0067) 2007; 26
Tax, Grussu, Kaden, Ning, Rudrapatna, John Evans (bib0089) 2019; 195
Chamberland, Tax, Jones (bib0009) 2018; 20
Jones, Alexander, Bowtell, Cercignani, Dell'Acqua, McHugh (bib0035) 2018; 182
Maffei, Sarubbo, Jovicich (bib0050) 2019; 9
Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay (bib0086) 2006; 31
Zhang, Hoffmann, Karayumak, Rathi, Golby, O'Donnell (bib0113) 2019; 11766
Prohl, Scherrer, Tomas-Fernandez, Filip-Dhima, Kapur, Velasco-Annis (bib0074) 2019; 13
Farrell, Landman, Jones, Smith, Prince, van Zijl (bib0016) 2007; 26
Schilling, Rheault, Petit, Hansen, Nath, Yeh (bib0084) 2020
Mancini, Vos, Vakharia, O'Keeffe, Trimmel, Barkhof (bib0053) 2019; 23
Pestilli, Yeatman, Rokem, Kay, Wandell (bib0069) 2014; 11
Griswold, Jakob, Heidemann, Nittka, Jellus, Wang (bib0024) 2002; 47
Hau J., Sarubbo S., Houde J.C., Corsini F., Girard G., Deledalle C., et al. Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain structure & function. 2017;222(4):1645–62. doi: 10.1007/s00429-016-1298-6. PubMed PMID: 27581617.
Mars, Sallet, Schuffelgen, Jbabdi, Toni, Rushworth (bib0056) 2012; 22
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson (bib0023) 2013; 80
Yeatman, Dougherty, Myall, Wandell, Feldman (bib0106) 2012; 7
Magnotta, Matsui, Liu, Johnson, Long, Bolster (bib0052) 2012; 2
Wasserthal, Neher, Hirjak, Maier-Hein (bib0105) 2019; 58
Sarubbo, Petit, De Benedictis, Chioffi, Ptito, Dyrby (bib0081) 2019; 224
Schilling, Janve, Gao, Stepniewska, Landman, Anderson (bib0083) 2018; 165
Marcus, Wang, Parker, Csernansky, Morris, Buckner (bib0055) 2007; 19
Moyer, Ver Steeg, Tax, Thompson (bib0060) 2020; 84
Rheault, De Benedictis, Daducci, Maffei, Tax, Romascano (bib0077) 2020
Landman, Farrell, Jones, Smith, Prince, Mori (bib0047) 2007; 36
Papinutto, Maule, Jovicich (bib0068) 2013; 31
Guevara, Duclap, Poupon, Marrakchi-Kacem, Fillard, Le Bihan (bib0026) 2012; 61
Jones, Basser (bib0036) 2004; 52
Jones (bib0042) 2003; 49
(bib0030) 2019
Novikov, Fieremans, Jespersen, Kiselev (bib0066) 2018
Rheault, Poulin, Valcourt Caron, St-Onge, Descoteaux (bib0078) 2020; 17
Yeh, Panesar, Fernandes, Meola, Yoshino, Fernandez-Miranda (bib0107) 2018; 178
Sotiropoulos, Behrens, Jbabdi (bib0087) 2012; 60
Mirzaalian, Ning, Savadjiev, Pasternak, Bouix, Michailovich (bib0058) 2016; 135
Pruessmann, Weiger, Scheidegger, Boesiger (bib0075) 1999; 42
Yeh (bib0110) 2020; 223
Pierpaoli, Jezzard, Basser, Barnett, Chiro (bib0071) 1996; 201
Jack, Bernstein, Fox, Thompson, Alexander, Harvey (bib0032) 2008; 27
Avesani, McPherson, Hayashi, Caiafa, Henschel, Garyfallidis (bib0003) 2019; 6
Ning, Bonet-Carne, Grussu, Sepehrband, Kaden, Veraart (bib0064) 2020; 221
Tournier, Calamante, Connelly (bib0093) 2013; 26
Jones (bib0044) 2010; 21
Vanderweyen D.C., Theaud G., Sidhu J., Rheault F., Sarubbo S., Descoteaux M., et al. The role of diffusion tractography in refining glial tumor resection. Brain Structure and Function. 2020;225(4):1413–36. doi: 10.1007/s00429-020-02056-z.
Hau, Sarubbo, Perchey, Crivello, Zago, Mellet (bib0028) 2016; 10
Neubert, Mars, Thomas, Sallet, Rushworth (bib0063) 2014; 81
(bib0103) 2018
Chandio, Risacher, Pestilli, Bullock, Yeh, Koudoro (bib0010) 2020; 10
Huynh, Chen, Wu, Shen, Yap (bib0031) 2019; 38
Yeh, Verstynen, Wang, Fernandez-Miranda, Tseng (bib0108) 2013; 8
Teipel, Reuter, Stieltjes, Acosta-Cabronero, Ernemann, Fellgiebel (bib0091) 2011; 194
Wasserthal, Neher, Maier-Hein (bib0104) 2018; 183
Jeurissen, Descoteaux, Mori, Leemans (bib0034) 2019; 32
Koller, Rudrapatna, Chamberland, Raven, Parker, Tax (bib0046) 2021; 225
Vazquez, Lopez-Lopez, Houenou, Poupon, Mangin, Ladra (bib0097) 2020; 19
Zhong, Wang, Li, Xue, Liu, Wang (bib0116) 2020; 19
Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki (bib0102) 2016; 221
Zhang, Noh, Juvekar, Frisken, Rigolo, Norton (bib0114) 2020; 4
Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud (bib0101) 2020; 217
De Luca, Ianus, Leemans, Palombo, Shemesh, Zhang (bib0014) 2021
Raffelt, Tournier, Smith, Vaughan, Jackson, Ridgway (bib0076) 2017; 144
Neubert, Mars, Sallet, Rushworth (bib0062) 2015; 112
Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub (bib0100) 2007; 36
Magnotta, Matsui, Liu, Johnson, Long, Bolster (bib0051) 2012; 2
Zhang, Cetin Karayumak, Hoffmann, Rathi, Golby, O'Donnell (bib0112) 2020; 65
Jones, Chitnis, Job, Khong, Leung, Marenco (bib0038) 2007
Galluzzi, Marizzoni, Babiloni, Albani, Antelmi, Bagnoli (bib0020) 2016; 279
Min, Park, Choi, Jahng, Moon (bib0057) 2018; 19
Tax, Szczepankiewicz, Nilsson, Jones (bib0090) 2020; 210
Garyfallidis, Cote, Rheault, Sidhu, Hau, Petit (bib0022) 2018; 170
Tong, He, Gong, Li, Liang, Qian (bib0092) 2020; 7
Fekonja, Wang, Bährend, Rosenstock, Rösler, Wallmeroth (bib0017) 2019; 161
Zöllei, Jaimes, Saliba, Grant, Yendiki (bib0117) 2019; 199
Garyfallidis, Brett, Amirbekian, Rokem, van der Walt, Descoteaux (bib0021) 2014; 8
Sarubbo, De Benedictis, Maldonado, Basso, Duffau (bib0080) 2013; 218
Yu, Linn, Cook, Phillips, McInnis, Fava (bib0111) 2018; 39
Zhang, Wu, Norton, Rathi, Golby, O'Donnell (bib0115) 2019; 40
Lori, Akbudak, Shimony, Cull, Snyder, Guillory (bib0049) 2002; 15
Cai, Yang, Hansen, Nath, Ramadass, Johnson (bib0004) 2021
Jones (bib0043) 2004; 51
Cetin Karayumak, Bouix, Ning, James, Crow, Shenton (bib0007) 2019; 184
Prohl, Scherrer, Tomas-Fernandez, Filip-Dhima, Kapur, Velasco-Annis (bib0073) 2019; 13
Wakana (10.1016/j.neuroimage.2021.118451_bib0100) 2007; 36
Jones (10.1016/j.neuroimage.2021.118451_bib0042) 2003; 49
Sarubbo (10.1016/j.neuroimage.2021.118451_bib0080) 2013; 218
Cai (10.1016/j.neuroimage.2021.118451_bib0004) 2021
Jones (10.1016/j.neuroimage.2021.118451_bib0044) 2010; 21
Yeh (10.1016/j.neuroimage.2021.118451_bib0108) 2013; 8
Daducci (10.1016/j.neuroimage.2021.118451_bib0013) 2014; 33
Magnotta (10.1016/j.neuroimage.2021.118451_bib0051) 2012; 2
Yeh (10.1016/j.neuroimage.2021.118451_bib0110) 2020; 223
Prohl (10.1016/j.neuroimage.2021.118451_bib0074) 2019; 13
Raffelt (10.1016/j.neuroimage.2021.118451_bib0076) 2017; 144
Pierpaoli (10.1016/j.neuroimage.2021.118451_bib0071) 1996; 201
Ros (10.1016/j.neuroimage.2021.118451_bib0079) 2013; 8
Pruessmann (10.1016/j.neuroimage.2021.118451_bib0075) 1999; 42
De Luca (10.1016/j.neuroimage.2021.118451_bib0014) 2021
Mars (10.1016/j.neuroimage.2021.118451_bib0056) 2012; 22
Fekonja (10.1016/j.neuroimage.2021.118451_bib0017) 2019; 161
Wasserthal (10.1016/j.neuroimage.2021.118451_bib0104) 2018; 183
Papinutto (10.1016/j.neuroimage.2021.118451_bib0068) 2013; 31
Prohl (10.1016/j.neuroimage.2021.118451_bib0073) 2019; 13
Huynh (10.1016/j.neuroimage.2021.118451_bib0031) 2019; 38
Jones (10.1016/j.neuroimage.2021.118451_bib0037) 2010; 23
Sotiropoulos (10.1016/j.neuroimage.2021.118451_bib0087) 2012; 60
(10.1016/j.neuroimage.2021.118451_bib0103) 2018
Chen (10.1016/j.neuroimage.2021.118451_bib0012) 2016; 6
Tournier (10.1016/j.neuroimage.2021.118451_bib0093) 2013; 26
Zhong (10.1016/j.neuroimage.2021.118451_bib0116) 2020; 19
Griswold (10.1016/j.neuroimage.2021.118451_bib0024) 2002; 47
Landman (10.1016/j.neuroimage.2021.118451_bib0047) 2007; 36
Ning (10.1016/j.neuroimage.2021.118451_bib0065) 2020; 221
Pfefferbaum (10.1016/j.neuroimage.2021.118451_bib0070) 2003; 18
Moyer (10.1016/j.neuroimage.2021.118451_bib0060) 2020; 84
Sarubbo (10.1016/j.neuroimage.2021.118451_bib0081) 2019; 224
Zhang (10.1016/j.neuroimage.2021.118451_bib0113) 2019; 11766
Landman (10.1016/j.neuroimage.2021.118451_bib0048) 2011; 54
Tournier (10.1016/j.neuroimage.2021.118451_bib0095) 2008; 42
Forkel (10.1016/j.neuroimage.2021.118451_bib0018) 2014; 56
O'Donnell (10.1016/j.neuroimage.2021.118451_bib0067) 2007; 26
Wasserthal (10.1016/j.neuroimage.2021.118451_bib0105) 2019; 58
Min (10.1016/j.neuroimage.2021.118451_bib0057) 2018; 19
Chang (10.1016/j.neuroimage.2021.118451_bib0011) 2005; 53
Nath (10.1016/j.neuroimage.2021.118451_bib0061) 2019
Tong (10.1016/j.neuroimage.2021.118451_bib0092) 2020; 7
Zhang (10.1016/j.neuroimage.2021.118451_bib0112) 2020; 65
Jones (10.1016/j.neuroimage.2021.118451_bib0038) 2007
Yeatman (10.1016/j.neuroimage.2021.118451_bib0106) 2012; 7
Fortin (10.1016/j.neuroimage.2021.118451_bib0019) 2017; 161
Mirzaalian (10.1016/j.neuroimage.2021.118451_bib0059) 2018; 12
Koller (10.1016/j.neuroimage.2021.118451_bib0046) 2021; 225
Mandonnet (10.1016/j.neuroimage.2021.118451_bib0054) 2018; 12
Mancini (10.1016/j.neuroimage.2021.118451_bib0053) 2019; 23
Farrell (10.1016/j.neuroimage.2021.118451_bib0016) 2007; 26
Guevara (10.1016/j.neuroimage.2021.118451_bib0025) 2017; 147
Maffei (10.1016/j.neuroimage.2021.118451_bib0050) 2019; 9
Prckovska (10.1016/j.neuroimage.2021.118451_bib0072) 2008; 11
Cai (10.1016/j.neuroimage.2021.118451_bib0005) 2020
Warrington (10.1016/j.neuroimage.2021.118451_bib0101) 2020; 217
Galluzzi (10.1016/j.neuroimage.2021.118451_bib0020) 2016; 279
Pestilli (10.1016/j.neuroimage.2021.118451_bib0069) 2014; 11
Wassermann (10.1016/j.neuroimage.2021.118451_bib0102) 2016; 221
Novikov (10.1016/j.neuroimage.2021.118451_bib0066) 2018
Zöllei (10.1016/j.neuroimage.2021.118451_bib0117) 2019; 199
Garyfallidis (10.1016/j.neuroimage.2021.118451_bib0021) 2014; 8
Andersson (10.1016/j.neuroimage.2021.118451_bib0002) 2003; 20
(10.1016/j.neuroimage.2021.118451_bib0098) 2018
Chamberland (10.1016/j.neuroimage.2021.118451_bib0008) 2019; 200
Schilling (10.1016/j.neuroimage.2021.118451_bib0083) 2018; 165
Heiervang (10.1016/j.neuroimage.2021.118451_bib0029) 2006; 33
Guevara (10.1016/j.neuroimage.2021.118451_bib0026) 2012; 61
Neubert (10.1016/j.neuroimage.2021.118451_bib0063) 2014; 81
Yeh (10.1016/j.neuroimage.2021.118451_bib0107) 2018; 178
Marcus (10.1016/j.neuroimage.2021.118451_bib0055) 2007; 19
Schilling (10.1016/j.neuroimage.2021.118451_bib0082) 2017; 30
Tax (10.1016/j.neuroimage.2021.118451_bib0089) 2019; 195
Chamberland (10.1016/j.neuroimage.2021.118451_bib0009) 2018; 20
Jones (10.1016/j.neuroimage.2021.118451_bib0045) 2020
Rheault (10.1016/j.neuroimage.2021.118451_bib0077) 2020
Tournier (10.1016/j.neuroimage.2021.118451_bib0094) 2019; 202
Jones (10.1016/j.neuroimage.2021.118451_bib0040) 1999; 42
Chandio (10.1016/j.neuroimage.2021.118451_bib0010) 2020; 10
Jones (10.1016/j.neuroimage.2021.118451_bib0035) 2018; 182
Vazquez (10.1016/j.neuroimage.2021.118451_bib0097) 2020; 19
Mirzaalian (10.1016/j.neuroimage.2021.118451_bib0058) 2016; 135
10.1016/j.neuroimage.2021.118451_bib0096
Neubert (10.1016/j.neuroimage.2021.118451_bib0062) 2015; 112
Essayed (10.1016/j.neuroimage.2021.118451_bib0015) 2017; 15
Jones (10.1016/j.neuroimage.2021.118451_bib0041) 2013; 73
Ning (10.1016/j.neuroimage.2021.118451_bib0064) 2020; 221
Schilling (10.1016/j.neuroimage.2021.118451_bib0085) 2021
(10.1016/j.neuroimage.2021.118451_bib0030) 2019
Yeh (10.1016/j.neuroimage.2021.118451_bib0109) 2010; 29
Teipel (10.1016/j.neuroimage.2021.118451_bib0091) 2011; 194
Vollmar (10.1016/j.neuroimage.2021.118451_bib0099) 2010; 51
Canales-Rodriguez (10.1016/j.neuroimage.2021.118451_bib0006) 2018; 184
Avesani (10.1016/j.neuroimage.2021.118451_bib0003) 2019; 6
Cetin Karayumak (10.1016/j.neuroimage.2021.118451_bib0007) 2019; 184
Magnotta (10.1016/j.neuroimage.2021.118451_bib0052) 2012; 2
Rheault (10.1016/j.neuroimage.2021.118451_bib0078) 2020; 17
Glasser (10.1016/j.neuroimage.2021.118451_bib0023) 2013; 80
10.1016/j.neuroimage.2021.118451_bib0027
Yu (10.1016/j.neuroimage.2021.118451_bib0111) 2018; 39
Jones (10.1016/j.neuroimage.2021.118451_bib0036) 2004; 52
Jack (10.1016/j.neuroimage.2021.118451_bib0032) 2008; 27
Jenkinson (10.1016/j.neuroimage.2021.118451_bib0033) 2012; 62
Alexander (10.1016/j.neuroimage.2021.118451_bib0001) 2019; 32
Zhang (10.1016/j.neuroimage.2021.118451_bib0115) 2019; 40
Zhang (10.1016/j.neuroimage.2021.118451_bib0114) 2020; 4
Jones (10.1016/j.neuroimage.2021.118451_bib0043) 2004; 51
Hau (10.1016/j.neuroimage.2021.118451_bib0028) 2016; 10
Tax (10.1016/j.neuroimage.2021.118451_bib0088) 2019
Smith (10.1016/j.neuroimage.2021.118451_bib0086) 2006; 31
Jeurissen (10.1016/j.neuroimage.2021.118451_bib0034) 2019; 32
Jones (10.1016/j.neuroimage.2021.118451_bib0039) 1999; 42
Schilling (10.1016/j.neuroimage.2021.118451_bib0084) 2020
Tax (10.1016/j.neuroimage.2021.118451_bib0090) 2020; 210
Garyfallidis (10.1016/j.neuroimage.2021.118451_bib0022) 2018; 170
Lori (10.1016/j.neuroimage.2021.118451_bib0049) 2002; 15
References_xml – volume: 32
  start-page: e3785
  year: 2019
  ident: bib0034
  article-title: Diffusion MRI fiber tractography of the brain
  publication-title: NMR Biomed.
– volume: 36
  start-page: 1123
  year: 2007
  end-page: 1138
  ident: bib0047
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: Neuroimage
– volume: 61
  start-page: 1083
  year: 2012
  end-page: 1099
  ident: bib0026
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
  publication-title: Neuroimage
– year: 2021
  ident: bib0014
  article-title: On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge
  publication-title: bioRxiv
– volume: 170
  start-page: 283
  year: 2018
  end-page: 295
  ident: bib0022
  article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering
  publication-title: Neuroimage
– volume: 20
  start-page: 458
  year: 2018
  end-page: 465
  ident: bib0009
  article-title: Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware
  publication-title: Neuroimage Clin
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  ident: bib0075
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn. Reson. Med.
– volume: 194
  start-page: 363
  year: 2011
  end-page: 371
  ident: bib0091
  article-title: Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study
  publication-title: Psychiatry Res.: Neuroimaging
– year: 2020
  ident: bib0077
  article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility
  publication-title: Hum. Brain Mapp.
– volume: 26
  start-page: 1562
  year: 2007
  end-page: 1575
  ident: bib0067
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imaging
– volume: 200
  start-page: 89
  year: 2019
  end-page: 100
  ident: bib0008
  article-title: Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain
  publication-title: Neuroimage
– year: 2007
  ident: bib0038
  publication-title: What happens when nine different groups analyze the same DT-MRI data set using voxel-based methods
– volume: 65
  year: 2020
  ident: bib0112
  article-title: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation
  publication-title: Med. Image Anal.
– volume: 279
  start-page: 576
  year: 2016
  end-page: 591
  ident: bib0020
  article-title: Clinical and biomarker profiling of prodromal Alzheimer's disease in workpackage 5 of the Innovative Medicines Initiative PharmaCog project: a 'European ADNI study'
  publication-title: J. Intern. Med.
– volume: 49
  start-page: 7
  year: 2003
  end-page: 12
  ident: bib0042
  article-title: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI
  publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med.
– volume: 54
  start-page: 2854
  year: 2011
  end-page: 2866
  ident: bib0048
  article-title: Multi-parametric neuroimaging reproducibility: a 3-T resource study
  publication-title: Neuroimage
– volume: 15
  start-page: 494
  year: 2002
  end-page: 515
  ident: bib0049
  article-title: Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results
  publication-title: NMR Biomed.
– volume: 38
  start-page: 1599
  year: 2019
  end-page: 1609
  ident: bib0031
  article-title: Multi-Site Harmonization of Diffusion MRI Data via Method of Moments
  publication-title: IEEE Trans. Med. Imaging
– volume: 224
  start-page: 1553
  year: 2019
  end-page: 1567
  ident: bib0081
  article-title: Uncovering the inferior fronto-occipital fascicle and its topological organization in non-human primates: the missing connection for language evolution
  publication-title: Brain Struct. Funct.
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  ident: bib0024
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn. Reson. Med.
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0033
  article-title: Fsl
  publication-title: Neuroimage
– volume: 52
  start-page: 979
  year: 2004
  end-page: 993
  ident: bib0036
  article-title: "Squashing peanuts and smashing pumpkins": how noise distorts diffusion-weighted MR data
  publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med.
– volume: 42
  start-page: 617
  year: 2008
  end-page: 625
  ident: bib0095
  article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data
  publication-title: Neuroimage
– volume: 112
  start-page: E2695
  year: 2015
  end-page: E2704
  ident: bib0062
  article-title: Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 223
  year: 2020
  ident: bib0110
  article-title: Shape analysis of the human association pathways
  publication-title: Neuroimage
– volume: 161
  start-page: 1125
  year: 2019
  end-page: 1137
  ident: bib0017
  article-title: Manual for clinical language tractography
  publication-title: Acta Neurochir. (Wien)
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bib0002
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– volume: 51
  start-page: 1384
  year: 2010
  end-page: 1394
  ident: bib0099
  article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners
  publication-title: Neuroimage
– volume: 178
  start-page: 57
  year: 2018
  end-page: 68
  ident: bib0107
  article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology
  publication-title: Neuroimage
– volume: 13
  start-page: 24
  year: 2019
  ident: bib0073
  article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study
  publication-title: Front. Integr. Neurosci.
– volume: 217
  year: 2020
  ident: bib0101
  article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
– volume: 31
  start-page: 827
  year: 2013
  end-page: 839
  ident: bib0068
  article-title: Reproducibility and biases in high field brain diffusion MRI: an evaluation of acquisition and analysis variables
  publication-title: Magn. Reson. Imaging
– reference: Vanderweyen D.C., Theaud G., Sidhu J., Rheault F., Sarubbo S., Descoteaux M., et al. The role of diffusion tractography in refining glial tumor resection. Brain Structure and Function. 2020;225(4):1413–36. doi: 10.1007/s00429-020-02056-z.
– volume: 6
  start-page: 69
  year: 2019
  ident: bib0003
  article-title: The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services
  publication-title: Sci. Data
– year: 2019
  ident: bib0061
  article-title: Tractography reproducibility challenge with empirical data (TraCED): the 2017 ISMRM diffusion study group challenge
  publication-title: J. Magn. Reson. Imaging
– volume: 53
  start-page: 1088
  year: 2005
  end-page: 1095
  ident: bib0011
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magn. Reson. Med.
– volume: 201
  start-page: 637
  year: 1996
  end-page: 648
  ident: bib0071
  article-title: Diffusion Tensor MR Imaging of the Human Brain
  publication-title: Radiology
– volume: 39
  start-page: 4213
  year: 2018
  end-page: 4227
  ident: bib0111
  article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data
  publication-title: Hum. Brain Mapp.
– year: 2019
  ident: bib0030
  publication-title: Longitudinal Harmonization for Improving Tractography in Baby Diffusion MRI. Computational Diffusion MRI
– volume: 161
  start-page: 149
  year: 2017
  end-page: 170
  ident: bib0019
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: Neuroimage
– volume: 19
  start-page: 1498
  year: 2007
  end-page: 1507
  ident: bib0055
  article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: J. Cogn. Neurosci.
– volume: 19
  start-page: 777
  year: 2018
  end-page: 782
  ident: bib0057
  article-title: Inter-Vendor and Inter-Session Reliability of Diffusion Tensor Imaging: implications for Multicenter Clinical Imaging Studies
  publication-title: Korean J. Radiol.
– reference: Hau J., Sarubbo S., Houde J.C., Corsini F., Girard G., Deledalle C., et al. Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain structure & function. 2017;222(4):1645–62. doi: 10.1007/s00429-016-1298-6. PubMed PMID: 27581617.
– volume: 221
  start-page: 4705
  year: 2016
  end-page: 4721
  ident: bib0102
  article-title: The white matter query language: a novel approach for describing human white matter anatomy
  publication-title: Brain Struct. Funct.
– volume: 51
  start-page: 807
  year: 2004
  end-page: 815
  ident: bib0043
  article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study
  publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med.
– year: 2018
  ident: bib0103
  article-title: Tract Orientation Mapping for Bundle-Specific Tractography
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI
– volume: 26
  start-page: 756
  year: 2007
  end-page: 767
  ident: bib0016
  article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T
  publication-title: J. Magn. Reson. Imaging
– volume: 23
  year: 2019
  ident: bib0053
  article-title: Automated fiber tract reconstruction for surgery planning: extensive validation in language-related white matter tracts
  publication-title: Neuroimage Clin.
– volume: 10
  start-page: 17149
  year: 2020
  ident: bib0010
  article-title: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations
  publication-title: Sci. Rep.
– volume: 7
  start-page: e49790
  year: 2012
  ident: bib0106
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PLoS One
– year: 2021
  ident: bib0004
  article-title: PreQual: an automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images
  publication-title: Magn. Reson. Med.
– volume: 8
  start-page: e83847
  year: 2013
  ident: bib0079
  article-title: Atlas-guided cluster analysis of large tractography datasets
  publication-title: PLoS One
– volume: 29
  start-page: 1626
  year: 2010
  end-page: 1635
  ident: bib0109
  article-title: Generalized q-sampling imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 199
  start-page: 1
  year: 2019
  end-page: 17
  ident: bib0117
  article-title: TRActs constrained by UnderLying INfant anatomy (TRACULInA): an automated probabilistic tractography tool with anatomical priors for use in the newborn brain
  publication-title: Neuroimage
– volume: 23
  start-page: 803
  year: 2010
  end-page: 820
  ident: bib0037
  article-title: Twenty-five pitfalls in the analysis of diffusion MRI data
  publication-title: NMR Biomed.
– year: 2020
  ident: bib0005
  article-title: MASiVar: multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging
  publication-title: bioRxiv
– volume: 21
  start-page: 87
  year: 2010
  end-page: 99
  ident: bib0044
  article-title: Precision and accuracy in diffusion tensor magnetic resonance imaging
  publication-title: Top. Magn. Reson. Imaging.
– volume: 26
  start-page: 1775
  year: 2013
  end-page: 1786
  ident: bib0093
  article-title: Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging
  publication-title: NMR Biomed.
– volume: 184
  start-page: 140
  year: 2018
  end-page: 160
  ident: bib0006
  article-title: Sparse wars: a survey and comparative study of spherical deconvolution algorithms for diffusion MRI
  publication-title: Neuroimage
– volume: 9
  start-page: 4046
  year: 2019
  ident: bib0050
  article-title: Diffusion-based tractography atlas of the human acoustic radiation
  publication-title: Sci. Rep.
– volume: 7
  start-page: 157
  year: 2020
  ident: bib0092
  article-title: Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings
  publication-title: Sci. Data
– year: 2019
  ident: bib0088
  article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms
  publication-title: Neuroimage
– volume: 18
  start-page: 427
  year: 2003
  end-page: 433
  ident: bib0070
  article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain
  publication-title: J. Magn. Reson. Imaging
– volume: 165
  start-page: 200
  year: 2018
  end-page: 221
  ident: bib0083
  article-title: Histological validation of diffusion MRI fiber orientation distributions and dispersion
  publication-title: Neuroimage
– volume: 19
  start-page: 42
  year: 2020
  ident: bib0097
  article-title: Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information
  publication-title: Biomed. Eng. Online
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bib0032
  article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– volume: 195
  start-page: 285
  year: 2019
  end-page: 299
  ident: bib0089
  article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms
  publication-title: Neuroimage
– volume: 84
  start-page: 2174
  year: 2020
  end-page: 2189
  ident: bib0060
  article-title: Scanner invariant representations for diffusion MRI harmonization
  publication-title: Magn. Reson. Med.
– volume: 8
  start-page: 8
  year: 2014
  ident: bib0021
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front Neuroinform
– volume: 32
  start-page: e3841
  year: 2019
  ident: bib0001
  article-title: Imaging brain microstructure with diffusion MRI: practicality and applications
  publication-title: NMR Biomed.
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0023
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– volume: 60
  start-page: 1412
  year: 2012
  end-page: 1425
  ident: bib0087
  article-title: Ball and rackets: inferring fiber fanning from diffusion-weighted MRI
  publication-title: Neuroimage
– volume: 40
  start-page: 3041
  year: 2019
  end-page: 3057
  ident: bib0115
  article-title: Test–retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering
  publication-title: Hum. Brain Mapp.
– volume: 6
  start-page: 37847
  year: 2016
  ident: bib0012
  article-title: Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing
  publication-title: Sci. Rep.
– volume: 11
  start-page: 1058
  year: 2014
  end-page: 1063
  ident: bib0069
  article-title: Evaluation and statistical inference for human connectomes
  publication-title: Nat. Methods
– volume: 73
  start-page: 239
  year: 2013
  end-page: 254
  ident: bib0041
  article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI
  publication-title: Neuroimage
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  ident: bib0039
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 22
  start-page: 1894
  year: 2012
  end-page: 1903
  ident: bib0056
  article-title: Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks
  publication-title: Cereb. Cortex
– volume: 135
  start-page: 311
  year: 2016
  end-page: 323
  ident: bib0058
  article-title: Inter-site and inter-scanner diffusion MRI data harmonization
  publication-title: Neuroimage
– volume: 184
  start-page: 180
  year: 2019
  end-page: 200
  ident: bib0007
  article-title: Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters
  publication-title: Neuroimage
– volume: 11766
  start-page: 599
  year: 2019
  end-page: 608
  ident: bib0113
  article-title: Deep white matter analysis: fast, consistent tractography segmentation across populations and dMRI acquisitions
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 33
  start-page: 384
  year: 2014
  end-page: 399
  ident: bib0013
  article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 202
  year: 2019
  ident: bib0094
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
– volume: 12
  start-page: 284
  year: 2018
  end-page: 295
  ident: bib0059
  article-title: Multi-site harmonization of diffusion MRI data in a registration framework
  publication-title: Brain Imaging Behav.
– volume: 221
  year: 2020
  ident: bib0064
  article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results
  publication-title: Neuroimage
– volume: 17
  year: 2020
  ident: bib0078
  article-title: Common misconceptions, hidden biases and modern challenges of dMRI tractography
  publication-title: J. Neural Eng.
– volume: 225
  year: 2021
  ident: bib0046
  article-title: MICRA: microstructural image compilation with repeated acquisitions
  publication-title: Neuroimage
– volume: 11
  start-page: 9
  year: 2008
  end-page: 17
  ident: bib0072
  article-title: Optimal acquisition schemes in high angular resolution diffusion weighted imaging
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 144
  start-page: 58
  year: 2017
  end-page: 73
  ident: bib0076
  article-title: Investigating white matter fibre density and morphology using fixel-based analysis
  publication-title: Neuroimage
– year: 2020
  ident: bib0045
  article-title: Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain
  publication-title: Neuroimage
– year: 2021
  ident: bib0085
  article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?
  publication-title: bioRxiv
– volume: 147
  start-page: 703
  year: 2017
  end-page: 725
  ident: bib0025
  article-title: Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography
  publication-title: Neuroimage
– volume: 36
  start-page: 630
  year: 2007
  end-page: 644
  ident: bib0100
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
– volume: 183
  start-page: 239
  year: 2018
  end-page: 253
  ident: bib0104
  article-title: TractSeg - Fast and accurate white matter tract segmentation
  publication-title: Neuroimage
– volume: 30
  year: 2017
  ident: bib0082
  article-title: Can increased spatial resolution solve the crossing fiber problem for diffusion MRI?
  publication-title: NMR Biomed.
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  ident: bib0040
  article-title: Optimal Strategies for Measuring Diffusion in Anisotropic Systems by Magnetic Resonance Imaging
  publication-title: Magn. Reson. Med.
– volume: 19
  start-page: 4
  year: 2020
  ident: bib0116
  article-title: Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development
  publication-title: Biomed. Eng. Online
– volume: 15
  start-page: 659
  year: 2017
  end-page: 672
  ident: bib0015
  article-title: White matter tractography for neurosurgical planning: a topography-based review of the current state of the art
  publication-title: Neuroimage Clin
– volume: 4
  start-page: 299
  year: 2020
  end-page: 309
  ident: bib0114
  article-title: SlicerDMRI: diffusion MRI and Tractography Research Software for Brain Cancer Surgery Planning and Visualization
  publication-title: JCO Clin. Cancer Inform.
– start-page: e3998
  year: 2018
  ident: bib0066
  article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation
  publication-title: NMR Biomed.
– volume: 31
  start-page: 1487
  year: 2006
  end-page: 1505
  ident: bib0086
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: Neuroimage
– volume: 13
  year: 2019
  ident: bib0074
  article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study
  publication-title: Front. Integr. Neurosci.
– volume: 2
  start-page: 345
  year: 2012
  end-page: 355
  ident: bib0052
  article-title: Multicenter reliability of diffusion tensor imaging
  publication-title: Brain Connect
– volume: 218
  start-page: 21
  year: 2013
  end-page: 37
  ident: bib0080
  article-title: Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle
  publication-title: Brain Struct. Funct.
– volume: 10
  start-page: 58
  year: 2016
  ident: bib0028
  article-title: Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: anatomical Stem-Based Virtual Dissection
  publication-title: Front. Neuroanat.
– volume: 81
  start-page: 700
  year: 2014
  end-page: 713
  ident: bib0063
  article-title: Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex
  publication-title: Neuron
– volume: 210
  year: 2020
  ident: bib0090
  article-title: The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain
  publication-title: Neuroimage
– volume: 33
  start-page: 867
  year: 2006
  end-page: 877
  ident: bib0029
  article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures
  publication-title: Neuroimage
– volume: 12
  start-page: 94
  year: 2018
  ident: bib0054
  article-title: The Nomenclature of Human White Matter Association Pathways: proposal for a Systematic Taxonomic Anatomical Classification
  publication-title: Front. Neuroanat.
– volume: 221
  year: 2020
  ident: bib0065
  article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results
  publication-title: Neuroimage
– volume: 58
  year: 2019
  ident: bib0105
  article-title: Combined tract segmentation and orientation mapping for bundle-specific tractography
  publication-title: Med. Image Anal.
– volume: 2
  start-page: 345
  year: 2012
  end-page: 355
  ident: bib0051
  article-title: Multicenter reliability of diffusion tensor imaging
  publication-title: Brain Connect
– year: 2018
  ident: bib0098
  publication-title: Inter-Scanner Harmonization of High Angular Resolution DW-MRI Using Null Space Deep Learning
– volume: 182
  start-page: 8
  year: 2018
  end-page: 38
  ident: bib0035
  article-title: Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI
  publication-title: Neuroimage
– year: 2020
  ident: bib0084
  article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?
  publication-title: bioRxiv
– volume: 56
  start-page: 73
  year: 2014
  end-page: 84
  ident: bib0018
  article-title: The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography
  publication-title: Cortex
– volume: 8
  start-page: e80713
  year: 2013
  ident: bib0108
  article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy
  publication-title: PLoS One
– volume: 8
  start-page: e83847
  issue: 12
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118451_bib0079
  article-title: Atlas-guided cluster analysis of large tractography datasets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0083847
– volume: 40
  start-page: 3041
  issue: 10
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0115
  article-title: Test–retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24579
– volume: 20
  start-page: 870
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118451_bib0002
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– start-page: e3998
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0066
  article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation
  publication-title: NMR Biomed.
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0078
  article-title: Common misconceptions, hidden biases and modern challenges of dMRI tractography
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab6aad
– year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0084
  article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?
  publication-title: bioRxiv
– volume: 217
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0101
  article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116923
– volume: 6
  start-page: 69
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0003
  article-title: The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0073-y
– volume: 12
  start-page: 94
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0054
  article-title: The Nomenclature of Human White Matter Association Pathways: proposal for a Systematic Taxonomic Anatomical Classification
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2018.00094
– volume: 11
  start-page: 9
  issue: Pt 2
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118451_bib0072
  article-title: Optimal acquisition schemes in high angular resolution diffusion weighted imaging
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 195
  start-page: 285
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0089
  article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.077
– year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0005
  article-title: MASiVar: multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging
  publication-title: bioRxiv
– volume: 183
  start-page: 239
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0104
  article-title: TractSeg - Fast and accurate white matter tract segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.070
– volume: 49
  start-page: 7
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118451_bib0042
  article-title: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI
  publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med.
  doi: 10.1002/mrm.10331
– year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0077
  article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24917
– volume: 10
  start-page: 58
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118451_bib0028
  article-title: Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: anatomical Stem-Based Virtual Dissection
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2016.00058
– volume: 42
  start-page: 515
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2021.118451_bib0039
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
– volume: 29
  start-page: 1626
  issue: 9
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118451_bib0109
  article-title: Generalized q-sampling imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2045126
– volume: 9
  start-page: 4046
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0050
  article-title: Diffusion-based tractography atlas of the human acoustic radiation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40666-8
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118451_bib0033
  article-title: Fsl
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 39
  start-page: 4213
  issue: 11
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0111
  article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24241
– year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0061
  article-title: Tractography reproducibility challenge with empirical data (TraCED): the 2017 ISMRM diffusion study group challenge
  publication-title: J. Magn. Reson. Imaging
– volume: 161
  start-page: 1125
  issue: 6
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0017
  article-title: Manual for clinical language tractography
  publication-title: Acta Neurochir. (Wien)
  doi: 10.1007/s00701-019-03899-0
– volume: 21
  start-page: 87
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118451_bib0044
  article-title: Precision and accuracy in diffusion tensor magnetic resonance imaging
  publication-title: Top. Magn. Reson. Imaging.
  doi: 10.1097/RMR.0b013e31821e56ac
– volume: 225
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118451_bib0046
  article-title: MICRA: microstructural image compilation with repeated acquisitions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117406
– volume: 54
  start-page: 2854
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118451_bib0048
  article-title: Multi-parametric neuroimaging reproducibility: a 3-T resource study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.047
– volume: 42
  start-page: 952
  issue: 5
  year: 1999
  ident: 10.1016/j.neuroimage.2021.118451_bib0075
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume: 33
  start-page: 384
  issue: 2
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118451_bib0013
  article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2285500
– year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0103
  article-title: Tract Orientation Mapping for Bundle-Specific Tractography
– ident: 10.1016/j.neuroimage.2021.118451_bib0027
  doi: 10.1007/s00429-016-1298-6
– volume: 26
  start-page: 1775
  issue: 12
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118451_bib0093
  article-title: Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3017
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118451_bib0023
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 194
  start-page: 363
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118451_bib0091
  article-title: Multicenter stability of diffusion tensor imaging measures: a European clinical and physical phantom study
  publication-title: Psychiatry Res.: Neuroimaging
  doi: 10.1016/j.pscychresns.2011.05.012
– volume: 10
  start-page: 17149
  issue: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0010
  article-title: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74054-4
– volume: 31
  start-page: 827
  issue: 6
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118451_bib0068
  article-title: Reproducibility and biases in high field brain diffusion MRI: an evaluation of acquisition and analysis variables
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2013.03.004
– volume: 13
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0074
  article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study
  publication-title: Front. Integr. Neurosci.
  doi: 10.3389/fnint.2019.00024
– volume: 53
  start-page: 1088
  issue: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118451_bib0011
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20426
– volume: 42
  start-page: 515
  year: 1999
  ident: 10.1016/j.neuroimage.2021.118451_bib0040
  article-title: Optimal Strategies for Measuring Diffusion in Anisotropic Systems by Magnetic Resonance Imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
– volume: 8
  start-page: e80713
  issue: 11
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118451_bib0108
  article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0080713
– volume: 11766
  start-page: 599
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0113
  article-title: Deep white matter analysis: fast, consistent tractography segmentation across populations and dMRI acquisitions
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 6
  start-page: 37847
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118451_bib0012
  article-title: Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing
  publication-title: Sci. Rep.
  doi: 10.1038/srep37847
– year: 2021
  ident: 10.1016/j.neuroimage.2021.118451_bib0014
  article-title: On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge
  publication-title: bioRxiv
– volume: 23
  start-page: 803
  issue: 7
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118451_bib0037
  article-title: Twenty-five pitfalls in the analysis of diffusion MRI data
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1543
– volume: 84
  start-page: 2174
  issue: 4
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0060
  article-title: Scanner invariant representations for diffusion MRI harmonization
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28243
– volume: 147
  start-page: 703
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118451_bib0025
  article-title: Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.066
– volume: 7
  start-page: e49790
  issue: 11
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118451_bib0106
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049790
– volume: 2
  start-page: 345
  issue: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118451_bib0052
  article-title: Multicenter reliability of diffusion tensor imaging
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0112
– volume: 58
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0105
  article-title: Combined tract segmentation and orientation mapping for bundle-specific tractography
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101559
– volume: 30
  issue: 12
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118451_bib0082
  article-title: Can increased spatial resolution solve the crossing fiber problem for diffusion MRI?
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3787
– volume: 12
  start-page: 284
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0059
  article-title: Multi-site harmonization of diffusion MRI data in a registration framework
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-016-9670-y
– volume: 19
  start-page: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0116
  article-title: Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-020-0748-9
– volume: 7
  start-page: 157
  issue: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0092
  article-title: Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0493-8
– volume: 202
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0094
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 65
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0112
  article-title: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101761
– volume: 36
  start-page: 1123
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118451_bib0047
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.056
– year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0045
  article-title: Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116704
– volume: 33
  start-page: 867
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118451_bib0029
  article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.07.037
– year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0030
– year: 2021
  ident: 10.1016/j.neuroimage.2021.118451_bib0085
  article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?
  publication-title: bioRxiv
– volume: 15
  start-page: 659
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118451_bib0015
  article-title: White matter tractography for neurosurgical planning: a topography-based review of the current state of the art
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2017.06.011
– volume: 22
  start-page: 1894
  issue: 8
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118451_bib0056
  article-title: Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr268
– volume: 32
  start-page: e3785
  issue: 4
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0034
  article-title: Diffusion MRI fiber tractography of the brain
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3785
– year: 2021
  ident: 10.1016/j.neuroimage.2021.118451_bib0004
  article-title: PreQual: an automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28678
– volume: 13
  start-page: 24
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0073
  article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study
  publication-title: Front. Integr. Neurosci.
  doi: 10.3389/fnint.2019.00024
– volume: 26
  start-page: 756
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118451_bib0016
  article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21053
– volume: 224
  start-page: 1553
  issue: 4
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0081
  article-title: Uncovering the inferior fronto-occipital fascicle and its topological organization in non-human primates: the missing connection for language evolution
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-019-01856-2
– volume: 144
  start-page: 58
  issue: PtA
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118451_bib0076
  article-title: Investigating white matter fibre density and morphology using fixel-based analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.029
– volume: 170
  start-page: 283
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0022
  article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.015
– volume: 31
  start-page: 1487
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118451_bib0086
  article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.02.024
– volume: 38
  start-page: 1599
  issue: 7
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0031
  article-title: Multi-Site Harmonization of Diffusion MRI Data via Method of Moments
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2895020
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118451_bib0032
  article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 182
  start-page: 8
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0035
  article-title: Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.05.047
– volume: 178
  start-page: 57
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0107
  article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.05.027
– volume: 20
  start-page: 458
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0009
  article-title: Meyer's loop tractography for image-guided surgery depends on imaging protocol and hardware
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.08.021
– volume: 19
  start-page: 1498
  issue: 9
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118451_bib0055
  article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2007.19.9.1498
– volume: 221
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0064
  article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117128
– volume: 199
  start-page: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0117
  article-title: TRActs constrained by UnderLying INfant anatomy (TRACULInA): an automated probabilistic tractography tool with anatomical priors for use in the newborn brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.051
– volume: 8
  start-page: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118451_bib0021
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2014.00008
– year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0098
– volume: 15
  start-page: 494
  issue: 7–8
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118451_bib0049
  article-title: Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.779
– volume: 19
  start-page: 42
  issue: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0097
  article-title: Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-020-00786-z
– volume: 19
  start-page: 777
  issue: 4
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0057
  article-title: Inter-Vendor and Inter-Session Reliability of Diffusion Tensor Imaging: implications for Multicenter Clinical Imaging Studies
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2018.19.4.777
– volume: 4
  start-page: 299
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0114
  article-title: SlicerDMRI: diffusion MRI and Tractography Research Software for Brain Cancer Surgery Planning and Visualization
  publication-title: JCO Clin. Cancer Inform.
  doi: 10.1200/CCI.19.00141
– volume: 32
  start-page: e3841
  issue: 4
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0001
  article-title: Imaging brain microstructure with diffusion MRI: practicality and applications
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3841
– volume: 18
  start-page: 427
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118451_bib0070
  article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.10377
– volume: 112
  start-page: E2695
  issue: 20
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118451_bib0062
  article-title: Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1410767112
– volume: 184
  start-page: 140
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0006
  article-title: Sparse wars: a survey and comparative study of spherical deconvolution algorithms for diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.071
– volume: 165
  start-page: 200
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118451_bib0083
  article-title: Histological validation of diffusion MRI fiber orientation distributions and dispersion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.10.046
– volume: 200
  start-page: 89
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0008
  article-title: Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.020
– volume: 184
  start-page: 180
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0007
  article-title: Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.073
– volume: 61
  start-page: 1083
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118451_bib0026
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.071
– volume: 161
  start-page: 149
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118451_bib0019
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.047
– volume: 223
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0110
  article-title: Shape analysis of the human association pathways
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117329
– volume: 42
  start-page: 617
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118451_bib0095
  article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.002
– volume: 2
  start-page: 345
  issue: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118451_bib0051
  article-title: Multicenter reliability of diffusion tensor imaging
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0112
– volume: 36
  start-page: 630
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118451_bib0100
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.049
– volume: 52
  start-page: 979
  issue: 5
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118451_bib0036
  article-title: "Squashing peanuts and smashing pumpkins": how noise distorts diffusion-weighted MR data
  publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med.
  doi: 10.1002/mrm.20283
– volume: 56
  start-page: 73
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118451_bib0018
  article-title: The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography
  publication-title: Cortex
  doi: 10.1016/j.cortex.2012.09.005
– ident: 10.1016/j.neuroimage.2021.118451_bib0096
  doi: 10.1007/s00429-020-02056-z
– volume: 279
  start-page: 576
  issue: 6
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118451_bib0020
  article-title: Clinical and biomarker profiling of prodromal Alzheimer's disease in workpackage 5 of the Innovative Medicines Initiative PharmaCog project: a 'European ADNI study'
  publication-title: J. Intern. Med.
  doi: 10.1111/joim.12482
– volume: 73
  start-page: 239
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118451_bib0041
  article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.081
– volume: 81
  start-page: 700
  issue: 3
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118451_bib0063
  article-title: Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.11.012
– volume: 11
  start-page: 1058
  issue: 10
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118451_bib0069
  article-title: Evaluation and statistical inference for human connectomes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3098
– volume: 218
  start-page: 21
  issue: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118451_bib0080
  article-title: Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-011-0372-3
– volume: 221
  start-page: 4705
  issue: 9
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118451_bib0102
  article-title: The white matter query language: a novel approach for describing human white matter anatomy
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-015-1179-4
– volume: 51
  start-page: 807
  issue: 4
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118451_bib0043
  article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study
  publication-title: Magn. Reson. Med. : Off. J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med.
  doi: 10.1002/mrm.20033
– volume: 47
  start-page: 1202
  issue: 6
  year: 2002
  ident: 10.1016/j.neuroimage.2021.118451_bib0024
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10171
– volume: 23
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0053
  article-title: Automated fiber tract reconstruction for surgery planning: extensive validation in language-related white matter tracts
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2019.101883
– volume: 135
  start-page: 311
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118451_bib0058
  article-title: Inter-site and inter-scanner diffusion MRI data harmonization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.041
– volume: 221
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0065
  article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117128
– volume: 201
  start-page: 637
  year: 1996
  ident: 10.1016/j.neuroimage.2021.118451_bib0071
  article-title: Diffusion Tensor MR Imaging of the Human Brain
  publication-title: Radiology
  doi: 10.1148/radiology.201.3.8939209
– volume: 26
  start-page: 1562
  issue: 11
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118451_bib0067
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.906785
– volume: 210
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118451_bib0090
  article-title: The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116534
– year: 2019
  ident: 10.1016/j.neuroimage.2021.118451_bib0088
  article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.077
– volume: 51
  start-page: 1384
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118451_bib0099
  article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.046
– year: 2007
  ident: 10.1016/j.neuroimage.2021.118451_bib0038
– volume: 60
  start-page: 1412
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118451_bib0087
  article-title: Ball and rackets: inferring fiber fanning from diffusion-weighted MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.056
SSID ssj0009148
Score 2.5375333
Snippet When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118451
SubjectTerms Anisotropy
Bundle segmentation
Datasets
Diffusion
Diffusion Tensor Imaging - methods
Harmonization
Humans
Image Processing, Computer-Assisted
Investigations
Neural networks
Reproducibility
Reproducibility of Results
Scanners
Segmentation
Substantia alba
Substantia grisea
Tractography
Variation
White matter
White Matter - diagnostic imaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8SZQkJE4NsKJnYfFCRCrCqmcqNRbNHacdtGut5CNqv66_jVmEidsVCT2wG13HVtez-tzPPOZsXdNnhYNoH3nWrtYaWnjMs91bBQF71QWZX_QfvItPz5VX8-ys52rvignbKAHHhbuvQAjpK2dKmyqpBWm1FBahIR5phwGd_K-GMbGzdRIt4soP-TtDNlcPTvkco02invCNEFPUaosmQWjnrN_FpNuY87bqZP3On8J11ewWu3EpcVD9iAASv5x-COP2B3nH7O7J-HI_Am7WVBOCN9SNVSgp-amI2oF3rrzdSg98ny4Dbfl-LHF5fbYJ-R6HHF0iPVm5zvYn91ySPbiuF0P2nvE6baVjl6_8RYoU92f41gXbu1mTZQyvw3lnziWr_86H0oYa1abq6fsdPHl--fjONzaENtcim2sgSjylbNaSicUpJBlWWFs6WpITV2CIgYhLSAxuqkBQAFIxKFgQKGAG_mMHfiNdy8YzzXCm7SWiLEKJSzopnA6MwLqEpXBJhErRvFVNlCa080aq2rMXftR_RF8RYKvBsFHLJl6Xg60Hnv0-UQaMj1PxNz9D6iuVVDX6l_qGjE96lc11r6it8aBlntM4MPUN-CjAffs2ftwVOcq-Km2QsCriXK_lBF7OzWjh6FjI_Bu09EzmUbUgqYbseeD9k9rIBFto20LlMTMLmaLNG_xy4uexVzTqzSB00onC9pbFC__hyhesfs0JBWWJtkhO9j-6txrRJhb86Z3Jr8BDD-AiQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqHoAL4k2gICNxbNgktpNYnKBiVSGVC1TqLZo4zjZoN7vtJqq49K_1rzGTOGmjcliJ2yZ-yOt5eBx_85mxj2UcJSWgfcdaW19qYfw0jrWfS1q8I5Gk3UH7yY_4-FR-P1Nne-xoyIUhWKXz_b1P77y1ezNzsznbVNXsJ0YGuNwQnxfRXyviBCX2L9TpT9e3MA8dyj4dTgmfajs0T4_x6jgjqxVaLu4UoxD9RypVOFmiOib_yUp1PxK9D6h82NYb-HMFy-Wd1Wr-hD12YSb_0v-Tp2zP1s_YgxN3kP6c3cwJKcIbypFypNU8b4lwgW_tYuUSkmre35G75fhzi0KosY1DgBxydJPF-s4zmIu26iFgHDfxTqcPOd3B0tJHOb4Fwq_XC-zr3K7spIiA9I1LCsW-6uKf4yEYWblcX71gp_Nvv46OfXeXg29iETS-BiLOl9ZoIWwgIQKlVJKb1BYQ5UUKkniFdABhrssCACSAwOgUcpBSmFK8ZPv1uravGY81Bj1RITDySmRgQJeJ1SoPoEhNJE3osWQQX2Yc0Tndt7HMBkTb7-xW8BkJPusF77FwbLnpyT52aPOVNGSsT3Td3Yv15SJz-poFkAfCFFYmOEJhgjzVkBrc18RKWoxQPaYH_cqGjFj04dhRtcMAPo9tJ5azY-uDQZ0z5722GYbBmoj4U-GxD2Mx-h06TILarluqozTGMmjQHnvVa_84BwJjcLT4ACUxsYvJJE1L6uq84zbX9IEtwGFFowXtLIo3_zUTb9kjeqI801AdsP3msrXvMOBs8vedR_kLWriFXw
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqrQRceD8CBRmJY1M5sfOwOBXEqkJqBRIrlVM0cZx2y262dBNV8Of4a8wkTmgoQgu3zSZjORnP-Etm5hvGXpVxmJSA9h1rbX2lpfHTONZ-rmjzDmWStoH2w6P4YKbeH0fHW0z0tTCj-H2bh9XyOs6XaF34NhcGaOOpoprp7ZhCShO2PTv6sP-5DWpG0k-DtpdHIKgFYZT0yTt_G2q0I7XE_aON6TrwvJ4_ebOpzuHbJSwWVzan6R32sb-tLifly15T53vm-2-Mj_9y33fZbYdU-X63tO6xLVvdZzcOXSz-AfsxpWQTXlOZleO95nlDnA18bU-Wrqap4l2b3TXHn2vUY4UyLolkl6OnLVZXjsF8beZdFhm_sL1Z7HJq49LQdz2-BkqBr05wrFO7tKNTlItfu7pSHKsq_jgfykQrF6vLh2w2fffp7YHv2kH4Jpai9jUQ976yRktphYIQoihKcpPaAsK8SEERNZEWEOS6LABAAUgEuJCDUtKU8hGbVKvKPmE81oibwkIieEuUMKDLxOooF1CkJlQm8FjSL4nMOK50atmxyPqkuLPsl34y0k_W6cdjwSB53vGFbCDzhlbdcD0xfrd_4ILInAPJBORCmsKqBGcojchTDanBV6M4UhZBrsd0v2azvqgWtwEcaL7BBF4Psg54dYBqQ-md3kQy5wDXGSJpTVz-qfTYy-E0ui6KR0FlVw1dE2mEQ-gTPPa4s6jhGUiE8eg0BGpiZGujhzQ-U81PW3p0Td_oBE4rHKxyY1U8_R-hZ-wWHVGFahDtsEl90djnCFXr_IXzTj8ByySVWg
  priority: 102
  providerName: Unpaywall
Title Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921007254
https://dx.doi.org/10.1016/j.neuroimage.2021.118451
https://www.ncbi.nlm.nih.gov/pubmed/34358660
https://www.proquest.com/docview/2569046183
https://www.proquest.com/docview/2559429423
https://pubmed.ncbi.nlm.nih.gov/PMC9933001
https://doi.org/10.1016/j.neuroimage.2021.118451
https://doaj.org/article/0ab03cde47c243c0b89a8c729654e392
UnpaywallVersion publishedVersion
Volume 242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250804
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250804
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbYJgEviDuFUQWJxwWS2LlYPKAOrRqgVROiUnmKThynK2qTbmk08cJf469xTuKki4ZQn9rUF7k5F3-2z_nM2Nss8MIM0L4DKbUtJFd2FATSTgRN3h4Po_qg_WwSnE7Fl5k_MxtupQmrbH1i7ajTQtEe-XucmiWRg0f84_rSpluj6HTVXKGxxw5chCqk1eEs3JLuuqJJhfO5HWEFE8nTxHfVfJGLFVotrhI9F31HJHy3Nz3VLP69Weo2Cr0dTHmvytfw6xqWyxsz1fghe2AgpjVqdOIRu6Pzx-zumTlEf8L-jClKxNpQfpQhrLaSisgWrFLPVyYZKbea-3FLC7-WKIAc25jojyMLXWRa3HgGdVktmvAvCxfwRp-PLLp_paINOasEil3P59jXhV7pXhEF0W9MQij2laf_HA-FkGXL4vopm45Pvn86tc09DrYKuLOxJRBpvtBKcq4dAR74vh8mKtIpeEkagSBOIemAm8gsBQABwBGZQgJCcJXxZ2w_L3L9glmBRMDjpRxRVygcBTILtfQTB9JIeUK5Axa24ouVITmnuzaWcRvN9jPeCj4mwceN4AfM7VquG6KPHdock4Z09Ymqu_6huJrHxvJjBxKHq1SLEEfIlZNEEiKFa5rAFxrR6YDJVr_iNhsW_Td2tNhhAB-6tgYxNUhox9aHrTrHxnOV8dbOBuxNV4w-hw6SINdFRXV8iTgGjXnAnjfa370Djvgbrd1BSfTsoveS-iX54qLmNZe0uebgsLzOgnYWxcv__5dX7D5VpiRS1z9k-5urSr9GNLlJhmzv3W93WDuOITsYff56OsHP45PJ-bdhvUODT9PJ-ejHX9NdgP8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkBgviG8KA4wEb4tIYufDQgjxVXVs3dMm9S04jtMVtUnXJKr2T_Ev8K9xlzjpoiHUl721dc5yc-efz_bd7wh5m_pukEqY374Q2uKCKSv0fWHFHBdvlwVhfdE-PvFHZ_zHxJvskN9tLgyGVbaYWAN1kis8I38PS7NAcvCQfVpeWFg1Cm9X2xIajVkc6cs1bNmKj4ffQL_vXHf4_fTryDJVBSzlM7u0hEQKd64VbOW1zaUrPc8LYhXqRLpxEkqODDfClk4s0kRKyaVk4CfJWHLOVMqg31vkNmc2R67-YBJsSH4d3qTeecwKHUeYyKEmnqzmp5wtACVgV-o6gFUh95zeclhXDeitite93uvBm3tVtpSXazmfX1kZh_fJPePS0s-NDT4gOzp7SO6MzaX9I_JniFEptMR8LEOQTeMKyR1ooacLk_yU0aYeb0HhYwEKz0DGRJscUIDkJL_yXaqLataEm9GVbufPAcV6LxUeANJCYqx8NoW-zvVC95owaL80CajQV5b8czwYspbO8_VjcnYjGn5CdrM8088I9QU4WG7CwMsLuK2kSAMtvNiWSahcrpwBCVr1RcqQqmNtj3nURs_9ijaKj1DxUaP4AXE6yWVDLLKFzBe0kO55pAavf8hX08ggTWTL2GYq0TyAETJlx6GQoYI9lO9xDd7wgIjWvqI2-xbWC-hotsUAPnSyxkNrPK8tpfdbc44MUhbRZl4PyJuuGTAOL65kpvMKn_EE-E0AHgPytLH-7h0w8PcBXWzQRG9e9F5SvyWbndc86gIP82wYltvNoK1V8fz__-U12Rudjo-j48OToxfkLgpiAqvj7ZPdclXpl-DJlvGrGj4o-XnTePUXp2C4Lg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkAYviJ-jMMBI8LZoSWwnsRBCwKg2xiYemNS34DhOV9QmXdNo2r_GC_8ad4mTLhpCfdlbW8eWm7v7fLa_uyPkTRb4YabAvgMpjcMl004UBNJJOC7ePguj-qL9-CQ4OOVfR2K0QX63sTBIq2wxsQbqtNB4Rr4HS7PE5OAR28ssLeL7_vDD_NzBClJ409qW02hU5MhcXsD2rXx_uA-yfuv7wy8_Ph84tsKAowPmLh2pMJ07Nxq29cblyldCiDDRkUmVn6SR4pjtRrrKS2SWKqW4Ugx8JpUozpnOGIx7i9wOGWdIJwtH4Srhr8ebMDzBnMjzpGURNdyyOlflZAaIATtU3wPcirjwektjXUGgt0Je94CvEznvVPlcXV6o6fTKKjm8T-5Z95Z-bPTxAdkw-UOydWwv8B-RP0NkqNAlxmbZZNk0qTDRAy3NeGYDoXLa1OYtKXwsQfg59LHMk10K8JwWV74rfV5NGuoZXZjWlnYp1n6p8DCQlgp58_kYxjozM9NrQgL_0gajwlh5-s_5IH0tmxYXj8npjUj4CdnMi9w8JTSQ4Gz5KQOPL-SuVjILjRSJq9JI-1x7AxK24ou1TbCOdT6mccuk-xWvBB-j4ONG8APidT3nTZKRNfp8Qg3pnsc04fUPxWIcW9SJXZW4TKeGhzBDpt0kkirSsJ8KBDfgGQ-IbPUrbiNxYe2AgSZrTOBd19d6a40XtmbvnVadY4uaZbyy8QF53TUD3uEllspNUeEzQoIPBUAyINuN9nfvAMxQANK4IImeXfReUr8ln5zVOdUlHuy5MC2_s6C1RfHs___lFdkCpIq_HZ4cPSd3sR_Gsnpih2wuF5V5AU7tMnlZowclP28arv4CFwW8aQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqrQRceD8CBRmJY1M5sfOwOBXEqkJqBRIrlVM0cZx2y262dBNV8Of4a8wkTmgoQgu3zSZjORnP-Etm5hvGXpVxmJSA9h1rbX2lpfHTONZ-rmjzDmWStoH2w6P4YKbeH0fHW0z0tTCj-H2bh9XyOs6XaF34NhcGaOOpoprp7ZhCShO2PTv6sP-5DWpG0k-DtpdHIKgFYZT0yTt_G2q0I7XE_aON6TrwvJ4_ebOpzuHbJSwWVzan6R32sb-tLifly15T53vm-2-Mj_9y33fZbYdU-X63tO6xLVvdZzcOXSz-AfsxpWQTXlOZleO95nlDnA18bU-Wrqap4l2b3TXHn2vUY4UyLolkl6OnLVZXjsF8beZdFhm_sL1Z7HJq49LQdz2-BkqBr05wrFO7tKNTlItfu7pSHKsq_jgfykQrF6vLh2w2fffp7YHv2kH4Jpai9jUQ976yRktphYIQoihKcpPaAsK8SEERNZEWEOS6LABAAUgEuJCDUtKU8hGbVKvKPmE81oibwkIieEuUMKDLxOooF1CkJlQm8FjSL4nMOK50atmxyPqkuLPsl34y0k_W6cdjwSB53vGFbCDzhlbdcD0xfrd_4ILInAPJBORCmsKqBGcojchTDanBV6M4UhZBrsd0v2azvqgWtwEcaL7BBF4Psg54dYBqQ-md3kQy5wDXGSJpTVz-qfTYy-E0ui6KR0FlVw1dE2mEQ-gTPPa4s6jhGUiE8eg0BGpiZGujhzQ-U81PW3p0Td_oBE4rHKxyY1U8_R-hZ-wWHVGFahDtsEl90djnCFXr_IXzTj8ByySVWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fiber+tractography+bundle+segmentation+depends+on+scanner+effects%2C+vendor+effects%2C+acquisition+resolution%2C+diffusion+sampling+scheme%2C+diffusion+sensitization%2C+and+bundle+segmentation+workflow&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Schilling%2C+Kurt+G.&rft.au=Tax%2C+Chantal+M.W.&rft.au=Rheault%2C+Francois&rft.au=Hansen%2C+Colin&rft.date=2021-11-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=242&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118451&rft.externalDocID=S1053811921007254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon