Deep-learning-based multi-class segmentation for automated, non-invasive routine assessment of human pluripotent stem cell culture status
Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the m...
Saved in:
| Published in | Computers in biology and medicine Vol. 129; p. 104172 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.02.2021
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2020.104172 |
Cover
| Abstract | Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes.
[Display omitted]
•Deep-learning-based cell type recognition for hiPSC.•Routine parameter calculation for adherent cell colonies.•Compared to experts, deep-learning has a higher performance in hiPSC routine analysis than visual inspection.•Enabling image analysis based multi parameter process control for hiPSC. |
|---|---|
| AbstractList | AbstractHuman induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes. Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes. Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes. [Display omitted] •Deep-learning-based cell type recognition for hiPSC.•Routine parameter calculation for adherent cell colonies.•Compared to experts, deep-learning has a higher performance in hiPSC routine analysis than visual inspection.•Enabling image analysis based multi parameter process control for hiPSC. Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes.Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes. |
| ArticleNumber | 104172 |
| Author | Jung, Sven Stappert, Laura Jonas, Stephan Stucken, Sebastian Nießing, Bastian Brüstle, Oliver Elanzew, Andreas Haupt, Simone Schmitt, Robert Rippel, Oliver König, Niels Piotrowski, Tobias |
| Author_xml | – sequence: 1 givenname: Tobias surname: Piotrowski fullname: Piotrowski, Tobias email: tobias.piotrowski@ipt.fraunhofer.de organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany – sequence: 2 givenname: Oliver surname: Rippel fullname: Rippel, Oliver organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany – sequence: 3 givenname: Andreas surname: Elanzew fullname: Elanzew, Andreas organization: Life & Brain GmbH, Cellomics Unit, Bonn, Germany – sequence: 4 givenname: Bastian surname: Nießing fullname: Nießing, Bastian organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany – sequence: 5 givenname: Sebastian surname: Stucken fullname: Stucken, Sebastian organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany – sequence: 6 givenname: Sven surname: Jung fullname: Jung, Sven organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany – sequence: 7 givenname: Niels surname: König fullname: König, Niels organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany – sequence: 8 givenname: Simone surname: Haupt fullname: Haupt, Simone organization: Life & Brain GmbH, Cellomics Unit, Bonn, Germany – sequence: 9 givenname: Laura surname: Stappert fullname: Stappert, Laura organization: Life & Brain GmbH, Cellomics Unit, Bonn, Germany – sequence: 10 givenname: Oliver surname: Brüstle fullname: Brüstle, Oliver organization: Life & Brain GmbH, Cellomics Unit, Bonn, Germany – sequence: 11 givenname: Robert surname: Schmitt fullname: Schmitt, Robert organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany – sequence: 12 givenname: Stephan surname: Jonas fullname: Jonas, Stephan organization: Department of Medical Informatics, RWTH Aachen University, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33352307$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVUstu1TAQjVARvS38ArLEhgW5-BHnsUFAKQ-pEgtgbTnOpPji2MGPi-4n8Nd1lLZIlZDala3ROWfOnJmT4sg6C0WBCN4STOrXu61y09xrN8GwpZgu5Yo09FGxIW3TlZiz6qjYYExwWbWUHxcnIewwxhVm-ElxzBjjlOFmU_z9ADCXBqS32l6WvQwwoCmZqEtlZAgowOUENsqonUWj80im6CYZYXiFsqtS270Meg_IuxS1BZRJEMLCQW5EP9MkLZpN8np2cSmGCBNSYAxSuU3ykCsypvC0eDxKE-DZ9Xta_Ph4_v3sc3nx9dOXs3cXpaoZjmXbVB1hEhPetPlf8b7HdKy7nvN64BJo1w4Vl7Vq8CibfgRSK6Ck4axhQw-cnRbdqpvsLA9_pDFi9nqS_iAIFku8Yif-xSuWeMUab-a-XLmzd78ThCgmHZZZpAWXgqBVwyqco60y9MUd6M4lb_NkC6rr2q6lXUY9v0alfml24-RmQRnQrgDlXQgexoeYfXOHqvS6x-ilNvcReL8KQF7HXoMXQWmwCgbtQUUxOP0AF7ciymirlTS_4ADhNhQiAhVYfFtudjlZmi-VY7bs6-3_Be7n4QodHQIt |
| CitedBy_id | crossref_primary_10_3390_pr9040575 crossref_primary_10_1038_s41598_021_01304_4 crossref_primary_10_1515_jpm_2022_0575 crossref_primary_10_1093_stmcls_sxad049 crossref_primary_10_37394_23208_2024_21_38 crossref_primary_10_1016_j_jbiosc_2022_08_004 crossref_primary_10_1371_journal_pone_0298446 crossref_primary_10_1371_journal_pone_0302537 crossref_primary_10_1016_j_cmpb_2021_106235 crossref_primary_10_1093_stmcls_sxae054 crossref_primary_10_1016_j_bspc_2024_107423 crossref_primary_10_1016_j_slast_2023_07_004 crossref_primary_10_3389_fonc_2022_851367 crossref_primary_10_3390_genes13112127 crossref_primary_10_3390_ijms24010140 crossref_primary_10_1007_s12268_023_1987_7 crossref_primary_10_3390_pr9020240 crossref_primary_10_1016_j_addr_2023_115074 crossref_primary_10_3390_pr9060966 crossref_primary_10_1016_j_bej_2024_109591 crossref_primary_10_3390_biomedicines10050941 crossref_primary_10_1016_j_cirp_2023_05_005 crossref_primary_10_1016_j_actbio_2025_01_059 crossref_primary_10_2174_1574893618666230516144641 crossref_primary_10_3389_fbioe_2024_1459273 crossref_primary_10_1091_mbc_E22_06_0215 crossref_primary_10_3390_ijms24065323 crossref_primary_10_1038_s41598_022_12250_0 crossref_primary_10_1002_adhm_202301030 crossref_primary_10_1186_s13036_023_00329_9 crossref_primary_10_3390_sym16020227 |
| Cites_doi | 10.1017/S1431927611012153 10.1038/srep34038 10.3389/fbioe.2020.00811 10.3389/fbioe.2020.580352 10.1371/journal.pone.0048677 10.1016/j.bej.2015.09.024 10.1117/1.JMI.4.4.044003 10.1038/nbt1310 10.1515/teme-2015-0036 10.1016/j.stemcr.2013.05.001 10.1038/nmeth.4473 10.1016/j.stemcr.2017.06.006 10.1098/rstb.2011.0047 10.1038/srep06996 10.1016/j.procir.2013.01.001 10.1109/TMI.2018.2845918 10.1186/s13069-015-0026-9 10.1016/j.cell.2007.11.019 10.1038/s41592-018-0261-2 10.1371/journal.pone.0134995 10.1242/bio.022111 10.1073/pnas.92.17.7844 10.1177/2211068214537258 10.1109/TPAMI.2017.2699184 10.1007/s12015-009-9085-x 10.1038/s41598-017-07599-6 10.1126/science.282.5391.1145 10.1038/s41598-017-13680-x 10.1002/bit.25115 10.1007/s12015-009-9107-8 10.1371/journal.pone.0012148 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors The Authors Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. 2020. The Authors |
| Copyright_xml | – notice: 2020 The Authors – notice: The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2020. The Authors |
| DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.compbiomed.2020.104172 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 104172 |
| ExternalDocumentID | 10.1016/j.compbiomed.2020.104172 33352307 10_1016_j_compbiomed_2020_104172 S0010482520305035 1_s2_0_S0010482520305035 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG 6I. AAFTH AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c630t-874913a0157887445bb02f69b556d5ae298d45a6c70fa7bfe16ce2175373dbe53 |
| IEDL.DBID | BENPR |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Oct 26 03:35:38 EDT 2025 Sun Sep 28 04:39:56 EDT 2025 Tue Oct 07 06:24:24 EDT 2025 Wed Feb 19 02:30:08 EST 2025 Wed Oct 01 05:24:45 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Fri Feb 23 02:41:31 EST 2024 Tue Feb 25 20:08:37 EST 2025 Tue Oct 14 19:33:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi class segmentation Deep-learning Microscopy Human induced pluripotent stemcells(hiPSC) Cell analysis Routine parameter calculation Automated cell culture |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c630t-874913a0157887445bb02f69b556d5ae298d45a6c70fa7bfe16ce2175373dbe53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.compbiomed.2020.104172 |
| PMID | 33352307 |
| PQID | 2479989829 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2020_104172 proquest_miscellaneous_2473405234 proquest_journals_2479989829 pubmed_primary_33352307 crossref_primary_10_1016_j_compbiomed_2020_104172 crossref_citationtrail_10_1016_j_compbiomed_2020_104172 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_104172 elsevier_clinicalkeyesjournals_1_s2_0_S0010482520305035 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_104172 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Gil, Sharabani-Yosef, Amit (bib12) 2011; 17 Yang (bib26) 2015; 10 Fan (bib36) Oct. 2017; 7 X. Li et al. “H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes”. In: IEEE Trans. Med. Imag. 37.12 (Dec.), pp. 2663–2674. issn: 0278-0062. Itskovitz-Eldor, Amit (bib15) 2012 Doulgkeroglou (bib30) 2020; 8 Wakui (bib20) 2017; 4 Zhao (bib41) 2017 Perestrelo (bib25) 2017; 9 Jenkins (bib8) 2016; 108 Sergey Ioffe, Szegedy (bib32) 2015 Zhou (bib39) 2018 The International Stem Cell Banking Initiative (bib13) Dec. 2009; 5 Marx (bib34) Jan. 2013; 5 (bib16) 2008 Falk (bib37) Jan. 2019; 16 Elanzew (bib6) 2020; 8 Ronneberger, Fischer, Brox (bib31) 2015 Wolf (bib33) 2004; 5367 El Hokayem, Cukier, Dykxhoorn (bib3) 2016; 6 Sadanandan (bib42) 2017; 7 Prescott (bib7) 2011; 366 Thomson (bib19) 1998; 282 Palomo (bib2) 2015; 8 Schenk (bib24) 2016; 6 Thomson (bib18) 1995; 92 Schenk, Kulik, Schmitt (bib10) 2015; 82 L. Chen et al. “DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 40.4 (1 Ap), pp. 834–848. issn: 0162-8828. Emre (bib29) Aug. 2010; 5 Takahashi (bib5) 2007; 131 Watanabe (bib22) May 2007; 25 Jung (bib9) 2018; vol. 72 Tokunaga (bib27) 2014; 4 William Lensch, Mummery (bib1) 2013; 1 Bharathan (bib21) 2017; 6 Maddah (bib28) 2014; 19 Jaccard (bib11) 2013; 111 Gauthaman, Fong, Bongso (bib23) Mar. 2010; 6 Kim (bib4) 2016; 2016 Wakao (bib14) Dec. 2012; 7 Anaya (bib17) 2013 Ulman (bib35) Oct. 2017; 14 Palomo (10.1016/j.compbiomed.2020.104172_bib2) 2015; 8 Zhao (10.1016/j.compbiomed.2020.104172_bib41) 2017 Yang (10.1016/j.compbiomed.2020.104172_bib26) 2015; 10 Schenk (10.1016/j.compbiomed.2020.104172_bib24) 2016; 6 Anaya (10.1016/j.compbiomed.2020.104172_bib17) 2013 10.1016/j.compbiomed.2020.104172_bib40 Perestrelo (10.1016/j.compbiomed.2020.104172_bib25) 2017; 9 Sergey Ioffe (10.1016/j.compbiomed.2020.104172_bib32) 2015 Wakui (10.1016/j.compbiomed.2020.104172_bib20) 2017; 4 Gauthaman (10.1016/j.compbiomed.2020.104172_bib23) 2010; 6 Prescott (10.1016/j.compbiomed.2020.104172_bib7) 2011; 366 The International Stem Cell Banking Initiative (10.1016/j.compbiomed.2020.104172_bib13) 2009; 5 (10.1016/j.compbiomed.2020.104172_bib16) 2008 Jenkins (10.1016/j.compbiomed.2020.104172_bib8) 2016; 108 William Lensch (10.1016/j.compbiomed.2020.104172_bib1) 2013; 1 Kim (10.1016/j.compbiomed.2020.104172_bib4) 2016; 2016 Maddah (10.1016/j.compbiomed.2020.104172_bib28) 2014; 19 El Hokayem (10.1016/j.compbiomed.2020.104172_bib3) 2016; 6 Elanzew (10.1016/j.compbiomed.2020.104172_bib6) 2020; 8 Doulgkeroglou (10.1016/j.compbiomed.2020.104172_bib30) 2020; 8 Sadanandan (10.1016/j.compbiomed.2020.104172_bib42) 2017; 7 Bharathan (10.1016/j.compbiomed.2020.104172_bib21) 2017; 6 Thomson (10.1016/j.compbiomed.2020.104172_bib19) 1998; 282 Wolf (10.1016/j.compbiomed.2020.104172_bib33) 2004; 5367 Marx (10.1016/j.compbiomed.2020.104172_bib34) 2013; 5 Wakao (10.1016/j.compbiomed.2020.104172_bib14) 2012; 7 Ronneberger (10.1016/j.compbiomed.2020.104172_bib31) 2015 Takahashi (10.1016/j.compbiomed.2020.104172_bib5) 2007; 131 Fan (10.1016/j.compbiomed.2020.104172_bib36) 2017; 7 Gil (10.1016/j.compbiomed.2020.104172_bib12) 2011; 17 10.1016/j.compbiomed.2020.104172_bib38 Thomson (10.1016/j.compbiomed.2020.104172_bib18) 1995; 92 Falk (10.1016/j.compbiomed.2020.104172_bib37) 2019; 16 Jaccard (10.1016/j.compbiomed.2020.104172_bib11) 2013; 111 Schenk (10.1016/j.compbiomed.2020.104172_bib10) 2015; 82 Zhou (10.1016/j.compbiomed.2020.104172_bib39) 2018 Watanabe (10.1016/j.compbiomed.2020.104172_bib22) 2007; 25 Jung (10.1016/j.compbiomed.2020.104172_bib9) 2018; vol. 72 Ulman (10.1016/j.compbiomed.2020.104172_bib35) 2017; 14 Tokunaga (10.1016/j.compbiomed.2020.104172_bib27) 2014; 4 Itskovitz-Eldor (10.1016/j.compbiomed.2020.104172_bib15) 2012 Emre (10.1016/j.compbiomed.2020.104172_bib29) 2010; 5 |
| References_xml | – reference: X. Li et al. “H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes”. In: IEEE Trans. Med. Imag. 37.12 (Dec.), pp. 2663–2674. issn: 0278-0062. – volume: 4 year: 2017 ident: bib20 article-title: Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells publication-title: Journal of Medical Imaging – volume: 10 year: 2015 ident: bib26 article-title: Generation of iPSCs as a pooled culture using magnetic activated cell sorting of newly reprogrammed cells publication-title: PloS One – volume: 14 start-page: 1141 year: Oct. 2017 ident: bib35 article-title: An objective comparison of cell-tracking algorithms publication-title: Nat. Methods – reference: L. Chen et al. “DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 40.4 (1 Ap), pp. 834–848. issn: 0162-8828. – volume: 108 start-page: 84 year: 2016 end-page: 97 ident: bib8 article-title: Patient-specific hiPSC bioprocessing for drug screening: bioprocess economics and optimisation publication-title: Biochem. Eng. J. – volume: 82 start-page: 309 year: 2015 ident: bib10 article-title: Metrology-based quality and process control in automated stem cell production publication-title: TM - Tech. Mess. – volume: 5 start-page: 301 year: Dec. 2009 end-page: 314 ident: bib13 article-title: Consensus guidance for banking and supply of human embryonic stem cell lines for Research purposes publication-title: Stem Cell Reviews and Reports – volume: 282 start-page: 1145 year: 1998 end-page: 1147 ident: bib19 article-title: Embryonic stem cell lines derived from human blastocysts publication-title: Science – start-page: 6230 year: 2017 end-page: 6239 ident: bib41 article-title: Pyramid scene parsing network publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 8 start-page: 1155 year: 2020 ident: bib6 article-title: The StemCell-factory: a modular system integration for automated generation and expansion of human induced pluripotent stem cells publication-title: Frontiers in Bioengineering and Biotechnology – volume: 1 start-page: 5 year: 2013 end-page: 17 ident: bib1 article-title: From stealing fire to cellular reprogramming: a scientific history leading to the 2012 Nobel Prize publication-title: Stem Cell Reports – volume: 7 start-page: 13496 year: Oct. 2017 ident: bib36 article-title: A machine learning assisted, label-free, non-invasive approach for somatic reprogramming in induced pluripotent stem cell colony formation detection and prediction publication-title: Sci. Rep. – year: 2008 ident: bib16 publication-title: Fundamental Techniques in Cell Culture – start-page: 3 year: 2018 end-page: 11 ident: bib39 article-title: UNet++: a nested U-net architecture for medical image segmentation publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 2016 year: 2016 ident: bib4 article-title: The generation of human induced pluripotent stem cells from blood cells: an efficient protocol using serial plating of reprogrammed cells by centrifugation publication-title: Stem Cell. Int. – year: 2015 ident: bib32 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: ArXiv e-prints – volume: 8 start-page: 9 year: 2015 ident: bib2 article-title: Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration publication-title: Fibrogenesis Tissue Repair – volume: 6 start-page: 275 year: 2016 ident: bib3 article-title: Blood derived induced pluripotent stem cells (iPSCs): benefits, challenges and the road ahead publication-title: J. Alzheimer’s Dis. Park. – volume: 366 start-page: 2323 year: 2011 end-page: 2328 ident: bib7 article-title: The business of exploiting induced pluripotent stem cells publication-title: Phil. Trans. Biol. Sci. – volume: 9 start-page: 697 year: 2017 end-page: 709 ident: bib25 article-title: Pluri-IQ: quantification of embryonic stem cell pluripotency through an image-based analysis software publication-title: Stem Cell Reports – start-page: 234 year: 2015 end-page: 241 ident: bib31 article-title: U-net: convolutional networks for biomedical image segmentation” publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 – volume: 7 year: 2017 ident: bib42 article-title: Automated training of deep convolutional neural networks for cell segmentation publication-title: Sci. Rep. – volume: 4 start-page: 6996 year: 2014 ident: bib27 article-title: Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells publication-title: Sci. Rep. – volume: 92 start-page: 7844 year: 1995 end-page: 7848 ident: bib18 article-title: Isolation of a primate embryonic stem cell line publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 8 start-page: 811 year: 2020 ident: bib30 article-title: Automation, monitoring, and standardization of cell product manufacturing publication-title: Frontiers in Bioengineering and Biotechnology – volume: 5 start-page: 2 year: Jan. 2013 end-page: 6 ident: bib34 article-title: Automatic production of induced pluripotent stem cells publication-title: Procedia CIRP – volume: 7 start-page: 1 year: Dec. 2012 end-page: 9 ident: bib14 article-title: Morphologic and gene expression criteria for identifying human induced pluripotent stem cells publication-title: PloS One – volume: 16 start-page: 67 year: Jan. 2019 end-page: 70 ident: bib37 article-title: U-Net: deep learning for cell counting, detection, and morphometry” publication-title: Nat. Methods – volume: 5 start-page: 1 year: Aug. 2010 end-page: 10 ident: bib29 article-title: The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers publication-title: PloS One – volume: 131 start-page: 861 year: 2007 end-page: 872 ident: bib5 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell – volume: vol. 72 start-page: 1245 year: 2018 end-page: 1250 ident: bib9 article-title: Highly modular and generic control software for adaptive cell processing on automated production platforms publication-title: 51st CIRP Conference on Manufacturing Systems – volume: 17 start-page: 915 year: 2011 end-page: 922 ident: bib12 article-title: A method for quick, low-cost automated confluency measurements publication-title: Microsc. Microanal. – volume: 19 start-page: 454 year: 2014 end-page: 460 ident: bib28 article-title: A system for automated, noninvasive, morphology-based evaluation of induced pluripotent stem cell cultures publication-title: J. Lab. Autom. – volume: 6 start-page: 100 year: 2017 end-page: 108 ident: bib21 article-title: Systematic evaluation of markers used for the identification of human induced pluripotent stem cells publication-title: Biology Open – volume: 5367 start-page: 12 year: 2004 ident: bib33 article-title: The medical imaging interaction toolkit (MITK): a toolkit facilitating the creation of interactive software by extending VTK and ITK publication-title: Med. Imaging – volume: 111 start-page: 504 year: 2013 end-page: 517 ident: bib11 article-title: Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images publication-title: Biotechnol. Bioeng. – volume: 6 start-page: 34038 year: 2016 ident: bib24 article-title: High-speed microscopy of continuously moving cell culture vessels publication-title: Sci. Rep. – year: 2013 ident: bib17 article-title: Autoimmunity. From Bench to Bedside – volume: 6 start-page: 86 year: Mar. 2010 end-page: 95 ident: bib23 article-title: Effect of ROCK inhibitor Y-27632 on normal and variant human embryonic stem cells (hESCs) in vitro: its benefits in hESC expansion publication-title: Stem Cell Reviews and Reports – year: 2012 ident: bib15 article-title: Atlas of human pluripotent stem cells – derivation and culturing publication-title: Morphology of Human Embryonic and Induced Pluripotent Stem Cell Colonies Cultured with Feeders – volume: 25 start-page: 681 year: May 2007 ident: bib22 article-title: A ROCK inhibitor permits survival of dissociated human embryonic stem cells publication-title: Nat. Biotechnol. – year: 2012 ident: 10.1016/j.compbiomed.2020.104172_bib15 article-title: Atlas of human pluripotent stem cells – derivation and culturing – volume: 17 start-page: 915 issue: 6 year: 2011 ident: 10.1016/j.compbiomed.2020.104172_bib12 article-title: A method for quick, low-cost automated confluency measurements publication-title: Microsc. Microanal. doi: 10.1017/S1431927611012153 – year: 2013 ident: 10.1016/j.compbiomed.2020.104172_bib17 – volume: 6 start-page: 34038 year: 2016 ident: 10.1016/j.compbiomed.2020.104172_bib24 article-title: High-speed microscopy of continuously moving cell culture vessels publication-title: Sci. Rep. doi: 10.1038/srep34038 – volume: 8 start-page: 811 year: 2020 ident: 10.1016/j.compbiomed.2020.104172_bib30 article-title: Automation, monitoring, and standardization of cell product manufacturing publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2020.00811 – volume: vol. 72 start-page: 1245 year: 2018 ident: 10.1016/j.compbiomed.2020.104172_bib9 article-title: Highly modular and generic control software for adaptive cell processing on automated production platforms – start-page: 6230 year: 2017 ident: 10.1016/j.compbiomed.2020.104172_bib41 article-title: Pyramid scene parsing network – volume: 8 start-page: 1155 year: 2020 ident: 10.1016/j.compbiomed.2020.104172_bib6 article-title: The StemCell-factory: a modular system integration for automated generation and expansion of human induced pluripotent stem cells publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2020.580352 – volume: 7 start-page: 1 issue: 12 year: 2012 ident: 10.1016/j.compbiomed.2020.104172_bib14 article-title: Morphologic and gene expression criteria for identifying human induced pluripotent stem cells publication-title: PloS One doi: 10.1371/journal.pone.0048677 – start-page: 3 year: 2018 ident: 10.1016/j.compbiomed.2020.104172_bib39 article-title: UNet++: a nested U-net architecture for medical image segmentation – volume: 108 start-page: 84 year: 2016 ident: 10.1016/j.compbiomed.2020.104172_bib8 article-title: Patient-specific hiPSC bioprocessing for drug screening: bioprocess economics and optimisation publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2015.09.024 – volume: 4 issue: 4 year: 2017 ident: 10.1016/j.compbiomed.2020.104172_bib20 article-title: Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells publication-title: Journal of Medical Imaging doi: 10.1117/1.JMI.4.4.044003 – volume: 2016 year: 2016 ident: 10.1016/j.compbiomed.2020.104172_bib4 article-title: The generation of human induced pluripotent stem cells from blood cells: an efficient protocol using serial plating of reprogrammed cells by centrifugation publication-title: Stem Cell. Int. – volume: 25 start-page: 681 year: 2007 ident: 10.1016/j.compbiomed.2020.104172_bib22 article-title: A ROCK inhibitor permits survival of dissociated human embryonic stem cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt1310 – volume: 82 start-page: 309 year: 2015 ident: 10.1016/j.compbiomed.2020.104172_bib10 article-title: Metrology-based quality and process control in automated stem cell production publication-title: TM - Tech. Mess. doi: 10.1515/teme-2015-0036 – volume: 1 start-page: 5 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2020.104172_bib1 article-title: From stealing fire to cellular reprogramming: a scientific history leading to the 2012 Nobel Prize publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2013.05.001 – volume: 14 start-page: 1141 year: 2017 ident: 10.1016/j.compbiomed.2020.104172_bib35 article-title: An objective comparison of cell-tracking algorithms publication-title: Nat. Methods doi: 10.1038/nmeth.4473 – volume: 9 start-page: 697 issue: 2 year: 2017 ident: 10.1016/j.compbiomed.2020.104172_bib25 article-title: Pluri-IQ: quantification of embryonic stem cell pluripotency through an image-based analysis software publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2017.06.006 – volume: 366 start-page: 2323 issue: 1575 year: 2011 ident: 10.1016/j.compbiomed.2020.104172_bib7 article-title: The business of exploiting induced pluripotent stem cells publication-title: Phil. Trans. Biol. Sci. doi: 10.1098/rstb.2011.0047 – volume: 4 start-page: 6996 year: 2014 ident: 10.1016/j.compbiomed.2020.104172_bib27 article-title: Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells publication-title: Sci. Rep. doi: 10.1038/srep06996 – volume: 5 start-page: 2 year: 2013 ident: 10.1016/j.compbiomed.2020.104172_bib34 article-title: Automatic production of induced pluripotent stem cells publication-title: Procedia CIRP doi: 10.1016/j.procir.2013.01.001 – ident: 10.1016/j.compbiomed.2020.104172_bib38 doi: 10.1109/TMI.2018.2845918 – volume: 8 start-page: 9 year: 2015 ident: 10.1016/j.compbiomed.2020.104172_bib2 article-title: Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration publication-title: Fibrogenesis Tissue Repair doi: 10.1186/s13069-015-0026-9 – year: 2008 ident: 10.1016/j.compbiomed.2020.104172_bib16 – volume: 131 start-page: 861 issue: 5 year: 2007 ident: 10.1016/j.compbiomed.2020.104172_bib5 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 16 start-page: 67 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2020.104172_bib37 article-title: U-Net: deep learning for cell counting, detection, and morphometry” publication-title: Nat. Methods doi: 10.1038/s41592-018-0261-2 – volume: 10 issue: 8 year: 2015 ident: 10.1016/j.compbiomed.2020.104172_bib26 article-title: Generation of iPSCs as a pooled culture using magnetic activated cell sorting of newly reprogrammed cells publication-title: PloS One doi: 10.1371/journal.pone.0134995 – volume: 5367 start-page: 12 year: 2004 ident: 10.1016/j.compbiomed.2020.104172_bib33 article-title: The medical imaging interaction toolkit (MITK): a toolkit facilitating the creation of interactive software by extending VTK and ITK publication-title: Med. Imaging – volume: 6 start-page: 100 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2020.104172_bib21 article-title: Systematic evaluation of markers used for the identification of human induced pluripotent stem cells publication-title: Biology Open doi: 10.1242/bio.022111 – start-page: 234 year: 2015 ident: 10.1016/j.compbiomed.2020.104172_bib31 article-title: U-net: convolutional networks for biomedical image segmentation” – year: 2015 ident: 10.1016/j.compbiomed.2020.104172_bib32 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: ArXiv e-prints – volume: 6 start-page: 275 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2020.104172_bib3 article-title: Blood derived induced pluripotent stem cells (iPSCs): benefits, challenges and the road ahead publication-title: J. Alzheimer’s Dis. Park. – volume: 92 start-page: 7844 issue: 17 year: 1995 ident: 10.1016/j.compbiomed.2020.104172_bib18 article-title: Isolation of a primate embryonic stem cell line publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.92.17.7844 – volume: 19 start-page: 454 issue: 5 year: 2014 ident: 10.1016/j.compbiomed.2020.104172_bib28 article-title: A system for automated, noninvasive, morphology-based evaluation of induced pluripotent stem cell cultures publication-title: J. Lab. Autom. doi: 10.1177/2211068214537258 – ident: 10.1016/j.compbiomed.2020.104172_bib40 doi: 10.1109/TPAMI.2017.2699184 – volume: 5 start-page: 301 issue: 4 year: 2009 ident: 10.1016/j.compbiomed.2020.104172_bib13 article-title: Consensus guidance for banking and supply of human embryonic stem cell lines for Research purposes publication-title: Stem Cell Reviews and Reports doi: 10.1007/s12015-009-9085-x – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2020.104172_bib42 article-title: Automated training of deep convolutional neural networks for cell segmentation publication-title: Sci. Rep. doi: 10.1038/s41598-017-07599-6 – volume: 282 start-page: 1145 issue: 5391 year: 1998 ident: 10.1016/j.compbiomed.2020.104172_bib19 article-title: Embryonic stem cell lines derived from human blastocysts publication-title: Science doi: 10.1126/science.282.5391.1145 – volume: 7 start-page: 13496 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2020.104172_bib36 article-title: A machine learning assisted, label-free, non-invasive approach for somatic reprogramming in induced pluripotent stem cell colony formation detection and prediction publication-title: Sci. Rep. doi: 10.1038/s41598-017-13680-x – volume: 111 start-page: 504 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2020.104172_bib11 article-title: Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25115 – volume: 6 start-page: 86 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2020.104172_bib23 article-title: Effect of ROCK inhibitor Y-27632 on normal and variant human embryonic stem cells (hESCs) in vitro: its benefits in hESC expansion publication-title: Stem Cell Reviews and Reports doi: 10.1007/s12015-009-9107-8 – volume: 5 start-page: 1 issue: 8 year: 2010 ident: 10.1016/j.compbiomed.2020.104172_bib29 article-title: The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers publication-title: PloS One doi: 10.1371/journal.pone.0012148 |
| SSID | ssj0004030 |
| Score | 2.4364514 |
| Snippet | Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for... AbstractHuman induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104172 |
| SubjectTerms | Algorithms Automated cell culture Automatic control Automation Cell analysis Cell culture Cell differentiation Center of gravity Clinical decision making Colonies Cultivation Decision making Deep learning Drug screening Human induced pluripotent stemcells(hiPSC) Human tissues Image analysis Image processing Image segmentation Inclusions Internal Medicine Mathematical models Microscopy Morphology Multi class segmentation Other Parameters Phase contrast Pluripotency Precision medicine Roundness Routine parameter calculation Stem cells |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9UwDI6mHQYc0PjdMVCQOBKWJmnTihMaTBPSODFptyht0umht7ZaW9Auu--_xm7TDjSQnsS1r277bPeL3Xy2CXnrnfLcWs2KjDum0ipnWSE5Kyotc6cBD8eZkSdf0-NT9eUsOdsih3MtDNIqA_ZPmD6idThyELR50K5WWOMLqQQkOAJ9lkssNFdwafDp99e3NA_F5VSGAniDZwc2z8TxQtr2VOYOmaIYNzxjLf61RN0NQR-Qe0Pd2qufdr3-bVk62iUPQzxJP06P_Ihs-fox2TkJO-ZPyM0n71sWZkOcM1y0HB1ZhKzEwJl2_vwi1B_VFCJYaoe-gTDWu3e0bmq2qn9YpLjTywZ8tPbULr08aVPRccYfbdcDgE_T40HsDE1xP4BOXT08xaKloXtKTo8-fzs8ZmH8AitTyXvASZXH0kK8gIxDpZKi4KJK8yJJUpdYL_LMqcSmpeaV1UXlY5wuhp0_tXSFT-Qzsg3P6V8QCjkdXEYqZyE7U85nFSSWZeYA4qoMYtCI6Fnjpgy9yXFExtrMJLTv5tZWBm1lJltFJF4k26k_xwYy-WxUM9efAmIaWEQ2kNV_k_VdePU7E5tOGG7uuGdEPiySf3j4hvfdn73PLLcSSuc4_1OAAt8sPwM-oJFt7ZthPEcq_PavIvJ88tpFURIL7gDkIyIWN95Yi3v_9X9ekvsC2UEj_32fbPeXg38F4V1fvB7f3188b07t priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VrcTlgftloSAj8Ygrb-zcxFMFVBVSKxCsVJ4sO3YqYElWTQKCP-CvmUmccEcLr7s7SXY8OT7WnJkBeOCd8sKYlNtMOK6SMueZlYLbMpW5SxEP-5mRh0fJwVI9O46Pt0CMtTA_5O97HRZJq4dSdDzNRX1SEjfdM7CdxMi-Z7C9PHq-93oAXMFV1s9ZpRnaHONLBfHO3y71px3pV8Z5Ac511dp8-mhWq-92of1L8GJ8_kF88m63a-1u8fmn1o7_8gcvw8VASdneEENXYMtXV-HsYUi6X4MvT7xf8zBe4oTTvudYL0TkBXFv1viT96GEqWJIgpnp2hqZsHcPWVVX_E31wZBKnp3WGOaVZ2ZqB8rqkvVjAtl61SF-1S19SM2lGaUU2NAYxDOqe-qa67Dcf_rq8QEPExx4kUjRItSqfCENUg4SLSoVWyuiMsltHCcuNj7KM6dikxSpKE1qS7-gAWXUPDSVzvpY3oAZPqe_BQyPhXgZqZzBA55yPivxbFpkDlGyzJDGziEdV1EXob05TdlY6VHH9lZ_87QmT-vB03NYTJbrocXHBjb5GCh6LGFF0NW4uhvYpr-z9U1Aj0YvdBNpoV_2zZMwoCNCZSHjOTyaLANBGojPhvfdGSNaT7eKVJrTCNEIHXh_-hohhhbZVL7u-t9IRekDNYebw5swOUpSzR7uE3OIpldjYy_e_h-jO3A-Il1Rr5zfgVl72vm7SAxbey9gwVfPs17p priority: 102 providerName: Unpaywall |
| Title | Deep-learning-based multi-class segmentation for automated, non-invasive routine assessment of human pluripotent stem cell culture status |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520305035 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482520305035 https://dx.doi.org/10.1016/j.compbiomed.2020.104172 https://www.ncbi.nlm.nih.gov/pubmed/33352307 https://www.proquest.com/docview/2479989829 https://www.proquest.com/docview/2473405234 https://doi.org/10.1016/j.compbiomed.2020.104172 |
| UnpaywallVersion | publishedVersion |
| Volume | 129 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9NAFD7stuDlQbwbXcsIPhpNMpNMgohU3VqVLYtaqE_DJDNZdqlJ3TaKL777rz0ntwpe6EsCbaYJc06--abn8gE8tEZYT2vpprFnXBHliRun3HPTXPLESMTDWjPyaBZN5-LtIlzswayrhaG0yg4Ta6A2ZUb_kT8JhExI6zBInq--uKQaRdHVTkJDt9IK5lndYmwfhgF1xhrA8MXh7Pj9tlLS401RCqKPwM1Rm9vTZHxREndT9I77xqAOf_oy-NeC9SchvQwXq2Klv3_Ty-Vvi9TkKlxp2SUbN-5wDfZscR0uHLXx8xvw85W1K7dVijhxaQkzrM4pdDOi0WxtTz631UgFQz7LdLUpkdRa84gVZeGeFl81Jbyz8xI9trBM9509WZmzWvGPrZYVQlG5oQ-pTzSj6ABrenxYRiVM1fomzCeHH19O3VaMwc0i7m0QNUXic43sgfIPhQjT1AvyKEnDMDKhtkESGxHqKJNermWaW5-0xqgPqOQmtSG_BQN8TnsHGNoRf4YLo3GvJoyNc9xmZrFBwMtjZKQOyG7GVdZ2KifBjKXqUtLO1NZWimylGls54PcjV023jh3GJJ1RVVeNivipcEnZYaz821i7boFgrXy1DpSnPtR9kNDhAgJYj4cOPO1Htlyn4TA73veg8z7V32r7hjjwoP8a0YKMrAtbVvU1XFAkQDhwu_HafqI4ld8h5DsQ9G688yze_f8T3YNLASUD1enuBzDYnFf2PrK5TTqC_cc_fDzKhcRjPHk9guH4zbvpbNS-vHiez47Hn34BN3BQoA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELWqVqLwgLgTKGAkeMMisZ2bUIWAttrS7gpBK_XNdWKnotomS7Oh6ifwU3wbM4mTReKifelrNrOJPOMzM_HMHEJeWCOtr3XMssQ3TEZFypJM-CwrYpGaGPCw5YwcT6LRofx4FB6tkJ99LwyWVfaY2AK1qXL8Rv6ayzhFrkOevp19Y8gahaerPYWGdtQKZrMdMeYaO_bs5QWkcPXm7hbo-yXnO9sHH0bMsQywPBL-HOBApoHQ4BaxsE7KMMt8XkRpFoaRCbXlaWJkqKM89gsdZ4UNkEQLB1zGwmQWWSPABaxJIVNI_tbeb08-fV50Zvqia4IBtJOQjLlaoq7CDIvGuyZ7yFN5e9waxPxfDvLPAPgGWW_Kmb680NPpb05x5xa56aJZ-q4zv9tkxZZ3yLWxO6-_S35sWTtjjpnihKHLNLStYWQ5hu20tidnrvuppBA_U93MKwiirXlFy6pkX8vvGgvs6XkFO6S0VA-TRGlV0JZhkM6mDUBfNceLOJea4mkE7WaKWIotU019jxxeiVruk1V4T_uQULAb-BshjYbcUBqbFJDW5okBgC0SiIA9EvcrrnI3GR0JOqaqL4E7VQtdKdSV6nTlkWCQnHXTQZaQSXulqr77FfBagQtbQjb-m6ytHfDUKlA1V7760s5dAoPjCOi-CD3yZpB0sVUXMy353I3e-tTwqMWO9Mjz4WdAJ1SyLm3VtPcIiScP0iMPOqsdFkpgux-4GI_wwYyXXsVH_3-jZ2R9dDDeV_u7k73H5DrHQqS21H6DrM7PG_sEIsl59tRtV0qOrxohfgGqvoZP |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELWqIhV4QFxLoICR4A2rie3EiRBCiGXVUlohQaV9M07sVKAlCU1C1U_gl_g6ZnJbJC7al75mM5vIMz4zzpyZIeSJs9L5xiiWxr5lMsoTFqfCZ2muRGIV4GE3M_LwKNo7lm8X4WKD_BxrYZBWOWJiB9S2zPAb-S6XKsFZhzzZzQdaxPvZ_GX1jeEEKcy0juM0ehM5cOdncHyrX-zPQNdPOZ-_-fh6jw0TBlgWCb8BKJBJIAy4RCTVSRmmqc_zKEnDMLKhcTyJrQxNlCk_NyrNXYADtLC5pRI2dTgxAuD_khIiQTqhWqhVTaYv-vIXwDkJx7CBRdRzy5Au3pfXwwmVd4nWQPF_ucY_Q9-r5HJbVOb8zCyXv7nD-XVybYhj6ave8G6QDVfcJFuHQ6b-Fvkxc65iw0yKE4bO0tKOvcgyDNhp7U6-DnVPBYXImZq2KSF8dvYZLcqCfS6-G6TW09MS9kbhqJl6iNIyp91sQVotWwC9ssGL2JGaYh6C9t1EHMViqba-TY4vRCl3yCa8p7tLKFgM_I2Q1sCpUFoX53CgzWIL0JrHEPt6RI0rrrOhJzqO5ljqkfz2Ra90pVFXuteVR4JJsur7gqwhk4xK1WPdKyC1Bue1hqz6m6yrB8ipdaBrrn39oeu4BAbHEcp9EXrk-SQ5RFV9tLTmc3dG69PTo1Z70SOPp58Bl1DJpnBl290jJOYcpEe2e6udFkpgoR84F4_wyYzXXsV7_3-jR2QLcEG_2z86uE-ucGQgdRz7HbLZnLbuAYSQTfqw26uUfLpocPgF-iaD6Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VrcTlgftloSAj8Ygrb-zcxFMFVBVSKxCsVJ4sO3YqYElWTQKCP-CvmUmccEcLr7s7SXY8OT7WnJkBeOCd8sKYlNtMOK6SMueZlYLbMpW5SxEP-5mRh0fJwVI9O46Pt0CMtTA_5O97HRZJq4dSdDzNRX1SEjfdM7CdxMi-Z7C9PHq-93oAXMFV1s9ZpRnaHONLBfHO3y71px3pV8Z5Ac511dp8-mhWq-92of1L8GJ8_kF88m63a-1u8fmn1o7_8gcvw8VASdneEENXYMtXV-HsYUi6X4MvT7xf8zBe4oTTvudYL0TkBXFv1viT96GEqWJIgpnp2hqZsHcPWVVX_E31wZBKnp3WGOaVZ2ZqB8rqkvVjAtl61SF-1S19SM2lGaUU2NAYxDOqe-qa67Dcf_rq8QEPExx4kUjRItSqfCENUg4SLSoVWyuiMsltHCcuNj7KM6dikxSpKE1qS7-gAWXUPDSVzvpY3oAZPqe_BQyPhXgZqZzBA55yPivxbFpkDlGyzJDGziEdV1EXob05TdlY6VHH9lZ_87QmT-vB03NYTJbrocXHBjb5GCh6LGFF0NW4uhvYpr-z9U1Aj0YvdBNpoV_2zZMwoCNCZSHjOTyaLANBGojPhvfdGSNaT7eKVJrTCNEIHXh_-hohhhbZVL7u-t9IRekDNYebw5swOUpSzR7uE3OIpldjYy_e_h-jO3A-Il1Rr5zfgVl72vm7SAxbey9gwVfPs17p |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-based+multi-class+segmentation+for+automated%2C+non-invasive+routine+assessment+of+human+pluripotent+stem+cell+culture+status&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Piotrowski%2C+Tobias&rft.au=Rippel%2C+Oliver&rft.au=Elanzew%2C+Andreas&rft.au=Nie%C3%9Fing%2C+Bastian&rft.date=2021-02-01&rft.issn=0010-4825&rft.volume=129&rft.spage=104172&rft.epage=104172&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.104172&rft.externalDBID=ECK1-s2.0-S0010482520305035&rft.externalDocID=1_s2_0_S0010482520305035 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482520X00138%2Fcov150h.gif |