Deep-learning-based multi-class segmentation for automated, non-invasive routine assessment of human pluripotent stem cell culture status

Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the m...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 129; p. 104172
Main Authors Piotrowski, Tobias, Rippel, Oliver, Elanzew, Andreas, Nießing, Bastian, Stucken, Sebastian, Jung, Sven, König, Niels, Haupt, Simone, Stappert, Laura, Brüstle, Oliver, Schmitt, Robert, Jonas, Stephan
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.02.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2020.104172

Cover

Abstract Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes. [Display omitted] •Deep-learning-based cell type recognition for hiPSC.•Routine parameter calculation for adherent cell colonies.•Compared to experts, deep-learning has a higher performance in hiPSC routine analysis than visual inspection.•Enabling image analysis based multi parameter process control for hiPSC.
AbstractList AbstractHuman induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes.
Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes.
Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes. [Display omitted] •Deep-learning-based cell type recognition for hiPSC.•Routine parameter calculation for adherent cell colonies.•Compared to experts, deep-learning has a higher performance in hiPSC routine analysis than visual inspection.•Enabling image analysis based multi parameter process control for hiPSC.
Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes.Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for personalized medicine and drug screening. This requires large quantities of high quality hiPSCs, obtainable only via automated cultivation. One of the major requirements of an automated cultivation is a regular, non-invasive analysis of the cell condition, e.g. by whole-well microscopy. However, despite the urgency of this requirement, there are currently no automatic, image-processing-based solutions for multi-class routine quantification of this nature. This paper describes a method to fully automate the cell state recognition based on phase contrast microscopy and deep-learning. This approach can be used for in process control during an automated hiPSC cultivation. The U-Net based algorithm is capable of segmenting important parameters of hiPSC colony formation and can discriminate between the classes hiPSC colony, single cells, differentiated cells and dead cells. The model achieves more accurate results for the classes hiPSC colonies, differentiated cells, single hiPSCs and dead cells than visual estimation by a skilled expert. Furthermore, parameters for each hiPSC colony are derived directly from the classification result such as roundness, size, center of gravity and inclusions of other cells. These parameters provide localized information about the cell state and enable well based treatment of the cell culture in automated processes. Thus, the model can be exploited for routine, non-invasive image analysis during an automated hiPSC cultivation. This facilitates the generation of high quality hiPSC derived products for biomedical purposes.
ArticleNumber 104172
Author Jung, Sven
Stappert, Laura
Jonas, Stephan
Stucken, Sebastian
Nießing, Bastian
Brüstle, Oliver
Elanzew, Andreas
Haupt, Simone
Schmitt, Robert
Rippel, Oliver
König, Niels
Piotrowski, Tobias
Author_xml – sequence: 1
  givenname: Tobias
  surname: Piotrowski
  fullname: Piotrowski, Tobias
  email: tobias.piotrowski@ipt.fraunhofer.de
  organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany
– sequence: 2
  givenname: Oliver
  surname: Rippel
  fullname: Rippel, Oliver
  organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany
– sequence: 3
  givenname: Andreas
  surname: Elanzew
  fullname: Elanzew, Andreas
  organization: Life & Brain GmbH, Cellomics Unit, Bonn, Germany
– sequence: 4
  givenname: Bastian
  surname: Nießing
  fullname: Nießing, Bastian
  organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany
– sequence: 5
  givenname: Sebastian
  surname: Stucken
  fullname: Stucken, Sebastian
  organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany
– sequence: 6
  givenname: Sven
  surname: Jung
  fullname: Jung, Sven
  organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany
– sequence: 7
  givenname: Niels
  surname: König
  fullname: König, Niels
  organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany
– sequence: 8
  givenname: Simone
  surname: Haupt
  fullname: Haupt, Simone
  organization: Life & Brain GmbH, Cellomics Unit, Bonn, Germany
– sequence: 9
  givenname: Laura
  surname: Stappert
  fullname: Stappert, Laura
  organization: Life & Brain GmbH, Cellomics Unit, Bonn, Germany
– sequence: 10
  givenname: Oliver
  surname: Brüstle
  fullname: Brüstle, Oliver
  organization: Life & Brain GmbH, Cellomics Unit, Bonn, Germany
– sequence: 11
  givenname: Robert
  surname: Schmitt
  fullname: Schmitt, Robert
  organization: Fraunhofer Institute for Production Technology IPT, Aachen, Germany
– sequence: 12
  givenname: Stephan
  surname: Jonas
  fullname: Jonas, Stephan
  organization: Department of Medical Informatics, RWTH Aachen University, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33352307$$D View this record in MEDLINE/PubMed
BookMark eNqVUstu1TAQjVARvS38ArLEhgW5-BHnsUFAKQ-pEgtgbTnOpPji2MGPi-4n8Nd1lLZIlZDala3ROWfOnJmT4sg6C0WBCN4STOrXu61y09xrN8GwpZgu5Yo09FGxIW3TlZiz6qjYYExwWbWUHxcnIewwxhVm-ElxzBjjlOFmU_z9ADCXBqS32l6WvQwwoCmZqEtlZAgowOUENsqonUWj80im6CYZYXiFsqtS270Meg_IuxS1BZRJEMLCQW5EP9MkLZpN8np2cSmGCBNSYAxSuU3ykCsypvC0eDxKE-DZ9Xta_Ph4_v3sc3nx9dOXs3cXpaoZjmXbVB1hEhPetPlf8b7HdKy7nvN64BJo1w4Vl7Vq8CibfgRSK6Ck4axhQw-cnRbdqpvsLA9_pDFi9nqS_iAIFku8Yif-xSuWeMUab-a-XLmzd78ThCgmHZZZpAWXgqBVwyqco60y9MUd6M4lb_NkC6rr2q6lXUY9v0alfml24-RmQRnQrgDlXQgexoeYfXOHqvS6x-ilNvcReL8KQF7HXoMXQWmwCgbtQUUxOP0AF7ciymirlTS_4ADhNhQiAhVYfFtudjlZmi-VY7bs6-3_Be7n4QodHQIt
CitedBy_id crossref_primary_10_3390_pr9040575
crossref_primary_10_1038_s41598_021_01304_4
crossref_primary_10_1515_jpm_2022_0575
crossref_primary_10_1093_stmcls_sxad049
crossref_primary_10_37394_23208_2024_21_38
crossref_primary_10_1016_j_jbiosc_2022_08_004
crossref_primary_10_1371_journal_pone_0298446
crossref_primary_10_1371_journal_pone_0302537
crossref_primary_10_1016_j_cmpb_2021_106235
crossref_primary_10_1093_stmcls_sxae054
crossref_primary_10_1016_j_bspc_2024_107423
crossref_primary_10_1016_j_slast_2023_07_004
crossref_primary_10_3389_fonc_2022_851367
crossref_primary_10_3390_genes13112127
crossref_primary_10_3390_ijms24010140
crossref_primary_10_1007_s12268_023_1987_7
crossref_primary_10_3390_pr9020240
crossref_primary_10_1016_j_addr_2023_115074
crossref_primary_10_3390_pr9060966
crossref_primary_10_1016_j_bej_2024_109591
crossref_primary_10_3390_biomedicines10050941
crossref_primary_10_1016_j_cirp_2023_05_005
crossref_primary_10_1016_j_actbio_2025_01_059
crossref_primary_10_2174_1574893618666230516144641
crossref_primary_10_3389_fbioe_2024_1459273
crossref_primary_10_1091_mbc_E22_06_0215
crossref_primary_10_3390_ijms24065323
crossref_primary_10_1038_s41598_022_12250_0
crossref_primary_10_1002_adhm_202301030
crossref_primary_10_1186_s13036_023_00329_9
crossref_primary_10_3390_sym16020227
Cites_doi 10.1017/S1431927611012153
10.1038/srep34038
10.3389/fbioe.2020.00811
10.3389/fbioe.2020.580352
10.1371/journal.pone.0048677
10.1016/j.bej.2015.09.024
10.1117/1.JMI.4.4.044003
10.1038/nbt1310
10.1515/teme-2015-0036
10.1016/j.stemcr.2013.05.001
10.1038/nmeth.4473
10.1016/j.stemcr.2017.06.006
10.1098/rstb.2011.0047
10.1038/srep06996
10.1016/j.procir.2013.01.001
10.1109/TMI.2018.2845918
10.1186/s13069-015-0026-9
10.1016/j.cell.2007.11.019
10.1038/s41592-018-0261-2
10.1371/journal.pone.0134995
10.1242/bio.022111
10.1073/pnas.92.17.7844
10.1177/2211068214537258
10.1109/TPAMI.2017.2699184
10.1007/s12015-009-9085-x
10.1038/s41598-017-07599-6
10.1126/science.282.5391.1145
10.1038/s41598-017-13680-x
10.1002/bit.25115
10.1007/s12015-009-9107-8
10.1371/journal.pone.0012148
ContentType Journal Article
Copyright 2020 The Authors
The Authors
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
2020. The Authors
Copyright_xml – notice: 2020 The Authors
– notice: The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: 2020. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2020.104172
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Research Library Prep


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 104172
ExternalDocumentID 10.1016/j.compbiomed.2020.104172
33352307
10_1016_j_compbiomed_2020_104172
S0010482520305035
1_s2_0_S0010482520305035
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c630t-874913a0157887445bb02f69b556d5ae298d45a6c70fa7bfe16ce2175373dbe53
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Sun Oct 26 03:35:38 EDT 2025
Sun Sep 28 04:39:56 EDT 2025
Tue Oct 07 06:24:24 EDT 2025
Wed Feb 19 02:30:08 EST 2025
Wed Oct 01 05:24:45 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Fri Feb 23 02:41:31 EST 2024
Tue Feb 25 20:08:37 EST 2025
Tue Oct 14 19:33:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi class segmentation
Deep-learning
Microscopy
Human induced pluripotent stemcells(hiPSC)
Cell analysis
Routine parameter calculation
Automated cell culture
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-874913a0157887445bb02f69b556d5ae298d45a6c70fa7bfe16ce2175373dbe53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.compbiomed.2020.104172
PMID 33352307
PQID 2479989829
PQPubID 1226355
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2020_104172
proquest_miscellaneous_2473405234
proquest_journals_2479989829
pubmed_primary_33352307
crossref_primary_10_1016_j_compbiomed_2020_104172
crossref_citationtrail_10_1016_j_compbiomed_2020_104172
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_104172
elsevier_clinicalkeyesjournals_1_s2_0_S0010482520305035
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_104172
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Gil, Sharabani-Yosef, Amit (bib12) 2011; 17
Yang (bib26) 2015; 10
Fan (bib36) Oct. 2017; 7
X. Li et al. “H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes”. In: IEEE Trans. Med. Imag. 37.12 (Dec.), pp. 2663–2674. issn: 0278-0062.
Itskovitz-Eldor, Amit (bib15) 2012
Doulgkeroglou (bib30) 2020; 8
Wakui (bib20) 2017; 4
Zhao (bib41) 2017
Perestrelo (bib25) 2017; 9
Jenkins (bib8) 2016; 108
Sergey Ioffe, Szegedy (bib32) 2015
Zhou (bib39) 2018
The International Stem Cell Banking Initiative (bib13) Dec. 2009; 5
Marx (bib34) Jan. 2013; 5
(bib16) 2008
Falk (bib37) Jan. 2019; 16
Elanzew (bib6) 2020; 8
Ronneberger, Fischer, Brox (bib31) 2015
Wolf (bib33) 2004; 5367
El Hokayem, Cukier, Dykxhoorn (bib3) 2016; 6
Sadanandan (bib42) 2017; 7
Prescott (bib7) 2011; 366
Thomson (bib19) 1998; 282
Palomo (bib2) 2015; 8
Schenk (bib24) 2016; 6
Thomson (bib18) 1995; 92
Schenk, Kulik, Schmitt (bib10) 2015; 82
L. Chen et al. “DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 40.4 (1 Ap), pp. 834–848. issn: 0162-8828.
Emre (bib29) Aug. 2010; 5
Takahashi (bib5) 2007; 131
Watanabe (bib22) May 2007; 25
Jung (bib9) 2018; vol. 72
Tokunaga (bib27) 2014; 4
William Lensch, Mummery (bib1) 2013; 1
Bharathan (bib21) 2017; 6
Maddah (bib28) 2014; 19
Jaccard (bib11) 2013; 111
Gauthaman, Fong, Bongso (bib23) Mar. 2010; 6
Kim (bib4) 2016; 2016
Wakao (bib14) Dec. 2012; 7
Anaya (bib17) 2013
Ulman (bib35) Oct. 2017; 14
Palomo (10.1016/j.compbiomed.2020.104172_bib2) 2015; 8
Zhao (10.1016/j.compbiomed.2020.104172_bib41) 2017
Yang (10.1016/j.compbiomed.2020.104172_bib26) 2015; 10
Schenk (10.1016/j.compbiomed.2020.104172_bib24) 2016; 6
Anaya (10.1016/j.compbiomed.2020.104172_bib17) 2013
10.1016/j.compbiomed.2020.104172_bib40
Perestrelo (10.1016/j.compbiomed.2020.104172_bib25) 2017; 9
Sergey Ioffe (10.1016/j.compbiomed.2020.104172_bib32) 2015
Wakui (10.1016/j.compbiomed.2020.104172_bib20) 2017; 4
Gauthaman (10.1016/j.compbiomed.2020.104172_bib23) 2010; 6
Prescott (10.1016/j.compbiomed.2020.104172_bib7) 2011; 366
The International Stem Cell Banking Initiative (10.1016/j.compbiomed.2020.104172_bib13) 2009; 5
(10.1016/j.compbiomed.2020.104172_bib16) 2008
Jenkins (10.1016/j.compbiomed.2020.104172_bib8) 2016; 108
William Lensch (10.1016/j.compbiomed.2020.104172_bib1) 2013; 1
Kim (10.1016/j.compbiomed.2020.104172_bib4) 2016; 2016
Maddah (10.1016/j.compbiomed.2020.104172_bib28) 2014; 19
El Hokayem (10.1016/j.compbiomed.2020.104172_bib3) 2016; 6
Elanzew (10.1016/j.compbiomed.2020.104172_bib6) 2020; 8
Doulgkeroglou (10.1016/j.compbiomed.2020.104172_bib30) 2020; 8
Sadanandan (10.1016/j.compbiomed.2020.104172_bib42) 2017; 7
Bharathan (10.1016/j.compbiomed.2020.104172_bib21) 2017; 6
Thomson (10.1016/j.compbiomed.2020.104172_bib19) 1998; 282
Wolf (10.1016/j.compbiomed.2020.104172_bib33) 2004; 5367
Marx (10.1016/j.compbiomed.2020.104172_bib34) 2013; 5
Wakao (10.1016/j.compbiomed.2020.104172_bib14) 2012; 7
Ronneberger (10.1016/j.compbiomed.2020.104172_bib31) 2015
Takahashi (10.1016/j.compbiomed.2020.104172_bib5) 2007; 131
Fan (10.1016/j.compbiomed.2020.104172_bib36) 2017; 7
Gil (10.1016/j.compbiomed.2020.104172_bib12) 2011; 17
10.1016/j.compbiomed.2020.104172_bib38
Thomson (10.1016/j.compbiomed.2020.104172_bib18) 1995; 92
Falk (10.1016/j.compbiomed.2020.104172_bib37) 2019; 16
Jaccard (10.1016/j.compbiomed.2020.104172_bib11) 2013; 111
Schenk (10.1016/j.compbiomed.2020.104172_bib10) 2015; 82
Zhou (10.1016/j.compbiomed.2020.104172_bib39) 2018
Watanabe (10.1016/j.compbiomed.2020.104172_bib22) 2007; 25
Jung (10.1016/j.compbiomed.2020.104172_bib9) 2018; vol. 72
Ulman (10.1016/j.compbiomed.2020.104172_bib35) 2017; 14
Tokunaga (10.1016/j.compbiomed.2020.104172_bib27) 2014; 4
Itskovitz-Eldor (10.1016/j.compbiomed.2020.104172_bib15) 2012
Emre (10.1016/j.compbiomed.2020.104172_bib29) 2010; 5
References_xml – reference: X. Li et al. “H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes”. In: IEEE Trans. Med. Imag. 37.12 (Dec.), pp. 2663–2674. issn: 0278-0062.
– volume: 4
  year: 2017
  ident: bib20
  article-title: Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells
  publication-title: Journal of Medical Imaging
– volume: 10
  year: 2015
  ident: bib26
  article-title: Generation of iPSCs as a pooled culture using magnetic activated cell sorting of newly reprogrammed cells
  publication-title: PloS One
– volume: 14
  start-page: 1141
  year: Oct. 2017
  ident: bib35
  article-title: An objective comparison of cell-tracking algorithms
  publication-title: Nat. Methods
– reference: L. Chen et al. “DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 40.4 (1 Ap), pp. 834–848. issn: 0162-8828.
– volume: 108
  start-page: 84
  year: 2016
  end-page: 97
  ident: bib8
  article-title: Patient-specific hiPSC bioprocessing for drug screening: bioprocess economics and optimisation
  publication-title: Biochem. Eng. J.
– volume: 82
  start-page: 309
  year: 2015
  ident: bib10
  article-title: Metrology-based quality and process control in automated stem cell production
  publication-title: TM - Tech. Mess.
– volume: 5
  start-page: 301
  year: Dec. 2009
  end-page: 314
  ident: bib13
  article-title: Consensus guidance for banking and supply of human embryonic stem cell lines for Research purposes
  publication-title: Stem Cell Reviews and Reports
– volume: 282
  start-page: 1145
  year: 1998
  end-page: 1147
  ident: bib19
  article-title: Embryonic stem cell lines derived from human blastocysts
  publication-title: Science
– start-page: 6230
  year: 2017
  end-page: 6239
  ident: bib41
  article-title: Pyramid scene parsing network
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 8
  start-page: 1155
  year: 2020
  ident: bib6
  article-title: The StemCell-factory: a modular system integration for automated generation and expansion of human induced pluripotent stem cells
  publication-title: Frontiers in Bioengineering and Biotechnology
– volume: 1
  start-page: 5
  year: 2013
  end-page: 17
  ident: bib1
  article-title: From stealing fire to cellular reprogramming: a scientific history leading to the 2012 Nobel Prize
  publication-title: Stem Cell Reports
– volume: 7
  start-page: 13496
  year: Oct. 2017
  ident: bib36
  article-title: A machine learning assisted, label-free, non-invasive approach for somatic reprogramming in induced pluripotent stem cell colony formation detection and prediction
  publication-title: Sci. Rep.
– year: 2008
  ident: bib16
  publication-title: Fundamental Techniques in Cell Culture
– start-page: 3
  year: 2018
  end-page: 11
  ident: bib39
  article-title: UNet++: a nested U-net architecture for medical image segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 2016
  year: 2016
  ident: bib4
  article-title: The generation of human induced pluripotent stem cells from blood cells: an efficient protocol using serial plating of reprogrammed cells by centrifugation
  publication-title: Stem Cell. Int.
– year: 2015
  ident: bib32
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: ArXiv e-prints
– volume: 8
  start-page: 9
  year: 2015
  ident: bib2
  article-title: Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration
  publication-title: Fibrogenesis Tissue Repair
– volume: 6
  start-page: 275
  year: 2016
  ident: bib3
  article-title: Blood derived induced pluripotent stem cells (iPSCs): benefits, challenges and the road ahead
  publication-title: J. Alzheimer’s Dis. Park.
– volume: 366
  start-page: 2323
  year: 2011
  end-page: 2328
  ident: bib7
  article-title: The business of exploiting induced pluripotent stem cells
  publication-title: Phil. Trans. Biol. Sci.
– volume: 9
  start-page: 697
  year: 2017
  end-page: 709
  ident: bib25
  article-title: Pluri-IQ: quantification of embryonic stem cell pluripotency through an image-based analysis software
  publication-title: Stem Cell Reports
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib31
  article-title: U-net: convolutional networks for biomedical image segmentation”
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
– volume: 7
  year: 2017
  ident: bib42
  article-title: Automated training of deep convolutional neural networks for cell segmentation
  publication-title: Sci. Rep.
– volume: 4
  start-page: 6996
  year: 2014
  ident: bib27
  article-title: Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells
  publication-title: Sci. Rep.
– volume: 92
  start-page: 7844
  year: 1995
  end-page: 7848
  ident: bib18
  article-title: Isolation of a primate embryonic stem cell line
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 8
  start-page: 811
  year: 2020
  ident: bib30
  article-title: Automation, monitoring, and standardization of cell product manufacturing
  publication-title: Frontiers in Bioengineering and Biotechnology
– volume: 5
  start-page: 2
  year: Jan. 2013
  end-page: 6
  ident: bib34
  article-title: Automatic production of induced pluripotent stem cells
  publication-title: Procedia CIRP
– volume: 7
  start-page: 1
  year: Dec. 2012
  end-page: 9
  ident: bib14
  article-title: Morphologic and gene expression criteria for identifying human induced pluripotent stem cells
  publication-title: PloS One
– volume: 16
  start-page: 67
  year: Jan. 2019
  end-page: 70
  ident: bib37
  article-title: U-Net: deep learning for cell counting, detection, and morphometry”
  publication-title: Nat. Methods
– volume: 5
  start-page: 1
  year: Aug. 2010
  end-page: 10
  ident: bib29
  article-title: The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers
  publication-title: PloS One
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  ident: bib5
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
– volume: vol. 72
  start-page: 1245
  year: 2018
  end-page: 1250
  ident: bib9
  article-title: Highly modular and generic control software for adaptive cell processing on automated production platforms
  publication-title: 51st CIRP Conference on Manufacturing Systems
– volume: 17
  start-page: 915
  year: 2011
  end-page: 922
  ident: bib12
  article-title: A method for quick, low-cost automated confluency measurements
  publication-title: Microsc. Microanal.
– volume: 19
  start-page: 454
  year: 2014
  end-page: 460
  ident: bib28
  article-title: A system for automated, noninvasive, morphology-based evaluation of induced pluripotent stem cell cultures
  publication-title: J. Lab. Autom.
– volume: 6
  start-page: 100
  year: 2017
  end-page: 108
  ident: bib21
  article-title: Systematic evaluation of markers used for the identification of human induced pluripotent stem cells
  publication-title: Biology Open
– volume: 5367
  start-page: 12
  year: 2004
  ident: bib33
  article-title: The medical imaging interaction toolkit (MITK): a toolkit facilitating the creation of interactive software by extending VTK and ITK
  publication-title: Med. Imaging
– volume: 111
  start-page: 504
  year: 2013
  end-page: 517
  ident: bib11
  article-title: Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images
  publication-title: Biotechnol. Bioeng.
– volume: 6
  start-page: 34038
  year: 2016
  ident: bib24
  article-title: High-speed microscopy of continuously moving cell culture vessels
  publication-title: Sci. Rep.
– year: 2013
  ident: bib17
  article-title: Autoimmunity. From Bench to Bedside
– volume: 6
  start-page: 86
  year: Mar. 2010
  end-page: 95
  ident: bib23
  article-title: Effect of ROCK inhibitor Y-27632 on normal and variant human embryonic stem cells (hESCs) in vitro: its benefits in hESC expansion
  publication-title: Stem Cell Reviews and Reports
– year: 2012
  ident: bib15
  article-title: Atlas of human pluripotent stem cells – derivation and culturing
  publication-title: Morphology of Human Embryonic and Induced Pluripotent Stem Cell Colonies Cultured with Feeders
– volume: 25
  start-page: 681
  year: May 2007
  ident: bib22
  article-title: A ROCK inhibitor permits survival of dissociated human embryonic stem cells
  publication-title: Nat. Biotechnol.
– year: 2012
  ident: 10.1016/j.compbiomed.2020.104172_bib15
  article-title: Atlas of human pluripotent stem cells – derivation and culturing
– volume: 17
  start-page: 915
  issue: 6
  year: 2011
  ident: 10.1016/j.compbiomed.2020.104172_bib12
  article-title: A method for quick, low-cost automated confluency measurements
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927611012153
– year: 2013
  ident: 10.1016/j.compbiomed.2020.104172_bib17
– volume: 6
  start-page: 34038
  year: 2016
  ident: 10.1016/j.compbiomed.2020.104172_bib24
  article-title: High-speed microscopy of continuously moving cell culture vessels
  publication-title: Sci. Rep.
  doi: 10.1038/srep34038
– volume: 8
  start-page: 811
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104172_bib30
  article-title: Automation, monitoring, and standardization of cell product manufacturing
  publication-title: Frontiers in Bioengineering and Biotechnology
  doi: 10.3389/fbioe.2020.00811
– volume: vol. 72
  start-page: 1245
  year: 2018
  ident: 10.1016/j.compbiomed.2020.104172_bib9
  article-title: Highly modular and generic control software for adaptive cell processing on automated production platforms
– start-page: 6230
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104172_bib41
  article-title: Pyramid scene parsing network
– volume: 8
  start-page: 1155
  year: 2020
  ident: 10.1016/j.compbiomed.2020.104172_bib6
  article-title: The StemCell-factory: a modular system integration for automated generation and expansion of human induced pluripotent stem cells
  publication-title: Frontiers in Bioengineering and Biotechnology
  doi: 10.3389/fbioe.2020.580352
– volume: 7
  start-page: 1
  issue: 12
  year: 2012
  ident: 10.1016/j.compbiomed.2020.104172_bib14
  article-title: Morphologic and gene expression criteria for identifying human induced pluripotent stem cells
  publication-title: PloS One
  doi: 10.1371/journal.pone.0048677
– start-page: 3
  year: 2018
  ident: 10.1016/j.compbiomed.2020.104172_bib39
  article-title: UNet++: a nested U-net architecture for medical image segmentation
– volume: 108
  start-page: 84
  year: 2016
  ident: 10.1016/j.compbiomed.2020.104172_bib8
  article-title: Patient-specific hiPSC bioprocessing for drug screening: bioprocess economics and optimisation
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2015.09.024
– volume: 4
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104172_bib20
  article-title: Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells
  publication-title: Journal of Medical Imaging
  doi: 10.1117/1.JMI.4.4.044003
– volume: 2016
  year: 2016
  ident: 10.1016/j.compbiomed.2020.104172_bib4
  article-title: The generation of human induced pluripotent stem cells from blood cells: an efficient protocol using serial plating of reprogrammed cells by centrifugation
  publication-title: Stem Cell. Int.
– volume: 25
  start-page: 681
  year: 2007
  ident: 10.1016/j.compbiomed.2020.104172_bib22
  article-title: A ROCK inhibitor permits survival of dissociated human embryonic stem cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1310
– volume: 82
  start-page: 309
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104172_bib10
  article-title: Metrology-based quality and process control in automated stem cell production
  publication-title: TM - Tech. Mess.
  doi: 10.1515/teme-2015-0036
– volume: 1
  start-page: 5
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2020.104172_bib1
  article-title: From stealing fire to cellular reprogramming: a scientific history leading to the 2012 Nobel Prize
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2013.05.001
– volume: 14
  start-page: 1141
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104172_bib35
  article-title: An objective comparison of cell-tracking algorithms
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4473
– volume: 9
  start-page: 697
  issue: 2
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104172_bib25
  article-title: Pluri-IQ: quantification of embryonic stem cell pluripotency through an image-based analysis software
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2017.06.006
– volume: 366
  start-page: 2323
  issue: 1575
  year: 2011
  ident: 10.1016/j.compbiomed.2020.104172_bib7
  article-title: The business of exploiting induced pluripotent stem cells
  publication-title: Phil. Trans. Biol. Sci.
  doi: 10.1098/rstb.2011.0047
– volume: 4
  start-page: 6996
  year: 2014
  ident: 10.1016/j.compbiomed.2020.104172_bib27
  article-title: Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep06996
– volume: 5
  start-page: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2020.104172_bib34
  article-title: Automatic production of induced pluripotent stem cells
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2013.01.001
– ident: 10.1016/j.compbiomed.2020.104172_bib38
  doi: 10.1109/TMI.2018.2845918
– volume: 8
  start-page: 9
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104172_bib2
  article-title: Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration
  publication-title: Fibrogenesis Tissue Repair
  doi: 10.1186/s13069-015-0026-9
– year: 2008
  ident: 10.1016/j.compbiomed.2020.104172_bib16
– volume: 131
  start-page: 861
  issue: 5
  year: 2007
  ident: 10.1016/j.compbiomed.2020.104172_bib5
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 16
  start-page: 67
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104172_bib37
  article-title: U-Net: deep learning for cell counting, detection, and morphometry”
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0261-2
– volume: 10
  issue: 8
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104172_bib26
  article-title: Generation of iPSCs as a pooled culture using magnetic activated cell sorting of newly reprogrammed cells
  publication-title: PloS One
  doi: 10.1371/journal.pone.0134995
– volume: 5367
  start-page: 12
  year: 2004
  ident: 10.1016/j.compbiomed.2020.104172_bib33
  article-title: The medical imaging interaction toolkit (MITK): a toolkit facilitating the creation of interactive software by extending VTK and ITK
  publication-title: Med. Imaging
– volume: 6
  start-page: 100
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104172_bib21
  article-title: Systematic evaluation of markers used for the identification of human induced pluripotent stem cells
  publication-title: Biology Open
  doi: 10.1242/bio.022111
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104172_bib31
  article-title: U-net: convolutional networks for biomedical image segmentation”
– year: 2015
  ident: 10.1016/j.compbiomed.2020.104172_bib32
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: ArXiv e-prints
– volume: 6
  start-page: 275
  issue: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2020.104172_bib3
  article-title: Blood derived induced pluripotent stem cells (iPSCs): benefits, challenges and the road ahead
  publication-title: J. Alzheimer’s Dis. Park.
– volume: 92
  start-page: 7844
  issue: 17
  year: 1995
  ident: 10.1016/j.compbiomed.2020.104172_bib18
  article-title: Isolation of a primate embryonic stem cell line
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.92.17.7844
– volume: 19
  start-page: 454
  issue: 5
  year: 2014
  ident: 10.1016/j.compbiomed.2020.104172_bib28
  article-title: A system for automated, noninvasive, morphology-based evaluation of induced pluripotent stem cell cultures
  publication-title: J. Lab. Autom.
  doi: 10.1177/2211068214537258
– ident: 10.1016/j.compbiomed.2020.104172_bib40
  doi: 10.1109/TPAMI.2017.2699184
– volume: 5
  start-page: 301
  issue: 4
  year: 2009
  ident: 10.1016/j.compbiomed.2020.104172_bib13
  article-title: Consensus guidance for banking and supply of human embryonic stem cell lines for Research purposes
  publication-title: Stem Cell Reviews and Reports
  doi: 10.1007/s12015-009-9085-x
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104172_bib42
  article-title: Automated training of deep convolutional neural networks for cell segmentation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07599-6
– volume: 282
  start-page: 1145
  issue: 5391
  year: 1998
  ident: 10.1016/j.compbiomed.2020.104172_bib19
  article-title: Embryonic stem cell lines derived from human blastocysts
  publication-title: Science
  doi: 10.1126/science.282.5391.1145
– volume: 7
  start-page: 13496
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104172_bib36
  article-title: A machine learning assisted, label-free, non-invasive approach for somatic reprogramming in induced pluripotent stem cell colony formation detection and prediction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13680-x
– volume: 111
  start-page: 504
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2020.104172_bib11
  article-title: Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25115
– volume: 6
  start-page: 86
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2020.104172_bib23
  article-title: Effect of ROCK inhibitor Y-27632 on normal and variant human embryonic stem cells (hESCs) in vitro: its benefits in hESC expansion
  publication-title: Stem Cell Reviews and Reports
  doi: 10.1007/s12015-009-9107-8
– volume: 5
  start-page: 1
  issue: 8
  year: 2010
  ident: 10.1016/j.compbiomed.2020.104172_bib29
  article-title: The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers
  publication-title: PloS One
  doi: 10.1371/journal.pone.0012148
SSID ssj0004030
Score 2.4364514
Snippet Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for...
AbstractHuman induced pluripotent stem cells (hiPSCs) are capable of differentiating into a variety of human tissue cells. They offer new opportunities for...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104172
SubjectTerms Algorithms
Automated cell culture
Automatic control
Automation
Cell analysis
Cell culture
Cell differentiation
Center of gravity
Clinical decision making
Colonies
Cultivation
Decision making
Deep learning
Drug screening
Human induced pluripotent stemcells(hiPSC)
Human tissues
Image analysis
Image processing
Image segmentation
Inclusions
Internal Medicine
Mathematical models
Microscopy
Morphology
Multi class segmentation
Other
Parameters
Phase contrast
Pluripotency
Precision medicine
Roundness
Routine parameter calculation
Stem cells
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9UwDI6mHQYc0PjdMVCQOBKWJmnTihMaTBPSODFptyht0umht7ZaW9Auu--_xm7TDjSQnsS1r277bPeL3Xy2CXnrnfLcWs2KjDum0ipnWSE5Kyotc6cBD8eZkSdf0-NT9eUsOdsih3MtDNIqA_ZPmD6idThyELR50K5WWOMLqQQkOAJ9lkssNFdwafDp99e3NA_F5VSGAniDZwc2z8TxQtr2VOYOmaIYNzxjLf61RN0NQR-Qe0Pd2qufdr3-bVk62iUPQzxJP06P_Ihs-fox2TkJO-ZPyM0n71sWZkOcM1y0HB1ZhKzEwJl2_vwi1B_VFCJYaoe-gTDWu3e0bmq2qn9YpLjTywZ8tPbULr08aVPRccYfbdcDgE_T40HsDE1xP4BOXT08xaKloXtKTo8-fzs8ZmH8AitTyXvASZXH0kK8gIxDpZKi4KJK8yJJUpdYL_LMqcSmpeaV1UXlY5wuhp0_tXSFT-Qzsg3P6V8QCjkdXEYqZyE7U85nFSSWZeYA4qoMYtCI6Fnjpgy9yXFExtrMJLTv5tZWBm1lJltFJF4k26k_xwYy-WxUM9efAmIaWEQ2kNV_k_VdePU7E5tOGG7uuGdEPiySf3j4hvfdn73PLLcSSuc4_1OAAt8sPwM-oJFt7ZthPEcq_PavIvJ88tpFURIL7gDkIyIWN95Yi3v_9X9ekvsC2UEj_32fbPeXg38F4V1fvB7f3188b07t
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VrcTlgftloSAj8Ygrb-zcxFMFVBVSKxCsVJ4sO3YqYElWTQKCP-CvmUmccEcLr7s7SXY8OT7WnJkBeOCd8sKYlNtMOK6SMueZlYLbMpW5SxEP-5mRh0fJwVI9O46Pt0CMtTA_5O97HRZJq4dSdDzNRX1SEjfdM7CdxMi-Z7C9PHq-93oAXMFV1s9ZpRnaHONLBfHO3y71px3pV8Z5Ac511dp8-mhWq-92of1L8GJ8_kF88m63a-1u8fmn1o7_8gcvw8VASdneEENXYMtXV-HsYUi6X4MvT7xf8zBe4oTTvudYL0TkBXFv1viT96GEqWJIgpnp2hqZsHcPWVVX_E31wZBKnp3WGOaVZ2ZqB8rqkvVjAtl61SF-1S19SM2lGaUU2NAYxDOqe-qa67Dcf_rq8QEPExx4kUjRItSqfCENUg4SLSoVWyuiMsltHCcuNj7KM6dikxSpKE1qS7-gAWXUPDSVzvpY3oAZPqe_BQyPhXgZqZzBA55yPivxbFpkDlGyzJDGziEdV1EXob05TdlY6VHH9lZ_87QmT-vB03NYTJbrocXHBjb5GCh6LGFF0NW4uhvYpr-z9U1Aj0YvdBNpoV_2zZMwoCNCZSHjOTyaLANBGojPhvfdGSNaT7eKVJrTCNEIHXh_-hohhhbZVL7u-t9IRekDNYebw5swOUpSzR7uE3OIpldjYy_e_h-jO3A-Il1Rr5zfgVl72vm7SAxbey9gwVfPs17p
  priority: 102
  providerName: Unpaywall
Title Deep-learning-based multi-class segmentation for automated, non-invasive routine assessment of human pluripotent stem cell culture status
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520305035
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482520305035
https://dx.doi.org/10.1016/j.compbiomed.2020.104172
https://www.ncbi.nlm.nih.gov/pubmed/33352307
https://www.proquest.com/docview/2479989829
https://www.proquest.com/docview/2473405234
https://doi.org/10.1016/j.compbiomed.2020.104172
UnpaywallVersion publishedVersion
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9NAFD7stuDlQbwbXcsIPhpNMpNMgohU3VqVLYtaqE_DJDNZdqlJ3TaKL777rz0ntwpe6EsCbaYJc06--abn8gE8tEZYT2vpprFnXBHliRun3HPTXPLESMTDWjPyaBZN5-LtIlzswayrhaG0yg4Ta6A2ZUb_kT8JhExI6zBInq--uKQaRdHVTkJDt9IK5lndYmwfhgF1xhrA8MXh7Pj9tlLS401RCqKPwM1Rm9vTZHxREndT9I77xqAOf_oy-NeC9SchvQwXq2Klv3_Ty-Vvi9TkKlxp2SUbN-5wDfZscR0uHLXx8xvw85W1K7dVijhxaQkzrM4pdDOi0WxtTz631UgFQz7LdLUpkdRa84gVZeGeFl81Jbyz8xI9trBM9509WZmzWvGPrZYVQlG5oQ-pTzSj6ABrenxYRiVM1fomzCeHH19O3VaMwc0i7m0QNUXic43sgfIPhQjT1AvyKEnDMDKhtkESGxHqKJNermWaW5-0xqgPqOQmtSG_BQN8TnsHGNoRf4YLo3GvJoyNc9xmZrFBwMtjZKQOyG7GVdZ2KifBjKXqUtLO1NZWimylGls54PcjV023jh3GJJ1RVVeNivipcEnZYaz821i7boFgrXy1DpSnPtR9kNDhAgJYj4cOPO1Htlyn4TA73veg8z7V32r7hjjwoP8a0YKMrAtbVvU1XFAkQDhwu_HafqI4ld8h5DsQ9G688yze_f8T3YNLASUD1enuBzDYnFf2PrK5TTqC_cc_fDzKhcRjPHk9guH4zbvpbNS-vHiez47Hn34BN3BQoA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELWqVqLwgLgTKGAkeMMisZ2bUIWAttrS7gpBK_XNdWKnotomS7Oh6ifwU3wbM4mTReKifelrNrOJPOMzM_HMHEJeWCOtr3XMssQ3TEZFypJM-CwrYpGaGPCw5YwcT6LRofx4FB6tkJ99LwyWVfaY2AK1qXL8Rv6ayzhFrkOevp19Y8gahaerPYWGdtQKZrMdMeYaO_bs5QWkcPXm7hbo-yXnO9sHH0bMsQywPBL-HOBApoHQ4BaxsE7KMMt8XkRpFoaRCbXlaWJkqKM89gsdZ4UNkEQLB1zGwmQWWSPABaxJIVNI_tbeb08-fV50Zvqia4IBtJOQjLlaoq7CDIvGuyZ7yFN5e9waxPxfDvLPAPgGWW_Kmb680NPpb05x5xa56aJZ-q4zv9tkxZZ3yLWxO6-_S35sWTtjjpnihKHLNLStYWQ5hu20tidnrvuppBA_U93MKwiirXlFy6pkX8vvGgvs6XkFO6S0VA-TRGlV0JZhkM6mDUBfNceLOJea4mkE7WaKWIotU019jxxeiVruk1V4T_uQULAb-BshjYbcUBqbFJDW5okBgC0SiIA9EvcrrnI3GR0JOqaqL4E7VQtdKdSV6nTlkWCQnHXTQZaQSXulqr77FfBagQtbQjb-m6ytHfDUKlA1V7760s5dAoPjCOi-CD3yZpB0sVUXMy353I3e-tTwqMWO9Mjz4WdAJ1SyLm3VtPcIiScP0iMPOqsdFkpgux-4GI_wwYyXXsVH_3-jZ2R9dDDeV_u7k73H5DrHQqS21H6DrM7PG_sEIsl59tRtV0qOrxohfgGqvoZP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELWqIhV4QFxLoICR4A2rie3EiRBCiGXVUlohQaV9M07sVKAlCU1C1U_gl_g6ZnJbJC7al75mM5vIMz4zzpyZIeSJs9L5xiiWxr5lMsoTFqfCZ2muRGIV4GE3M_LwKNo7lm8X4WKD_BxrYZBWOWJiB9S2zPAb-S6XKsFZhzzZzQdaxPvZ_GX1jeEEKcy0juM0ehM5cOdncHyrX-zPQNdPOZ-_-fh6jw0TBlgWCb8BKJBJIAy4RCTVSRmmqc_zKEnDMLKhcTyJrQxNlCk_NyrNXYADtLC5pRI2dTgxAuD_khIiQTqhWqhVTaYv-vIXwDkJx7CBRdRzy5Au3pfXwwmVd4nWQPF_ucY_Q9-r5HJbVOb8zCyXv7nD-XVybYhj6ave8G6QDVfcJFuHQ6b-Fvkxc65iw0yKE4bO0tKOvcgyDNhp7U6-DnVPBYXImZq2KSF8dvYZLcqCfS6-G6TW09MS9kbhqJl6iNIyp91sQVotWwC9ssGL2JGaYh6C9t1EHMViqba-TY4vRCl3yCa8p7tLKFgM_I2Q1sCpUFoX53CgzWIL0JrHEPt6RI0rrrOhJzqO5ljqkfz2Ra90pVFXuteVR4JJsur7gqwhk4xK1WPdKyC1Bue1hqz6m6yrB8ipdaBrrn39oeu4BAbHEcp9EXrk-SQ5RFV9tLTmc3dG69PTo1Z70SOPp58Bl1DJpnBl290jJOYcpEe2e6udFkpgoR84F4_wyYzXXsV7_3-jR2QLcEG_2z86uE-ucGQgdRz7HbLZnLbuAYSQTfqw26uUfLpocPgF-iaD6Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VrcTlgftloSAj8Ygrb-zcxFMFVBVSKxCsVJ4sO3YqYElWTQKCP-CvmUmccEcLr7s7SXY8OT7WnJkBeOCd8sKYlNtMOK6SMueZlYLbMpW5SxEP-5mRh0fJwVI9O46Pt0CMtTA_5O97HRZJq4dSdDzNRX1SEjfdM7CdxMi-Z7C9PHq-93oAXMFV1s9ZpRnaHONLBfHO3y71px3pV8Z5Ac511dp8-mhWq-92of1L8GJ8_kF88m63a-1u8fmn1o7_8gcvw8VASdneEENXYMtXV-HsYUi6X4MvT7xf8zBe4oTTvudYL0TkBXFv1viT96GEqWJIgpnp2hqZsHcPWVVX_E31wZBKnp3WGOaVZ2ZqB8rqkvVjAtl61SF-1S19SM2lGaUU2NAYxDOqe-qa67Dcf_rq8QEPExx4kUjRItSqfCENUg4SLSoVWyuiMsltHCcuNj7KM6dikxSpKE1qS7-gAWXUPDSVzvpY3oAZPqe_BQyPhXgZqZzBA55yPivxbFpkDlGyzJDGziEdV1EXob05TdlY6VHH9lZ_87QmT-vB03NYTJbrocXHBjb5GCh6LGFF0NW4uhvYpr-z9U1Aj0YvdBNpoV_2zZMwoCNCZSHjOTyaLANBGojPhvfdGSNaT7eKVJrTCNEIHXh_-hohhhbZVL7u-t9IRekDNYebw5swOUpSzR7uE3OIpldjYy_e_h-jO3A-Il1Rr5zfgVl72vm7SAxbey9gwVfPs17p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-based+multi-class+segmentation+for+automated%2C+non-invasive+routine+assessment+of+human+pluripotent+stem+cell+culture+status&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Piotrowski%2C+Tobias&rft.au=Rippel%2C+Oliver&rft.au=Elanzew%2C+Andreas&rft.au=Nie%C3%9Fing%2C+Bastian&rft.date=2021-02-01&rft.issn=0010-4825&rft.volume=129&rft.spage=104172&rft.epage=104172&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.104172&rft.externalDBID=ECK1-s2.0-S0010482520305035&rft.externalDocID=1_s2_0_S0010482520305035
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482520X00138%2Fcov150h.gif