Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus
The authors find that optogenetic stimulation of melanin-concentrating hormone (MCH)-expressing neurons in the lateral hypothalamus selectively extends the duration of paradoxical sleep episodes in mice. Activation of MCH fibers in the tuberomammillary nucleus leads to the release of GABA and a simi...
Saved in:
Published in | Nature neuroscience Vol. 16; no. 11; pp. 1637 - 1643 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.11.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1097-6256 1546-1726 1546-1726 |
DOI | 10.1038/nn.3522 |
Cover
Abstract | The authors find that optogenetic stimulation of melanin-concentrating hormone (MCH)-expressing neurons in the lateral hypothalamus selectively extends the duration of paradoxical sleep episodes in mice. Activation of MCH fibers in the tuberomammillary nucleus leads to the release of GABA and a similar increase in paradoxical sleep stability.
Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, but their effects on REM sleep remain unclear. Using optogenetic tools in newly generated Tg(
Pmch
-
cre
) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM, sleep episodes. In contrast, their acute silencing (eNpHR3.0, archaerhodopsin) reduced the frequency and amplitude of hippocampal theta rhythm without affecting REM sleep duration.
In vitro
activation of MCH neuron terminals induced GABA
A
-mediated inhibitory postsynaptic currents in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), and
in vivo
activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain. |
---|---|
AbstractList | Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, but their effects on REM sleep remain unclear. Using optogenetic tools in newly generated Tg(Pmch-cre) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM, sleep episodes. In contrast, their acute silencing (eNpHR3.0, archaerhodopsin) reduced the frequency and amplitude of hippocampal theta rhythm without affecting REM sleep duration. In vitro activation of MCH neuron terminals induced GABAA-mediated inhibitory postsynaptic currents in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), and in vivo activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain.Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, but their effects on REM sleep remain unclear. Using optogenetic tools in newly generated Tg(Pmch-cre) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM, sleep episodes. In contrast, their acute silencing (eNpHR3.0, archaerhodopsin) reduced the frequency and amplitude of hippocampal theta rhythm without affecting REM sleep duration. In vitro activation of MCH neuron terminals induced GABAA-mediated inhibitory postsynaptic currents in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), and in vivo activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain. The authors find that optogenetic stimulation of melanin-concentrating hormone (MCH)-expressing neurons in the lateral hypothalamus selectively extends the duration of paradoxical sleep episodes in mice. Activation of MCH fibers in the tuberomammillary nucleus leads to the release of GABA and a similar increase in paradoxical sleep stability. Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, but their effects on REM sleep remain unclear. Using optogenetic tools in newly generated Tg( Pmch - cre ) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM, sleep episodes. In contrast, their acute silencing (eNpHR3.0, archaerhodopsin) reduced the frequency and amplitude of hippocampal theta rhythm without affecting REM sleep duration. In vitro activation of MCH neuron terminals induced GABA A -mediated inhibitory postsynaptic currents in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), and in vivo activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain. Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, but their effects on REM sleep remain unclear. Using optogenetic tools in newly generated Tg(Pmch-cre) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM, sleep episodes. In contrast, their acute silencing (eNpHR3.0, archaerhodopsin) reduced the frequency and amplitude of hippocampal theta rhythm without affecting REM sleep duration. In vitro activation of MCH neuron terminals induced [GABA.sub.A]-mediated inhibitory postsynaptic currents in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), and in vivo activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain. Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, but their effects on REM sleep remain unclear. Using optogenetic tools in newly generated Tg(Pmch-cre) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM, sleep episodes. In contrast, their acute silencing (eNpHR3.0, archaerhodopsin) reduced the frequency and amplitude of hippocampal theta rhythm without affecting REM sleep duration. In vitro activation of MCH neuron terminals induced GABAA-mediated inhibitory postsynaptic currents in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), and in vivo activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain. Rapid-Eye Movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus (LH). LH melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, however, their action on REM sleep remains unclear. Using optogenetic tools in newly-generated Tg( Pmch - Cre ) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM sleep episode. In contrast, their acute silencing (eNpHR3.0, ArchT) reduced the frequency and amplitude of hippocampal theta rhythm, without affecting REM sleep duration. In vitro activation of MCH neuron terminals induced GABA A -mediated inhibitory post-synaptic currents (IPSCs) in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), while in vivo activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain. |
Audience | Academic |
Author | Jego, Sonia Friedman, Jeffrey Adamantidis, Antoine R Herrera, Carolina Gutierrez Glasgow, Stephen D Burdakov, Denis Ekstrand, Mats Boyce, Richard Reed, Sean J |
AuthorAffiliation | 1 Douglas Institute, Department of Psychiatry, McGill University, Montreal 2 Rockefeller University, New York, USA 3 MRC National Institute for Medical Research and King’s College London, London, United Kingdom |
AuthorAffiliation_xml | – name: 2 Rockefeller University, New York, USA – name: 3 MRC National Institute for Medical Research and King’s College London, London, United Kingdom – name: 1 Douglas Institute, Department of Psychiatry, McGill University, Montreal |
Author_xml | – sequence: 1 givenname: Sonia surname: Jego fullname: Jego, Sonia organization: Department of Psychiatry, Douglas Institute, McGill University – sequence: 2 givenname: Stephen D surname: Glasgow fullname: Glasgow, Stephen D organization: Department of Psychiatry, Douglas Institute, McGill University – sequence: 3 givenname: Carolina Gutierrez surname: Herrera fullname: Herrera, Carolina Gutierrez organization: Department of Psychiatry, Douglas Institute, McGill University – sequence: 4 givenname: Mats surname: Ekstrand fullname: Ekstrand, Mats organization: Howard Hughes Medical Institute, Laboratory of Molecular Genetics, Rockefeller University – sequence: 5 givenname: Sean J surname: Reed fullname: Reed, Sean J organization: Department of Psychiatry, Douglas Institute, McGill University – sequence: 6 givenname: Richard surname: Boyce fullname: Boyce, Richard organization: Department of Psychiatry, Douglas Institute, McGill University – sequence: 7 givenname: Jeffrey surname: Friedman fullname: Friedman, Jeffrey organization: Howard Hughes Medical Institute, Laboratory of Molecular Genetics, Rockefeller University – sequence: 8 givenname: Denis surname: Burdakov fullname: Burdakov, Denis organization: MRC National Institute for Medical Research and King's College London – sequence: 9 givenname: Antoine R surname: Adamantidis fullname: Adamantidis, Antoine R email: antoine.adamantidis@mcgill.ca organization: Department of Psychiatry, Douglas Institute, McGill University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24056699$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0luL1DAYBuAiK-5B8R9IwQv1omPSJk1yIyyLh4WFBQ_XIU2-drK0SU3Sxfn3ZtxZ3RkF6UVPT14-Xr7T4sh5B0XxHKMVRg1_69yqoXX9qDjBlLQVZnV7lJ-RYFVb0_a4OI3xBiHEKBdPiuOaINq2QpwU8npOfgAHyerSGnDJ9larZL0rfV-qMqjZmhI2UE7-FqYMyjgCzPnVLKNKPmxKbYNebCqtK9MayvVm9mmtRjUt8WnxuFdjhGe7-1nx7cP7rxefqqvrj5cX51eVbhuUKga0x8YwoznSpkNMA1esBcqhQ3UPhkNjGIWeNr0g0HGBu453ugeOcNPx5qx4d5c7L90ERuc5gxrlHOykwkZ6ZeX-H2fXcvC3kghGENsGvN4FBP99gZjkZKOGcVQO_BIlppQIQlFL_k8JYRi1NRGZvjygN34JLjeRFRV1juPkjxrUCNK63ucR9TZUnjcUMYFFy7Ja_UPly8Bkdd6H3ubvewfe7B3IJsGPNKglRnn55fO-ffGwv9_F3W9KBtUd0MHHGKCX2qZfe5KnsKPESG43UTont5uY_asDfx_5t9zVGbNwA4QHHR3Qn45Y6v0 |
CODEN | NANEFN |
CitedBy_id | crossref_primary_10_1093_sleep_zsy068 crossref_primary_10_1016_j_sleep_2015_04_002 crossref_primary_10_1523_JNEUROSCI_0373_20_2020 crossref_primary_10_1523_JNEUROSCI_2179_17_2018 crossref_primary_10_1038_s41583_019_0223_4 crossref_primary_10_1523_JNEUROSCI_4187_14_2015 crossref_primary_10_1111_ene_12781 crossref_primary_10_1093_function_zqad059 crossref_primary_10_1038_nn_4209 crossref_primary_10_1016_j_peptides_2023_171080 crossref_primary_10_1371_journal_pcbi_1009316 crossref_primary_10_1523_ENEURO_0012_18_2018 crossref_primary_10_1016_j_neuron_2019_05_015 crossref_primary_10_1002_alz_12853 crossref_primary_10_1016_j_sleep_2015_12_007 crossref_primary_10_3389_fnmol_2017_00067 crossref_primary_10_1016_j_jsmc_2022_03_002 crossref_primary_10_1073_pnas_1902148116 crossref_primary_10_1016_j_conb_2017_04_008 crossref_primary_10_1016_j_neuron_2017_01_014 crossref_primary_10_1146_annurev_neuro_080317_061813 crossref_primary_10_1093_sleep_zsy051 crossref_primary_10_1016_j_brainres_2020_147125 crossref_primary_10_1134_S181971241702012X crossref_primary_10_7554_eLife_92095 crossref_primary_10_1038_s41386_022_01356_8 crossref_primary_10_1126_science_aan5544 crossref_primary_10_5665_sleep_5446 crossref_primary_10_1016_j_neuroscience_2016_08_046 crossref_primary_10_1172_jci_insight_137495 crossref_primary_10_1016_j_autneu_2019_01_007 crossref_primary_10_1017_S0033583523000033 crossref_primary_10_1371_journal_pone_0112849 crossref_primary_10_1002_ar_25143 crossref_primary_10_1111_jnc_14455 crossref_primary_10_1212_WNL_0000000000209829 crossref_primary_10_1016_j_neuroscience_2015_09_015 crossref_primary_10_1002_cne_25588 crossref_primary_10_1093_sleep_zsaa278 crossref_primary_10_1371_journal_pone_0130177 crossref_primary_10_3389_fphys_2017_00624 crossref_primary_10_1111_ejn_15412 crossref_primary_10_1002_hipo_22442 crossref_primary_10_1523_JNEUROSCI_1913_22_2023 crossref_primary_10_1146_annurev_pharmtox_010715_103801 crossref_primary_10_3390_ijms23094599 crossref_primary_10_3389_fpsyg_2020_01662 crossref_primary_10_1021_acschemneuro_1c00185 crossref_primary_10_1038_ncomms11395 crossref_primary_10_1016_j_cub_2021_01_019 crossref_primary_10_1080_23328940_2015_1075095 crossref_primary_10_1016_j_nbd_2018_08_012 crossref_primary_10_1093_sleep_zsaa268 crossref_primary_10_7554_eLife_92095_3 crossref_primary_10_1016_j_neuroscience_2019_03_020 crossref_primary_10_1016_j_cell_2014_12_026 crossref_primary_10_1038_nn_4220 crossref_primary_10_3389_fncir_2018_00117 crossref_primary_10_1007_s11910_023_01322_x crossref_primary_10_1016_j_nbscr_2016_03_001 crossref_primary_10_1016_j_jchemneu_2021_101997 crossref_primary_10_1016_j_celrep_2017_03_048 crossref_primary_10_1016_j_bbr_2015_10_051 crossref_primary_10_2174_1568026622666220627162032 crossref_primary_10_1016_j_neuron_2018_02_005 crossref_primary_10_1212_WNL_0000000000006537 crossref_primary_10_5665_sleep_3926 crossref_primary_10_3109_07420528_2015_1108980 crossref_primary_10_1038_s41421_022_00456_5 crossref_primary_10_1016_j_nbscr_2016_09_001 crossref_primary_10_7554_eLife_94088 crossref_primary_10_3389_fnsys_2014_00244 crossref_primary_10_3389_fnins_2023_1230428 crossref_primary_10_1016_j_conb_2017_03_018 crossref_primary_10_1016_j_smrv_2024_101907 crossref_primary_10_1177_1073858413518152 crossref_primary_10_1016_j_cub_2015_11_011 crossref_primary_10_1523_JNEUROSCI_0015_24_2024 crossref_primary_10_1038_nn_4091 crossref_primary_10_1523_JNEUROSCI_0682_24_2024 crossref_primary_10_1016_j_neuroscience_2016_09_048 crossref_primary_10_1177_0333102414541687 crossref_primary_10_1016_j_conb_2014_07_016 crossref_primary_10_1038_s41574_021_00559_1 crossref_primary_10_3389_fnins_2022_952275 crossref_primary_10_1007_s00429_018_1766_2 crossref_primary_10_1016_j_cell_2019_03_041 crossref_primary_10_1073_pnas_1412189111 crossref_primary_10_1126_science_adh8285 crossref_primary_10_1016_j_neuron_2021_12_033 crossref_primary_10_1016_j_neuroscience_2015_01_014 crossref_primary_10_1371_journal_pone_0091982 crossref_primary_10_1113_jphysiol_2013_268771 crossref_primary_10_1523_ENEURO_0013_17_2017 crossref_primary_10_1016_j_neuron_2019_03_033 crossref_primary_10_1523_JNEUROSCI_2338_16_2016 crossref_primary_10_1038_s41593_021_00984_5 crossref_primary_10_1093_pnasnexus_pgae275 crossref_primary_10_1016_j_biopsych_2022_06_006 crossref_primary_10_3389_fnins_2015_00475 crossref_primary_10_1111_jsr_13633 crossref_primary_10_12688_f1000research_9677_1 crossref_primary_10_3389_fneur_2021_664610 crossref_primary_10_1016_j_yfrne_2016_11_002 crossref_primary_10_3389_fnagi_2022_988166 crossref_primary_10_1016_j_cub_2016_07_054 crossref_primary_10_1007_s40501_017_0109_x crossref_primary_10_1016_j_molmet_2018_05_001 crossref_primary_10_1109_TNSRE_2015_2391282 crossref_primary_10_1016_j_peptides_2017_11_002 crossref_primary_10_1523_JNEUROSCI_1725_24_2024 crossref_primary_10_1016_j_conb_2017_03_020 crossref_primary_10_1007_s11910_020_01075_x crossref_primary_10_1016_j_conb_2017_03_021 crossref_primary_10_1016_j_ejphar_2015_06_037 crossref_primary_10_3389_fnana_2020_00060 crossref_primary_10_1523_ENEURO_0269_17_2017 crossref_primary_10_1016_j_smrv_2016_03_002 crossref_primary_10_1113_JP271946 crossref_primary_10_1016_j_physbeh_2020_112988 crossref_primary_10_1016_j_psc_2015_07_002 crossref_primary_10_1126_science_aax9238 crossref_primary_10_1016_j_mbs_2014_01_012 crossref_primary_10_1097_MS9_0000000000002414 crossref_primary_10_1016_j_tins_2017_03_005 crossref_primary_10_1111_jsr_14266 crossref_primary_10_1016_j_cub_2016_05_078 crossref_primary_10_1016_j_smrv_2021_101432 crossref_primary_10_3389_fnins_2021_644313 crossref_primary_10_1038_s41467_018_06590_7 crossref_primary_10_1007_s00429_016_1353_3 crossref_primary_10_1038_srep05838 crossref_primary_10_1371_journal_pbio_3000172 crossref_primary_10_3389_fncel_2018_00070 crossref_primary_10_1038_s41586_019_1336_7 crossref_primary_10_1016_j_physbeh_2020_112952 crossref_primary_10_1038_nature19773 crossref_primary_10_34133_research_0355 crossref_primary_10_15252_embr_201438993 crossref_primary_10_1016_j_yfrne_2023_101069 crossref_primary_10_1016_j_smrv_2019_101252 crossref_primary_10_1126_scitranslmed_adm7580 crossref_primary_10_1523_JNEUROSCI_3233_14_2014 crossref_primary_10_1016_j_jneumeth_2018_10_016 crossref_primary_10_1038_nrn_2017_56 crossref_primary_10_3389_fendo_2023_1202089 crossref_primary_10_1016_j_biopsych_2024_04_009 crossref_primary_10_1113_JP281241 crossref_primary_10_1111_jsr_14134 crossref_primary_10_1523_JNEUROSCI_2600_20_2021 crossref_primary_10_1016_j_smrv_2021_101541 crossref_primary_10_1093_biohorizons_hzu008 crossref_primary_10_1016_j_jchemneu_2014_08_001 crossref_primary_10_1016_j_smrv_2021_101546 crossref_primary_10_3390_ijms18081773 crossref_primary_10_1007_s12264_021_00674_z crossref_primary_10_1016_j_neubiorev_2014_08_001 crossref_primary_10_1016_j_cmet_2015_08_016 crossref_primary_10_1016_j_tins_2023_05_010 crossref_primary_10_1016_j_cub_2017_10_026 crossref_primary_10_1016_j_neuropharm_2018_07_004 crossref_primary_10_1146_annurev_neuro_062111_150447 crossref_primary_10_1016_j_cub_2022_05_029 crossref_primary_10_3389_fneur_2018_00790 crossref_primary_10_1016_j_sleep_2014_01_023 crossref_primary_10_1016_j_neures_2017_04_017 crossref_primary_10_2139_ssrn_3363761 crossref_primary_10_3389_fneur_2015_00032 crossref_primary_10_1113_JP271324 crossref_primary_10_1007_s40675_015_0013_0 crossref_primary_10_1002_adfm_201703523 crossref_primary_10_1523_ENEURO_0077_16_2016 crossref_primary_10_3389_fneur_2014_00165 crossref_primary_10_5665_sleep_3192 crossref_primary_10_1016_j_neuroscience_2014_06_043 crossref_primary_10_1016_j_physbeh_2020_113234 crossref_primary_10_5665_sleep_3194 crossref_primary_10_1038_s41593_018_0164_7 crossref_primary_10_3389_fnsys_2015_00009 crossref_primary_10_1016_j_celrep_2025_115277 crossref_primary_10_1124_mol_115_103192 crossref_primary_10_1523_JNEUROSCI_5269_14_2015 crossref_primary_10_1002_mds_27003 crossref_primary_10_3389_fncom_2016_00027 crossref_primary_10_1002_ana_24298 crossref_primary_10_1016_j_peptides_2023_171128 crossref_primary_10_1007_s00429_015_1117_5 crossref_primary_10_3389_fneur_2015_00123 crossref_primary_10_1073_pnas_2302809120 crossref_primary_10_1097_MCP_0000000000000103 crossref_primary_10_1371_journal_pone_0094481 crossref_primary_10_7717_peerj_17342 crossref_primary_10_1016_j_neuropharm_2020_107993 crossref_primary_10_1111_jsr_12976 crossref_primary_10_1152_japplphysiol_00725_2019 crossref_primary_10_1073_pnas_2007993117 crossref_primary_10_2199_jjsca_41_116 crossref_primary_10_1016_j_ibror_2018_05_001 crossref_primary_10_1016_j_cub_2019_05_009 crossref_primary_10_1016_j_pnpbp_2022_110703 crossref_primary_10_1038_s41386_019_0444_2 crossref_primary_10_1093_braincomms_fcad129 crossref_primary_10_1016_j_brainresbull_2022_05_002 crossref_primary_10_1016_j_neuron_2015_06_003 crossref_primary_10_1093_sleep_zsad024 crossref_primary_10_1016_j_jsmc_2018_03_002 crossref_primary_10_30773_pi_2018_03_17 crossref_primary_10_1038_nature22350 crossref_primary_10_1523_JNEUROSCI_5344_13_2014 crossref_primary_10_1007_s12035_016_0175_x crossref_primary_10_1038_nature14979 crossref_primary_10_1016_j_tins_2021_09_003 crossref_primary_10_1038_s41593_023_01325_4 crossref_primary_10_1038_s41467_020_19076_2 crossref_primary_10_1038_nn_4377 crossref_primary_10_1111_jne_13222 crossref_primary_10_1038_s41380_020_00921_1 crossref_primary_10_1111_ejn_13410 crossref_primary_10_1016_j_neures_2018_08_003 crossref_primary_10_3389_fnsys_2015_00066 crossref_primary_10_1038_nrdp_2016_100 crossref_primary_10_1523_JNEUROSCI_1942_17_2017 crossref_primary_10_1016_j_neures_2017_03_013 crossref_primary_10_1016_j_peptides_2021_170629 crossref_primary_10_1177_2514183X17726281 crossref_primary_10_1016_j_cophys_2020_04_003 crossref_primary_10_1093_sleep_zsad331 crossref_primary_10_1016_j_cophys_2020_04_001 crossref_primary_10_1016_j_neuropharm_2018_11_017 crossref_primary_10_1515_nf_2016_0049 crossref_primary_10_1038_s41380_018_0291_2 crossref_primary_10_1152_physiol_00013_2018 crossref_primary_10_1016_j_physbeh_2016_05_024 crossref_primary_10_1096_fj_201800713RR crossref_primary_10_1002_advs_202403245 crossref_primary_10_1007_s12640_021_00457_4 crossref_primary_10_3934_Neuroscience_2016_1_67 crossref_primary_10_1073_pnas_1921909117 crossref_primary_10_7554_eLife_94088_3 crossref_primary_10_1254_fpj_154_179 crossref_primary_10_1111_cns_14338 crossref_primary_10_5665_sleep_3188 crossref_primary_10_1093_sleep_zsy253 crossref_primary_10_5665_sleep_3186 crossref_primary_10_1186_s13062_023_00377_7 crossref_primary_10_1016_j_conb_2017_05_001 crossref_primary_10_3389_fneur_2015_00190 crossref_primary_10_1016_j_cub_2020_07_061 crossref_primary_10_1242_jcs_099994 crossref_primary_10_1016_j_peptides_2016_11_007 crossref_primary_10_1016_j_bbr_2017_01_024 crossref_primary_10_1038_s41467_019_10484_7 crossref_primary_10_1111_jsr_12269 crossref_primary_10_1371_journal_pone_0099961 crossref_primary_10_1016_j_brainres_2016_11_025 crossref_primary_10_1177_10738584211052263 crossref_primary_10_1523_ENEURO_0017_20_2020 crossref_primary_10_1002_cne_23642 crossref_primary_10_1111_apha_12360 crossref_primary_10_1016_j_brainres_2018_07_001 crossref_primary_10_1038_s41593_022_01236_w crossref_primary_10_1113_JP284845 crossref_primary_10_3389_fnsys_2014_00185 crossref_primary_10_1016_j_brainres_2014_12_032 crossref_primary_10_1016_j_peptides_2015_10_001 crossref_primary_10_1523_JNEUROSCI_1333_17_2017 crossref_primary_10_3389_fneur_2022_966659 crossref_primary_10_1038_s41386_019_0431_7 crossref_primary_10_1523_JNEUROSCI_2850_20_2021 crossref_primary_10_3390_biom13030511 crossref_primary_10_1007_s12264_015_1564_2 crossref_primary_10_1038_s41593_023_01398_1 crossref_primary_10_1523_JNEUROSCI_0311_19_2019 crossref_primary_10_1002_ptr_5617 crossref_primary_10_1038_s41380_024_02867_0 crossref_primary_10_1073_pnas_1506188112 crossref_primary_10_1186_s13041_016_0276_5 crossref_primary_10_3389_fpsyt_2022_847584 crossref_primary_10_3389_fnins_2021_639313 crossref_primary_10_7554_eLife_54275 crossref_primary_10_1515_nf_2016_A049 crossref_primary_10_1016_j_cophys_2020_03_007 crossref_primary_10_1016_j_cell_2024_08_046 crossref_primary_10_1523_JNEUROSCI_1374_24_2024 crossref_primary_10_1016_j_cub_2019_05_048 crossref_primary_10_1016_j_pneurobio_2016_09_003 crossref_primary_10_1093_sleep_zsad101 crossref_primary_10_1007_s00429_016_1281_2 crossref_primary_10_1016_j_neubiorev_2017_07_009 crossref_primary_10_17241_smr_2018_00178 |
Cites_doi | 10.1093/nar/gni035 10.1111/j.1460-9568.2005.04104.x 10.1186/1471-2202-4-19 10.1128/JVI.00254-08 10.1523/JNEUROSCI.1887-05.2005 10.1111/j.1460-9568.2005.04100.x 10.1016/j.smrv.2012.10.002 10.1038/nrn895 10.1523/JNEUROSCI.1225-13.2013 10.1038/nature05744 10.1523/JNEUROSCI.1885-12.2012 10.1111/j.1460-9568.2008.06129.x 10.1006/geno.2002.6771 10.1016/j.neuron.2012.09.014 10.1371/journal.pone.0004272 10.1126/science.1168878 10.1002/cne.21482 10.1523/JNEUROSCI.0706-12.2012 10.1073/pnas.0908200106 10.1002/cne.20891 10.1523/JNEUROSCI.21-08-02610.2001 10.1002/cne.1085 10.1152/jn.01052.2009 10.1038/nn.2247 10.1016/j.peptides.2013.03.015 10.1016/j.cell.2010.02.037 10.1038/nature06310 10.1523/JNEUROSCI.22-11-04568.2002 10.1038/nature04767 10.1523/JNEUROSCI.2341-06.2006 10.1016/j.brainres.2010.11.027 10.1371/journal.pone.0000299 10.1016/j.neuron.2005.04.035 10.1016/0006-8993(76)90480-7 10.1523/JNEUROSCI.1954-08.2008 10.1046/j.1460-9568.2003.02861.x 10.1016/j.neuron.2010.11.032 10.1126/science.1094539 10.1016/j.neuroscience.2008.08.048 10.1038/nn.2495 10.1126/science.1135627 10.1016/j.neuroscience.2008.05.035 10.1016/j.neuroscience.2012.07.072 10.1523/JNEUROSCI.01-08-00876.1981 10.1073/pnas.0811400106 10.1016/S0896-6273(04)00251-X 10.1002/cne.903190204 10.1002/cne.1191 10.1371/journal.pone.0011766 10.1523/JNEUROSCI.4925-04.2005 10.1002/cne.23273 10.1016/j.conb.2013.02.006 10.1016/j.jneumeth.2010.06.020 10.1038/nature08652 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2013 COPYRIGHT 2013 Nature Publishing Group Copyright Nature Publishing Group Nov 2013 |
Copyright_xml | – notice: Springer Nature America, Inc. 2013 – notice: COPYRIGHT 2013 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QG 7QP 7QR 7TK 7TM 7U7 7U9 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1038/nn.3522 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central - New (Subscription) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Central Basic Toxicology Abstracts ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central - New (Subscription) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1546-1726 |
EndPage | 1643 |
ExternalDocumentID | PMC4974078 3129200201 A350791967 24056699 10_1038_nn_3522 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom New York United States--US |
GeographicLocations_xml | – name: United Kingdom – name: New York – name: United States--US |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute – fundername: CIHR grantid: 115047-1 |
GroupedDBID | --- -DZ .55 .GJ 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 85S 88E 8AO 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABIVO ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACUHS ADBBV AENEX AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL EPS ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR IPY ISR ITC M1P M2M M7P MVM N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO PSYQQ Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M XJT YNT YQT ZGI ~8M AAYXX ABFSG AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT ACSTC ADXHL AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QP 7QR 7TK 7TM 7U7 7U9 7XB 8FD 8FE 8FH 8FK C1K FR3 H94 K9. LK8 P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c630t-7e5f1dd7dc80cdb07ce8a76e58eb02fed8e3d75ef53f94eb891bb8bcfe8013b83 |
IEDL.DBID | 7X7 |
ISSN | 1097-6256 1546-1726 |
IngestDate | Thu Aug 21 14:00:25 EDT 2025 Fri Sep 05 07:49:19 EDT 2025 Thu Sep 04 17:37:12 EDT 2025 Fri Jul 25 08:47:11 EDT 2025 Tue Jun 17 21:32:53 EDT 2025 Tue Jun 10 20:45:23 EDT 2025 Fri Jun 27 03:56:40 EDT 2025 Mon Jul 21 05:54:37 EDT 2025 Thu Apr 24 22:50:20 EDT 2025 Tue Jul 01 03:21:29 EDT 2025 Fri Feb 21 02:39:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | http://www.springer.com/tdm Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-7e5f1dd7dc80cdb07ce8a76e58eb02fed8e3d75ef53f94eb891bb8bcfe8013b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4974078 |
PMID | 24056699 |
PQID | 1459206484 |
PQPubID | 44706 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4974078 proquest_miscellaneous_1554945064 proquest_miscellaneous_1447106249 proquest_journals_1459206484 gale_infotracmisc_A350791967 gale_infotracacademiconefile_A350791967 gale_incontextgauss_ISR_A350791967 pubmed_primary_24056699 crossref_citationtrail_10_1038_nn_3522 crossref_primary_10_1038_nn_3522 springer_journals_10_1038_nn_3522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature neuroscience |
PublicationTitleAbbrev | Nat Neurosci |
PublicationTitleAlternate | Nat Neurosci |
PublicationYear | 2013 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Tan (CR38) 2002; 79 Mileykovskiy, Kiyashchenko, Siegel (CR46) 2005; 46 Lagos, Torterolo, Jantos, Monti (CR42) 2011; 1369 Pachoud (CR50) 2010; 104 Chee, Pissios, Maratos-Flier (CR44) 2013; 521 Adamantidis (CR23) 2008; 27 Saito, Cheng, Leslie, Civelli (CR43) 2001; 435 Verret (CR15) 2003; 4 van den Pol (CR41) 2012; 76 Lu (CR13) 2002; 22 Schöne (CR40) 2012; 32 Chow (CR34) 2010; 463 Boissard, Fort, Gervasoni, Barbagli, Luppi (CR9) 2003; 18 Willie, Sinton, Maratos-Flier, Yanagisawa (CR22) 2008; 156 Han, Boyden (CR33) 2007; 2 Lee, Hassani, Jones (CR45) 2005; 25 Franken, Chollet, Tafti (CR54) 2001; 21 Del Cid-Pellitero, Jones (CR36) 2012; 223 Konadhode (CR18) 2013; 33 Adamantidis (CR49) 2005; 21 Hanriot (CR20) 2007; 505 Hassani, Lee, Jones (CR21) 2009; 106 Gunaydin (CR26) 2010; 13 Sapin (CR8) 2009; 4 Lu, Sherman, Devor, Saper (CR11) 2006; 441 Fort (CR37) 2008; 155 Clément (CR14) 2012; 32 Gradinaru (CR32) 2010; 141 Zhang (CR31) 2007; 446 Jouvet (CR1) 1962; 100 McGinty, Harper (CR3) 1976; 101 Schöne (CR56) 2012; 32 Elias (CR35) 2001; 432 CR12 Verret, Fort, Gervasoni, Leger, Luppi (CR10) 2006; 495 Bittencourt (CR27) 1992; 319 McCarley, Hobson (CR5) 1975; 189 Saper, Fuller, Pedersen, Lu, Scammell (CR2) 2010; 68 Grimm (CR52) 2008; 82 Takahashi, Lin, Sakai (CR39) 2006; 26 Pace-Schott, Hobson (CR7) 2002; 3 Wu, Dumalska, Morozova, van den Pol, Alreja (CR48) 2009; 106 Modirrousta, Mainville, Jones (CR19) 2005; 21 Tsai (CR24) 2009; 324 Adamantidis, Zhang, Aravanis, Deisseroth, de Lecea (CR53) 2007; 450 Monti, Torterolo, Lagos (CR17) 2013; 17 Lu (CR47) 2013; 44 Hobson, McCarley, Wyzinski (CR6) 1975; 189 van den Pol, Acuna-Goycolea, Clark, Ghosh (CR28) 2004; 42 Atasoy, Aponte, Su, Sternson (CR25) 2008; 28 Warming, Costantino, Court, Jenkins, Copeland (CR51) 2005; 33 Aston-Jones, Bloom (CR4) 1981; 1 Burdakov, Gerasimenko, Verkhratsky (CR29) 2005; 25 Sapin (CR16) 2010; 5 Berndt, Yizhar, Gunaydin, Hegemann, Deisseroth (CR30) 2009; 12 Bokil, Andrews, Kulkarni, Mehta, Mitra (CR55) 2010; 192 R Boissard (BFnn3522_CR9) 2003; 18 BY Mileykovskiy (BFnn3522_CR46) 2005; 46 M Wu (BFnn3522_CR48) 2009; 106 L Verret (BFnn3522_CR15) 2003; 4 F Zhang (BFnn3522_CR31) 2007; 446 RR Konadhode (BFnn3522_CR18) 2013; 33 LA Gunaydin (BFnn3522_CR26) 2010; 13 DJ McGinty (BFnn3522_CR3) 1976; 101 A Berndt (BFnn3522_CR30) 2009; 12 M Modirrousta (BFnn3522_CR19) 2005; 21 D Atasoy (BFnn3522_CR25) 2008; 28 JC Bittencourt (BFnn3522_CR27) 1992; 319 CF Elias (BFnn3522_CR35) 2001; 432 JA Hobson (BFnn3522_CR6) 1975; 189 MJS Chee (BFnn3522_CR44) 2013; 521 X Han (BFnn3522_CR33) 2007; 2 CB Saper (BFnn3522_CR2) 2010; 68 E Sapin (BFnn3522_CR16) 2010; 5 JM Monti (BFnn3522_CR17) 2013; 17 EF Pace-Schott (BFnn3522_CR7) 2002; 3 E Sapin (BFnn3522_CR8) 2009; 4 J Lu (BFnn3522_CR11) 2006; 441 CP Tan (BFnn3522_CR38) 2002; 79 H-C Tsai (BFnn3522_CR24) 2009; 324 RW McCarley (BFnn3522_CR5) 1975; 189 K Takahashi (BFnn3522_CR39) 2006; 26 A Adamantidis (BFnn3522_CR49) 2005; 21 C Schöne (BFnn3522_CR40) 2012; 32 JT Willie (BFnn3522_CR22) 2008; 156 BY Chow (BFnn3522_CR34) 2010; 463 B Pachoud (BFnn3522_CR50) 2010; 104 H Bokil (BFnn3522_CR55) 2010; 192 L Hanriot (BFnn3522_CR20) 2007; 505 Z-H Lu (BFnn3522_CR47) 2013; 44 D Burdakov (BFnn3522_CR29) 2005; 25 D Grimm (BFnn3522_CR52) 2008; 82 AR Adamantidis (BFnn3522_CR53) 2007; 450 L Verret (BFnn3522_CR10) 2006; 495 V Gradinaru (BFnn3522_CR32) 2010; 141 S Warming (BFnn3522_CR51) 2005; 33 P Lagos (BFnn3522_CR42) 2011; 1369 M Jouvet (BFnn3522_CR1) 1962; 100 C Schöne (BFnn3522_CR56) 2012; 32 P Fort (BFnn3522_CR37) 2008; 155 BFnn3522_CR12 AN van den Pol (BFnn3522_CR28) 2004; 42 E Del Cid-Pellitero (BFnn3522_CR36) 2012; 223 P Franken (BFnn3522_CR54) 2001; 21 O Clément (BFnn3522_CR14) 2012; 32 G Aston-Jones (BFnn3522_CR4) 1981; 1 A Adamantidis (BFnn3522_CR23) 2008; 27 J Lu (BFnn3522_CR13) 2002; 22 AN van den Pol (BFnn3522_CR41) 2012; 76 Y Saito (BFnn3522_CR43) 2001; 435 MG Lee (BFnn3522_CR45) 2005; 25 OK Hassani (BFnn3522_CR21) 2009; 106 |
References_xml | – volume: 33 start-page: e36 year: 2005 ident: CR51 article-title: Simple and highly efficient BAC recombineering using galK selection publication-title: Nucleic Acids Res. doi: 10.1093/nar/gni035 – volume: 21 start-page: 2807 year: 2005 end-page: 2816 ident: CR19 article-title: Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04104.x – volume: 4 start-page: 19 year: 2003 ident: CR15 article-title: A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep publication-title: BMC Neurosci. doi: 10.1186/1471-2202-4-19 – volume: 463 start-page: 98 year: 2010 end-page: 102 ident: CR34 article-title: High-performance genetically targetable optical neural silencing by light-driven proton pumps publication-title: Nature – volume: 82 start-page: 5887 year: 2008 end-page: 5911 ident: CR52 article-title: and gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses publication-title: J. Virol. doi: 10.1128/JVI.00254-08 – volume: 25 start-page: 6716 year: 2005 end-page: 6720 ident: CR45 article-title: Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1887-05.2005 – ident: CR12 – volume: 21 start-page: 2837 year: 2005 end-page: 2844 ident: CR49 article-title: Disrupting the melanin-concentrating hormone receptor 1 in mice leads to cognitive deficits and alterations of NMDA receptor function publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04100.x – volume: 17 start-page: 293 year: 2013 end-page: 298 ident: CR17 article-title: Melanin-concentrating hormone control of sleep-wake behavior publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2012.10.002 – volume: 3 start-page: 591 year: 2002 end-page: 605 ident: CR7 article-title: The neurobiology of sleep: genetics, cellular physiology and subcortical networks publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn895 – volume: 33 start-page: 10257 year: 2013 end-page: 10263 ident: CR18 article-title: Optogenetic stimulation of MCH neurons increases sleep publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1225-13.2013 – volume: 446 start-page: 633 year: 2007 end-page: 639 ident: CR31 article-title: Multimodal fast optical interrogation of neural circuitry publication-title: Nature doi: 10.1038/nature05744 – volume: 32 start-page: 16763 year: 2012 end-page: 16774 ident: CR14 article-title: The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1885-12.2012 – volume: 27 start-page: 1793 year: 2008 end-page: 1800 ident: CR23 article-title: Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2008.06129.x – volume: 79 start-page: 785 year: 2002 end-page: 792 ident: CR38 article-title: Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression publication-title: Genomics doi: 10.1006/geno.2002.6771 – volume: 76 start-page: 98 year: 2012 end-page: 115 ident: CR41 article-title: Neuropeptide transmission in brain circuits publication-title: Neuron doi: 10.1016/j.neuron.2012.09.014 – volume: 4 start-page: e4272 year: 2009 ident: CR8 article-title: Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep publication-title: PLoS ONE doi: 10.1371/journal.pone.0004272 – volume: 324 start-page: 1080 year: 2009 end-page: 1084 ident: CR24 article-title: Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning publication-title: Science doi: 10.1126/science.1168878 – volume: 505 start-page: 147 year: 2007 end-page: 157 ident: CR20 article-title: Characterization of the melanin-concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats publication-title: J. Comp. Neurol. doi: 10.1002/cne.21482 – volume: 32 start-page: 12437 year: 2012 end-page: 12443 ident: CR40 article-title: Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0706-12.2012 – volume: 106 start-page: 17217 year: 2009 end-page: 17222 ident: CR48 article-title: Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0908200106 – volume: 495 start-page: 573 year: 2006 end-page: 586 ident: CR10 article-title: Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat publication-title: J. Comp. Neurol. doi: 10.1002/cne.20891 – volume: 21 start-page: 2610 year: 2001 end-page: 2621 ident: CR54 article-title: The homeostatic regulation of sleep need is under genetic control publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-08-02610.2001 – volume: 32 start-page: 12437 year: 2012 end-page: 12443 ident: CR56 article-title: Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0706-12.2012 – volume: 432 start-page: 1 year: 2001 end-page: 19 ident: CR35 article-title: Characterization of CART neurons in the rat and human hypothalamus publication-title: J. Comp. Neurol. doi: 10.1002/cne.1085 – volume: 104 start-page: 1417 year: 2010 end-page: 1425 ident: CR50 article-title: Major impairments of glutamatergic transmission and long-term synaptic plasticity in the hippocampus of mice lacking the melanin-concentrating hormone receptor-1 publication-title: J. Neurophysiol. doi: 10.1152/jn.01052.2009 – volume: 12 start-page: 229 year: 2009 end-page: 234 ident: CR30 article-title: Bi-stable neural state switches publication-title: Nat. Neurosci. doi: 10.1038/nn.2247 – volume: 44 start-page: 32 year: 2013 end-page: 39 ident: CR47 article-title: Melanin concentrating hormone induces hippocampal acetylcholine release via the medial septum in rats publication-title: Peptides doi: 10.1016/j.peptides.2013.03.015 – volume: 141 start-page: 154 year: 2010 end-page: 165 ident: CR32 article-title: Molecular and cellular approaches for diversifying and extending optogenetics publication-title: Cell doi: 10.1016/j.cell.2010.02.037 – volume: 450 start-page: 420 year: 2007 end-page: 424 ident: CR53 article-title: Neural substrates of awakening probed with optogenetic control of hypocretin neurons publication-title: Nature doi: 10.1038/nature06310 – volume: 22 start-page: 4568 year: 2002 end-page: 4576 ident: CR13 article-title: Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-11-04568.2002 – volume: 441 start-page: 589 year: 2006 end-page: 594 ident: CR11 article-title: A putative flip-flop switch for control of REM sleep publication-title: Nature doi: 10.1038/nature04767 – volume: 26 start-page: 10292 year: 2006 end-page: 10298 ident: CR39 article-title: Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2341-06.2006 – volume: 1369 start-page: 112 year: 2011 end-page: 118 ident: CR42 article-title: Immunoneutralization of melanin-concentrating hormone (MCH) in the dorsal raphe nucleus: effects on sleep and wakefulness publication-title: Brain Res. doi: 10.1016/j.brainres.2010.11.027 – volume: 192 start-page: 146 year: 2010 end-page: 151 ident: CR55 article-title: Chronux: a platform for analyzing neural signals publication-title: J. Neurosci. Methods – volume: 2 start-page: e299 year: 2007 ident: CR33 article-title: Multiple-color optical activation, silencing and desynchronization of neural activity, with single-spike temporal resolution publication-title: PLoS ONE doi: 10.1371/journal.pone.0000299 – volume: 46 start-page: 787 year: 2005 end-page: 798 ident: CR46 article-title: Behavioral correlates of activity in identified hypocretin/orexin neurons publication-title: Neuron doi: 10.1016/j.neuron.2005.04.035 – volume: 100 start-page: 125 year: 1962 end-page: 206 ident: CR1 article-title: Research on the neural structures and responsible mechanisms in different phases of physiological sleep publication-title: Arch. Ital. Biol. – volume: 101 start-page: 569 year: 1976 end-page: 575 ident: CR3 article-title: Dorsal raphe neurons: depression of firing during sleep in cats publication-title: Brain Res. doi: 10.1016/0006-8993(76)90480-7 – volume: 28 start-page: 7025 year: 2008 end-page: 7030 ident: CR25 article-title: FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1954-08.2008 – volume: 18 start-page: 1627 year: 2003 end-page: 1639 ident: CR9 article-title: Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2003.02861.x – volume: 68 start-page: 1023 year: 2010 end-page: 1042 ident: CR2 article-title: Sleep state switching publication-title: Neuron doi: 10.1016/j.neuron.2010.11.032 – volume: 189 start-page: 55 year: 1975 end-page: 58 ident: CR6 article-title: Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups publication-title: Science doi: 10.1126/science.1094539 – volume: 156 start-page: 819 year: 2008 end-page: 829 ident: CR22 article-title: Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.08.048 – volume: 13 start-page: 387 year: 2010 end-page: 392 ident: CR26 article-title: Ultrafast optogenetic control publication-title: Nat. Neurosci. doi: 10.1038/nn.2495 – volume: 189 start-page: 58 year: 1975 end-page: 60 ident: CR5 article-title: Neuronal excitability modulation over the sleep cycle: a structural and mathematical model publication-title: Science doi: 10.1126/science.1135627 – volume: 155 start-page: 174 year: 2008 end-page: 181 ident: CR37 article-title: The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.05.035 – volume: 223 start-page: 269 year: 2012 end-page: 276 ident: CR36 article-title: Immunohistochemical evidence for synaptic release of GABA from melanin-concentrating hormone containing varicosities in the locus coeruleus publication-title: Neuroscience doi: 10.1016/j.neuroscience.2012.07.072 – volume: 1 start-page: 876 year: 1981 end-page: 886 ident: CR4 article-title: Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.01-08-00876.1981 – volume: 106 start-page: 2418 year: 2009 end-page: 2422 ident: CR21 article-title: Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0811400106 – volume: 42 start-page: 635 year: 2004 end-page: 652 ident: CR28 article-title: Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection publication-title: Neuron doi: 10.1016/S0896-6273(04)00251-X – volume: 319 start-page: 218 year: 1992 end-page: 245 ident: CR27 article-title: The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization publication-title: J. Comp. Neurol. doi: 10.1002/cne.903190204 – volume: 435 start-page: 26 year: 2001 end-page: 40 ident: CR43 article-title: Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain publication-title: J. Comp. Neurol. doi: 10.1002/cne.1191 – volume: 5 start-page: e11766 year: 2010 ident: CR16 article-title: A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia publication-title: PLoS ONE doi: 10.1371/journal.pone.0011766 – volume: 25 start-page: 2429 year: 2005 end-page: 2433 ident: CR29 article-title: Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4925-04.2005 – volume: 521 start-page: 2208 year: 2013 end-page: 2234 ident: CR44 article-title: Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus publication-title: J. Comp. Neurol. doi: 10.1002/cne.23273 – volume: 21 start-page: 2807 year: 2005 ident: BFnn3522_CR19 publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04104.x – volume: 22 start-page: 4568 year: 2002 ident: BFnn3522_CR13 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-11-04568.2002 – volume: 324 start-page: 1080 year: 2009 ident: BFnn3522_CR24 publication-title: Science doi: 10.1126/science.1168878 – volume: 101 start-page: 569 year: 1976 ident: BFnn3522_CR3 publication-title: Brain Res. doi: 10.1016/0006-8993(76)90480-7 – volume: 432 start-page: 1 year: 2001 ident: BFnn3522_CR35 publication-title: J. Comp. Neurol. doi: 10.1002/cne.1085 – volume: 25 start-page: 2429 year: 2005 ident: BFnn3522_CR29 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4925-04.2005 – volume: 319 start-page: 218 year: 1992 ident: BFnn3522_CR27 publication-title: J. Comp. Neurol. doi: 10.1002/cne.903190204 – volume: 82 start-page: 5887 year: 2008 ident: BFnn3522_CR52 publication-title: J. Virol. doi: 10.1128/JVI.00254-08 – volume: 1 start-page: 876 year: 1981 ident: BFnn3522_CR4 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.01-08-00876.1981 – volume: 12 start-page: 229 year: 2009 ident: BFnn3522_CR30 publication-title: Nat. Neurosci. doi: 10.1038/nn.2247 – volume: 3 start-page: 591 year: 2002 ident: BFnn3522_CR7 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn895 – volume: 76 start-page: 98 year: 2012 ident: BFnn3522_CR41 publication-title: Neuron doi: 10.1016/j.neuron.2012.09.014 – volume: 223 start-page: 269 year: 2012 ident: BFnn3522_CR36 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2012.07.072 – volume: 17 start-page: 293 year: 2013 ident: BFnn3522_CR17 publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2012.10.002 – volume: 450 start-page: 420 year: 2007 ident: BFnn3522_CR53 publication-title: Nature doi: 10.1038/nature06310 – volume: 46 start-page: 787 year: 2005 ident: BFnn3522_CR46 publication-title: Neuron doi: 10.1016/j.neuron.2005.04.035 – ident: BFnn3522_CR12 doi: 10.1016/j.conb.2013.02.006 – volume: 32 start-page: 12437 year: 2012 ident: BFnn3522_CR40 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0706-12.2012 – volume: 495 start-page: 573 year: 2006 ident: BFnn3522_CR10 publication-title: J. Comp. Neurol. doi: 10.1002/cne.20891 – volume: 155 start-page: 174 year: 2008 ident: BFnn3522_CR37 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.05.035 – volume: 192 start-page: 146 year: 2010 ident: BFnn3522_CR55 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.06.020 – volume: 27 start-page: 1793 year: 2008 ident: BFnn3522_CR23 publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2008.06129.x – volume: 21 start-page: 2610 year: 2001 ident: BFnn3522_CR54 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-08-02610.2001 – volume: 463 start-page: 98 year: 2010 ident: BFnn3522_CR34 publication-title: Nature doi: 10.1038/nature08652 – volume: 104 start-page: 1417 year: 2010 ident: BFnn3522_CR50 publication-title: J. Neurophysiol. doi: 10.1152/jn.01052.2009 – volume: 32 start-page: 12437 year: 2012 ident: BFnn3522_CR56 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0706-12.2012 – volume: 13 start-page: 387 year: 2010 ident: BFnn3522_CR26 publication-title: Nat. Neurosci. doi: 10.1038/nn.2495 – volume: 106 start-page: 17217 year: 2009 ident: BFnn3522_CR48 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0908200106 – volume: 1369 start-page: 112 year: 2011 ident: BFnn3522_CR42 publication-title: Brain Res. doi: 10.1016/j.brainres.2010.11.027 – volume: 505 start-page: 147 year: 2007 ident: BFnn3522_CR20 publication-title: J. Comp. Neurol. doi: 10.1002/cne.21482 – volume: 2 start-page: e299 year: 2007 ident: BFnn3522_CR33 publication-title: PLoS ONE doi: 10.1371/journal.pone.0000299 – volume: 435 start-page: 26 year: 2001 ident: BFnn3522_CR43 publication-title: J. Comp. Neurol. doi: 10.1002/cne.1191 – volume: 68 start-page: 1023 year: 2010 ident: BFnn3522_CR2 publication-title: Neuron doi: 10.1016/j.neuron.2010.11.032 – volume: 32 start-page: 16763 year: 2012 ident: BFnn3522_CR14 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1885-12.2012 – volume: 106 start-page: 2418 year: 2009 ident: BFnn3522_CR21 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0811400106 – volume: 33 start-page: e36 year: 2005 ident: BFnn3522_CR51 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gni035 – volume: 141 start-page: 154 year: 2010 ident: BFnn3522_CR32 publication-title: Cell doi: 10.1016/j.cell.2010.02.037 – volume: 4 start-page: 19 year: 2003 ident: BFnn3522_CR15 publication-title: BMC Neurosci. doi: 10.1186/1471-2202-4-19 – volume: 5 start-page: e11766 year: 2010 ident: BFnn3522_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0011766 – volume: 446 start-page: 633 year: 2007 ident: BFnn3522_CR31 publication-title: Nature doi: 10.1038/nature05744 – volume: 189 start-page: 55 year: 1975 ident: BFnn3522_CR6 publication-title: Science doi: 10.1126/science.1094539 – volume: 44 start-page: 32 year: 2013 ident: BFnn3522_CR47 publication-title: Peptides doi: 10.1016/j.peptides.2013.03.015 – volume: 156 start-page: 819 year: 2008 ident: BFnn3522_CR22 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.08.048 – volume: 26 start-page: 10292 year: 2006 ident: BFnn3522_CR39 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2341-06.2006 – volume: 441 start-page: 589 year: 2006 ident: BFnn3522_CR11 publication-title: Nature doi: 10.1038/nature04767 – volume: 521 start-page: 2208 year: 2013 ident: BFnn3522_CR44 publication-title: J. Comp. Neurol. doi: 10.1002/cne.23273 – volume: 100 start-page: 125 year: 1962 ident: BFnn3522_CR1 publication-title: Arch. Ital. Biol. – volume: 42 start-page: 635 year: 2004 ident: BFnn3522_CR28 publication-title: Neuron doi: 10.1016/S0896-6273(04)00251-X – volume: 189 start-page: 58 year: 1975 ident: BFnn3522_CR5 publication-title: Science doi: 10.1126/science.1135627 – volume: 79 start-page: 785 year: 2002 ident: BFnn3522_CR38 publication-title: Genomics doi: 10.1006/geno.2002.6771 – volume: 21 start-page: 2837 year: 2005 ident: BFnn3522_CR49 publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04100.x – volume: 4 start-page: e4272 year: 2009 ident: BFnn3522_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0004272 – volume: 18 start-page: 1627 year: 2003 ident: BFnn3522_CR9 publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2003.02861.x – volume: 28 start-page: 7025 year: 2008 ident: BFnn3522_CR25 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1954-08.2008 – volume: 33 start-page: 10257 year: 2013 ident: BFnn3522_CR18 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1225-13.2013 – volume: 25 start-page: 6716 year: 2005 ident: BFnn3522_CR45 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1887-05.2005 |
SSID | ssj0007589 |
Score | 2.5807886 |
Snippet | The authors find that optogenetic stimulation of melanin-concentrating hormone (MCH)-expressing neurons in the lateral hypothalamus selectively extends the... Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus... Rapid-Eye Movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus (LH). LH melanin-concentrating... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1637 |
SubjectTerms | 6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology 631/378/1385/1817 631/378/1385/2641 631/378/1385/519 631/378/1697/1691 Animal Genetics and Genomics Animals Animals, Newborn Artificial chromosomes Behavioral Sciences Bicuculline - pharmacology Biological Techniques Biomedicine Channelrhodopsins Excitatory Amino Acid Antagonists - pharmacology Eye movements GABA-A Receptor Antagonists - pharmacology Gene Expression Regulation Genetic aspects Hypothalamic Hormones - genetics Hypothalamus Hypothalamus - cytology Hypothalamus - drug effects Hypothalamus - physiology Light Melanins - genetics Membrane Potentials - drug effects Membrane Potentials - physiology Mice Mice, Inbred C57BL Mice, Transgenic Nerve Net - drug effects Nerve Net - physiology Neural Pathways - drug effects Neural Pathways - physiology Neurobiology Neurons Neurons - drug effects Neurons - physiology Neurosciences Optogenetics Peptides Physiological aspects Pituitary Hormones - genetics Sleep Sleep, REM - physiology Theta Rhythm - drug effects Theta Rhythm - genetics Transduction, Genetic Valine - analogs & derivatives Valine - pharmacology |
Title | Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus |
URI | https://link.springer.com/article/10.1038/nn.3522 https://www.ncbi.nlm.nih.gov/pubmed/24056699 https://www.proquest.com/docview/1459206484 https://www.proquest.com/docview/1447106249 https://www.proquest.com/docview/1554945064 https://pubmed.ncbi.nlm.nih.gov/PMC4974078 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBlPIILZVBqJxCk83LOaEFtSpIFFSotDfL8YNGap2wSQ7775nxekOzSD2uPNk8ZjzzjedFyDssrjRG52HGYnBQ8ryCPVeKEM88hMmMid20hm8X-flV-nWRLfyBW-fTKjc60Slq1Ug8Iz-J06ycgf1k6cf2T4hTozC66kdoPCS7MSARHN1QLEaHC6yhG4GHQdYQcH6-LprFluAn1n5A6DGxRts6-Y5R2k6Y3IqaOmN09oQ89iiSztds3yMPtH1K9ucWPOjbFT2mLq_THZjvE_697RsQE6xWpLXy2UGOIbQxVNClaGtF9UrT28Z1D-9pd6N1Cz8VDvdqlisq66Uc6p7WlgJipNerFjgsQJqG7hm5Ojv99fk89GMVQpknUR8WOjOxUoWSLJKqigqpmShynTFdRTOjFdOJKjJtssSUqa5YGVcVq6TRYM2SiiXPyY5trH5JKOhG7I82w3BdKlIhVKRyCf-emsRkcRWQ483n5dL3HMfRFzfcxb4Txq3lyIeA0JGwXbfZ-J_kLfKHY9MKi1kxv8XQdfzLz0s-TwDVlqBLioC890SmgRtJ4YsM4HGxz9WE8nBCCbtKTpc3YsD9ru74PxkMyJtxGa_ETDWrmwFpwNxHOXi199AAhitTbBUYkBdryRrfGhAWIOwSri4mMjcSYD_w6Yqtr11f8BR8Q0B8cN-NdN559OnHfHX_6x2QRzMc--FqLg_JTr8c9GsAX3115HbYEdn9dHrx4_IvKSQy3w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBJTHQgGDoJxC834cKrRAq13aLqi0Um_G8YNGap2wyQrtn-O3MeNNlqZIvfUYefKyx_PwzHxDyBssrtRaxU6UeuCgxHEOey7jDp55cB1p7dluDYfTeHwSfjmNTtfIn64WBtMqO5loBbUsBZ6Rb3thlPmgP9PwQ_XLwa5RGF3tWmjwtrWC3LEQY21hx75a_AYXrt6ZfIb1fuv7e7vHn8ZO22XAEXHgNk6iIu1JmUiRukLmbiJUypNYRanKXV8rmapAJpHSUaCzUOVp5uV5mgutQLgHeRrAc2-R9RAPUAZk_ePu9NvRSheANZ7ZeGuWOOBpxMuyXQQl3zbmPRo_PX14VStcUotXUzavxG2tOty7R-62diwdLRnvPllT5gHZGBnw4S8WdIvazFJ7ZL9B2NeqKYFRsV6SFrLNT7IsQUtNOZ3xqpBULRS9KC1-eUPrc6UquJTYXqycLagoZmJeNLQwFGxWeraogMc48PO8fkhObmTKH5GBKY16QihIZ0Ro8zFgGPKQc-nKWMDTQx3oyMuHZKubXiZa1HNsvnHObPQ9SJkxDNdhSOiKsFoCffxP8hrXhyFshsG8nJ98Xtds8v2IjQKwqzOQZsmQvGuJdAkvErwtc4DPRaStHuVmjxL2tegPd2zAWrlSs3-7YEherYbxTsyVM6qcIw0YHG4MfvU1NGBFZiGCFQ7J4yVnrf4abDyw8TO4O-nx3IoAEcn7I6Y4s8jkIXinYHPCezvuvPTp_cl8ev3vvSS3x8eHB-xgMt1_Ru742ITEVoBukkEzm6vnYAo2-Yt2v1Hy46a3-F85UHe1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKkRAXBJQlUMAgKKd0sjjbAaERZdShUBBQaW7B8UIjtU6YZITmr_HreM-TDM0g9dZj5JfN_vwWv42Ql5hcqbWK3Sj1wUCJ4wL2XMZdPPPgOtLat90aPh3HhyfswyyabZE_fS4MhlX2PNEyalkJPCMf-SzKApCfKRvpLiziy8Hkbf3LxQ5S6Gnt22msIHKklr_BfGveTA9grV8FweT993eHbtdhwBVx6LVuoiLtS5lIkXpCFl4iVMqTWEWpKrxAK5mqUCaR0lGoM6aKNPOLIi2EVsDYwyIN4bnXyPUkZAzbRiSztbEHkti230MHrws2RrxK2MVy5CNj9lHtGUjCTXlwQSBuBmtueGytIJzcJrc6DZaOV5C7Q7aUuUt2xgas9_Ml3aM2ptQe1u-Q_HPdVgBRzJSkpewikywYaKUpp3Nel5KqpaLnla1c3tLmTKkaLiU2FqvmSyrKuViULS0NBW2Vni5rQBcHJC-ae-TkSib8Ptk2lVEPCQW-jLXZAnQVMs44l56MBTyd6VBHfuGQvX56c9HVO8e2G2e59buHaW5MjuvgELomrFclPv4neYHrk2PBDIPQ-8kXTZNPv33NxyFo1BnwscQhrzsiXcGLBO8SHOBzscbWgHJ3QAk7WgyHexjkHUdp8n_4d8jz9TDeiVFyRlULpAFVw4vBor6EBvTHjGGZQoc8WCFr_deg3YF2n8HdyQBzawKsRT4cMeWprUnOwC4FbRPe26PzwqcPJ_PR5b_3jNyAjZ1_nB4fPSY3A-w-YlM_d8l2O1-oJ6ADtsVTu9ko-XHVu_svFpd1UQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optogenetic+identification+of+a+rapid+eye+movement+sleep+modulatory+circuit+in+the+hypothalamus&rft.jtitle=Nature+neuroscience&rft.au=Jego%2C+Sonia&rft.au=Glasgow%2C+Stephen+D&rft.au=Herrera%2C+Carolina+Gutierrez&rft.au=Ekstrand%2C+Mats&rft.date=2013-11-01&rft.issn=1097-6256&rft.volume=16&rft.issue=11&rft.spage=1637&rft.epage=1643&rft_id=info:doi/10.1038%2Fnn.3522&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6256&client=summon |