A Bayesian method for calculating real-time quantitative PCR calibration curves using absolute plasmid DNA standards
Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in cali...
Saved in:
| Published in | BMC bioinformatics Vol. 9; no. 1; p. 120 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
25.02.2008
BioMed Central Ltd BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-9-120 |
Cover
| Abstract | Background
In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards.
Results
Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest.
Conclusion
The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards. |
|---|---|
| AbstractList | Abstract Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards. Results Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest. Conclusion The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards. In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards. Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest. The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards. Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards. Results Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest. Conclusion The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards. Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards. Results Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest. Conclusion The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards. In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards.BACKGROUNDIn real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards.Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest.RESULTSInstead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest.The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards.CONCLUSIONThe Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards. |
| ArticleNumber | 120 |
| Audience | Academic |
| Author | Seifring, Shawn Shanks, Orin C Varma, Manju Sivaganesan, Mano Haugland, Richard A |
| AuthorAffiliation | 2 U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA 1 U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA |
| AuthorAffiliation_xml | – name: 2 U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA – name: 1 U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA |
| Author_xml | – sequence: 1 givenname: Mano surname: Sivaganesan fullname: Sivaganesan, Mano email: sivaganesan.mano@epa.gov organization: U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory – sequence: 2 givenname: Shawn surname: Seifring fullname: Seifring, Shawn organization: U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory – sequence: 3 givenname: Manju surname: Varma fullname: Varma, Manju organization: U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory – sequence: 4 givenname: Richard A surname: Haugland fullname: Haugland, Richard A organization: U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory – sequence: 5 givenname: Orin C surname: Shanks fullname: Shanks, Orin C organization: U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18298858$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktv1DAUhSNURB-wZociISGxSGs7D8cbpOnwGqkCVGBtOc711CPHntrOQP89TmdUOgioskh8852Tm3PvcXZgnYUse47RKcZtc4YriguCUV2wAhP0KDu6qxzcez7MjkNYIYRpi-on2SFuCWvbuj3K4iw_FzcQtLD5APHK9blyPpfCyNGIqO0y9yBMEfUA-fUobNQxlTeQf5lfTpjufDo7m8vRbyDkY5g0ogvOjBHytRFh0H3-9tMsD1HYXvg-PM0eK2ECPNvdT7Lv7999m38sLj5_WMxnF4VsShQLWgnSSVY2DJUMC8wUgUaVRLXQEdWXDQiiOgBJ-kpRUuMSoFM9QE1RJ5UoT7LF1rd3YsXXXg_C33AnNL8tOL_kwkctDXCm2pY1Ne1aWVV1CaxGHWGItaySFa4heaGt12jX4uaHMObOECM-DYNPcfMpbs54GkaSvNlK1mM3QC_BRi_MXh_7b6y-4ku34YQw0rAyGbzaGXh3PUKIfNBBgjHCghsDp6hitGrog2BqpqpRNbX0cgsuRfppbZVLH5YTzGeYUloTRHGiTv9CpauHQcu0gUqn-p7g9Z4gMRF-xqUYQ-CLr5f77Iv7qfxOcbeTCai3gPQuBA-Ky9udc1NI2vwn7rM_dA8PaDfTkEi7BM9XbvQ2reQ_Jb8AcCYRyA |
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2013_09_026 crossref_primary_10_1128_AEM_03581_13 crossref_primary_10_3354_dao02597 crossref_primary_10_1021_acsomega_8b01785 crossref_primary_10_1095_biolreprod_112_103366 crossref_primary_10_1186_1756_3305_5_171 crossref_primary_10_1007_s00216_012_6399_3 crossref_primary_10_1128_AEM_02033_09 crossref_primary_10_3390_s100100697 crossref_primary_10_1016_j_scitotenv_2018_09_108 crossref_primary_10_1016_j_watres_2012_08_017 crossref_primary_10_1016_j_watres_2024_121857 crossref_primary_10_1016_j_ijheh_2020_113496 crossref_primary_10_1021_es100311n crossref_primary_10_1016_j_ab_2014_07_004 crossref_primary_10_1111_1541_4337_12793 crossref_primary_10_1142_S0219720010004963 crossref_primary_10_1093_bioinformatics_btq686 crossref_primary_10_1109_TCAD_2016_2600626 crossref_primary_10_1016_j_watres_2017_10_071 crossref_primary_10_1016_j_watres_2012_09_056 crossref_primary_10_1007_s00216_012_5852_7 crossref_primary_10_1016_j_syapm_2010_06_001 crossref_primary_10_1016_j_mcp_2009_06_002 crossref_primary_10_1016_j_watres_2011_04_049 crossref_primary_10_1016_j_watres_2022_118114 crossref_primary_10_1002_pst_2072 crossref_primary_10_1016_j_watres_2022_119162 crossref_primary_10_1007_s12011_009_8315_z crossref_primary_10_1016_j_scitotenv_2017_10_267 crossref_primary_10_1021_acs_est_0c01559 crossref_primary_10_1038_ejhg_2010_101 crossref_primary_10_1016_j_watres_2013_02_060 crossref_primary_10_3390_microorganisms8081227 crossref_primary_10_3727_096368914X681955 crossref_primary_10_1016_j_mimet_2016_01_012 crossref_primary_10_1016_j_watres_2016_09_041 crossref_primary_10_1016_j_watres_2020_116014 crossref_primary_10_1021_es502637b crossref_primary_10_1016_j_watres_2024_121482 crossref_primary_10_1021_es2003167 crossref_primary_10_1128_AEM_07819_11 crossref_primary_10_1128_msphere_00365_23 crossref_primary_10_1016_j_scitotenv_2022_155815 crossref_primary_10_1371_journal_pone_0130812 crossref_primary_10_1016_j_mimet_2014_03_004 crossref_primary_10_1016_j_scitotenv_2024_175740 crossref_primary_10_1016_j_jbiotec_2018_01_016 crossref_primary_10_3390_w12030775 crossref_primary_10_1021_acs_analchem_0c04283 crossref_primary_10_1186_s12859_014_0402_2 crossref_primary_10_1128_AEM_01430_12 crossref_primary_10_1128_AEM_00388_14 crossref_primary_10_1016_j_watres_2021_116845 crossref_primary_10_1016_j_ab_2012_07_020 crossref_primary_10_1016_j_mimet_2021_106186 crossref_primary_10_1080_10408398_2013_873767 crossref_primary_10_1371_journal_pone_0216827 crossref_primary_10_1038_s41598_020_66406_x crossref_primary_10_1128_AEM_04137_13 crossref_primary_10_1007_s00216_015_8458_z crossref_primary_10_1016_j_foodcont_2018_11_032 crossref_primary_10_1111_j_1462_2920_2011_02549_x crossref_primary_10_1016_j_watres_2010_07_066 crossref_primary_10_3389_fmicb_2023_1302586 crossref_primary_10_1016_j_watres_2014_06_036 crossref_primary_10_1007_s00253_011_3159_9 crossref_primary_10_1371_journal_pone_0093031 crossref_primary_10_1128_JCM_01424_10 crossref_primary_10_1016_j_isci_2024_111079 crossref_primary_10_1038_s41597_024_04318_5 crossref_primary_10_1007_s11157_014_9351_5 crossref_primary_10_1016_j_mimet_2011_09_013 crossref_primary_10_1128_AEM_00305_09 crossref_primary_10_1371_journal_pone_0278548 |
| Cites_doi | 10.1093/nar/gni141 10.1006/abio.1997.2177 10.1201/9780429258411 10.1128/AEM.66.10.4571-4574.2000 10.1128/MMBR.68.4.669-685.2004 10.1093/nar/gng123 10.1128/AEM.68.10.4853-4862.2002 10.1128/AEM.56.3.782-787.1990 10.1111/1467-9884.00117 10.1093/nar/gng093 10.1146/annurev.mi.39.100185.001541 10.1016/S0723-2020(00)80030-2 10.1093/nar/16.15.7351 10.1080/08898480701298418 10.1038/nbt0993-1026 10.1271/bbb.60366 10.1128/AEM.00023-06 10.1128/AEM.71.7.4117-4120.2005 10.1080/01621459.1996.10476956 10.1002/0470092602 10.1016/S0166-0934(02)00266-5 10.1128/AEM.02852-05 10.1016/j.watres.2004.11.011 10.1080/01621459.1990.10476213 10.1214/ss/1177011136 |
| ContentType | Journal Article |
| Copyright | Sivaganesan et al; licensee BioMed Central Ltd. 2008 COPYRIGHT 2008 BioMed Central Ltd. Copyright © 2008 Sivaganesan et al; licensee BioMed Central Ltd. 2008 Sivaganesan et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Sivaganesan et al; licensee BioMed Central Ltd. 2008 – notice: COPYRIGHT 2008 BioMed Central Ltd. – notice: Copyright © 2008 Sivaganesan et al; licensee BioMed Central Ltd. 2008 Sivaganesan et al; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7QO 7TM 8FD FR3 P64 RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2105-9-120 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 120 |
| ExternalDocumentID | oai_doaj_org_article_9f889657b8c4453e950b2909894c415e 10.1186/1471-2105-9-120 PMC2292693 A177752071 18298858 10_1186_1471_2105_9_120 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 0R~ 123 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAJSJ AAKPC AASML ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C6C CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO ICD IHR INH INR IPNFZ ISR ITC KQ8 M48 MK~ ML0 M~E O5R O5S OK1 OVT P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7QO 7TM 8FD FR3 P64 RC3 7X8 5PM 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ ABUWG ADTOC AEUYN AFFHD AFKRA ARAPS AZQEC BBNVY BGLVJ BHPHI BPHCQ BVXVI CCPQU DWQXO FYUFA GNUQQ HCIFZ HMCUK K6V K7- LK8 M1P M7P P62 PHGZM PHGZT PJZUB PPXIY PQGLB PROAC PSQYO UKHRP UNPAY |
| ID | FETCH-LOGICAL-c630t-74a2bc93690391a19f2e6f32f8eb2fd36ea2fbeec2d4f72513eebfdee570bcfa3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:52:04 EDT 2025 Wed Oct 29 12:16:10 EDT 2025 Thu Aug 21 17:47:55 EDT 2025 Thu Oct 02 08:52:13 EDT 2025 Tue Oct 07 09:47:42 EDT 2025 Mon Oct 20 23:05:57 EDT 2025 Mon Oct 20 17:13:42 EDT 2025 Thu Oct 16 15:48:28 EDT 2025 Wed Feb 19 01:51:20 EST 2025 Thu Apr 24 23:03:37 EDT 2025 Wed Oct 01 01:46:29 EDT 2025 Sat Sep 06 07:27:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Monte Carlo Markov Chain Posterior Distribution Bayesian Credible Interval Monte Carlo Markov Chain Method Monte Carlo Markov Chain Approach |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c630t-74a2bc93690391a19f2e6f32f8eb2fd36ea2fbeec2d4f72513eebfdee570bcfa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-9-120 |
| PMID | 18298858 |
| PQID | 20345040 |
| PQPubID | 23462 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9f889657b8c4453e950b2909894c415e unpaywall_primary_10_1186_1471_2105_9_120 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2292693 proquest_miscellaneous_70497467 proquest_miscellaneous_20345040 gale_infotracmisc_A177752071 gale_infotracacademiconefile_A177752071 gale_incontextgauss_ISR_A177752071 pubmed_primary_18298858 crossref_citationtrail_10_1186_1471_2105_9_120 crossref_primary_10_1186_1471_2105_9_120 springer_journals_10_1186_1471_2105_9_120 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-02-25 |
| PublicationDateYYYYMMDD | 2008-02-25 |
| PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-25 day: 25 |
| PublicationDecade | 2000 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2008 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | V Torsvik (2105_CR9) 1990; 56 SP Brooks (2105_CR19) 1998; 47 RG Rutledge (2105_CR14) 2003; 31 SC Seifring (2105_CR32) 2007 N Lalam (2105_CR17) 2007 OC Shanks (2105_CR26) 2006; 72 DJ Spiegelhalter (2105_CR23) 2003 ABI (2105_CR3) 2006 AE Gelfand (2105_CR20) 1990; 85 W Ludwig (2105_CR31) 2000; 23 Y Zhang (2105_CR35) 2003; 31 AW Ibekwe (2105_CR13) 2002; 68 VL Singer (2105_CR6) 1997; 249 N Lalam (2105_CR18) 2007; 14 J Handlesman (2105_CR7) 2004; 68 EM Conlon (2105_CR16) 2007; 8 MK Cowles (2105_CR25) 1996; 91 R Higuchi (2105_CR28) 1988; 16 M Stocher (2105_CR29) 2003; 108 J Sambrook (2105_CR1) 2001 RA Haugland (2105_CR27) 2005; 39 R Higuchi (2105_CR2) 1993; 11 AD Blackwood (2105_CR30) 2007 AE Bernhard (2105_CR33) 2000; 66 N Fierer (2105_CR4) 2005; 71 A Gelman (2105_CR21) 1995 A Toyota (2105_CR11) 2006; 70 2105_CR22 JT Staley (2105_CR10) 1985; 39 ABI (2105_CR5) 2006 A Frigessi (2105_CR15) 2005; 33 B Martin (2105_CR12) 2006; 72 A Gelman (2105_CR24) 1992; 7 DJ Grimes (2105_CR8) 1986; 3 SAS (2105_CR34) 1990 12565148 - J Virol Methods. 2003 Mar;108(1):1-8 3045756 - Nucleic Acids Res. 1988 Aug 11;16(15):7351-67 11249026 - Syst Appl Microbiol. 2000 Dec;23(4):556-62 12324331 - Appl Environ Microbiol. 2002 Oct;68(10):4853-62 9212875 - Anal Biochem. 1997 Jul 1;249(2):228-38 16957227 - Appl Environ Microbiol. 2006 Sep;72(9):6040-8 17402916 - Stat Appl Genet Mol Biol. 2007;6:Article10 15707628 - Water Res. 2005 Feb;39(4):559-68 16204447 - Nucleic Acids Res. 2005;33(17):e143 17343745 - BMC Bioinformatics. 2007;8:80 12907745 - Nucleic Acids Res. 2003 Aug 15;31(16):e93 16751515 - Appl Environ Microbiol. 2006 Jun;72(6):4054-60 2856614 - Microbiol Sci. 1986 Nov;3(11):324-9 7764001 - Biotechnology (N Y). 1993 Sep;11(9):1026-30 15590779 - Microbiol Mol Biol Rev. 2004 Dec;68(4):669-85 11010920 - Appl Environ Microbiol. 2000 Oct;66(10):4571-4 16000830 - Appl Environ Microbiol. 2005 Jul;71(7):4117-20 17151472 - Biosci Biotechnol Biochem. 2006 Dec;70(12):2965-73 3904603 - Annu Rev Microbiol. 1985;39:321-46 2317046 - Appl Environ Microbiol. 1990 Mar;56(3):782-7 18209285 - J Water Health. 2008 Jun;6(2):225-37 14530456 - Nucleic Acids Res. 2003 Oct 15;31(20):e123 |
| References_xml | – volume: 3 start-page: 324 year: 1986 ident: 2105_CR8 publication-title: Microbiology Science – volume: 33 start-page: e143 issue: 17 year: 2005 ident: 2105_CR15 publication-title: Nucleic Acids Research doi: 10.1093/nar/gni141 – volume: 249 start-page: 228 issue: 2 year: 1997 ident: 2105_CR6 publication-title: Analytical Biochemistry doi: 10.1006/abio.1997.2177 – volume-title: Bayesian Data Analysis year: 1995 ident: 2105_CR21 doi: 10.1201/9780429258411 – volume: 66 start-page: 4571 issue: 10 year: 2000 ident: 2105_CR33 publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.66.10.4571-4574.2000 – volume-title: Applied Biosystems year: 2006 ident: 2105_CR5 – volume: 68 start-page: 669 issue: 4 year: 2004 ident: 2105_CR7 publication-title: Microbiology and Molecular Biology Reviews doi: 10.1128/MMBR.68.4.669-685.2004 – volume: 31 start-page: e123 year: 2003 ident: 2105_CR35 publication-title: Nucleic Acids Research doi: 10.1093/nar/gng123 – start-page: 1 volume-title: Statistical Inference for Quantitative Polymerase Chain Reaction Using a Hidden Markov Model: A Bayesian Approach year: 2007 ident: 2105_CR17 – volume: 68 start-page: 4853 issue: 10 year: 2002 ident: 2105_CR13 publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.68.10.4853-4862.2002 – volume: 56 start-page: 782 year: 1990 ident: 2105_CR9 publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.56.3.782-787.1990 – volume: 47 start-page: 69 year: 1998 ident: 2105_CR19 publication-title: The Statistician doi: 10.1111/1467-9884.00117 – volume: 31 start-page: e93 issue: 16 year: 2003 ident: 2105_CR14 publication-title: Nucleic Acids Research doi: 10.1093/nar/gng093 – volume: 39 start-page: 321 year: 1985 ident: 2105_CR10 publication-title: Annual Reviews in Microbiology doi: 10.1146/annurev.mi.39.100185.001541 – volume-title: Molecular Cloning: A Laboratory Manual year: 2001 ident: 2105_CR1 – volume: 8 start-page: 1 issue: 80 year: 2007 ident: 2105_CR16 publication-title: BMC Bioinformatics – volume-title: Applied Biosystems year: 2006 ident: 2105_CR3 – volume: 23 start-page: 556 issue: 4 year: 2000 ident: 2105_CR31 publication-title: Systematic and Applied Microbiology doi: 10.1016/S0723-2020(00)80030-2 – volume: 16 start-page: 7351 year: 1988 ident: 2105_CR28 publication-title: Nucleic Acids Research doi: 10.1093/nar/16.15.7351 – volume: 14 start-page: 111 issue: 2 year: 2007 ident: 2105_CR18 publication-title: Mathematical Population Studies doi: 10.1080/08898480701298418 – volume: 11 start-page: 1026 year: 1993 ident: 2105_CR2 publication-title: Biotechnology doi: 10.1038/nbt0993-1026 – volume: 70 start-page: 2965 issue: 12 year: 2006 ident: 2105_CR11 publication-title: Bioscience, Biotechnology, and Biochemistry doi: 10.1271/bbb.60366 – volume: 72 start-page: 4054 issue: 6 year: 2006 ident: 2105_CR26 publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.00023-06 – volume: 71 start-page: 4117 issue: 7 year: 2005 ident: 2105_CR4 publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.71.7.4117-4120.2005 – volume: 91 start-page: 883 year: 1996 ident: 2105_CR25 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1996.10476956 – volume-title: Bayesian Approaches to Clinical Trials and Health-Care Evaluation year: 2003 ident: 2105_CR23 doi: 10.1002/0470092602 – volume: 108 start-page: 1 year: 2003 ident: 2105_CR29 publication-title: Journal of Virology Methods doi: 10.1016/S0166-0934(02)00266-5 – volume-title: In Preparation year: 2007 ident: 2105_CR30 – volume-title: SAS/STAT User's Guide Version 6 year: 1990 ident: 2105_CR34 – volume: 72 start-page: 6040 issue: 9 year: 2006 ident: 2105_CR12 publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.02852-05 – ident: 2105_CR22 – volume: 39 start-page: 559 year: 2005 ident: 2105_CR27 publication-title: Water Research doi: 10.1016/j.watres.2004.11.011 – volume-title: Journal of Water and Health year: 2007 ident: 2105_CR32 – volume: 85 start-page: 398 year: 1990 ident: 2105_CR20 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1990.10476213 – volume: 7 start-page: 457 year: 1992 ident: 2105_CR24 publication-title: Statistical Science doi: 10.1214/ss/1177011136 – reference: 16957227 - Appl Environ Microbiol. 2006 Sep;72(9):6040-8 – reference: 12565148 - J Virol Methods. 2003 Mar;108(1):1-8 – reference: 15707628 - Water Res. 2005 Feb;39(4):559-68 – reference: 14530456 - Nucleic Acids Res. 2003 Oct 15;31(20):e123 – reference: 17402916 - Stat Appl Genet Mol Biol. 2007;6:Article10 – reference: 9212875 - Anal Biochem. 1997 Jul 1;249(2):228-38 – reference: 15590779 - Microbiol Mol Biol Rev. 2004 Dec;68(4):669-85 – reference: 17151472 - Biosci Biotechnol Biochem. 2006 Dec;70(12):2965-73 – reference: 11010920 - Appl Environ Microbiol. 2000 Oct;66(10):4571-4 – reference: 3045756 - Nucleic Acids Res. 1988 Aug 11;16(15):7351-67 – reference: 16000830 - Appl Environ Microbiol. 2005 Jul;71(7):4117-20 – reference: 16751515 - Appl Environ Microbiol. 2006 Jun;72(6):4054-60 – reference: 18209285 - J Water Health. 2008 Jun;6(2):225-37 – reference: 16204447 - Nucleic Acids Res. 2005;33(17):e143 – reference: 12907745 - Nucleic Acids Res. 2003 Aug 15;31(16):e93 – reference: 7764001 - Biotechnology (N Y). 1993 Sep;11(9):1026-30 – reference: 17343745 - BMC Bioinformatics. 2007;8:80 – reference: 2317046 - Appl Environ Microbiol. 1990 Mar;56(3):782-7 – reference: 11249026 - Syst Appl Microbiol. 2000 Dec;23(4):556-62 – reference: 12324331 - Appl Environ Microbiol. 2002 Oct;68(10):4853-62 – reference: 2856614 - Microbiol Sci. 1986 Nov;3(11):324-9 – reference: 3904603 - Annu Rev Microbiol. 1985;39:321-46 |
| SSID | ssj0017805 |
| Score | 2.2039618 |
| Snippet | Background
In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA... In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However,... Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA... Abstract Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 120 |
| SubjectTerms | Algorithms Base Sequence Bayes Theorem Bioinformatics Biomedical and Life Sciences Calibration Computational Biology/Bioinformatics Computer Appl. in Life Sciences Identification and classification Life Sciences Methodology Methodology Article Methods Microarrays Molecular Sequence Data Pattern Recognition, Automated - methods Plasmids Plasmids - genetics Plasmids - standards Polymerase chain reaction Reverse Transcriptase Polymerase Chain Reaction - instrumentation Reverse Transcriptase Polymerase Chain Reaction - standards Sequence Analysis, DNA - methods Sequence Analysis, DNA - standards United States |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJAQ8IL4JDLAQEuwhzHVsx37sBtNAYkKDSXuzHMcuk0palgbU_567JC0NqNoLr_FFSu8u99Hc_X6EvIohRlF4lgYVWCqULFPI4z7VkZcyLwQLBS44fzpRx2fi47k836D6wpmwDh64U9y-iVobBbdpL4TMgpGs4IYhbriH5BMw-jJtVs1U__0AkfrbvaJ8lEJTI3tQn5FW--trKfIAsEE-amH7_w3OG9np78nJ9efTW-RGU83d8pebTjcy1NEdcrsvLem4-0l3ybVQ3SPXO7LJ5X2yGNMDtwy4NEk73mgKBSsFG_mWwquaUCggpymyzdMfjava9TMIhvTz4SmKYWONZqS-ufwZaooj8xPqitZ7A51DHf79oqTvTsZ09QdF_YCcHb3_enic9pwLqVcZW6S5cLzwyPKH0PFuZCIPKmY8amjBY5mp4HgsQvC8FDGH4igLYM0yBJmzwkeXPSQ71awKjwnNlMdyD-q7wESphGEsSuHkyBUg7MuEvF1p3voekBx5Maa2bUy0smgqi6ayxoKpEvJmfcO8w-LYLnqAplyLIYh2ewFcy_auZa9yrYS8REewCJNR4RzOxDV1bT98ObXjUZ7nkkN9lpDXvVCcwdN71681gA4QWWsguTuQhPfYD45frPzN4hEOv1Vh1tSWs0xICLbbJXLo85A3JiGPOv_8ox_NjdZSJyQfeO5AM8OT6uJbCzPOueHKZAnZW_m47eNbvV3te-uX4CoTPfkfJnpKbnYDPDzlcpfsLC6b8AyqxEXxvA0IvwHzql6R priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQEAIeEL8JDLAQEuzB4Dq24zx2hWkgMaHBpL1ZjmOXSSUrSwPqf89dkpYGqBCv9SWKfOe77-q77wh5HkOMsvCcBR04k1qVDOK4ZyaKUmWF5KHABucPR_rwRL4_Vac9SRL2wmze34-Mfj0C58kgLVEMWfshN78MEUq3t7J6sr4uQGL-nrfnLw8NQk7LzP-n_90IQL8XR65vSK-Tq001d8sfbjbbCEIHN8mNHj3ScafuW-RSqG6TK908yeUdshjTfbcM2BdJu9HQFDApBTX4dkpXNaWAEWcMB8rTb42r2g4z8Hf04-QYxTB3Rk1R31x8DzXFqvgpdUVroIHOAWp_PSvpm6MxXf0HUd8lJwdvP08OWT9WgXmd8gXLpBOFx0F-yA7vRnkUQcdURANZdixTHZyIRQhelDJmgH_SAAorQ1AZL3x06T2yU51X4QGhqfaI6ADCBS5LLXPOo5JOjVwBwr5MyKvVzlvfc47j6IuZbXMPoy2qyqKqbG5BVQl5uX5g3tFtbBfdR1WuxZAnu_0BzMf2x87m0Zhcg9EZL6VKQ654IXKOrPMeoEtIyDM0BItMGBWW2kxdU9f23adjOx5lWaYEQLCEvOiF4jl8vXd95wLsAZJnDSR3B5JwVP1g-enK3iwuYX1bFc6b2gqeSgX-dLtEBqkcjoZJyP3OPn_tjxG5McokJBtY7mBnhivV2ZeWSVyIXOg8TcjeysZt78Lq7du-tz4E_1LRw_947yNyrSvFEUyoXbKzuGjCY8B7i-JJe9Z_AvuQTMs priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTQh44HsQGGAhJNhDutSJneSxG0wDiTINKo0ny3bsUtGlpW1A5a_nLh-lGVQIidf4FyW53J3vkrvfEfLcWecibQLfChv4keCZD_u48RPHMh7rKLAaG5zf9cXJIHp7zs-3yPumF0ZfGD2a1KShSFTcWW9DH1ddDjhFwc4OppmrjD4RB11wsj6kL9xHdn_I4XcEh-B8m-wM-qe9T2WPUY2oCX7-cFZrbyop_H931Gs71eUqytWv1OvkapFP1fK7Go_Xdqvjm2TaPGdVpPKlUyx0x_y4RAH5HwVxi9yoI1vaq1TxNtmy-R1ypZp1ubxLFj16qJYWezZpNbaawkUpqIgpJ4jlQwrx69jHYff0a6HysvsNfDE9PTpDGOb1qEXUFLNvdk6xYn9IlS6Nx9IppAEXo4y-6vdo831kfo8Mjl9_PDrx65EPvhFhsPDjSDFtcMggMterbuqYFS5kLrGauSwUVjGnrTUsi1wMsVloQZkya3kcaONUuEu280luHxAaCoPRJoSXNogyEaVB4HikeFdpAJvMI53mZUtT86HjWI6xLPOiREgUpURRylSCKD3ycnXCtKIC2Qw9RO1ZwZDDuzwwmQ1l7RJk6pIkFWAQiYkiHtqUB5qlATLiGwirrEeeoe5JZOnIsQxoqIr5XL75cCZ73TiOOYPw0CMvapCbwN0bVXdVgAyQ2KuF3GshwY2Y1vLTRsUlLmHtXW4nxVyyIIw4-PrNiBjSTBxb45H7lUn8kk_C0iThiUfilrG0JNNeyUefS5ZzxlIm0tAj-41Zydq9zjeLfX9ld397RQ__AfuIXKvKhJjP-B7ZXswK-xhi0YV-UvuXn2Y8hGU priority: 102 providerName: Unpaywall |
| Title | A Bayesian method for calculating real-time quantitative PCR calibration curves using absolute plasmid DNA standards |
| URI | https://link.springer.com/article/10.1186/1471-2105-9-120 https://www.ncbi.nlm.nih.gov/pubmed/18298858 https://www.proquest.com/docview/20345040 https://www.proquest.com/docview/70497467 https://pubmed.ncbi.nlm.nih.gov/PMC2292693 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-9-120 https://doaj.org/article/9f889657b8c4453e950b2909894c415e |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgEwIeEN8ERrEQEuwhI3VsJ3lAKCtMo9KqaaPS9mQ5jl0mlbTrB9D_nrskbRdYhXiNL1F0H7675Pz7EfLGWed4ZgLfShv4XIrchzxu_NixXEQZD2yGB5yPevKwz7tn4mxNB1QrcHpta4d8Uv3JcO_X5eIjBPyHMuBj-b4NG6wPrYvwEdkf-vdtSFMJ8jgc8fUvBQTvr7F9rrmpkZZK9P6_9-grSerPAcrVX9S75Pa8GOvFTz0cXklUB_fJvbrCpGnlEg_IDVs8JLcqzsnFIzJL6b5eWDw7SSv6aAp1KwVTmZLJqxhQqCOHPpLO08u5LspTaLAn0uPOCYphf43WpGY--WGnFCfnB1RnpRNbOoZy_PtFTj_1Urr8TjF9TPoHn792Dv2aesE3MgxmfsQ1ywyS_SGCvG4njlnpQuZi6MRdHkqrmcusNSznLoIaKbRg1NxaEQWZcTp8QraKUWGfERpKg1UflHk24LnkSRA4wbVo6wyETe6RvaXmlalxyZEeY6jK_iSWCk2l0FQqUWAqj7xb3TCuIDk2i-6jKVdiiKVdXhhNBqoOTZW4OE4kOGZsOBehTUSQsSRAZHoD5Y31yGt0BIVoGQWO4wz0fDpVX05PVNqOokgwKNM88rYWciN4e6Pr0w2gAwTYakjuNCQhnE1j-dXS3xQu4QxcYUfzqWJByAXsuZslImj3kD7GI08r_1zrJ2ZJHIvYI1HDcxuaaa4UF99KtHHGEiaT0CO7Sx9XyyjdrPbdVRD8y0TP_-O5L8idalyH-UzskK3ZZG5fQk04y1pkO027p90WudmRnVb5ZaVVxj-s9HvH6flvQJtgZA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELemTWjwgPgmMJiFkGAPgdSxneQxG0xb2Sq0D2lvluPYZVJJS9OA-t9zl4-yABXitb5Eke_Dv6vvfkfIa2ed45kJfCtt4HMpch_OcePHjuUiynhgM2xwPh3Jo0s-vBJXG2TQ9cLU1e7dlWQdqWu3juX7AYRRHxIU4SN_P2TpW1hhBb64labD8-Hq6gBJ-lsOn7881jt-apb-P2PxjcPo90LJ1W3pHbJdFTO9_KEnkxsH0uE9crdFkjRtVH-fbNjiAbnVzJZcPiSLlO7rpcUeSdqMiaaATymoxNQTu4oxBbw48XG4PP1W6aLuNoPYRz8fnKEY5tGoNWqq-XdbUqyQH1Od1cZq6Qxg99frnH4YpbT7P6J8RC4PP14cHPntiAXfyDBY-BHXLDM41A-Z4vUgccxKFzIXQ8bt8lBazVxmrWE5dxFgodCC8nJrRRRkxunwMdkspoV9SmgoDaI7gHM24LnkSRA4wbUY6AyETe6Rd93OK9Pyj-MYjImq85BYKlSVQlWpRIGqPPJ29cCsod5YL7qPqlyJIWd2_cN0PlatC6rExXEiwQBjw7kIbSKCjCUBMtAbgDHWI6_QEBSyYhRYdjPWVVmq4_MzlQ6iKBIM4JhH3rRCbgpfb3TbxQB7gERaPcmdniS4rekt73b2pnAJa90KO61KxYKQC4it6yUiSOtwTIxHnjT2-Wt_YpbEsYg9EvUst7cz_ZXi-kvNKs5YwmQSemSvs3HVhrNy_bbvrZzgXyp69h_v3SXbRxenJ-rkePTpObndlOgwn4kdsrmYV_YF4MBF9rL1_J_nslUk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELfQEK8PiDeBwSyEBPtgljq2k3zsOqaNRzUNJu2b5Th2mVTS0jSg_vfc5VEWoEJ8rS9RdO-r735HyEvvvBeZDZlTLmRCyZxBHLcs8TyXcSZCl-GA88exOjoT787ledubU3bd7t2VZDPTgChNxXJvnvvGxBO1NwCXyqBYkQyx_KFivyogtOECg5EarS8REK6_RfP5y0O9QFTj9f_plS-Fpd9bJtf3prfIjaqYm9UPM51eCk2Hd8jtNqekw0YJ7pIrrrhHrjVbJlf3yXJI983K4bQkbRZGU8hUKQjH1ru7igmFzHHKcM08_VaZop47Ay9IT0anSIYVNcqP2mrx3ZUUe-Un1GS12jo6hwT860VOD8ZD2v0zUT4gZ4dvP4-OWLtsgVkVhUsWC8Mzi-v9EDPeDFLPnfIR9wnU3j6PlDPcZ85ZngsfQ1YUORBj7pyMw8x6Ez0kW8WscI8JjZTFPA8SOxeKXIk0DL0URg5MBsQ2D8ibjvPatkjkuBBjquuKJFEaRaVRVDrVIKqAvF4_MG9AODaT7qMo12SInl3_MFtMdGuMOvVJkipQxcQKISOXyjDjaYhY9BYSGheQF6gIGvExCmzAmZiqLPXxp1M9HMRxLDkkZgF51RL5GXy9Ne08A_AAIbV6lNs9SjBg2zve6fRN4xF2vRVuVpWah5GQ4GU3U8RQ4OHCmIA8avTzF38SniaJTAIS9zS3x5n-SXHxpcYX5zzlKo0CstvpuG4dW7mZ7btrI_iXiJ78x3t3yPWTg0P94Xj8_im52fTqcMblNtlaLir3DBLCZfa8NvufBrZYAQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTQh44HsQGGAhJNhDutSJneSxG0wDiTINKo0ny3bsUtGlpW1A5a_nLh-lGVQIidf4FyW53J3vkrvfEfLcWecibQLfChv4keCZD_u48RPHMh7rKLAaG5zf9cXJIHp7zs-3yPumF0ZfGD2a1KShSFTcWW9DH1ddDjhFwc4OppmrjD4RB11wsj6kL9xHdn_I4XcEh-B8m-wM-qe9T2WPUY2oCX7-cFZrbyop_H931Gs71eUqytWv1OvkapFP1fK7Go_Xdqvjm2TaPGdVpPKlUyx0x_y4RAH5HwVxi9yoI1vaq1TxNtmy-R1ypZp1ubxLFj16qJYWezZpNbaawkUpqIgpJ4jlQwrx69jHYff0a6HysvsNfDE9PTpDGOb1qEXUFLNvdk6xYn9IlS6Nx9IppAEXo4y-6vdo831kfo8Mjl9_PDrx65EPvhFhsPDjSDFtcMggMterbuqYFS5kLrGauSwUVjGnrTUsi1wMsVloQZkya3kcaONUuEu280luHxAaCoPRJoSXNogyEaVB4HikeFdpAJvMI53mZUtT86HjWI6xLPOiREgUpURRylSCKD3ycnXCtKIC2Qw9RO1ZwZDDuzwwmQ1l7RJk6pIkFWAQiYkiHtqUB5qlATLiGwirrEeeoe5JZOnIsQxoqIr5XL75cCZ73TiOOYPw0CMvapCbwN0bVXdVgAyQ2KuF3GshwY2Y1vLTRsUlLmHtXW4nxVyyIIw4-PrNiBjSTBxb45H7lUn8kk_C0iThiUfilrG0JNNeyUefS5ZzxlIm0tAj-41Zydq9zjeLfX9ld397RQ__AfuIXKvKhJjP-B7ZXswK-xhi0YV-UvuXn2Y8hGU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+method+for+calculating+real-time+quantitative+PCR+calibration+curves+using+absolute+plasmid+DNA+standards&rft.jtitle=BMC+bioinformatics&rft.au=Sivaganesan%2C+Mano&rft.au=Seifring%2C+Shawn&rft.au=Varma%2C+Manju&rft.au=Haugland%2C+Richard+A&rft.date=2008-02-25&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1186%2F1471-2105-9-120&rft.externalDocID=10_1186_1471_2105_9_120 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |