A Bayesian method for calculating real-time quantitative PCR calibration curves using absolute plasmid DNA standards

Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in cali...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 9; no. 1; p. 120
Main Authors Sivaganesan, Mano, Seifring, Shawn, Varma, Manju, Haugland, Richard A, Shanks, Orin C
Format Journal Article
LanguageEnglish
Published London BioMed Central 25.02.2008
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-9-120

Cover

Abstract Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards. Results Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest. Conclusion The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards.
AbstractList Abstract Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards. Results Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest. Conclusion The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards.
In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards. Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest. The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards.
Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards. Results Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest. Conclusion The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards.
Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards. Results Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest. Conclusion The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards.
In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards.BACKGROUNDIn real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards.Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest.RESULTSInstead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest.The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards.CONCLUSIONThe Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards.
ArticleNumber 120
Audience Academic
Author Seifring, Shawn
Shanks, Orin C
Varma, Manju
Sivaganesan, Mano
Haugland, Richard A
AuthorAffiliation 2 U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
1 U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
AuthorAffiliation_xml – name: 2 U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
– name: 1 U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA
Author_xml – sequence: 1
  givenname: Mano
  surname: Sivaganesan
  fullname: Sivaganesan, Mano
  email: sivaganesan.mano@epa.gov
  organization: U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory
– sequence: 2
  givenname: Shawn
  surname: Seifring
  fullname: Seifring, Shawn
  organization: U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory
– sequence: 3
  givenname: Manju
  surname: Varma
  fullname: Varma, Manju
  organization: U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory
– sequence: 4
  givenname: Richard A
  surname: Haugland
  fullname: Haugland, Richard A
  organization: U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory
– sequence: 5
  givenname: Orin C
  surname: Shanks
  fullname: Shanks, Orin C
  organization: U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18298858$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNURB-wZociISGxSGs7D8cbpOnwGqkCVGBtOc711CPHntrOQP89TmdUOgioskh8852Tm3PvcXZgnYUse47RKcZtc4YriguCUV2wAhP0KDu6qxzcez7MjkNYIYRpi-on2SFuCWvbuj3K4iw_FzcQtLD5APHK9blyPpfCyNGIqO0y9yBMEfUA-fUobNQxlTeQf5lfTpjufDo7m8vRbyDkY5g0ogvOjBHytRFh0H3-9tMsD1HYXvg-PM0eK2ECPNvdT7Lv7999m38sLj5_WMxnF4VsShQLWgnSSVY2DJUMC8wUgUaVRLXQEdWXDQiiOgBJ-kpRUuMSoFM9QE1RJ5UoT7LF1rd3YsXXXg_C33AnNL8tOL_kwkctDXCm2pY1Ne1aWVV1CaxGHWGItaySFa4heaGt12jX4uaHMObOECM-DYNPcfMpbs54GkaSvNlK1mM3QC_BRi_MXh_7b6y-4ku34YQw0rAyGbzaGXh3PUKIfNBBgjHCghsDp6hitGrog2BqpqpRNbX0cgsuRfppbZVLH5YTzGeYUloTRHGiTv9CpauHQcu0gUqn-p7g9Z4gMRF-xqUYQ-CLr5f77Iv7qfxOcbeTCai3gPQuBA-Ky9udc1NI2vwn7rM_dA8PaDfTkEi7BM9XbvQ2reQ_Jb8AcCYRyA
CitedBy_id crossref_primary_10_1016_j_scitotenv_2013_09_026
crossref_primary_10_1128_AEM_03581_13
crossref_primary_10_3354_dao02597
crossref_primary_10_1021_acsomega_8b01785
crossref_primary_10_1095_biolreprod_112_103366
crossref_primary_10_1186_1756_3305_5_171
crossref_primary_10_1007_s00216_012_6399_3
crossref_primary_10_1128_AEM_02033_09
crossref_primary_10_3390_s100100697
crossref_primary_10_1016_j_scitotenv_2018_09_108
crossref_primary_10_1016_j_watres_2012_08_017
crossref_primary_10_1016_j_watres_2024_121857
crossref_primary_10_1016_j_ijheh_2020_113496
crossref_primary_10_1021_es100311n
crossref_primary_10_1016_j_ab_2014_07_004
crossref_primary_10_1111_1541_4337_12793
crossref_primary_10_1142_S0219720010004963
crossref_primary_10_1093_bioinformatics_btq686
crossref_primary_10_1109_TCAD_2016_2600626
crossref_primary_10_1016_j_watres_2017_10_071
crossref_primary_10_1016_j_watres_2012_09_056
crossref_primary_10_1007_s00216_012_5852_7
crossref_primary_10_1016_j_syapm_2010_06_001
crossref_primary_10_1016_j_mcp_2009_06_002
crossref_primary_10_1016_j_watres_2011_04_049
crossref_primary_10_1016_j_watres_2022_118114
crossref_primary_10_1002_pst_2072
crossref_primary_10_1016_j_watres_2022_119162
crossref_primary_10_1007_s12011_009_8315_z
crossref_primary_10_1016_j_scitotenv_2017_10_267
crossref_primary_10_1021_acs_est_0c01559
crossref_primary_10_1038_ejhg_2010_101
crossref_primary_10_1016_j_watres_2013_02_060
crossref_primary_10_3390_microorganisms8081227
crossref_primary_10_3727_096368914X681955
crossref_primary_10_1016_j_mimet_2016_01_012
crossref_primary_10_1016_j_watres_2016_09_041
crossref_primary_10_1016_j_watres_2020_116014
crossref_primary_10_1021_es502637b
crossref_primary_10_1016_j_watres_2024_121482
crossref_primary_10_1021_es2003167
crossref_primary_10_1128_AEM_07819_11
crossref_primary_10_1128_msphere_00365_23
crossref_primary_10_1016_j_scitotenv_2022_155815
crossref_primary_10_1371_journal_pone_0130812
crossref_primary_10_1016_j_mimet_2014_03_004
crossref_primary_10_1016_j_scitotenv_2024_175740
crossref_primary_10_1016_j_jbiotec_2018_01_016
crossref_primary_10_3390_w12030775
crossref_primary_10_1021_acs_analchem_0c04283
crossref_primary_10_1186_s12859_014_0402_2
crossref_primary_10_1128_AEM_01430_12
crossref_primary_10_1128_AEM_00388_14
crossref_primary_10_1016_j_watres_2021_116845
crossref_primary_10_1016_j_ab_2012_07_020
crossref_primary_10_1016_j_mimet_2021_106186
crossref_primary_10_1080_10408398_2013_873767
crossref_primary_10_1371_journal_pone_0216827
crossref_primary_10_1038_s41598_020_66406_x
crossref_primary_10_1128_AEM_04137_13
crossref_primary_10_1007_s00216_015_8458_z
crossref_primary_10_1016_j_foodcont_2018_11_032
crossref_primary_10_1111_j_1462_2920_2011_02549_x
crossref_primary_10_1016_j_watres_2010_07_066
crossref_primary_10_3389_fmicb_2023_1302586
crossref_primary_10_1016_j_watres_2014_06_036
crossref_primary_10_1007_s00253_011_3159_9
crossref_primary_10_1371_journal_pone_0093031
crossref_primary_10_1128_JCM_01424_10
crossref_primary_10_1016_j_isci_2024_111079
crossref_primary_10_1038_s41597_024_04318_5
crossref_primary_10_1007_s11157_014_9351_5
crossref_primary_10_1016_j_mimet_2011_09_013
crossref_primary_10_1128_AEM_00305_09
crossref_primary_10_1371_journal_pone_0278548
Cites_doi 10.1093/nar/gni141
10.1006/abio.1997.2177
10.1201/9780429258411
10.1128/AEM.66.10.4571-4574.2000
10.1128/MMBR.68.4.669-685.2004
10.1093/nar/gng123
10.1128/AEM.68.10.4853-4862.2002
10.1128/AEM.56.3.782-787.1990
10.1111/1467-9884.00117
10.1093/nar/gng093
10.1146/annurev.mi.39.100185.001541
10.1016/S0723-2020(00)80030-2
10.1093/nar/16.15.7351
10.1080/08898480701298418
10.1038/nbt0993-1026
10.1271/bbb.60366
10.1128/AEM.00023-06
10.1128/AEM.71.7.4117-4120.2005
10.1080/01621459.1996.10476956
10.1002/0470092602
10.1016/S0166-0934(02)00266-5
10.1128/AEM.02852-05
10.1016/j.watres.2004.11.011
10.1080/01621459.1990.10476213
10.1214/ss/1177011136
ContentType Journal Article
Copyright Sivaganesan et al; licensee BioMed Central Ltd. 2008
COPYRIGHT 2008 BioMed Central Ltd.
Copyright © 2008 Sivaganesan et al; licensee BioMed Central Ltd. 2008 Sivaganesan et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Sivaganesan et al; licensee BioMed Central Ltd. 2008
– notice: COPYRIGHT 2008 BioMed Central Ltd.
– notice: Copyright © 2008 Sivaganesan et al; licensee BioMed Central Ltd. 2008 Sivaganesan et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7QO
7TM
8FD
FR3
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-9-120
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Genetics Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 120
ExternalDocumentID oai_doaj_org_article_9f889657b8c4453e950b2909894c415e
10.1186/1471-2105-9-120
PMC2292693
A177752071
18298858
10_1186_1471_2105_9_120
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
0R~
123
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C1A
C6C
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
8FD
FR3
P64
RC3
7X8
5PM
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
ABUWG
ADTOC
AEUYN
AFFHD
AFKRA
ARAPS
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
HMCUK
K6V
K7-
LK8
M1P
M7P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PROAC
PSQYO
UKHRP
UNPAY
ID FETCH-LOGICAL-c630t-74a2bc93690391a19f2e6f32f8eb2fd36ea2fbeec2d4f72513eebfdee570bcfa3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:52:04 EDT 2025
Wed Oct 29 12:16:10 EDT 2025
Thu Aug 21 17:47:55 EDT 2025
Thu Oct 02 08:52:13 EDT 2025
Tue Oct 07 09:47:42 EDT 2025
Mon Oct 20 23:05:57 EDT 2025
Mon Oct 20 17:13:42 EDT 2025
Thu Oct 16 15:48:28 EDT 2025
Wed Feb 19 01:51:20 EST 2025
Thu Apr 24 23:03:37 EDT 2025
Wed Oct 01 01:46:29 EDT 2025
Sat Sep 06 07:27:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Monte Carlo Markov Chain
Posterior Distribution
Bayesian Credible Interval
Monte Carlo Markov Chain Method
Monte Carlo Markov Chain Approach
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-74a2bc93690391a19f2e6f32f8eb2fd36ea2fbeec2d4f72513eebfdee570bcfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-9-120
PMID 18298858
PQID 20345040
PQPubID 23462
ParticipantIDs doaj_primary_oai_doaj_org_article_9f889657b8c4453e950b2909894c415e
unpaywall_primary_10_1186_1471_2105_9_120
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2292693
proquest_miscellaneous_70497467
proquest_miscellaneous_20345040
gale_infotracmisc_A177752071
gale_infotracacademiconefile_A177752071
gale_incontextgauss_ISR_A177752071
pubmed_primary_18298858
crossref_citationtrail_10_1186_1471_2105_9_120
crossref_primary_10_1186_1471_2105_9_120
springer_journals_10_1186_1471_2105_9_120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-25
PublicationDateYYYYMMDD 2008-02-25
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-25
  day: 25
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2008
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References V Torsvik (2105_CR9) 1990; 56
SP Brooks (2105_CR19) 1998; 47
RG Rutledge (2105_CR14) 2003; 31
SC Seifring (2105_CR32) 2007
N Lalam (2105_CR17) 2007
OC Shanks (2105_CR26) 2006; 72
DJ Spiegelhalter (2105_CR23) 2003
ABI (2105_CR3) 2006
AE Gelfand (2105_CR20) 1990; 85
W Ludwig (2105_CR31) 2000; 23
Y Zhang (2105_CR35) 2003; 31
AW Ibekwe (2105_CR13) 2002; 68
VL Singer (2105_CR6) 1997; 249
N Lalam (2105_CR18) 2007; 14
J Handlesman (2105_CR7) 2004; 68
EM Conlon (2105_CR16) 2007; 8
MK Cowles (2105_CR25) 1996; 91
R Higuchi (2105_CR28) 1988; 16
M Stocher (2105_CR29) 2003; 108
J Sambrook (2105_CR1) 2001
RA Haugland (2105_CR27) 2005; 39
R Higuchi (2105_CR2) 1993; 11
AD Blackwood (2105_CR30) 2007
AE Bernhard (2105_CR33) 2000; 66
N Fierer (2105_CR4) 2005; 71
A Gelman (2105_CR21) 1995
A Toyota (2105_CR11) 2006; 70
2105_CR22
JT Staley (2105_CR10) 1985; 39
ABI (2105_CR5) 2006
A Frigessi (2105_CR15) 2005; 33
B Martin (2105_CR12) 2006; 72
A Gelman (2105_CR24) 1992; 7
DJ Grimes (2105_CR8) 1986; 3
SAS (2105_CR34) 1990
12565148 - J Virol Methods. 2003 Mar;108(1):1-8
3045756 - Nucleic Acids Res. 1988 Aug 11;16(15):7351-67
11249026 - Syst Appl Microbiol. 2000 Dec;23(4):556-62
12324331 - Appl Environ Microbiol. 2002 Oct;68(10):4853-62
9212875 - Anal Biochem. 1997 Jul 1;249(2):228-38
16957227 - Appl Environ Microbiol. 2006 Sep;72(9):6040-8
17402916 - Stat Appl Genet Mol Biol. 2007;6:Article10
15707628 - Water Res. 2005 Feb;39(4):559-68
16204447 - Nucleic Acids Res. 2005;33(17):e143
17343745 - BMC Bioinformatics. 2007;8:80
12907745 - Nucleic Acids Res. 2003 Aug 15;31(16):e93
16751515 - Appl Environ Microbiol. 2006 Jun;72(6):4054-60
2856614 - Microbiol Sci. 1986 Nov;3(11):324-9
7764001 - Biotechnology (N Y). 1993 Sep;11(9):1026-30
15590779 - Microbiol Mol Biol Rev. 2004 Dec;68(4):669-85
11010920 - Appl Environ Microbiol. 2000 Oct;66(10):4571-4
16000830 - Appl Environ Microbiol. 2005 Jul;71(7):4117-20
17151472 - Biosci Biotechnol Biochem. 2006 Dec;70(12):2965-73
3904603 - Annu Rev Microbiol. 1985;39:321-46
2317046 - Appl Environ Microbiol. 1990 Mar;56(3):782-7
18209285 - J Water Health. 2008 Jun;6(2):225-37
14530456 - Nucleic Acids Res. 2003 Oct 15;31(20):e123
References_xml – volume: 3
  start-page: 324
  year: 1986
  ident: 2105_CR8
  publication-title: Microbiology Science
– volume: 33
  start-page: e143
  issue: 17
  year: 2005
  ident: 2105_CR15
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gni141
– volume: 249
  start-page: 228
  issue: 2
  year: 1997
  ident: 2105_CR6
  publication-title: Analytical Biochemistry
  doi: 10.1006/abio.1997.2177
– volume-title: Bayesian Data Analysis
  year: 1995
  ident: 2105_CR21
  doi: 10.1201/9780429258411
– volume: 66
  start-page: 4571
  issue: 10
  year: 2000
  ident: 2105_CR33
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.66.10.4571-4574.2000
– volume-title: Applied Biosystems
  year: 2006
  ident: 2105_CR5
– volume: 68
  start-page: 669
  issue: 4
  year: 2004
  ident: 2105_CR7
  publication-title: Microbiology and Molecular Biology Reviews
  doi: 10.1128/MMBR.68.4.669-685.2004
– volume: 31
  start-page: e123
  year: 2003
  ident: 2105_CR35
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gng123
– start-page: 1
  volume-title: Statistical Inference for Quantitative Polymerase Chain Reaction Using a Hidden Markov Model: A Bayesian Approach
  year: 2007
  ident: 2105_CR17
– volume: 68
  start-page: 4853
  issue: 10
  year: 2002
  ident: 2105_CR13
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.68.10.4853-4862.2002
– volume: 56
  start-page: 782
  year: 1990
  ident: 2105_CR9
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.56.3.782-787.1990
– volume: 47
  start-page: 69
  year: 1998
  ident: 2105_CR19
  publication-title: The Statistician
  doi: 10.1111/1467-9884.00117
– volume: 31
  start-page: e93
  issue: 16
  year: 2003
  ident: 2105_CR14
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gng093
– volume: 39
  start-page: 321
  year: 1985
  ident: 2105_CR10
  publication-title: Annual Reviews in Microbiology
  doi: 10.1146/annurev.mi.39.100185.001541
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 2001
  ident: 2105_CR1
– volume: 8
  start-page: 1
  issue: 80
  year: 2007
  ident: 2105_CR16
  publication-title: BMC Bioinformatics
– volume-title: Applied Biosystems
  year: 2006
  ident: 2105_CR3
– volume: 23
  start-page: 556
  issue: 4
  year: 2000
  ident: 2105_CR31
  publication-title: Systematic and Applied Microbiology
  doi: 10.1016/S0723-2020(00)80030-2
– volume: 16
  start-page: 7351
  year: 1988
  ident: 2105_CR28
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/16.15.7351
– volume: 14
  start-page: 111
  issue: 2
  year: 2007
  ident: 2105_CR18
  publication-title: Mathematical Population Studies
  doi: 10.1080/08898480701298418
– volume: 11
  start-page: 1026
  year: 1993
  ident: 2105_CR2
  publication-title: Biotechnology
  doi: 10.1038/nbt0993-1026
– volume: 70
  start-page: 2965
  issue: 12
  year: 2006
  ident: 2105_CR11
  publication-title: Bioscience, Biotechnology, and Biochemistry
  doi: 10.1271/bbb.60366
– volume: 72
  start-page: 4054
  issue: 6
  year: 2006
  ident: 2105_CR26
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.00023-06
– volume: 71
  start-page: 4117
  issue: 7
  year: 2005
  ident: 2105_CR4
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.71.7.4117-4120.2005
– volume: 91
  start-page: 883
  year: 1996
  ident: 2105_CR25
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1996.10476956
– volume-title: Bayesian Approaches to Clinical Trials and Health-Care Evaluation
  year: 2003
  ident: 2105_CR23
  doi: 10.1002/0470092602
– volume: 108
  start-page: 1
  year: 2003
  ident: 2105_CR29
  publication-title: Journal of Virology Methods
  doi: 10.1016/S0166-0934(02)00266-5
– volume-title: In Preparation
  year: 2007
  ident: 2105_CR30
– volume-title: SAS/STAT User's Guide Version 6
  year: 1990
  ident: 2105_CR34
– volume: 72
  start-page: 6040
  issue: 9
  year: 2006
  ident: 2105_CR12
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.02852-05
– ident: 2105_CR22
– volume: 39
  start-page: 559
  year: 2005
  ident: 2105_CR27
  publication-title: Water Research
  doi: 10.1016/j.watres.2004.11.011
– volume-title: Journal of Water and Health
  year: 2007
  ident: 2105_CR32
– volume: 85
  start-page: 398
  year: 1990
  ident: 2105_CR20
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1990.10476213
– volume: 7
  start-page: 457
  year: 1992
  ident: 2105_CR24
  publication-title: Statistical Science
  doi: 10.1214/ss/1177011136
– reference: 16957227 - Appl Environ Microbiol. 2006 Sep;72(9):6040-8
– reference: 12565148 - J Virol Methods. 2003 Mar;108(1):1-8
– reference: 15707628 - Water Res. 2005 Feb;39(4):559-68
– reference: 14530456 - Nucleic Acids Res. 2003 Oct 15;31(20):e123
– reference: 17402916 - Stat Appl Genet Mol Biol. 2007;6:Article10
– reference: 9212875 - Anal Biochem. 1997 Jul 1;249(2):228-38
– reference: 15590779 - Microbiol Mol Biol Rev. 2004 Dec;68(4):669-85
– reference: 17151472 - Biosci Biotechnol Biochem. 2006 Dec;70(12):2965-73
– reference: 11010920 - Appl Environ Microbiol. 2000 Oct;66(10):4571-4
– reference: 3045756 - Nucleic Acids Res. 1988 Aug 11;16(15):7351-67
– reference: 16000830 - Appl Environ Microbiol. 2005 Jul;71(7):4117-20
– reference: 16751515 - Appl Environ Microbiol. 2006 Jun;72(6):4054-60
– reference: 18209285 - J Water Health. 2008 Jun;6(2):225-37
– reference: 16204447 - Nucleic Acids Res. 2005;33(17):e143
– reference: 12907745 - Nucleic Acids Res. 2003 Aug 15;31(16):e93
– reference: 7764001 - Biotechnology (N Y). 1993 Sep;11(9):1026-30
– reference: 17343745 - BMC Bioinformatics. 2007;8:80
– reference: 2317046 - Appl Environ Microbiol. 1990 Mar;56(3):782-7
– reference: 11249026 - Syst Appl Microbiol. 2000 Dec;23(4):556-62
– reference: 12324331 - Appl Environ Microbiol. 2002 Oct;68(10):4853-62
– reference: 2856614 - Microbiol Sci. 1986 Nov;3(11):324-9
– reference: 3904603 - Annu Rev Microbiol. 1985;39:321-46
SSID ssj0017805
Score 2.2039618
Snippet Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA...
In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However,...
Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA...
Abstract Background In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120
SubjectTerms Algorithms
Base Sequence
Bayes Theorem
Bioinformatics
Biomedical and Life Sciences
Calibration
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Identification and classification
Life Sciences
Methodology
Methodology Article
Methods
Microarrays
Molecular Sequence Data
Pattern Recognition, Automated - methods
Plasmids
Plasmids - genetics
Plasmids - standards
Polymerase chain reaction
Reverse Transcriptase Polymerase Chain Reaction - instrumentation
Reverse Transcriptase Polymerase Chain Reaction - standards
Sequence Analysis, DNA - methods
Sequence Analysis, DNA - standards
United States
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJAQ8IL4JDLAQEuwhzHVsx37sBtNAYkKDSXuzHMcuk0palgbU_567JC0NqNoLr_FFSu8u99Hc_X6EvIohRlF4lgYVWCqULFPI4z7VkZcyLwQLBS44fzpRx2fi47k836D6wpmwDh64U9y-iVobBbdpL4TMgpGs4IYhbriH5BMw-jJtVs1U__0AkfrbvaJ8lEJTI3tQn5FW--trKfIAsEE-amH7_w3OG9np78nJ9efTW-RGU83d8pebTjcy1NEdcrsvLem4-0l3ybVQ3SPXO7LJ5X2yGNMDtwy4NEk73mgKBSsFG_mWwquaUCggpymyzdMfjava9TMIhvTz4SmKYWONZqS-ufwZaooj8xPqitZ7A51DHf79oqTvTsZ09QdF_YCcHb3_enic9pwLqVcZW6S5cLzwyPKH0PFuZCIPKmY8amjBY5mp4HgsQvC8FDGH4igLYM0yBJmzwkeXPSQ71awKjwnNlMdyD-q7wESphGEsSuHkyBUg7MuEvF1p3voekBx5Maa2bUy0smgqi6ayxoKpEvJmfcO8w-LYLnqAplyLIYh2ewFcy_auZa9yrYS8REewCJNR4RzOxDV1bT98ObXjUZ7nkkN9lpDXvVCcwdN71681gA4QWWsguTuQhPfYD45frPzN4hEOv1Vh1tSWs0xICLbbJXLo85A3JiGPOv_8ox_NjdZSJyQfeO5AM8OT6uJbCzPOueHKZAnZW_m47eNbvV3te-uX4CoTPfkfJnpKbnYDPDzlcpfsLC6b8AyqxEXxvA0IvwHzql6R
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQEAIeEL8JDLAQEuzB4Dq24zx2hWkgMaHBpL1ZjmOXSSUrSwPqf89dkpYGqBCv9SWKfOe77-q77wh5HkOMsvCcBR04k1qVDOK4ZyaKUmWF5KHABucPR_rwRL4_Vac9SRL2wmze34-Mfj0C58kgLVEMWfshN78MEUq3t7J6sr4uQGL-nrfnLw8NQk7LzP-n_90IQL8XR65vSK-Tq001d8sfbjbbCEIHN8mNHj3ScafuW-RSqG6TK908yeUdshjTfbcM2BdJu9HQFDApBTX4dkpXNaWAEWcMB8rTb42r2g4z8Hf04-QYxTB3Rk1R31x8DzXFqvgpdUVroIHOAWp_PSvpm6MxXf0HUd8lJwdvP08OWT9WgXmd8gXLpBOFx0F-yA7vRnkUQcdURANZdixTHZyIRQhelDJmgH_SAAorQ1AZL3x06T2yU51X4QGhqfaI6ADCBS5LLXPOo5JOjVwBwr5MyKvVzlvfc47j6IuZbXMPoy2qyqKqbG5BVQl5uX5g3tFtbBfdR1WuxZAnu_0BzMf2x87m0Zhcg9EZL6VKQ654IXKOrPMeoEtIyDM0BItMGBWW2kxdU9f23adjOx5lWaYEQLCEvOiF4jl8vXd95wLsAZJnDSR3B5JwVP1g-enK3iwuYX1bFc6b2gqeSgX-dLtEBqkcjoZJyP3OPn_tjxG5McokJBtY7mBnhivV2ZeWSVyIXOg8TcjeysZt78Lq7du-tz4E_1LRw_947yNyrSvFEUyoXbKzuGjCY8B7i-JJe9Z_AvuQTMs
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTQh44HsQGGAhJNhDutSJneSxG0wDiTINKo0ny3bsUtGlpW1A5a_nLh-lGVQIidf4FyW53J3vkrvfEfLcWecibQLfChv4keCZD_u48RPHMh7rKLAaG5zf9cXJIHp7zs-3yPumF0ZfGD2a1KShSFTcWW9DH1ddDjhFwc4OppmrjD4RB11wsj6kL9xHdn_I4XcEh-B8m-wM-qe9T2WPUY2oCX7-cFZrbyop_H931Gs71eUqytWv1OvkapFP1fK7Go_Xdqvjm2TaPGdVpPKlUyx0x_y4RAH5HwVxi9yoI1vaq1TxNtmy-R1ypZp1ubxLFj16qJYWezZpNbaawkUpqIgpJ4jlQwrx69jHYff0a6HysvsNfDE9PTpDGOb1qEXUFLNvdk6xYn9IlS6Nx9IppAEXo4y-6vdo831kfo8Mjl9_PDrx65EPvhFhsPDjSDFtcMggMterbuqYFS5kLrGauSwUVjGnrTUsi1wMsVloQZkya3kcaONUuEu280luHxAaCoPRJoSXNogyEaVB4HikeFdpAJvMI53mZUtT86HjWI6xLPOiREgUpURRylSCKD3ycnXCtKIC2Qw9RO1ZwZDDuzwwmQ1l7RJk6pIkFWAQiYkiHtqUB5qlATLiGwirrEeeoe5JZOnIsQxoqIr5XL75cCZ73TiOOYPw0CMvapCbwN0bVXdVgAyQ2KuF3GshwY2Y1vLTRsUlLmHtXW4nxVyyIIw4-PrNiBjSTBxb45H7lUn8kk_C0iThiUfilrG0JNNeyUefS5ZzxlIm0tAj-41Zydq9zjeLfX9ld397RQ__AfuIXKvKhJjP-B7ZXswK-xhi0YV-UvuXn2Y8hGU
  priority: 102
  providerName: Unpaywall
Title A Bayesian method for calculating real-time quantitative PCR calibration curves using absolute plasmid DNA standards
URI https://link.springer.com/article/10.1186/1471-2105-9-120
https://www.ncbi.nlm.nih.gov/pubmed/18298858
https://www.proquest.com/docview/20345040
https://www.proquest.com/docview/70497467
https://pubmed.ncbi.nlm.nih.gov/PMC2292693
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-9-120
https://doaj.org/article/9f889657b8c4453e950b2909894c415e
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgEwIeEN8ERrEQEuwhI3VsJ3lAKCtMo9KqaaPS9mQ5jl0mlbTrB9D_nrskbRdYhXiNL1F0H7675Pz7EfLGWed4ZgLfShv4XIrchzxu_NixXEQZD2yGB5yPevKwz7tn4mxNB1QrcHpta4d8Uv3JcO_X5eIjBPyHMuBj-b4NG6wPrYvwEdkf-vdtSFMJ8jgc8fUvBQTvr7F9rrmpkZZK9P6_9-grSerPAcrVX9S75Pa8GOvFTz0cXklUB_fJvbrCpGnlEg_IDVs8JLcqzsnFIzJL6b5eWDw7SSv6aAp1KwVTmZLJqxhQqCOHPpLO08u5LspTaLAn0uPOCYphf43WpGY--WGnFCfnB1RnpRNbOoZy_PtFTj_1Urr8TjF9TPoHn792Dv2aesE3MgxmfsQ1ywyS_SGCvG4njlnpQuZi6MRdHkqrmcusNSznLoIaKbRg1NxaEQWZcTp8QraKUWGfERpKg1UflHk24LnkSRA4wbVo6wyETe6RvaXmlalxyZEeY6jK_iSWCk2l0FQqUWAqj7xb3TCuIDk2i-6jKVdiiKVdXhhNBqoOTZW4OE4kOGZsOBehTUSQsSRAZHoD5Y31yGt0BIVoGQWO4wz0fDpVX05PVNqOokgwKNM88rYWciN4e6Pr0w2gAwTYakjuNCQhnE1j-dXS3xQu4QxcYUfzqWJByAXsuZslImj3kD7GI08r_1zrJ2ZJHIvYI1HDcxuaaa4UF99KtHHGEiaT0CO7Sx9XyyjdrPbdVRD8y0TP_-O5L8idalyH-UzskK3ZZG5fQk04y1pkO027p90WudmRnVb5ZaVVxj-s9HvH6flvQJtgZA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELemTWjwgPgmMJiFkGAPgdSxneQxG0xb2Sq0D2lvluPYZVJJS9OA-t9zl4-yABXitb5Eke_Dv6vvfkfIa2ed45kJfCtt4HMpch_OcePHjuUiynhgM2xwPh3Jo0s-vBJXG2TQ9cLU1e7dlWQdqWu3juX7AYRRHxIU4SN_P2TpW1hhBb64labD8-Hq6gBJ-lsOn7881jt-apb-P2PxjcPo90LJ1W3pHbJdFTO9_KEnkxsH0uE9crdFkjRtVH-fbNjiAbnVzJZcPiSLlO7rpcUeSdqMiaaATymoxNQTu4oxBbw48XG4PP1W6aLuNoPYRz8fnKEY5tGoNWqq-XdbUqyQH1Od1cZq6Qxg99frnH4YpbT7P6J8RC4PP14cHPntiAXfyDBY-BHXLDM41A-Z4vUgccxKFzIXQ8bt8lBazVxmrWE5dxFgodCC8nJrRRRkxunwMdkspoV9SmgoDaI7gHM24LnkSRA4wbUY6AyETe6Rd93OK9Pyj-MYjImq85BYKlSVQlWpRIGqPPJ29cCsod5YL7qPqlyJIWd2_cN0PlatC6rExXEiwQBjw7kIbSKCjCUBMtAbgDHWI6_QEBSyYhRYdjPWVVmq4_MzlQ6iKBIM4JhH3rRCbgpfb3TbxQB7gERaPcmdniS4rekt73b2pnAJa90KO61KxYKQC4it6yUiSOtwTIxHnjT2-Wt_YpbEsYg9EvUst7cz_ZXi-kvNKs5YwmQSemSvs3HVhrNy_bbvrZzgXyp69h_v3SXbRxenJ-rkePTpObndlOgwn4kdsrmYV_YF4MBF9rL1_J_nslUk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELfQEK8PiDeBwSyEBPtgljq2k3zsOqaNRzUNJu2b5Th2mVTS0jSg_vfc5VEWoEJ8rS9RdO-r735HyEvvvBeZDZlTLmRCyZxBHLcs8TyXcSZCl-GA88exOjoT787ledubU3bd7t2VZDPTgChNxXJvnvvGxBO1NwCXyqBYkQyx_KFivyogtOECg5EarS8REK6_RfP5y0O9QFTj9f_plS-Fpd9bJtf3prfIjaqYm9UPM51eCk2Hd8jtNqekw0YJ7pIrrrhHrjVbJlf3yXJI983K4bQkbRZGU8hUKQjH1ru7igmFzHHKcM08_VaZop47Ay9IT0anSIYVNcqP2mrx3ZUUe-Un1GS12jo6hwT860VOD8ZD2v0zUT4gZ4dvP4-OWLtsgVkVhUsWC8Mzi-v9EDPeDFLPnfIR9wnU3j6PlDPcZ85ZngsfQ1YUORBj7pyMw8x6Ez0kW8WscI8JjZTFPA8SOxeKXIk0DL0URg5MBsQ2D8ibjvPatkjkuBBjquuKJFEaRaVRVDrVIKqAvF4_MG9AODaT7qMo12SInl3_MFtMdGuMOvVJkipQxcQKISOXyjDjaYhY9BYSGheQF6gIGvExCmzAmZiqLPXxp1M9HMRxLDkkZgF51RL5GXy9Ne08A_AAIbV6lNs9SjBg2zve6fRN4xF2vRVuVpWah5GQ4GU3U8RQ4OHCmIA8avTzF38SniaJTAIS9zS3x5n-SXHxpcYX5zzlKo0CstvpuG4dW7mZ7btrI_iXiJ78x3t3yPWTg0P94Xj8_im52fTqcMblNtlaLir3DBLCZfa8NvufBrZYAQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTQh44HsQGGAhJNhDutSJneSxG0wDiTINKo0ny3bsUtGlpW1A5a_nLh-lGVQIidf4FyW53J3vkrvfEfLcWecibQLfChv4keCZD_u48RPHMh7rKLAaG5zf9cXJIHp7zs-3yPumF0ZfGD2a1KShSFTcWW9DH1ddDjhFwc4OppmrjD4RB11wsj6kL9xHdn_I4XcEh-B8m-wM-qe9T2WPUY2oCX7-cFZrbyop_H931Gs71eUqytWv1OvkapFP1fK7Go_Xdqvjm2TaPGdVpPKlUyx0x_y4RAH5HwVxi9yoI1vaq1TxNtmy-R1ypZp1ubxLFj16qJYWezZpNbaawkUpqIgpJ4jlQwrx69jHYff0a6HysvsNfDE9PTpDGOb1qEXUFLNvdk6xYn9IlS6Nx9IppAEXo4y-6vdo831kfo8Mjl9_PDrx65EPvhFhsPDjSDFtcMggMterbuqYFS5kLrGauSwUVjGnrTUsi1wMsVloQZkya3kcaONUuEu280luHxAaCoPRJoSXNogyEaVB4HikeFdpAJvMI53mZUtT86HjWI6xLPOiREgUpURRylSCKD3ycnXCtKIC2Qw9RO1ZwZDDuzwwmQ1l7RJk6pIkFWAQiYkiHtqUB5qlATLiGwirrEeeoe5JZOnIsQxoqIr5XL75cCZ73TiOOYPw0CMvapCbwN0bVXdVgAyQ2KuF3GshwY2Y1vLTRsUlLmHtXW4nxVyyIIw4-PrNiBjSTBxb45H7lUn8kk_C0iThiUfilrG0JNNeyUefS5ZzxlIm0tAj-41Zydq9zjeLfX9ld397RQ__AfuIXKvKhJjP-B7ZXswK-xhi0YV-UvuXn2Y8hGU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+method+for+calculating+real-time+quantitative+PCR+calibration+curves+using+absolute+plasmid+DNA+standards&rft.jtitle=BMC+bioinformatics&rft.au=Sivaganesan%2C+Mano&rft.au=Seifring%2C+Shawn&rft.au=Varma%2C+Manju&rft.au=Haugland%2C+Richard+A&rft.date=2008-02-25&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1186%2F1471-2105-9-120&rft.externalDocID=10_1186_1471_2105_9_120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon