Temporal Diffusion Ratio (TDR) for imaging restricted diffusion: Optimisation and pre-clinical demonstration
•Temporal Diffusion Ratio (TDR) maps areas of restricted diffusion using two different gradient waveforms.•The two optimised gradient waveforms have: long δ + low G and short δ + high G.•If data is noisy, calculating TDR using HARDI acqisition subsets increases accuracy.•First demonstration of TDR i...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 269; p. 119930 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2023
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2023.119930 |
Cover
Abstract | •Temporal Diffusion Ratio (TDR) maps areas of restricted diffusion using two different gradient waveforms.•The two optimised gradient waveforms have: long δ + low G and short δ + high G.•If data is noisy, calculating TDR using HARDI acqisition subsets increases accuracy.•First demonstration of TDR in pre-clinical imaging.•TDR values are strongly correlated with axon diameter in rat spinal cord.
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general. |
---|---|
AbstractList | •Temporal Diffusion Ratio (TDR) maps areas of restricted diffusion using two different gradient waveforms.•The two optimised gradient waveforms have: long δ + low G and short δ + high G.•If data is noisy, calculating TDR using HARDI acqisition subsets increases accuracy.•First demonstration of TDR in pre-clinical imaging.•TDR values are strongly correlated with axon diameter in rat spinal cord.
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general. Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general. Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general. Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique ( Dell’Acqua et al., proc. ISMRM 2019 ) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general. Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general. |
ArticleNumber | 119930 |
Author | Palombo, Marco Warner, William Drobnjak, Ivana Cruz, Renata Jones, Derek K. Dell'Acqua, Flavio Callaghan, Ross Shemesh, Noam Ianus, Andrada |
AuthorAffiliation | d Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal e AINOSTICS Ltd., Manchester, United Kingdom b Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom c School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom f NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom a Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom |
AuthorAffiliation_xml | – name: c School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom – name: e AINOSTICS Ltd., Manchester, United Kingdom – name: b Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom – name: f NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom – name: a Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom – name: d Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal |
Author_xml | – sequence: 1 givenname: William surname: Warner fullname: Warner, William organization: Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom – sequence: 2 givenname: Marco surname: Palombo fullname: Palombo, Marco organization: Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom – sequence: 3 givenname: Renata surname: Cruz fullname: Cruz, Renata organization: Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal – sequence: 4 givenname: Ross orcidid: 0000-0003-1178-6005 surname: Callaghan fullname: Callaghan, Ross organization: AINOSTICS Ltd., Manchester, United Kingdom – sequence: 5 givenname: Noam surname: Shemesh fullname: Shemesh, Noam organization: Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal – sequence: 6 givenname: Derek K. surname: Jones fullname: Jones, Derek K. organization: Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom – sequence: 7 givenname: Flavio surname: Dell'Acqua fullname: Dell'Acqua, Flavio organization: NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom – sequence: 8 givenname: Andrada orcidid: 0000-0001-9893-1724 surname: Ianus fullname: Ianus, Andrada email: andrada.ianus@neuro.fchampalimaud.org organization: Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal – sequence: 9 givenname: Ivana orcidid: 0000-0002-3989-1715 surname: Drobnjak fullname: Drobnjak, Ivana email: i.drobnjak@ucl.ac.uk organization: Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36750150$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAQxyNURB_wFZAlLuWQxa84MQcEtDwqVapULWfLj8niJWtvnaRSvz3ObpfSPe3Jlmfm5__M_E-LoxADFAUieEYwER-WswBjin6lFzCjmLIZIVIy_KI4IVhWpaxqejTdK1Y2OXRcnPb9EmMsCW9eFcdM1BUmFT4pujms1jHpDl36th17HwO61YOP6Hx-efsetTGh6RsfFihBPyRvB3DI7ZI_opv14Fe-n2oC0sGhdYLSdj54m6kOVjHksk34dfGy1V0Pbx7Ps-LX92_zi5_l9c2Pq4sv16UVDA8lN45L4bTT0mgMpJYtriyjmjrDaykFazQx2hBsiXBGWyAVtXUl68YILRg7K662XBf1Uq1TbiA9qKi92jzEtFA6Dd52oBpLDbWUMMIMbxvWCMdMK9rGNMRhAZn1actaj2YFzkLIzXTPoM8jwf9Wi3ivapFVcZ4B54-AFO_GPEKVp2Wh63SAOPaK1jXP7XIucuq7vdRlHFPIo8pZDcYVZ3Tq7u3_iv5J2S31SbJNse8TtMr6YbOALNB3imA1uUgt1ZOL1OQitXVRBjR7gN0fB5R-3ZZC3u-9h6R66yFYcD6BHfIC_CGQz3uQnZ_-wMNhiL_tp_-g |
CitedBy_id | crossref_primary_10_1002_hbm_26420 crossref_primary_10_1002_nbm_5087 crossref_primary_10_7554_eLife_101069_3 crossref_primary_10_1016_j_jmr_2024_107745 crossref_primary_10_1002_mp_17453 crossref_primary_10_3389_fninf_2023_1208073 crossref_primary_10_7554_eLife_101069 |
Cites_doi | 10.1093/brain/awp042 10.1152/ajplegacy.1939.127.1.131 10.1073/pnas.1004841107 10.1016/S0006-3495(79)85164-4 10.62721/diffusion-fundamentals.18.665 10.1109/TMI.2009.2015756 10.1523/JNEUROSCI.0203-14.2014 10.1158/0008-5472.CAN-21-2929 10.1002/nbm.3711 10.1016/0006-8993(92)90178-C 10.1371/journal.pone.0133201 10.1016/j.neuroimage.2020.116835 10.4329/wjr.v8.i9.785 10.1016/j.neuroimage.2018.10.033 10.1016/j.jmr.2011.02.022 10.1016/j.neuroimage.2021.118833 10.1007/s00429-019-01961-2 10.1016/j.neuroimage.2010.03.063 10.1038/srep46147 10.1016/j.neuroimage.2020.117107 10.1016/j.jmr.2010.05.017 10.1113/JP275498 10.1093/biomet/52.1-2.193 10.1002/nbm.1795 10.1002/mrm.25631 10.1002/mrm.21577 10.1002/mrm.22267 10.7554/eLife.49855 10.1016/j.neuroimage.2014.09.006 10.1002/mrm.28743 10.1002/nbm.3450 10.1016/j.neuroimage.2022.119277 10.1101/2020.10.01.320507 10.1002/1522-2594(200011)44:5<713::AID-MRM9>3.0.CO;2-6 10.1016/j.neuroimage.2020.117197 10.1002/nbm.3405 10.1016/j.neuroimage.2016.08.016 10.1006/jmrb.1994.1038 10.1002/mrm.25441 10.1002/mrm.27463 10.1158/0008-5472.CAN-13-2511 10.1002/mrm.1910370115 10.1063/1.1680931 10.1007/BF00308818 10.1016/j.neuroimage.2020.117619 10.1136/jnnp.34.4.369 10.1016/j.neuroimage.2010.03.072 10.1016/j.neuroimage.2021.117849 10.1038/s41597-021-01092-6 10.1016/j.jmr.2017.02.017 10.1101/2022.04.08.487640 10.12688/f1000research.15021.1 10.1038/s41598-020-65956-4 10.1016/j.neuroimage.2021.118424 10.1002/nbm.4170 10.1177/0271678X18759859 10.1007/s13244-018-0624-3 10.1001/archpsyc.55.3.215 10.1006/jmre.1997.1233 10.1016/j.neuroimage.2020.117228 10.3389/fphy.2017.00058 10.1002/nbm.3484 10.1016/j.neuroimage.2022.119135 10.3389/fphy.2018.00049 10.1016/j.neuroimage.2012.03.072 10.1002/mrm.10385 10.1002/acn3.445 10.1016/j.neuroimage.2015.06.038 10.1002/nbm.3462 10.1002/nbm.3841 10.1016/j.neuroimage.2010.05.043 10.3389/fnhum.2017.00393 10.1002/nbm.1175 10.1016/j.neuroimage.2017.07.060 10.1007/s11682-021-00548-y 10.1038/s42003-020-1050-x 10.1016/j.neuroimage.2017.08.039 10.1016/j.neuroimage.2022.118976 10.1016/j.neuroimage.2015.07.074 10.1002/mrm.27101 10.1016/j.neuroimage.2018.09.075 10.1016/j.neuroscience.2013.12.044 10.1098/rspb.1982.0092 10.1002/mrm.28189 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier Inc. Copyright Elsevier Limited Apr 1, 2023 |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Apr 1, 2023 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM DOA |
DOI | 10.1016/j.neuroimage.2023.119930 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database ProQuest - Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 119930 |
ExternalDocumentID | oai_doaj_org_article_8c2b2c21313b4f8386d3bf6f8b81d06e PMC7615244 36750150 10_1016_j_neuroimage_2023_119930 S1053811923000782 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 104943 – fundername: Wellcome Trust grantid: 096646 – fundername: Medical Research Council grantid: MR/T020296/1 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SEW SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ACLOT ~HD 5PM |
ID | FETCH-LOGICAL-c630t-4bd496dada9ba0e179f05c32a2db4799638a1bab10c16dbace152c75978b6a633 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:30:20 EDT 2025 Thu Aug 21 18:35:50 EDT 2025 Sun Sep 28 09:35:59 EDT 2025 Wed Aug 13 04:49:14 EDT 2025 Mon Jul 21 05:19:32 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 03:02:25 EDT 2025 Fri Feb 23 02:39:37 EST 2024 Tue Aug 26 17:21:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spinal cord TDR Diffusion Microstructure Optimization Axon diameter |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023. Published by Elsevier Inc. This work is licensed under a BY 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-4bd496dada9ba0e179f05c32a2db4799638a1bab10c16dbace152c75978b6a633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Shared first author. Shared senior author. |
ORCID | 0000-0003-1178-6005 0000-0001-9893-1724 0000-0002-3989-1715 |
OpenAccessLink | https://doaj.org/article/8c2b2c21313b4f8386d3bf6f8b81d06e |
PMID | 36750150 |
PQID | 2780054323 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8c2b2c21313b4f8386d3bf6f8b81d06e pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615244 proquest_miscellaneous_2774496446 proquest_journals_2780054323 pubmed_primary_36750150 crossref_citationtrail_10_1016_j_neuroimage_2023_119930 crossref_primary_10_1016_j_neuroimage_2023_119930 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2023_119930 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2023_119930 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Alexander (bib0018) 2010; 52 Ong, Wehrli (bib0029) 2010; 51 Devan (bib0057) 2022; 82 van Gelderen, DesPres, van Zijl, Moonen (bib0084) 1994; 103 Lawrence (bib0001) 2021; 15 Neuman (bib0085) 1974; 60 Lebel, Caverhill-Godkewitsch, Beaulieu (bib0005) 2010; 52 Paquette, M., Eichner, C., Knösche, T.R. & Anwander, A. Axon diameter measurements using diffusion MRI are infeasible. bioRxiv 2020.10.01.320507 (2021) doi:10.1101/2020.10.01.320507. Zhang, Dyrby, Alexander (bib0028) 2011; 14 Alves (bib0093) 2022; 247 Jespersen, Olesen, Hansen, Shemesh (bib0050) 2018; 182 Lampinen, Lätt, Wasselius, van Westen, Nilsson (bib0048) 2021; 86 Xu (bib0031) 2014; 103 Fick, Sepasian, Pizzolato, Ianus, Deriche (bib0088) 2017 Tian (bib0076) 2022; 9 Dissecting brain grey and white matter microstructure: a novel clinical diffusion MRI protocol. bioRxiv 2022.04.08.487640 (2022) doi:10.1101/2022.04.08.487640. Lee, Papaioannou, Kim, Novikov, Fieremans (bib0051) 2020; 3 Dubois (bib0003) 2014; 276 Wu, Martin, Northington, Zhang (bib0037) 2019; 39 Ianuş (bib0077) 2022; 254 Callaghan, Alexander, Palombo, Zhang (bib0095) 2020; 220 Ianuş, Alexander, Drobnjak (bib0065) 2016 Siow (bib0035) 2013; 18 Harkins, Beaulieu, Xu, Gore, Does (bib0019) 2021; 227 Olesen, Ianus, Shemesh, Jespersen (bib0046) 2022; 30 Panagiotaki (bib0063) 2014; 74 Olesen, Østergaard, Shemesh, Jespersen (bib0075) 2021; 231 Cluskey, Ramsden (bib0009) 2001; 54 Dukkipati, Garrett, Elbasiouny (bib0011) 2018; 596 Bar-Shir, Cohen (bib0032) 2008; 21 Drobnjak, Zhang, Ianuş, Kaden, Alexander (bib0034) 2016; 75 Grussu (bib0083) 2017; 4 Zhang, Schneider, Wheeler-Kingshott, Alexander (bib0082) 2012; 61 Nilsson, Lätt, Ståhlberg, van Westen, Hagslätt (bib0091) 2012; 25 Eichner (bib0086) 2015; 122 Veraart (bib0078) 2016; 142 Ianus, Cruz, Chavarrias, Palombo, Shemesh (bib0090) 2022; 30 Xu (bib0053) 2016; 29 Aboitiz, Scheibel, Fisher, Zaidel (bib0070) 1992; 598 Houston (bib0074) 2017; 7 Novikov, Kiselev, Jespersen (bib0055) 2018; 79 Veraart, Fieremans, Novikov (bib0061) 2019; 185 Callaghan (bib0066) 1997; 129 Taylor, Falconer, Bruton, Corsellis (bib0012) 1971; 34 Shemesh (bib0030) 2018; 6 Grussu (bib0024) 2019; 81 Stanisz, Szafer, Wright, Henkelman (bib0016) 1997; 37 Lackey, Heck, Sillitoe (bib0073) 2018; 7 Heads, Pollock, Robertson, Sutherland, Allpress (bib0008) 1991; 82 Callaghan, Jolley, Lelievre (bib0060) 1979; 28 Hursh (bib0006) 1939; 127 Roberts (bib0064) 2020; 10 Palombo, Alexander, Zhang (bib0072) 2021 Drobnjak, Siow, Alexander (bib0067) 2010; 206 Huang (bib0022) 2020; 225 Skinner, Kurpad, Schmit, Budde (bib0062) 2015; 28 Jelescu, de Skowronski, Geffroy, Palombo, Novikov (bib0044) 2022; 256 Assaf, Blumenfeld-Katzir, Yovel, Basser (bib0017) 2008; 59 Baliyan, Das, Sharma, Gupta (bib0013) 2016; 8 Dell'Acqua (bib0058) 2019 Dula, Gochberg, Valentine, Valentine, Does (bib0079) 2010; 63 Anaby (bib0087) 2019; 32 Fan (bib0026) 2020; 222 Duval (bib0069) 2019; 185 Assaf, Mayk, Cohen (bib0049) 2000; 44 Does, Parsons, Gore (bib0036) 2003; 49 Callaghan, R., Alexander, D.C., Palombo, M. & Zhang, H. Impact of within-voxel heterogeneity in fibre geometry on spherical deconvolution. Preprint at 10.48550/ARXIV.2103.08237 (2021). Hall, Alexander (bib0080) 2009; 28 Sexton (bib0004) 2014; 34 Barazany, Basser, Assaf (bib0027) 2009; 132 Duval (bib0023) 2015; 118 Lee, Jespersen, Fieremans, Novikov (bib0092) 2020; 223 Veraart (bib0020) 2020; 9 Wu, Martin, Northington, Zhang (bib0056) 2014; 72 Drobnjak, Zhang, Hall, Alexander (bib0068) 2011; 210 Nunes, Cruz, Jespersen, Shemesh (bib0089) 2017; 277 Schiavi, S. et al Sepehrband, Alexander, Kurniawan, Reutens, Yang (bib0025) 2016; 29 Bezchlibnyk (bib0010) 2007; 32 Drake-Pérez, Boto, Fitsiori, Lovblad, Vargas (bib0014) 2018; 9 Reynaud (bib0047) 2017; 5 Palombo (bib0040) 2020; 215 Shemesh, Álvarez, Frydman (bib0033) 2015; 10 Kakkar (bib0021) 2018; 182 Nilsson, Lasič, Drobnjak, Topgaard, Westin (bib0038) 2017; 30 Tian, Ma (bib0002) 2017; 11 Afzali (bib0043) 2020; 28 Aggarwal, Smith, Calabresi (bib0052) 2020; 84 Olesen, Østergaard, Shemesh, Jespersen (bib0045) 2022; 251 Jelescu, Veraart, Fieremans, Novikov (bib0059) 2016; 29 Rajkowska, Selemon, Goldman-Rakic (bib0071) 1998; 55 Ianus, Alexander, Zhang, Palombo (bib0041) 2021; 241 Ritchie (bib0007) 1982; 217 Watson (bib0081) 1965; 52 Alexander, Dyrby, Nilsson, Zhang (bib0054) 2019; 32 Budde, Frank (bib0094) 2010; 107 Le Bihan, Iima (bib0015) 2015; 13 Hall (10.1016/j.neuroimage.2023.119930_bib0080) 2009; 28 Zhang (10.1016/j.neuroimage.2023.119930_bib0082) 2012; 61 Palombo (10.1016/j.neuroimage.2023.119930_bib0072) 2021 Alves (10.1016/j.neuroimage.2023.119930_bib0093) 2022; 247 Ianuş (10.1016/j.neuroimage.2023.119930_bib0077) 2022; 254 Ong (10.1016/j.neuroimage.2023.119930_bib0029) 2010; 51 Dell'Acqua (10.1016/j.neuroimage.2023.119930_bib0058) 2019 Does (10.1016/j.neuroimage.2023.119930_bib0036) 2003; 49 Roberts (10.1016/j.neuroimage.2023.119930_bib0064) 2020; 10 Fan (10.1016/j.neuroimage.2023.119930_bib0026) 2020; 222 Xu (10.1016/j.neuroimage.2023.119930_bib0031) 2014; 103 Duval (10.1016/j.neuroimage.2023.119930_bib0069) 2019; 185 Grussu (10.1016/j.neuroimage.2023.119930_bib0083) 2017; 4 Baliyan (10.1016/j.neuroimage.2023.119930_bib0013) 2016; 8 Lackey (10.1016/j.neuroimage.2023.119930_bib0073) 2018; 7 Zhang (10.1016/j.neuroimage.2023.119930_bib0028) 2011; 14 Duval (10.1016/j.neuroimage.2023.119930_bib0023) 2015; 118 Rajkowska (10.1016/j.neuroimage.2023.119930_bib0071) 1998; 55 Taylor (10.1016/j.neuroimage.2023.119930_bib0012) 1971; 34 Nilsson (10.1016/j.neuroimage.2023.119930_bib0038) 2017; 30 Le Bihan (10.1016/j.neuroimage.2023.119930_bib0015) 2015; 13 Stanisz (10.1016/j.neuroimage.2023.119930_bib0016) 1997; 37 Assaf (10.1016/j.neuroimage.2023.119930_bib0017) 2008; 59 Drake-Pérez (10.1016/j.neuroimage.2023.119930_bib0014) 2018; 9 Houston (10.1016/j.neuroimage.2023.119930_bib0074) 2017; 7 Ianuş (10.1016/j.neuroimage.2023.119930_bib0065) 2016 Novikov (10.1016/j.neuroimage.2023.119930_bib0055) 2018; 79 Afzali (10.1016/j.neuroimage.2023.119930_bib0043) 2020; 28 Drobnjak (10.1016/j.neuroimage.2023.119930_bib0067) 2010; 206 Lee (10.1016/j.neuroimage.2023.119930_bib0051) 2020; 3 Olesen (10.1016/j.neuroimage.2023.119930_bib0075) 2021; 231 Bezchlibnyk (10.1016/j.neuroimage.2023.119930_bib0010) 2007; 32 Shemesh (10.1016/j.neuroimage.2023.119930_bib0033) 2015; 10 10.1016/j.neuroimage.2023.119930_bib0039 Hursh (10.1016/j.neuroimage.2023.119930_bib0006) 1939; 127 Lampinen (10.1016/j.neuroimage.2023.119930_bib0048) 2021; 86 Anaby (10.1016/j.neuroimage.2023.119930_bib0087) 2019; 32 Cluskey (10.1016/j.neuroimage.2023.119930_bib0009) 2001; 54 Ianus (10.1016/j.neuroimage.2023.119930_bib0090) 2022; 30 Assaf (10.1016/j.neuroimage.2023.119930_bib0049) 2000; 44 Fick (10.1016/j.neuroimage.2023.119930_bib0088) 2017 Sepehrband (10.1016/j.neuroimage.2023.119930_bib0025) 2016; 29 Watson (10.1016/j.neuroimage.2023.119930_bib0081) 1965; 52 Lawrence (10.1016/j.neuroimage.2023.119930_bib0001) 2021; 15 Drobnjak (10.1016/j.neuroimage.2023.119930_bib0068) 2011; 210 Aboitiz (10.1016/j.neuroimage.2023.119930_bib0070) 1992; 598 Palombo (10.1016/j.neuroimage.2023.119930_bib0040) 2020; 215 10.1016/j.neuroimage.2023.119930_bib0042 Devan (10.1016/j.neuroimage.2023.119930_bib0057) 2022; 82 Harkins (10.1016/j.neuroimage.2023.119930_bib0019) 2021; 227 Nunes (10.1016/j.neuroimage.2023.119930_bib0089) 2017; 277 Wu (10.1016/j.neuroimage.2023.119930_bib0037) 2019; 39 Dukkipati (10.1016/j.neuroimage.2023.119930_bib0011) 2018; 596 Dula (10.1016/j.neuroimage.2023.119930_bib0079) 2010; 63 Eichner (10.1016/j.neuroimage.2023.119930_bib0086) 2015; 122 Veraart (10.1016/j.neuroimage.2023.119930_bib0020) 2020; 9 Callaghan (10.1016/j.neuroimage.2023.119930_bib0066) 1997; 129 Drobnjak (10.1016/j.neuroimage.2023.119930_bib0034) 2016; 75 Jelescu (10.1016/j.neuroimage.2023.119930_bib0059) 2016; 29 Siow (10.1016/j.neuroimage.2023.119930_bib0035) 2013; 18 Jelescu (10.1016/j.neuroimage.2023.119930_bib0044) 2022; 256 Lee (10.1016/j.neuroimage.2023.119930_bib0092) 2020; 223 Xu (10.1016/j.neuroimage.2023.119930_bib0053) 2016; 29 Olesen (10.1016/j.neuroimage.2023.119930_bib0046) 2022; 30 Alexander (10.1016/j.neuroimage.2023.119930_bib0054) 2019; 32 10.1016/j.neuroimage.2023.119930_bib0096 Alexander (10.1016/j.neuroimage.2023.119930_bib0018) 2010; 52 Budde (10.1016/j.neuroimage.2023.119930_bib0094) 2010; 107 Kakkar (10.1016/j.neuroimage.2023.119930_bib0021) 2018; 182 Olesen (10.1016/j.neuroimage.2023.119930_bib0045) 2022; 251 Callaghan (10.1016/j.neuroimage.2023.119930_bib0095) 2020; 220 van Gelderen (10.1016/j.neuroimage.2023.119930_bib0084) 1994; 103 Grussu (10.1016/j.neuroimage.2023.119930_bib0024) 2019; 81 Reynaud (10.1016/j.neuroimage.2023.119930_bib0047) 2017; 5 Nilsson (10.1016/j.neuroimage.2023.119930_bib0091) 2012; 25 Bar-Shir (10.1016/j.neuroimage.2023.119930_bib0032) 2008; 21 Ianus (10.1016/j.neuroimage.2023.119930_bib0041) 2021; 241 Sexton (10.1016/j.neuroimage.2023.119930_bib0004) 2014; 34 Tian (10.1016/j.neuroimage.2023.119930_bib0002) 2017; 11 Shemesh (10.1016/j.neuroimage.2023.119930_bib0030) 2018; 6 Jespersen (10.1016/j.neuroimage.2023.119930_bib0050) 2018; 182 Lebel (10.1016/j.neuroimage.2023.119930_bib0005) 2010; 52 Callaghan (10.1016/j.neuroimage.2023.119930_bib0060) 1979; 28 Dubois (10.1016/j.neuroimage.2023.119930_bib0003) 2014; 276 Heads (10.1016/j.neuroimage.2023.119930_bib0008) 1991; 82 Aggarwal (10.1016/j.neuroimage.2023.119930_bib0052) 2020; 84 Ritchie (10.1016/j.neuroimage.2023.119930_bib0007) 1982; 217 Veraart (10.1016/j.neuroimage.2023.119930_bib0078) 2016; 142 Barazany (10.1016/j.neuroimage.2023.119930_bib0027) 2009; 132 Veraart (10.1016/j.neuroimage.2023.119930_bib0061) 2019; 185 Huang (10.1016/j.neuroimage.2023.119930_bib0022) 2020; 225 Neuman (10.1016/j.neuroimage.2023.119930_bib0085) 1974; 60 Skinner (10.1016/j.neuroimage.2023.119930_bib0062) 2015; 28 Tian (10.1016/j.neuroimage.2023.119930_bib0076) 2022; 9 Wu (10.1016/j.neuroimage.2023.119930_bib0056) 2014; 72 Panagiotaki (10.1016/j.neuroimage.2023.119930_bib0063) 2014; 74 |
References_xml | – volume: 118 start-page: 494 year: 2015 end-page: 507 ident: bib0023 article-title: In vivo mapping of human spinal cord microstructure at 300mT/m publication-title: Neuroimage – volume: 28 start-page: 4426 year: 2020 ident: bib0043 article-title: Improving neural soma imaging using the power spectrum of the free gradient waveforms publication-title: Proc. Intl. Soc. Mag. Reson. Med. – reference: Paquette, M., Eichner, C., Knösche, T.R. & Anwander, A. Axon diameter measurements using diffusion MRI are infeasible. bioRxiv 2020.10.01.320507 (2021) doi:10.1101/2020.10.01.320507. – volume: 256 year: 2022 ident: bib0044 article-title: Neurite Exchange Imaging (NEXI): a minimal model of diffusion in gray matter with inter-compartment water exchange publication-title: Neuroimage – reference: Dissecting brain grey and white matter microstructure: a novel clinical diffusion MRI protocol. bioRxiv 2022.04.08.487640 (2022) doi:10.1101/2022.04.08.487640. – volume: 39 start-page: 1336 year: 2019 end-page: 1348 ident: bib0037 article-title: Oscillating-gradient diffusion magnetic resonance imaging detects acute subcellular structural changes in the mouse forebrain after neonatal hypoxia-ischemia publication-title: J. Cereb. Blood Flow Metab. – volume: 44 start-page: 713 year: 2000 end-page: 722 ident: bib0049 article-title: Displacement imaging of spinal cord using q-space diffusion-weighted MRI publication-title: Magn. Reson. Med. – volume: 15 start-page: 2813 year: 2021 end-page: 2823 ident: bib0001 article-title: Age and sex effects on advanced white matter microstructure measures in 15,628 older adults: a UK biobank study publication-title: Brain Imaging Behav. – volume: 52 start-page: 1374 year: 2010 end-page: 1389 ident: bib0018 article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI publication-title: Neuroimage – year: 2019 ident: bib0058 article-title: Temporal diffusion ratio (TDR): a diffusion MRI technique to map the fraction and spatial distribution of large axons in the living human brain publication-title: Proceedings of the ISMRM Conference – volume: 32 start-page: 203 year: 2007 end-page: 210 ident: bib0010 article-title: Neuron somal size is decreased in the lateral amygdalar nucleus of subjects with bipolar disorder publication-title: J. Psychiatry Neurosci. – volume: 25 start-page: 795 year: 2012 end-page: 805 ident: bib0091 article-title: The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study publication-title: NMR Biomed. – volume: 10 start-page: 1 year: 2020 end-page: 13 ident: bib0064 article-title: Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the early detection of therapeutic response publication-title: Sci. Rep. – volume: 63 start-page: 902 year: 2010 end-page: 909 ident: bib0079 article-title: Multiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord publication-title: Magn. Reson. Med. – volume: 185 start-page: 379 year: 2019 end-page: 387 ident: bib0061 article-title: On the scaling behavior of water diffusion in human brain white matter publication-title: Neuroimage – volume: 182 start-page: 314 year: 2018 end-page: 328 ident: bib0021 article-title: Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter stud y i: an experimental n viable nerve tissue publication-title: Neuroimage – volume: 107 start-page: 14472 year: 2010 end-page: 14477 ident: bib0094 article-title: Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 start-page: 1 year: 2020 end-page: 13 ident: bib0051 article-title: A time-dependent diffusion MRI signature of axon caliber variations and beading publication-title: Communications Biology – year: 2021 ident: bib0072 article-title: Large-scale analysis of brain cell morphometry informs microstructure modelling of gray matter publication-title: Proceedings of the 29th ISMRM Annual Meeting and Exhibition – volume: 86 start-page: 754 year: 2021 end-page: 764 ident: bib0048 article-title: Time dependence in diffusion MRI predicts tissue outcome in ischemic stroke patients publication-title: Magn. Reson. Med. – volume: 5 start-page: 58 year: 2017 ident: bib0047 article-title: Time-dependent diffusion MRI in cancer: tissue modeling and applications publication-title: Front. Phys. – volume: 9 start-page: 535 year: 2018 end-page: 547 ident: bib0014 article-title: Clinical applications of diffusion weighted imaging in neuroradiology publication-title: Insights Imaging – volume: 210 start-page: 151 year: 2011 end-page: 157 ident: bib0068 article-title: The matrix formalism for generalised gradients with time-varying orientation in diffusion NMR publication-title: J. Magn. Reson. – volume: 84 start-page: 1564 year: 2020 end-page: 1578 ident: bib0052 article-title: Diffusion-time dependence of diffusional kurtosis in the mouse brain publication-title: Magn. Reson. Med. – volume: 29 start-page: 293 year: 2016 end-page: 308 ident: bib0025 article-title: Towards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRI publication-title: NMR Biomed. – volume: 79 start-page: 3172 year: 2018 end-page: 3193 ident: bib0055 article-title: On modeling publication-title: Magn. Reson. Med. – volume: 596 start-page: 1723 year: 2018 end-page: 1745 ident: bib0011 article-title: The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis publication-title: J. Physiol. – volume: 55 start-page: 215 year: 1998 end-page: 224 ident: bib0071 article-title: Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease publication-title: Arch. Gen. Psychiatry – volume: 34 start-page: 15425 year: 2014 end-page: 15436 ident: bib0004 article-title: Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study publication-title: J. Neurosci. – volume: 9 start-page: 1 year: 2022 end-page: 11 ident: bib0076 article-title: Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients publication-title: Sci Data – volume: 18 start-page: 1 year: 2013 end-page: 6 ident: bib0035 article-title: Axon radius estimation with oscillating gradient spin echo (OGSE) diffusion MRI publication-title: Diffus. Fundam. – volume: 217 start-page: 29 year: 1982 end-page: 35 ident: bib0007 article-title: On the relation between fibre diameter and conduction velocity in myelinated nerve fibres publication-title: Proc. R. Soc. Lond. B Biol. Sci. – volume: 225 start-page: 1277 year: 2020 end-page: 1291 ident: bib0022 article-title: High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain publication-title: Brain Struct. Funct. – volume: 51 start-page: 1360 year: 2010 end-page: 1366 ident: bib0029 article-title: Quantifying axon diameter and intra-cellular volume fraction in excised mouse spinal cord with q-space imaging publication-title: Neuroimage – volume: 32 start-page: e4170 year: 2019 ident: bib0087 article-title: Single- and double-Diffusion encoding MRI for studying ex vivo apparent axon diameter distribution in spinal cord white matter publication-title: NMR Biomed. – volume: 4 start-page: 663 year: 2017 end-page: 679 ident: bib0083 article-title: Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? publication-title: Ann. Clin. Transl. Neurol. – volume: 127 start-page: 131 year: 1939 end-page: 139 ident: bib0006 article-title: Conduction velocity and diameter of nerve fibers publication-title: Am. J. Physiol. Leg. Content – volume: 29 start-page: 400 year: 2016 end-page: 410 ident: bib0053 article-title: Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy publication-title: NMR Biomed. – volume: 6 year: 2018 ident: bib0030 article-title: Axon diameters and myelin content modulate microscopic fractional anisotropy at short diffusion times in fixed rat spinal cord publication-title: Front. Phys. – volume: 8 start-page: 785 year: 2016 end-page: 798 ident: bib0013 article-title: Diffusion weighted imaging: technique and applications publication-title: World J. Radiol. – start-page: 766 year: 2017 end-page: 769 ident: bib0088 article-title: Assessing the feasibility of estimating axon diameter using diffusion models and machine learning publication-title: Proceedings of the IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) – volume: 37 start-page: 103 year: 1997 end-page: 111 ident: bib0016 article-title: An analytical model of restricted diffusion in bovine optic nerve publication-title: Magn. Reson. Med. – volume: 251 year: 2022 ident: bib0045 article-title: Diffusion time dependence, power-law scaling, and exchange in gray matter publication-title: Neuroimage – volume: 75 start-page: 688 year: 2016 end-page: 700 ident: bib0034 article-title: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: insight from a simulation study publication-title: Magn. Reson. Med. – volume: 11 start-page: 393 year: 2017 ident: bib0002 article-title: Microstructural changes of the human brain from early to mid-adulthood publication-title: Front. Hum. Neurosci. – volume: 49 start-page: 206 year: 2003 end-page: 215 ident: bib0036 article-title: Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain publication-title: Magn. Reson. Med. – volume: 59 start-page: 1347 year: 2008 end-page: 1354 ident: bib0017 article-title: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI publication-title: Magn. Reson. Med. – volume: 52 start-page: 193 year: 1965 end-page: 201 ident: bib0081 article-title: equatorial distributions on a sphere publication-title: Biometrika – volume: 277 start-page: 117 year: 2017 end-page: 130 ident: bib0089 article-title: Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI publication-title: J. Magn. Reson. – volume: 81 start-page: 1247 year: 2019 end-page: 1264 ident: bib0024 article-title: Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord publication-title: Magn. Reson. Med. – volume: 206 start-page: 41 year: 2010 end-page: 51 ident: bib0067 article-title: Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR publication-title: J. Magn. Reson. – volume: 122 start-page: 373 year: 2015 end-page: 384 ident: bib0086 article-title: Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast publication-title: Neuroimage – volume: 60 start-page: 4508 year: 1974 end-page: 4511 ident: bib0085 article-title: Spin echo of spins diffusing in a bounded medium publication-title: J. Chem. Phys. – volume: 28 start-page: 1354 year: 2009 end-page: 1364 ident: bib0080 article-title: Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI publication-title: IEEE Trans. Med. Imaging – volume: 28 start-page: 1489 year: 2015 end-page: 1506 ident: bib0062 article-title: Detection of acute nervous system injury with advanced diffusion-weighted MRI: a simulation and sensitivity analysis publication-title: NMR Biomed. – volume: 29 start-page: 33 year: 2016 end-page: 47 ident: bib0059 article-title: Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue publication-title: NMR Biomed. – volume: 7 year: 2018 ident: bib0073 article-title: Recent advances in understanding the mechanisms of cerebellar granule cell development and function and their contribution to behavior publication-title: F1000Res – volume: 231 year: 2021 ident: bib0075 article-title: Beyond the diffusion standard model in fixed rat spinal cord with combined linear and planar encoding publication-title: Neuroimage – volume: 14 start-page: 82 year: 2011 end-page: 89 ident: bib0028 article-title: Axon diameter mapping in crossing fibers with diffusion MRI publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 276 start-page: 48 year: 2014 end-page: 71 ident: bib0003 article-title: The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants publication-title: Neuroscience – volume: 34 start-page: 369 year: 1971 end-page: 387 ident: bib0012 article-title: Focal dysplasia of the cerebral cortex in epilepsy publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 9 start-page: e49855 year: 2020 ident: bib0020 article-title: Noninvasive quantification of axon radii using diffusion MRI publication-title: Elife – volume: 28 start-page: 133 year: 1979 end-page: 141 ident: bib0060 article-title: Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance publication-title: Biophys. J. – volume: 74 start-page: 1902 year: 2014 end-page: 1912 ident: bib0063 article-title: Noninvasive quantification of solid tumor microstructure using VERDICT MRI publication-title: Cancer Res. – reference: Schiavi, S. et al – volume: 103 start-page: 255 year: 1994 end-page: 260 ident: bib0084 article-title: Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle publication-title: J. Magn. Reson. B – volume: 215 year: 2020 ident: bib0040 article-title: SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI publication-title: Neuroimage – volume: 185 start-page: 119 year: 2019 end-page: 128 ident: bib0069 article-title: Axons morphometry in the human spinal cord publication-title: Neuroimage – volume: 30 start-page: 2393 year: 2022 ident: bib0090 article-title: Early microstructural aberrations in a mouse model of Alzheimer's disease detected by Soma and Neurite Density Imaging publication-title: Proc. Intl. Soc. Mag. Reson. Med. – volume: 82 start-page: 3603 year: 2022 end-page: 3613 ident: bib0057 article-title: Selective cell size MRI differentiates brain tumors from radiation necrosis publication-title: Cancer Res. – volume: 142 start-page: 394 year: 2016 end-page: 406 ident: bib0078 article-title: Denoising of diffusion MRI using random matrix theory publication-title: Neuroimage – volume: 52 start-page: 20 year: 2010 end-page: 31 ident: bib0005 article-title: Age-related regional variations of the corpus callosum identified by diffusion tensor tractography publication-title: Neuroimage – volume: 598 start-page: 143 year: 1992 end-page: 153 ident: bib0070 article-title: Fiber composition of the human corpus callosum publication-title: Brain Res. – volume: 223 year: 2020 ident: bib0092 article-title: The impact of realistic axonal shape on axon diameter estimation using diffusion MRI publication-title: Neuroimage – volume: 30 year: 2017 ident: bib0038 article-title: Resolution limit of cylinder diameter estimation by diffusion MRI: the impact of gradient waveform and orientation dispersion publication-title: NMR Biomed. – volume: 7 start-page: 1 year: 2017 end-page: 16 ident: bib0074 article-title: Exploring the significance of morphological diversity for cerebellar granule cell excitability publication-title: Sci. Rep. – volume: 10 year: 2015 ident: bib0033 article-title: size distribution imaging by non-uniform oscillating-gradient spin echo (NOGSE) MRI publication-title: PLoS One – volume: 30 start-page: 1426 year: 2022 ident: bib0046 article-title: Time dependence at ultra-high diffusion weighting reveals fast compartmental exchange in rat cortex in vivo publication-title: Proc. Intl. Soc. Mag. Reson. Med. – volume: 222 year: 2020 ident: bib0026 article-title: Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI publication-title: Neuroimage – volume: 82 start-page: 316 year: 1991 end-page: 320 ident: bib0008 article-title: Sensory nerve pathology in amyotrophic lateral sclerosis publication-title: Acta Neuropathol. – start-page: 34 year: 2016 end-page: 44 ident: bib0065 article-title: Microstructure imaging sequence simulation toolbox publication-title: Simulation and Synthesis in Medical Imaging – volume: 129 start-page: 74 year: 1997 end-page: 84 ident: bib0066 article-title: A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms publication-title: J. Magn. Reson. – volume: 103 start-page: 10 year: 2014 end-page: 19 ident: bib0031 article-title: Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy publication-title: Neuroimage – volume: 54 start-page: 386 year: 2001 end-page: 392 ident: bib0009 article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis publication-title: Mol. Pathol. – reference: Callaghan, R., Alexander, D.C., Palombo, M. & Zhang, H. Impact of within-voxel heterogeneity in fibre geometry on spherical deconvolution. Preprint at 10.48550/ARXIV.2103.08237 (2021). – volume: 227 year: 2021 ident: bib0019 article-title: A simple estimate of axon size with diffusion MRI publication-title: Neuroimage – volume: 32 start-page: e3841 year: 2019 ident: bib0054 article-title: Imaging brain microstructure with diffusion MRI: practicality and applications publication-title: NMR Biomed. – volume: 132 start-page: 1210 year: 2009 end-page: 1220 ident: bib0027 article-title: measurement of axon diameter distribution in the corpus callosum of rat brain publication-title: Brain – volume: 72 start-page: 1366 year: 2014 end-page: 1374 ident: bib0056 article-title: Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains publication-title: Magn. Reson. Med. – volume: 241 year: 2021 ident: bib0041 article-title: Mapping complex cell morphology in the grey matter with double diffusion encoding MR: a simulation study publication-title: Neuroimage – volume: 13 year: 2015 ident: bib0015 article-title: diffusion magnetic resonance imaging: what water tells us about biological tissues publication-title: PLoS Biol. – volume: 182 start-page: 329 year: 2018 end-page: 342 ident: bib0050 article-title: Diffusion time dependence of microstructural parameters in fixed spinal cord publication-title: Neuroimage – volume: 61 start-page: 1000 year: 2012 end-page: 1016 ident: bib0082 article-title: NODDI: practical publication-title: Neuroimage – volume: 254 year: 2022 ident: bib0077 article-title: Soma and neurite density MRI (SANDI) of the in-vivo mouse brain and comparison with the Allen Brain Atlas publication-title: Neuroimage – volume: 21 start-page: 165 year: 2008 end-page: 174 ident: bib0032 article-title: High b-value q-space diffusion MRS of nerves: structural information and comparison with histological evidence publication-title: NMR Biomed. – volume: 247 year: 2022 ident: bib0093 article-title: Correlation Tensor MRI deciphers underlying kurtosis sources in stroke publication-title: Neuroimage – volume: 220 year: 2020 ident: bib0095 article-title: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation publication-title: Neuroimage – volume: 132 start-page: 1210 year: 2009 ident: 10.1016/j.neuroimage.2023.119930_bib0027 article-title: In vivo measurement of axon diameter distribution in the corpus callosum of rat brain publication-title: Brain doi: 10.1093/brain/awp042 – volume: 127 start-page: 131 year: 1939 ident: 10.1016/j.neuroimage.2023.119930_bib0006 article-title: Conduction velocity and diameter of nerve fibers publication-title: Am. J. Physiol. Leg. Content doi: 10.1152/ajplegacy.1939.127.1.131 – volume: 30 start-page: 1426 year: 2022 ident: 10.1016/j.neuroimage.2023.119930_bib0046 article-title: Time dependence at ultra-high diffusion weighting reveals fast compartmental exchange in rat cortex in vivo publication-title: Proc. Intl. Soc. Mag. Reson. Med. – volume: 107 start-page: 14472 year: 2010 ident: 10.1016/j.neuroimage.2023.119930_bib0094 article-title: Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1004841107 – volume: 28 start-page: 133 year: 1979 ident: 10.1016/j.neuroimage.2023.119930_bib0060 article-title: Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance publication-title: Biophys. J. doi: 10.1016/S0006-3495(79)85164-4 – volume: 18 start-page: 1 year: 2013 ident: 10.1016/j.neuroimage.2023.119930_bib0035 article-title: Axon radius estimation with oscillating gradient spin echo (OGSE) diffusion MRI publication-title: Diffus. Fundam. doi: 10.62721/diffusion-fundamentals.18.665 – volume: 28 start-page: 1354 year: 2009 ident: 10.1016/j.neuroimage.2023.119930_bib0080 article-title: Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2015756 – volume: 34 start-page: 15425 year: 2014 ident: 10.1016/j.neuroimage.2023.119930_bib0004 article-title: Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0203-14.2014 – volume: 82 start-page: 3603 year: 2022 ident: 10.1016/j.neuroimage.2023.119930_bib0057 article-title: Selective cell size MRI differentiates brain tumors from radiation necrosis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-21-2929 – volume: 32 start-page: 203 year: 2007 ident: 10.1016/j.neuroimage.2023.119930_bib0010 article-title: Neuron somal size is decreased in the lateral amygdalar nucleus of subjects with bipolar disorder publication-title: J. Psychiatry Neurosci. – volume: 30 year: 2017 ident: 10.1016/j.neuroimage.2023.119930_bib0038 article-title: Resolution limit of cylinder diameter estimation by diffusion MRI: the impact of gradient waveform and orientation dispersion publication-title: NMR Biomed. doi: 10.1002/nbm.3711 – year: 2019 ident: 10.1016/j.neuroimage.2023.119930_bib0058 article-title: Temporal diffusion ratio (TDR): a diffusion MRI technique to map the fraction and spatial distribution of large axons in the living human brain – volume: 598 start-page: 143 year: 1992 ident: 10.1016/j.neuroimage.2023.119930_bib0070 article-title: Fiber composition of the human corpus callosum publication-title: Brain Res. doi: 10.1016/0006-8993(92)90178-C – volume: 10 year: 2015 ident: 10.1016/j.neuroimage.2023.119930_bib0033 article-title: size distribution imaging by non-uniform oscillating-gradient spin echo (NOGSE) MRI publication-title: PLoS One doi: 10.1371/journal.pone.0133201 – volume: 13 year: 2015 ident: 10.1016/j.neuroimage.2023.119930_bib0015 article-title: diffusion magnetic resonance imaging: what water tells us about biological tissues publication-title: PLoS Biol. – volume: 215 year: 2020 ident: 10.1016/j.neuroimage.2023.119930_bib0040 article-title: SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116835 – volume: 8 start-page: 785 year: 2016 ident: 10.1016/j.neuroimage.2023.119930_bib0013 article-title: Diffusion weighted imaging: technique and applications publication-title: World J. Radiol. doi: 10.4329/wjr.v8.i9.785 – volume: 185 start-page: 119 year: 2019 ident: 10.1016/j.neuroimage.2023.119930_bib0069 article-title: Axons morphometry in the human spinal cord publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.033 – volume: 210 start-page: 151 year: 2011 ident: 10.1016/j.neuroimage.2023.119930_bib0068 article-title: The matrix formalism for generalised gradients with time-varying orientation in diffusion NMR publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2011.02.022 – volume: 247 year: 2022 ident: 10.1016/j.neuroimage.2023.119930_bib0093 article-title: Correlation Tensor MRI deciphers underlying kurtosis sources in stroke publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118833 – volume: 225 start-page: 1277 year: 2020 ident: 10.1016/j.neuroimage.2023.119930_bib0022 article-title: High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain publication-title: Brain Struct. Funct. doi: 10.1007/s00429-019-01961-2 – volume: 51 start-page: 1360 year: 2010 ident: 10.1016/j.neuroimage.2023.119930_bib0029 article-title: Quantifying axon diameter and intra-cellular volume fraction in excised mouse spinal cord with q-space imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.063 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2023.119930_bib0074 article-title: Exploring the significance of morphological diversity for cerebellar granule cell excitability publication-title: Sci. Rep. doi: 10.1038/srep46147 – volume: 220 year: 2020 ident: 10.1016/j.neuroimage.2023.119930_bib0095 article-title: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117107 – volume: 206 start-page: 41 year: 2010 ident: 10.1016/j.neuroimage.2023.119930_bib0067 article-title: Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2010.05.017 – volume: 596 start-page: 1723 year: 2018 ident: 10.1016/j.neuroimage.2023.119930_bib0011 article-title: The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis publication-title: J. Physiol. doi: 10.1113/JP275498 – volume: 52 start-page: 193 year: 1965 ident: 10.1016/j.neuroimage.2023.119930_bib0081 article-title: equatorial distributions on a sphere publication-title: Biometrika doi: 10.1093/biomet/52.1-2.193 – volume: 25 start-page: 795 year: 2012 ident: 10.1016/j.neuroimage.2023.119930_bib0091 article-title: The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study publication-title: NMR Biomed. doi: 10.1002/nbm.1795 – volume: 75 start-page: 688 year: 2016 ident: 10.1016/j.neuroimage.2023.119930_bib0034 article-title: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: insight from a simulation study publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25631 – volume: 30 start-page: 2393 year: 2022 ident: 10.1016/j.neuroimage.2023.119930_bib0090 article-title: Early microstructural aberrations in a mouse model of Alzheimer's disease detected by Soma and Neurite Density Imaging publication-title: Proc. Intl. Soc. Mag. Reson. Med. – volume: 59 start-page: 1347 year: 2008 ident: 10.1016/j.neuroimage.2023.119930_bib0017 article-title: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21577 – volume: 63 start-page: 902 year: 2010 ident: 10.1016/j.neuroimage.2023.119930_bib0079 article-title: Multiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22267 – volume: 9 start-page: e49855 year: 2020 ident: 10.1016/j.neuroimage.2023.119930_bib0020 article-title: Noninvasive quantification of axon radii using diffusion MRI publication-title: Elife doi: 10.7554/eLife.49855 – volume: 103 start-page: 10 year: 2014 ident: 10.1016/j.neuroimage.2023.119930_bib0031 article-title: Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.09.006 – volume: 14 start-page: 82 year: 2011 ident: 10.1016/j.neuroimage.2023.119930_bib0028 article-title: Axon diameter mapping in crossing fibers with diffusion MRI publication-title: Med. Image Comput. Comput. Assist. Interv. – start-page: 766 year: 2017 ident: 10.1016/j.neuroimage.2023.119930_bib0088 article-title: Assessing the feasibility of estimating axon diameter using diffusion models and machine learning – volume: 86 start-page: 754 year: 2021 ident: 10.1016/j.neuroimage.2023.119930_bib0048 article-title: Time dependence in diffusion MRI predicts tissue outcome in ischemic stroke patients publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28743 – volume: 29 start-page: 33 year: 2016 ident: 10.1016/j.neuroimage.2023.119930_bib0059 article-title: Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue publication-title: NMR Biomed. doi: 10.1002/nbm.3450 – volume: 256 year: 2022 ident: 10.1016/j.neuroimage.2023.119930_bib0044 article-title: Neurite Exchange Imaging (NEXI): a minimal model of diffusion in gray matter with inter-compartment water exchange publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.119277 – ident: 10.1016/j.neuroimage.2023.119930_bib0039 doi: 10.1101/2020.10.01.320507 – volume: 44 start-page: 713 year: 2000 ident: 10.1016/j.neuroimage.2023.119930_bib0049 article-title: Displacement imaging of spinal cord using q-space diffusion-weighted MRI publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200011)44:5<713::AID-MRM9>3.0.CO;2-6 – volume: 222 year: 2020 ident: 10.1016/j.neuroimage.2023.119930_bib0026 article-title: Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117197 – volume: 28 start-page: 1489 year: 2015 ident: 10.1016/j.neuroimage.2023.119930_bib0062 article-title: Detection of acute nervous system injury with advanced diffusion-weighted MRI: a simulation and sensitivity analysis publication-title: NMR Biomed. doi: 10.1002/nbm.3405 – volume: 142 start-page: 394 year: 2016 ident: 10.1016/j.neuroimage.2023.119930_bib0078 article-title: Denoising of diffusion MRI using random matrix theory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.08.016 – volume: 103 start-page: 255 year: 1994 ident: 10.1016/j.neuroimage.2023.119930_bib0084 article-title: Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle publication-title: J. Magn. Reson. B doi: 10.1006/jmrb.1994.1038 – volume: 72 start-page: 1366 year: 2014 ident: 10.1016/j.neuroimage.2023.119930_bib0056 article-title: Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25441 – start-page: 34 year: 2016 ident: 10.1016/j.neuroimage.2023.119930_bib0065 article-title: Microstructure imaging sequence simulation toolbox – volume: 81 start-page: 1247 year: 2019 ident: 10.1016/j.neuroimage.2023.119930_bib0024 article-title: Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27463 – volume: 74 start-page: 1902 year: 2014 ident: 10.1016/j.neuroimage.2023.119930_bib0063 article-title: Noninvasive quantification of solid tumor microstructure using VERDICT MRI publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-2511 – ident: 10.1016/j.neuroimage.2023.119930_bib0096 – volume: 37 start-page: 103 year: 1997 ident: 10.1016/j.neuroimage.2023.119930_bib0016 article-title: An analytical model of restricted diffusion in bovine optic nerve publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910370115 – volume: 60 start-page: 4508 year: 1974 ident: 10.1016/j.neuroimage.2023.119930_bib0085 article-title: Spin echo of spins diffusing in a bounded medium publication-title: J. Chem. Phys. doi: 10.1063/1.1680931 – volume: 82 start-page: 316 year: 1991 ident: 10.1016/j.neuroimage.2023.119930_bib0008 article-title: Sensory nerve pathology in amyotrophic lateral sclerosis publication-title: Acta Neuropathol. doi: 10.1007/BF00308818 – volume: 227 year: 2021 ident: 10.1016/j.neuroimage.2023.119930_bib0019 article-title: A simple estimate of axon size with diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117619 – volume: 34 start-page: 369 year: 1971 ident: 10.1016/j.neuroimage.2023.119930_bib0012 article-title: Focal dysplasia of the cerebral cortex in epilepsy publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.34.4.369 – volume: 52 start-page: 20 year: 2010 ident: 10.1016/j.neuroimage.2023.119930_bib0005 article-title: Age-related regional variations of the corpus callosum identified by diffusion tensor tractography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.072 – volume: 231 year: 2021 ident: 10.1016/j.neuroimage.2023.119930_bib0075 article-title: Beyond the diffusion standard model in fixed rat spinal cord with combined linear and planar encoding publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.117849 – volume: 9 start-page: 1 year: 2022 ident: 10.1016/j.neuroimage.2023.119930_bib0076 article-title: Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients publication-title: Sci Data doi: 10.1038/s41597-021-01092-6 – volume: 28 start-page: 4426 year: 2020 ident: 10.1016/j.neuroimage.2023.119930_bib0043 article-title: Improving neural soma imaging using the power spectrum of the free gradient waveforms publication-title: Proc. Intl. Soc. Mag. Reson. Med. – volume: 277 start-page: 117 year: 2017 ident: 10.1016/j.neuroimage.2023.119930_bib0089 article-title: Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2017.02.017 – ident: 10.1016/j.neuroimage.2023.119930_bib0042 doi: 10.1101/2022.04.08.487640 – volume: 7 year: 2018 ident: 10.1016/j.neuroimage.2023.119930_bib0073 article-title: Recent advances in understanding the mechanisms of cerebellar granule cell development and function and their contribution to behavior publication-title: F1000Res doi: 10.12688/f1000research.15021.1 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2023.119930_bib0064 article-title: Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the early detection of therapeutic response publication-title: Sci. Rep. doi: 10.1038/s41598-020-65956-4 – volume: 241 year: 2021 ident: 10.1016/j.neuroimage.2023.119930_bib0041 article-title: Mapping complex cell morphology in the grey matter with double diffusion encoding MR: a simulation study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118424 – volume: 32 start-page: e4170 year: 2019 ident: 10.1016/j.neuroimage.2023.119930_bib0087 article-title: Single- and double-Diffusion encoding MRI for studying ex vivo apparent axon diameter distribution in spinal cord white matter publication-title: NMR Biomed. doi: 10.1002/nbm.4170 – volume: 54 start-page: 386 year: 2001 ident: 10.1016/j.neuroimage.2023.119930_bib0009 article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis publication-title: Mol. Pathol. – volume: 39 start-page: 1336 year: 2019 ident: 10.1016/j.neuroimage.2023.119930_bib0037 article-title: Oscillating-gradient diffusion magnetic resonance imaging detects acute subcellular structural changes in the mouse forebrain after neonatal hypoxia-ischemia publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X18759859 – volume: 9 start-page: 535 year: 2018 ident: 10.1016/j.neuroimage.2023.119930_bib0014 article-title: Clinical applications of diffusion weighted imaging in neuroradiology publication-title: Insights Imaging doi: 10.1007/s13244-018-0624-3 – year: 2021 ident: 10.1016/j.neuroimage.2023.119930_bib0072 article-title: Large-scale analysis of brain cell morphometry informs microstructure modelling of gray matter – volume: 55 start-page: 215 year: 1998 ident: 10.1016/j.neuroimage.2023.119930_bib0071 article-title: Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.55.3.215 – volume: 129 start-page: 74 year: 1997 ident: 10.1016/j.neuroimage.2023.119930_bib0066 article-title: A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms publication-title: J. Magn. Reson. doi: 10.1006/jmre.1997.1233 – volume: 223 year: 2020 ident: 10.1016/j.neuroimage.2023.119930_bib0092 article-title: The impact of realistic axonal shape on axon diameter estimation using diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117228 – volume: 5 start-page: 58 year: 2017 ident: 10.1016/j.neuroimage.2023.119930_bib0047 article-title: Time-dependent diffusion MRI in cancer: tissue modeling and applications publication-title: Front. Phys. doi: 10.3389/fphy.2017.00058 – volume: 29 start-page: 400 year: 2016 ident: 10.1016/j.neuroimage.2023.119930_bib0053 article-title: Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy publication-title: NMR Biomed. doi: 10.1002/nbm.3484 – volume: 254 year: 2022 ident: 10.1016/j.neuroimage.2023.119930_bib0077 article-title: Soma and neurite density MRI (SANDI) of the in-vivo mouse brain and comparison with the Allen Brain Atlas publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.119135 – volume: 6 year: 2018 ident: 10.1016/j.neuroimage.2023.119930_bib0030 article-title: Axon diameters and myelin content modulate microscopic fractional anisotropy at short diffusion times in fixed rat spinal cord publication-title: Front. Phys. doi: 10.3389/fphy.2018.00049 – volume: 61 start-page: 1000 year: 2012 ident: 10.1016/j.neuroimage.2023.119930_bib0082 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 – volume: 49 start-page: 206 year: 2003 ident: 10.1016/j.neuroimage.2023.119930_bib0036 article-title: Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10385 – volume: 4 start-page: 663 year: 2017 ident: 10.1016/j.neuroimage.2023.119930_bib0083 article-title: Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.445 – volume: 118 start-page: 494 year: 2015 ident: 10.1016/j.neuroimage.2023.119930_bib0023 article-title: In vivo mapping of human spinal cord microstructure at 300mT/m publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.06.038 – volume: 29 start-page: 293 year: 2016 ident: 10.1016/j.neuroimage.2023.119930_bib0025 article-title: Towards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRI publication-title: NMR Biomed. doi: 10.1002/nbm.3462 – volume: 32 start-page: e3841 year: 2019 ident: 10.1016/j.neuroimage.2023.119930_bib0054 article-title: Imaging brain microstructure with diffusion MRI: practicality and applications publication-title: NMR Biomed. doi: 10.1002/nbm.3841 – volume: 52 start-page: 1374 year: 2010 ident: 10.1016/j.neuroimage.2023.119930_bib0018 article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.043 – volume: 11 start-page: 393 year: 2017 ident: 10.1016/j.neuroimage.2023.119930_bib0002 article-title: Microstructural changes of the human brain from early to mid-adulthood publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00393 – volume: 21 start-page: 165 year: 2008 ident: 10.1016/j.neuroimage.2023.119930_bib0032 article-title: High b-value q-space diffusion MRS of nerves: structural information and comparison with histological evidence publication-title: NMR Biomed. doi: 10.1002/nbm.1175 – volume: 182 start-page: 314 year: 2018 ident: 10.1016/j.neuroimage.2023.119930_bib0021 article-title: Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter stud y i: an experimental n viable nerve tissue publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.060 – volume: 15 start-page: 2813 year: 2021 ident: 10.1016/j.neuroimage.2023.119930_bib0001 article-title: Age and sex effects on advanced white matter microstructure measures in 15,628 older adults: a UK biobank study publication-title: Brain Imaging Behav. doi: 10.1007/s11682-021-00548-y – volume: 3 start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2023.119930_bib0051 article-title: A time-dependent diffusion MRI signature of axon caliber variations and beading publication-title: Communications Biology doi: 10.1038/s42003-020-1050-x – volume: 182 start-page: 329 year: 2018 ident: 10.1016/j.neuroimage.2023.119930_bib0050 article-title: Diffusion time dependence of microstructural parameters in fixed spinal cord publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.039 – volume: 251 year: 2022 ident: 10.1016/j.neuroimage.2023.119930_bib0045 article-title: Diffusion time dependence, power-law scaling, and exchange in gray matter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.118976 – volume: 122 start-page: 373 year: 2015 ident: 10.1016/j.neuroimage.2023.119930_bib0086 article-title: Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.074 – volume: 79 start-page: 3172 year: 2018 ident: 10.1016/j.neuroimage.2023.119930_bib0055 article-title: On modeling publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27101 – volume: 185 start-page: 379 year: 2019 ident: 10.1016/j.neuroimage.2023.119930_bib0061 article-title: On the scaling behavior of water diffusion in human brain white matter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.09.075 – volume: 276 start-page: 48 year: 2014 ident: 10.1016/j.neuroimage.2023.119930_bib0003 article-title: The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.12.044 – volume: 217 start-page: 29 year: 1982 ident: 10.1016/j.neuroimage.2023.119930_bib0007 article-title: On the relation between fibre diameter and conduction velocity in myelinated nerve fibres publication-title: Proc. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rspb.1982.0092 – volume: 84 start-page: 1564 year: 2020 ident: 10.1016/j.neuroimage.2023.119930_bib0052 article-title: Diffusion-time dependence of diffusional kurtosis in the mouse brain publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28189 |
SSID | ssj0009148 |
Score | 2.4742835 |
Snippet | •Temporal Diffusion Ratio (TDR) maps areas of restricted diffusion using two different gradient waveforms.•The two optimised gradient waveforms have: long... Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with... Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with... Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique ( Dell’Acqua et al., proc. ISMRM 2019 ) which provides contrast between areas with... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119930 |
SubjectTerms | Amyotrophic lateral sclerosis Animals Axon diameter Axons Computer Simulation Diffusion Diffusion Magnetic Resonance Imaging - methods Image Processing, Computer-Assisted - methods Kurtosis Microstructure Optimization Rats Spinal cord TDR |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHhAXxDcLBRmJAxzSTWzHceAELVWFBEhlK_Vm-SslaDdbld0rv52Z2EkJXFbiuIm9cmaeZ56T5zEhr6StYPUvy0xxU2fCNCGzvFQZl2XBGwBV43uV7xd5ei4-XZQXe-Ro2AuDssoU-2NM76N1ujJP1pxfte38GzADSDfIUGKiwx3sokKsH_66kXnUhYjb4UqeYeuk5okar75mZLuCmXuIx4hD_IB0nU9SVF_Jf5Kp_mWifwsq_8hQJ3fJnUQt6fs4-ntkL3T3ya3P6eP5A7JcxDJUS3rcNs0WX5PRM3QMfb04PntDgb5SHCUkM4ondkCEBDpK_dD4Lf0K8WWV9D_UdJ6ihmTYW0l9WCHZjJB6SM5PPi6OTrN02ELmJM83mbBe1NIbb2pr8gDztMlLx5lh3oqqxnlqCmtskbtCemtcgMzvKliPKCuN5PwR2e_WXXhCKDfOCuaN8s4LwypbslCWnNVYLE_lZkaqwb7apUrkeCDGUg-Ssx_6xjMaPaOjZ2akGHtexWocO_T5gC4c22M97f7C-vpSJ0Bp5ZhljhW84FY0iivpuW1koyzw-VyGGakHAOjBrBBk4Y_aHQbwbuw7gfaOvQ8GvOkUXn5qVink2pzxGXk53gYA4Nce04X1FttUAjwKy_0ZeRzhOdqAwzIRX3WBJybAnRhpeqdrv_fFxyugwEAJn_7XQz0jt_FXVEAdkP3N9TY8B3K3sS_62fsbo-BP3A priority: 102 providerName: Elsevier – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA66gvgi3q2uEsEHfai2SZqk-iDquiyCCssszFvIpdWRmc66O_P_PadJO1ZB5rVNSppz-5KcfIeQ59IpWP3LKtfc1rmwbZM7Xumcy6rkLShVG_os36_y5Ex8nlfztOF2mdIqB5_YO-qw9rhH_popjfCCM_7u_FeOVaPwdDWV0LhKrpWARLB0g5qrHeluKeJVuIrnGhqkTJ6Y39XzRS5WYLWvsIQ4-A4I1cUkPPUs_pMo9S8K_TuZ8o_odHyL3Eywkr6PenCbXGm6O-T6l3RwfpcsZ5GCakmPFm27xS0yeopCoS9mR6cvKUBXiqOEQEaxWgd4R4CiNAyN39Bv4FtWKfeH2i5QzB8Z7lXS0KwQaEZ1ukfOjj_NPp7kqdBC7iUvNrlwQdQy2GBrZ4sGbLQtKs-ZZcEJVaON2tJZVxa-lMFZ30DU9wrWItpJKzm_Tw66ddc8JJRb7wQLVgcfhGXKVaypKs5qJMrThc2IGubX-MRCjsUwlmZIN_tpdpIxKBkTJZORcux5Hpk49ujzAUU4tkcu7f7B-uK7SaZptGeOeVbykjvRaq5l4K6VrXaA5QvZZKQeFMAM0woOFj602GMAb8e-CdJEqLJn78NB30xyLZdmZwgZeTa-BgXAkx7bNesttlECJApL_Yw8iOo5zgGHJSJuc4EkJoo7maTpm27xoyceVwB_AQ4--v-wHpMb-A8xvemQHGwuts0TQG4b97Q3z9-2eESQ priority: 102 providerName: ProQuest |
Title | Temporal Diffusion Ratio (TDR) for imaging restricted diffusion: Optimisation and pre-clinical demonstration |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811923000782 https://dx.doi.org/10.1016/j.neuroimage.2023.119930 https://www.ncbi.nlm.nih.gov/pubmed/36750150 https://www.proquest.com/docview/2780054323 https://www.proquest.com/docview/2774496446 https://pubmed.ncbi.nlm.nih.gov/PMC7615244 https://doaj.org/article/8c2b2c21313b4f8386d3bf6f8b81d06e |
Volume | 269 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgkRAXxHuzLJWROMAhS2IntgOnXXZXBURBVVfqzfIroqjNoqW98tuZiZOwhQM9cGmkxk7cmc8z3yTTGUJeCCsh-hdlqrip0sLUIbW8VCkXZc5rAFXt2yzfiRhfFB_m5fxaqy_MCYvlgaPgXivHLHMs5zm3Ra24Ep7bWtTKAtPKREDrC3frg6m-3C6w_C5vJ2ZztdUhFyvYo0fYMBwsBTjmbMsZtTX7t3zS35zzz9TJa77o_B6525FIehwXf5_cCM0DcvtT95r8IVnOYsGpJT1d1PUGH4jRKaqAvpydTl9RIKoUVwlui2JvDrCFQDyp7we_oZ_Bkqy6TB9qGk8xW6T_FyX1YYW0MoLnEbk4P5u9G6ddW4XUCZ6t08L6ohLeeFNZkwXYkXVWOs4M87aQFe5Ik1tj88zlwlvjAvh4JyHyUFYYwfljstdcNmGfUG6cLZg3yjtfGCZtyUJZclZhWTyVmYTIXr7adTXHsfXFUvfJZd_0b81o1IyOmklIPsz8Hutu7DDnBFU4jMfK2e0XgCfd4Un_C08JqXoA6F6sYE7hQosdFvB2mNsRmEhMdpx92ONNd4bkh2ZSIavmjCfk-XAaAIDvdUwTLjc4RhagUQjsE_IkwnOQAYeAEB9qgSa2gLslpO0zzeJrW2ZcAtkF8nfwP6T6lNzBXxpTng7J3vpqE54Bm1vbEbl59DOHTzmXI3Lr-P3H8QSOJ2eTL9NRu6l_AdoFUG8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIQEviDuFAUYCCR4Cie04DgghoEwduyBNndQ341ugqE3H1grxp_iNnBMnLQUJ7WWviR05Pp8_f7aPzyHksbQFrP5lnihuykSYKiSW5yrhMs94BaCqfOPleyAHR-LjKB9tkF_dXRh0q-w4sSFqP3O4R_6CFQrlBWf8zfH3BLNG4elql0IjwmI3_PwBS7bT1zt9sO8TxrY_DN8PkjarQOIkT-eJsF6U0htvSmvSAICs0txxZpi3oigRkCazxmapy6S3xgWY4lwBwltZaSRugALlXxB4xAjjpxgVqyC_mYhX73KeqCwrW8-h6E_WxKccT4ElnmPKcuAqkAbp2nTYZA1YmxX_Vb1_O2_-MRtuXyVXWhlL30bcXSMbob5OLu63B_U3yGQYQ15NaH9cVQvckqOHCAL6dNg_fEZBKlNsJUycFLODABuD9KW-K_ySfgIum7a-RtTUnqK_SnePk_owRWEb4XuTHJ2LCW6RzXpWhzuEcuOsYN4o77wwrLA5C3nOWYmB-VRqeqTo-le7Nuo5Jt-Y6M697ZteWUajZXS0TI9ky5rHMfLHGeq8QxMuy2Ps7ubB7OSLbqlAK8cscyzjGbeiUlxJz20lK2Vh7ZDK0CNlBwDddSsQOnxofIYGvFrWbSVUlEZnrL3V4U23VHaqVwOvRx4tXwMA8GTJ1GG2wDKFAIsKIXvkdoTnsg84LElxWw0ssQbctU5af1OPvzaBzguQ2yA_7_6_WQ_JpcFwf0_v7Rzs3iOX8X-ia9UW2ZyfLMJ9UI1z-6AZqpR8Pm9u-A3VPII1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWmTZp4QXxTGGAkkOAhLLEdJwFNiNFVG4MyVZu0N89fgaI2HVsrxF_kV3Fv4rQUJNSXvTZ25PqenHtsX99LyDNpMlj9yzTKuS4ioUsfGZ7mEZdpwksAVenqKN--3D8RH07T0zXyq70Lg2GVLSfWRO0mFvfIt1mWo7zgjG-XISziqNt7e_49wgpSeNLaltPQocyC26nTjYVLHof-5w9Yzl3uHHTB9s8Z6-0dv9-PQsWByEoeTyNhnCik004XRscewFrGqeVMM2dEViBYdWK0SWKbSGe09eD-bAaiPDdSS9wcBXewkYHXh4Xgxu5e_2iwSAGciOZiXsqjPEmKEFfURJvV2SuHY-CQV1jQHJgMhEO85CzrmgJLPvNfTfx3aOcfvrJ3g1wPIpe-a1B5k6z56hbZ_BSO8W-T0XGTEGtEu8OynOGGHR0gROiL4-7gJQUhTXGU4FYp1g4BrgZhTF3b-DX9DEw3DpFIVFeOYjRLe8uTOj9G2duA-w45uRIj3CXr1aTy9wnl2hrBnM6ddUKzzKTMpylnBabty2PdIVk7v8qGnOhYmmOk2uC3b2phGYWWUY1lOiSZ9zxv8oKs0GcXTThvj5m96x8mF19UIAqVW2aYZQlPuBFlznPpuCllmRtYWcTSd0jRAkC10wp0Dy8arjCAN_O-QWA1wmnF3lst3lQguku1-Cw75On8MQAAz5105SczbJMJsKgQskPuNfCczwGHBStuuoElloC7NEnLT6rh1zoNegZiHMTpg_8P6wnZBJ5QHw_6hw_JNfw7TdzVFlmfXsz8I5CUU_M4fKuUnF01PfwG3XyNEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Diffusion+Ratio+%28TDR%29+for+imaging+restricted+diffusion%3A+Optimisation+and+pre-clinical+demonstration&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=William+Warner&rft.au=Marco+Palombo&rft.au=Renata+Cruz&rft.au=Ross+Callaghan&rft.date=2023-04-01&rft.pub=Elsevier&rft.eissn=1095-9572&rft.volume=269&rft.spage=119930&rft_id=info:doi/10.1016%2Fj.neuroimage.2023.119930&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8c2b2c21313b4f8386d3bf6f8b81d06e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |