Temporal Diffusion Ratio (TDR) for imaging restricted diffusion: Optimisation and pre-clinical demonstration

•Temporal Diffusion Ratio (TDR) maps areas of restricted diffusion using two different gradient waveforms.•The two optimised gradient waveforms have: long δ + low G and short δ + high G.•If data is noisy, calculating TDR using HARDI acqisition subsets increases accuracy.•First demonstration of TDR i...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 269; p. 119930
Main Authors Warner, William, Palombo, Marco, Cruz, Renata, Callaghan, Ross, Shemesh, Noam, Jones, Derek K., Dell'Acqua, Flavio, Ianus, Andrada, Drobnjak, Ivana
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2023
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2023.119930

Cover

Abstract •Temporal Diffusion Ratio (TDR) maps areas of restricted diffusion using two different gradient waveforms.•The two optimised gradient waveforms have: long δ + low G and short δ + high G.•If data is noisy, calculating TDR using HARDI acqisition subsets increases accuracy.•First demonstration of TDR in pre-clinical imaging.•TDR values are strongly correlated with axon diameter in rat spinal cord. Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.
AbstractList •Temporal Diffusion Ratio (TDR) maps areas of restricted diffusion using two different gradient waveforms.•The two optimised gradient waveforms have: long δ + low G and short δ + high G.•If data is noisy, calculating TDR using HARDI acqisition subsets increases accuracy.•First demonstration of TDR in pre-clinical imaging.•TDR values are strongly correlated with axon diameter in rat spinal cord. Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique ( Dell’Acqua et al., proc. ISMRM 2019 ) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.
ArticleNumber 119930
Author Palombo, Marco
Warner, William
Drobnjak, Ivana
Cruz, Renata
Jones, Derek K.
Dell'Acqua, Flavio
Callaghan, Ross
Shemesh, Noam
Ianus, Andrada
AuthorAffiliation d Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
e AINOSTICS Ltd., Manchester, United Kingdom
b Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
c School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
f NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
a Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom
AuthorAffiliation_xml – name: c School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
– name: e AINOSTICS Ltd., Manchester, United Kingdom
– name: b Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
– name: f NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
– name: a Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom
– name: d Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
Author_xml – sequence: 1
  givenname: William
  surname: Warner
  fullname: Warner, William
  organization: Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom
– sequence: 2
  givenname: Marco
  surname: Palombo
  fullname: Palombo, Marco
  organization: Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
– sequence: 3
  givenname: Renata
  surname: Cruz
  fullname: Cruz, Renata
  organization: Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
– sequence: 4
  givenname: Ross
  orcidid: 0000-0003-1178-6005
  surname: Callaghan
  fullname: Callaghan, Ross
  organization: AINOSTICS Ltd., Manchester, United Kingdom
– sequence: 5
  givenname: Noam
  surname: Shemesh
  fullname: Shemesh, Noam
  organization: Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
– sequence: 6
  givenname: Derek K.
  surname: Jones
  fullname: Jones, Derek K.
  organization: Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
– sequence: 7
  givenname: Flavio
  surname: Dell'Acqua
  fullname: Dell'Acqua, Flavio
  organization: NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
– sequence: 8
  givenname: Andrada
  orcidid: 0000-0001-9893-1724
  surname: Ianus
  fullname: Ianus, Andrada
  email: andrada.ianus@neuro.fchampalimaud.org
  organization: Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
– sequence: 9
  givenname: Ivana
  orcidid: 0000-0002-3989-1715
  surname: Drobnjak
  fullname: Drobnjak, Ivana
  email: i.drobnjak@ucl.ac.uk
  organization: Centre for Medical Image Computing (CMIC), Computer Science Department, University College London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36750150$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAQxyNURB_wFZAlLuWQxa84MQcEtDwqVapULWfLj8niJWtvnaRSvz3ObpfSPe3Jlmfm5__M_E-LoxADFAUieEYwER-WswBjin6lFzCjmLIZIVIy_KI4IVhWpaxqejTdK1Y2OXRcnPb9EmMsCW9eFcdM1BUmFT4pujms1jHpDl36th17HwO61YOP6Hx-efsetTGh6RsfFihBPyRvB3DI7ZI_opv14Fe-n2oC0sGhdYLSdj54m6kOVjHksk34dfGy1V0Pbx7Ps-LX92_zi5_l9c2Pq4sv16UVDA8lN45L4bTT0mgMpJYtriyjmjrDaykFazQx2hBsiXBGWyAVtXUl68YILRg7K662XBf1Uq1TbiA9qKi92jzEtFA6Dd52oBpLDbWUMMIMbxvWCMdMK9rGNMRhAZn1actaj2YFzkLIzXTPoM8jwf9Wi3ivapFVcZ4B54-AFO_GPEKVp2Wh63SAOPaK1jXP7XIucuq7vdRlHFPIo8pZDcYVZ3Tq7u3_iv5J2S31SbJNse8TtMr6YbOALNB3imA1uUgt1ZOL1OQitXVRBjR7gN0fB5R-3ZZC3u-9h6R66yFYcD6BHfIC_CGQz3uQnZ_-wMNhiL_tp_-g
CitedBy_id crossref_primary_10_1002_hbm_26420
crossref_primary_10_1002_nbm_5087
crossref_primary_10_7554_eLife_101069_3
crossref_primary_10_1016_j_jmr_2024_107745
crossref_primary_10_1002_mp_17453
crossref_primary_10_3389_fninf_2023_1208073
crossref_primary_10_7554_eLife_101069
Cites_doi 10.1093/brain/awp042
10.1152/ajplegacy.1939.127.1.131
10.1073/pnas.1004841107
10.1016/S0006-3495(79)85164-4
10.62721/diffusion-fundamentals.18.665
10.1109/TMI.2009.2015756
10.1523/JNEUROSCI.0203-14.2014
10.1158/0008-5472.CAN-21-2929
10.1002/nbm.3711
10.1016/0006-8993(92)90178-C
10.1371/journal.pone.0133201
10.1016/j.neuroimage.2020.116835
10.4329/wjr.v8.i9.785
10.1016/j.neuroimage.2018.10.033
10.1016/j.jmr.2011.02.022
10.1016/j.neuroimage.2021.118833
10.1007/s00429-019-01961-2
10.1016/j.neuroimage.2010.03.063
10.1038/srep46147
10.1016/j.neuroimage.2020.117107
10.1016/j.jmr.2010.05.017
10.1113/JP275498
10.1093/biomet/52.1-2.193
10.1002/nbm.1795
10.1002/mrm.25631
10.1002/mrm.21577
10.1002/mrm.22267
10.7554/eLife.49855
10.1016/j.neuroimage.2014.09.006
10.1002/mrm.28743
10.1002/nbm.3450
10.1016/j.neuroimage.2022.119277
10.1101/2020.10.01.320507
10.1002/1522-2594(200011)44:5<713::AID-MRM9>3.0.CO;2-6
10.1016/j.neuroimage.2020.117197
10.1002/nbm.3405
10.1016/j.neuroimage.2016.08.016
10.1006/jmrb.1994.1038
10.1002/mrm.25441
10.1002/mrm.27463
10.1158/0008-5472.CAN-13-2511
10.1002/mrm.1910370115
10.1063/1.1680931
10.1007/BF00308818
10.1016/j.neuroimage.2020.117619
10.1136/jnnp.34.4.369
10.1016/j.neuroimage.2010.03.072
10.1016/j.neuroimage.2021.117849
10.1038/s41597-021-01092-6
10.1016/j.jmr.2017.02.017
10.1101/2022.04.08.487640
10.12688/f1000research.15021.1
10.1038/s41598-020-65956-4
10.1016/j.neuroimage.2021.118424
10.1002/nbm.4170
10.1177/0271678X18759859
10.1007/s13244-018-0624-3
10.1001/archpsyc.55.3.215
10.1006/jmre.1997.1233
10.1016/j.neuroimage.2020.117228
10.3389/fphy.2017.00058
10.1002/nbm.3484
10.1016/j.neuroimage.2022.119135
10.3389/fphy.2018.00049
10.1016/j.neuroimage.2012.03.072
10.1002/mrm.10385
10.1002/acn3.445
10.1016/j.neuroimage.2015.06.038
10.1002/nbm.3462
10.1002/nbm.3841
10.1016/j.neuroimage.2010.05.043
10.3389/fnhum.2017.00393
10.1002/nbm.1175
10.1016/j.neuroimage.2017.07.060
10.1007/s11682-021-00548-y
10.1038/s42003-020-1050-x
10.1016/j.neuroimage.2017.08.039
10.1016/j.neuroimage.2022.118976
10.1016/j.neuroimage.2015.07.074
10.1002/mrm.27101
10.1016/j.neuroimage.2018.09.075
10.1016/j.neuroscience.2013.12.044
10.1098/rspb.1982.0092
10.1002/mrm.28189
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Inc.
Copyright Elsevier Limited Apr 1, 2023
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Apr 1, 2023
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOA
DOI 10.1016/j.neuroimage.2023.119930
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
ProQuest - Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
ProQuest One Psychology



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 119930
ExternalDocumentID oai_doaj_org_article_8c2b2c21313b4f8386d3bf6f8b81d06e
PMC7615244
36750150
10_1016_j_neuroimage_2023_119930
S1053811923000782
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 104943
– fundername: Wellcome Trust
  grantid: 096646
– fundername: Medical Research Council
  grantid: MR/T020296/1
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SEW
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ACLOT
~HD
5PM
ID FETCH-LOGICAL-c630t-4bd496dada9ba0e179f05c32a2db4799638a1bab10c16dbace152c75978b6a633
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:30:20 EDT 2025
Thu Aug 21 18:35:50 EDT 2025
Sun Sep 28 09:35:59 EDT 2025
Wed Aug 13 04:49:14 EDT 2025
Mon Jul 21 05:19:32 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 03:02:25 EDT 2025
Fri Feb 23 02:39:37 EST 2024
Tue Aug 26 17:21:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Spinal cord
TDR
Diffusion
Microstructure
Optimization
Axon diameter
Language English
License This is an open access article under the CC BY license.
Copyright © 2023. Published by Elsevier Inc.
This work is licensed under a BY 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-4bd496dada9ba0e179f05c32a2db4799638a1bab10c16dbace152c75978b6a633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Shared first author.
Shared senior author.
ORCID 0000-0003-1178-6005
0000-0001-9893-1724
0000-0002-3989-1715
OpenAccessLink https://doaj.org/article/8c2b2c21313b4f8386d3bf6f8b81d06e
PMID 36750150
PQID 2780054323
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_8c2b2c21313b4f8386d3bf6f8b81d06e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615244
proquest_miscellaneous_2774496446
proquest_journals_2780054323
pubmed_primary_36750150
crossref_citationtrail_10_1016_j_neuroimage_2023_119930
crossref_primary_10_1016_j_neuroimage_2023_119930
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2023_119930
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2023_119930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2023
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Alexander (bib0018) 2010; 52
Ong, Wehrli (bib0029) 2010; 51
Devan (bib0057) 2022; 82
van Gelderen, DesPres, van Zijl, Moonen (bib0084) 1994; 103
Lawrence (bib0001) 2021; 15
Neuman (bib0085) 1974; 60
Lebel, Caverhill-Godkewitsch, Beaulieu (bib0005) 2010; 52
Paquette, M., Eichner, C., Knösche, T.R. & Anwander, A. Axon diameter measurements using diffusion MRI are infeasible. bioRxiv 2020.10.01.320507 (2021) doi:10.1101/2020.10.01.320507.
Zhang, Dyrby, Alexander (bib0028) 2011; 14
Alves (bib0093) 2022; 247
Jespersen, Olesen, Hansen, Shemesh (bib0050) 2018; 182
Lampinen, Lätt, Wasselius, van Westen, Nilsson (bib0048) 2021; 86
Xu (bib0031) 2014; 103
Fick, Sepasian, Pizzolato, Ianus, Deriche (bib0088) 2017
Tian (bib0076) 2022; 9
Dissecting brain grey and white matter microstructure: a novel clinical diffusion MRI protocol. bioRxiv 2022.04.08.487640 (2022) doi:10.1101/2022.04.08.487640.
Lee, Papaioannou, Kim, Novikov, Fieremans (bib0051) 2020; 3
Dubois (bib0003) 2014; 276
Wu, Martin, Northington, Zhang (bib0037) 2019; 39
Ianuş (bib0077) 2022; 254
Callaghan, Alexander, Palombo, Zhang (bib0095) 2020; 220
Ianuş, Alexander, Drobnjak (bib0065) 2016
Siow (bib0035) 2013; 18
Harkins, Beaulieu, Xu, Gore, Does (bib0019) 2021; 227
Olesen, Ianus, Shemesh, Jespersen (bib0046) 2022; 30
Panagiotaki (bib0063) 2014; 74
Olesen, Østergaard, Shemesh, Jespersen (bib0075) 2021; 231
Cluskey, Ramsden (bib0009) 2001; 54
Dukkipati, Garrett, Elbasiouny (bib0011) 2018; 596
Bar-Shir, Cohen (bib0032) 2008; 21
Drobnjak, Zhang, Ianuş, Kaden, Alexander (bib0034) 2016; 75
Grussu (bib0083) 2017; 4
Zhang, Schneider, Wheeler-Kingshott, Alexander (bib0082) 2012; 61
Nilsson, Lätt, Ståhlberg, van Westen, Hagslätt (bib0091) 2012; 25
Eichner (bib0086) 2015; 122
Veraart (bib0078) 2016; 142
Ianus, Cruz, Chavarrias, Palombo, Shemesh (bib0090) 2022; 30
Xu (bib0053) 2016; 29
Aboitiz, Scheibel, Fisher, Zaidel (bib0070) 1992; 598
Houston (bib0074) 2017; 7
Novikov, Kiselev, Jespersen (bib0055) 2018; 79
Veraart, Fieremans, Novikov (bib0061) 2019; 185
Callaghan (bib0066) 1997; 129
Taylor, Falconer, Bruton, Corsellis (bib0012) 1971; 34
Shemesh (bib0030) 2018; 6
Grussu (bib0024) 2019; 81
Stanisz, Szafer, Wright, Henkelman (bib0016) 1997; 37
Lackey, Heck, Sillitoe (bib0073) 2018; 7
Heads, Pollock, Robertson, Sutherland, Allpress (bib0008) 1991; 82
Callaghan, Jolley, Lelievre (bib0060) 1979; 28
Hursh (bib0006) 1939; 127
Roberts (bib0064) 2020; 10
Palombo, Alexander, Zhang (bib0072) 2021
Drobnjak, Siow, Alexander (bib0067) 2010; 206
Huang (bib0022) 2020; 225
Skinner, Kurpad, Schmit, Budde (bib0062) 2015; 28
Jelescu, de Skowronski, Geffroy, Palombo, Novikov (bib0044) 2022; 256
Assaf, Blumenfeld-Katzir, Yovel, Basser (bib0017) 2008; 59
Baliyan, Das, Sharma, Gupta (bib0013) 2016; 8
Dell'Acqua (bib0058) 2019
Dula, Gochberg, Valentine, Valentine, Does (bib0079) 2010; 63
Anaby (bib0087) 2019; 32
Fan (bib0026) 2020; 222
Duval (bib0069) 2019; 185
Assaf, Mayk, Cohen (bib0049) 2000; 44
Does, Parsons, Gore (bib0036) 2003; 49
Callaghan, R., Alexander, D.C., Palombo, M. & Zhang, H. Impact of within-voxel heterogeneity in fibre geometry on spherical deconvolution. Preprint at 10.48550/ARXIV.2103.08237 (2021).
Hall, Alexander (bib0080) 2009; 28
Sexton (bib0004) 2014; 34
Barazany, Basser, Assaf (bib0027) 2009; 132
Duval (bib0023) 2015; 118
Lee, Jespersen, Fieremans, Novikov (bib0092) 2020; 223
Veraart (bib0020) 2020; 9
Wu, Martin, Northington, Zhang (bib0056) 2014; 72
Drobnjak, Zhang, Hall, Alexander (bib0068) 2011; 210
Nunes, Cruz, Jespersen, Shemesh (bib0089) 2017; 277
Schiavi, S. et al
Sepehrband, Alexander, Kurniawan, Reutens, Yang (bib0025) 2016; 29
Bezchlibnyk (bib0010) 2007; 32
Drake-Pérez, Boto, Fitsiori, Lovblad, Vargas (bib0014) 2018; 9
Reynaud (bib0047) 2017; 5
Palombo (bib0040) 2020; 215
Shemesh, Álvarez, Frydman (bib0033) 2015; 10
Kakkar (bib0021) 2018; 182
Nilsson, Lasič, Drobnjak, Topgaard, Westin (bib0038) 2017; 30
Tian, Ma (bib0002) 2017; 11
Afzali (bib0043) 2020; 28
Aggarwal, Smith, Calabresi (bib0052) 2020; 84
Olesen, Østergaard, Shemesh, Jespersen (bib0045) 2022; 251
Jelescu, Veraart, Fieremans, Novikov (bib0059) 2016; 29
Rajkowska, Selemon, Goldman-Rakic (bib0071) 1998; 55
Ianus, Alexander, Zhang, Palombo (bib0041) 2021; 241
Ritchie (bib0007) 1982; 217
Watson (bib0081) 1965; 52
Alexander, Dyrby, Nilsson, Zhang (bib0054) 2019; 32
Budde, Frank (bib0094) 2010; 107
Le Bihan, Iima (bib0015) 2015; 13
Hall (10.1016/j.neuroimage.2023.119930_bib0080) 2009; 28
Zhang (10.1016/j.neuroimage.2023.119930_bib0082) 2012; 61
Palombo (10.1016/j.neuroimage.2023.119930_bib0072) 2021
Alves (10.1016/j.neuroimage.2023.119930_bib0093) 2022; 247
Ianuş (10.1016/j.neuroimage.2023.119930_bib0077) 2022; 254
Ong (10.1016/j.neuroimage.2023.119930_bib0029) 2010; 51
Dell'Acqua (10.1016/j.neuroimage.2023.119930_bib0058) 2019
Does (10.1016/j.neuroimage.2023.119930_bib0036) 2003; 49
Roberts (10.1016/j.neuroimage.2023.119930_bib0064) 2020; 10
Fan (10.1016/j.neuroimage.2023.119930_bib0026) 2020; 222
Xu (10.1016/j.neuroimage.2023.119930_bib0031) 2014; 103
Duval (10.1016/j.neuroimage.2023.119930_bib0069) 2019; 185
Grussu (10.1016/j.neuroimage.2023.119930_bib0083) 2017; 4
Baliyan (10.1016/j.neuroimage.2023.119930_bib0013) 2016; 8
Lackey (10.1016/j.neuroimage.2023.119930_bib0073) 2018; 7
Zhang (10.1016/j.neuroimage.2023.119930_bib0028) 2011; 14
Duval (10.1016/j.neuroimage.2023.119930_bib0023) 2015; 118
Rajkowska (10.1016/j.neuroimage.2023.119930_bib0071) 1998; 55
Taylor (10.1016/j.neuroimage.2023.119930_bib0012) 1971; 34
Nilsson (10.1016/j.neuroimage.2023.119930_bib0038) 2017; 30
Le Bihan (10.1016/j.neuroimage.2023.119930_bib0015) 2015; 13
Stanisz (10.1016/j.neuroimage.2023.119930_bib0016) 1997; 37
Assaf (10.1016/j.neuroimage.2023.119930_bib0017) 2008; 59
Drake-Pérez (10.1016/j.neuroimage.2023.119930_bib0014) 2018; 9
Houston (10.1016/j.neuroimage.2023.119930_bib0074) 2017; 7
Ianuş (10.1016/j.neuroimage.2023.119930_bib0065) 2016
Novikov (10.1016/j.neuroimage.2023.119930_bib0055) 2018; 79
Afzali (10.1016/j.neuroimage.2023.119930_bib0043) 2020; 28
Drobnjak (10.1016/j.neuroimage.2023.119930_bib0067) 2010; 206
Lee (10.1016/j.neuroimage.2023.119930_bib0051) 2020; 3
Olesen (10.1016/j.neuroimage.2023.119930_bib0075) 2021; 231
Bezchlibnyk (10.1016/j.neuroimage.2023.119930_bib0010) 2007; 32
Shemesh (10.1016/j.neuroimage.2023.119930_bib0033) 2015; 10
10.1016/j.neuroimage.2023.119930_bib0039
Hursh (10.1016/j.neuroimage.2023.119930_bib0006) 1939; 127
Lampinen (10.1016/j.neuroimage.2023.119930_bib0048) 2021; 86
Anaby (10.1016/j.neuroimage.2023.119930_bib0087) 2019; 32
Cluskey (10.1016/j.neuroimage.2023.119930_bib0009) 2001; 54
Ianus (10.1016/j.neuroimage.2023.119930_bib0090) 2022; 30
Assaf (10.1016/j.neuroimage.2023.119930_bib0049) 2000; 44
Fick (10.1016/j.neuroimage.2023.119930_bib0088) 2017
Sepehrband (10.1016/j.neuroimage.2023.119930_bib0025) 2016; 29
Watson (10.1016/j.neuroimage.2023.119930_bib0081) 1965; 52
Lawrence (10.1016/j.neuroimage.2023.119930_bib0001) 2021; 15
Drobnjak (10.1016/j.neuroimage.2023.119930_bib0068) 2011; 210
Aboitiz (10.1016/j.neuroimage.2023.119930_bib0070) 1992; 598
Palombo (10.1016/j.neuroimage.2023.119930_bib0040) 2020; 215
10.1016/j.neuroimage.2023.119930_bib0042
Devan (10.1016/j.neuroimage.2023.119930_bib0057) 2022; 82
Harkins (10.1016/j.neuroimage.2023.119930_bib0019) 2021; 227
Nunes (10.1016/j.neuroimage.2023.119930_bib0089) 2017; 277
Wu (10.1016/j.neuroimage.2023.119930_bib0037) 2019; 39
Dukkipati (10.1016/j.neuroimage.2023.119930_bib0011) 2018; 596
Dula (10.1016/j.neuroimage.2023.119930_bib0079) 2010; 63
Eichner (10.1016/j.neuroimage.2023.119930_bib0086) 2015; 122
Veraart (10.1016/j.neuroimage.2023.119930_bib0020) 2020; 9
Callaghan (10.1016/j.neuroimage.2023.119930_bib0066) 1997; 129
Drobnjak (10.1016/j.neuroimage.2023.119930_bib0034) 2016; 75
Jelescu (10.1016/j.neuroimage.2023.119930_bib0059) 2016; 29
Siow (10.1016/j.neuroimage.2023.119930_bib0035) 2013; 18
Jelescu (10.1016/j.neuroimage.2023.119930_bib0044) 2022; 256
Lee (10.1016/j.neuroimage.2023.119930_bib0092) 2020; 223
Xu (10.1016/j.neuroimage.2023.119930_bib0053) 2016; 29
Olesen (10.1016/j.neuroimage.2023.119930_bib0046) 2022; 30
Alexander (10.1016/j.neuroimage.2023.119930_bib0054) 2019; 32
10.1016/j.neuroimage.2023.119930_bib0096
Alexander (10.1016/j.neuroimage.2023.119930_bib0018) 2010; 52
Budde (10.1016/j.neuroimage.2023.119930_bib0094) 2010; 107
Kakkar (10.1016/j.neuroimage.2023.119930_bib0021) 2018; 182
Olesen (10.1016/j.neuroimage.2023.119930_bib0045) 2022; 251
Callaghan (10.1016/j.neuroimage.2023.119930_bib0095) 2020; 220
van Gelderen (10.1016/j.neuroimage.2023.119930_bib0084) 1994; 103
Grussu (10.1016/j.neuroimage.2023.119930_bib0024) 2019; 81
Reynaud (10.1016/j.neuroimage.2023.119930_bib0047) 2017; 5
Nilsson (10.1016/j.neuroimage.2023.119930_bib0091) 2012; 25
Bar-Shir (10.1016/j.neuroimage.2023.119930_bib0032) 2008; 21
Ianus (10.1016/j.neuroimage.2023.119930_bib0041) 2021; 241
Sexton (10.1016/j.neuroimage.2023.119930_bib0004) 2014; 34
Tian (10.1016/j.neuroimage.2023.119930_bib0002) 2017; 11
Shemesh (10.1016/j.neuroimage.2023.119930_bib0030) 2018; 6
Jespersen (10.1016/j.neuroimage.2023.119930_bib0050) 2018; 182
Lebel (10.1016/j.neuroimage.2023.119930_bib0005) 2010; 52
Callaghan (10.1016/j.neuroimage.2023.119930_bib0060) 1979; 28
Dubois (10.1016/j.neuroimage.2023.119930_bib0003) 2014; 276
Heads (10.1016/j.neuroimage.2023.119930_bib0008) 1991; 82
Aggarwal (10.1016/j.neuroimage.2023.119930_bib0052) 2020; 84
Ritchie (10.1016/j.neuroimage.2023.119930_bib0007) 1982; 217
Veraart (10.1016/j.neuroimage.2023.119930_bib0078) 2016; 142
Barazany (10.1016/j.neuroimage.2023.119930_bib0027) 2009; 132
Veraart (10.1016/j.neuroimage.2023.119930_bib0061) 2019; 185
Huang (10.1016/j.neuroimage.2023.119930_bib0022) 2020; 225
Neuman (10.1016/j.neuroimage.2023.119930_bib0085) 1974; 60
Skinner (10.1016/j.neuroimage.2023.119930_bib0062) 2015; 28
Tian (10.1016/j.neuroimage.2023.119930_bib0076) 2022; 9
Wu (10.1016/j.neuroimage.2023.119930_bib0056) 2014; 72
Panagiotaki (10.1016/j.neuroimage.2023.119930_bib0063) 2014; 74
References_xml – volume: 118
  start-page: 494
  year: 2015
  end-page: 507
  ident: bib0023
  article-title: In vivo mapping of human spinal cord microstructure at 300mT/m
  publication-title: Neuroimage
– volume: 28
  start-page: 4426
  year: 2020
  ident: bib0043
  article-title: Improving neural soma imaging using the power spectrum of the free gradient waveforms
  publication-title: Proc. Intl. Soc. Mag. Reson. Med.
– reference: Paquette, M., Eichner, C., Knösche, T.R. & Anwander, A. Axon diameter measurements using diffusion MRI are infeasible. bioRxiv 2020.10.01.320507 (2021) doi:10.1101/2020.10.01.320507.
– volume: 256
  year: 2022
  ident: bib0044
  article-title: Neurite Exchange Imaging (NEXI): a minimal model of diffusion in gray matter with inter-compartment water exchange
  publication-title: Neuroimage
– reference: Dissecting brain grey and white matter microstructure: a novel clinical diffusion MRI protocol. bioRxiv 2022.04.08.487640 (2022) doi:10.1101/2022.04.08.487640.
– volume: 39
  start-page: 1336
  year: 2019
  end-page: 1348
  ident: bib0037
  article-title: Oscillating-gradient diffusion magnetic resonance imaging detects acute subcellular structural changes in the mouse forebrain after neonatal hypoxia-ischemia
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 44
  start-page: 713
  year: 2000
  end-page: 722
  ident: bib0049
  article-title: Displacement imaging of spinal cord using q-space diffusion-weighted MRI
  publication-title: Magn. Reson. Med.
– volume: 15
  start-page: 2813
  year: 2021
  end-page: 2823
  ident: bib0001
  article-title: Age and sex effects on advanced white matter microstructure measures in 15,628 older adults: a UK biobank study
  publication-title: Brain Imaging Behav.
– volume: 52
  start-page: 1374
  year: 2010
  end-page: 1389
  ident: bib0018
  article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI
  publication-title: Neuroimage
– year: 2019
  ident: bib0058
  article-title: Temporal diffusion ratio (TDR): a diffusion MRI technique to map the fraction and spatial distribution of large axons in the living human brain
  publication-title: Proceedings of the ISMRM Conference
– volume: 32
  start-page: 203
  year: 2007
  end-page: 210
  ident: bib0010
  article-title: Neuron somal size is decreased in the lateral amygdalar nucleus of subjects with bipolar disorder
  publication-title: J. Psychiatry Neurosci.
– volume: 25
  start-page: 795
  year: 2012
  end-page: 805
  ident: bib0091
  article-title: The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study
  publication-title: NMR Biomed.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib0064
  article-title: Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the early detection of therapeutic response
  publication-title: Sci. Rep.
– volume: 63
  start-page: 902
  year: 2010
  end-page: 909
  ident: bib0079
  article-title: Multiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord
  publication-title: Magn. Reson. Med.
– volume: 185
  start-page: 379
  year: 2019
  end-page: 387
  ident: bib0061
  article-title: On the scaling behavior of water diffusion in human brain white matter
  publication-title: Neuroimage
– volume: 182
  start-page: 314
  year: 2018
  end-page: 328
  ident: bib0021
  article-title: Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter stud y i: an experimental n viable nerve tissue
  publication-title: Neuroimage
– volume: 107
  start-page: 14472
  year: 2010
  end-page: 14477
  ident: bib0094
  article-title: Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib0051
  article-title: A time-dependent diffusion MRI signature of axon caliber variations and beading
  publication-title: Communications Biology
– year: 2021
  ident: bib0072
  article-title: Large-scale analysis of brain cell morphometry informs microstructure modelling of gray matter
  publication-title: Proceedings of the 29th ISMRM Annual Meeting and Exhibition
– volume: 86
  start-page: 754
  year: 2021
  end-page: 764
  ident: bib0048
  article-title: Time dependence in diffusion MRI predicts tissue outcome in ischemic stroke patients
  publication-title: Magn. Reson. Med.
– volume: 5
  start-page: 58
  year: 2017
  ident: bib0047
  article-title: Time-dependent diffusion MRI in cancer: tissue modeling and applications
  publication-title: Front. Phys.
– volume: 9
  start-page: 535
  year: 2018
  end-page: 547
  ident: bib0014
  article-title: Clinical applications of diffusion weighted imaging in neuroradiology
  publication-title: Insights Imaging
– volume: 210
  start-page: 151
  year: 2011
  end-page: 157
  ident: bib0068
  article-title: The matrix formalism for generalised gradients with time-varying orientation in diffusion NMR
  publication-title: J. Magn. Reson.
– volume: 84
  start-page: 1564
  year: 2020
  end-page: 1578
  ident: bib0052
  article-title: Diffusion-time dependence of diffusional kurtosis in the mouse brain
  publication-title: Magn. Reson. Med.
– volume: 29
  start-page: 293
  year: 2016
  end-page: 308
  ident: bib0025
  article-title: Towards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRI
  publication-title: NMR Biomed.
– volume: 79
  start-page: 3172
  year: 2018
  end-page: 3193
  ident: bib0055
  article-title: On modeling
  publication-title: Magn. Reson. Med.
– volume: 596
  start-page: 1723
  year: 2018
  end-page: 1745
  ident: bib0011
  article-title: The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis
  publication-title: J. Physiol.
– volume: 55
  start-page: 215
  year: 1998
  end-page: 224
  ident: bib0071
  article-title: Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease
  publication-title: Arch. Gen. Psychiatry
– volume: 34
  start-page: 15425
  year: 2014
  end-page: 15436
  ident: bib0004
  article-title: Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study
  publication-title: J. Neurosci.
– volume: 9
  start-page: 1
  year: 2022
  end-page: 11
  ident: bib0076
  article-title: Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients
  publication-title: Sci Data
– volume: 18
  start-page: 1
  year: 2013
  end-page: 6
  ident: bib0035
  article-title: Axon radius estimation with oscillating gradient spin echo (OGSE) diffusion MRI
  publication-title: Diffus. Fundam.
– volume: 217
  start-page: 29
  year: 1982
  end-page: 35
  ident: bib0007
  article-title: On the relation between fibre diameter and conduction velocity in myelinated nerve fibres
  publication-title: Proc. R. Soc. Lond. B Biol. Sci.
– volume: 225
  start-page: 1277
  year: 2020
  end-page: 1291
  ident: bib0022
  article-title: High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain
  publication-title: Brain Struct. Funct.
– volume: 51
  start-page: 1360
  year: 2010
  end-page: 1366
  ident: bib0029
  article-title: Quantifying axon diameter and intra-cellular volume fraction in excised mouse spinal cord with q-space imaging
  publication-title: Neuroimage
– volume: 32
  start-page: e4170
  year: 2019
  ident: bib0087
  article-title: Single- and double-Diffusion encoding MRI for studying ex vivo apparent axon diameter distribution in spinal cord white matter
  publication-title: NMR Biomed.
– volume: 4
  start-page: 663
  year: 2017
  end-page: 679
  ident: bib0083
  article-title: Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology?
  publication-title: Ann. Clin. Transl. Neurol.
– volume: 127
  start-page: 131
  year: 1939
  end-page: 139
  ident: bib0006
  article-title: Conduction velocity and diameter of nerve fibers
  publication-title: Am. J. Physiol. Leg. Content
– volume: 29
  start-page: 400
  year: 2016
  end-page: 410
  ident: bib0053
  article-title: Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy
  publication-title: NMR Biomed.
– volume: 6
  year: 2018
  ident: bib0030
  article-title: Axon diameters and myelin content modulate microscopic fractional anisotropy at short diffusion times in fixed rat spinal cord
  publication-title: Front. Phys.
– volume: 8
  start-page: 785
  year: 2016
  end-page: 798
  ident: bib0013
  article-title: Diffusion weighted imaging: technique and applications
  publication-title: World J. Radiol.
– start-page: 766
  year: 2017
  end-page: 769
  ident: bib0088
  article-title: Assessing the feasibility of estimating axon diameter using diffusion models and machine learning
  publication-title: Proceedings of the IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
– volume: 37
  start-page: 103
  year: 1997
  end-page: 111
  ident: bib0016
  article-title: An analytical model of restricted diffusion in bovine optic nerve
  publication-title: Magn. Reson. Med.
– volume: 251
  year: 2022
  ident: bib0045
  article-title: Diffusion time dependence, power-law scaling, and exchange in gray matter
  publication-title: Neuroimage
– volume: 75
  start-page: 688
  year: 2016
  end-page: 700
  ident: bib0034
  article-title: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: insight from a simulation study
  publication-title: Magn. Reson. Med.
– volume: 11
  start-page: 393
  year: 2017
  ident: bib0002
  article-title: Microstructural changes of the human brain from early to mid-adulthood
  publication-title: Front. Hum. Neurosci.
– volume: 49
  start-page: 206
  year: 2003
  end-page: 215
  ident: bib0036
  article-title: Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain
  publication-title: Magn. Reson. Med.
– volume: 59
  start-page: 1347
  year: 2008
  end-page: 1354
  ident: bib0017
  article-title: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI
  publication-title: Magn. Reson. Med.
– volume: 52
  start-page: 193
  year: 1965
  end-page: 201
  ident: bib0081
  article-title: equatorial distributions on a sphere
  publication-title: Biometrika
– volume: 277
  start-page: 117
  year: 2017
  end-page: 130
  ident: bib0089
  article-title: Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI
  publication-title: J. Magn. Reson.
– volume: 81
  start-page: 1247
  year: 2019
  end-page: 1264
  ident: bib0024
  article-title: Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord
  publication-title: Magn. Reson. Med.
– volume: 206
  start-page: 41
  year: 2010
  end-page: 51
  ident: bib0067
  article-title: Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR
  publication-title: J. Magn. Reson.
– volume: 122
  start-page: 373
  year: 2015
  end-page: 384
  ident: bib0086
  article-title: Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast
  publication-title: Neuroimage
– volume: 60
  start-page: 4508
  year: 1974
  end-page: 4511
  ident: bib0085
  article-title: Spin echo of spins diffusing in a bounded medium
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 1354
  year: 2009
  end-page: 1364
  ident: bib0080
  article-title: Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 28
  start-page: 1489
  year: 2015
  end-page: 1506
  ident: bib0062
  article-title: Detection of acute nervous system injury with advanced diffusion-weighted MRI: a simulation and sensitivity analysis
  publication-title: NMR Biomed.
– volume: 29
  start-page: 33
  year: 2016
  end-page: 47
  ident: bib0059
  article-title: Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue
  publication-title: NMR Biomed.
– volume: 7
  year: 2018
  ident: bib0073
  article-title: Recent advances in understanding the mechanisms of cerebellar granule cell development and function and their contribution to behavior
  publication-title: F1000Res
– volume: 231
  year: 2021
  ident: bib0075
  article-title: Beyond the diffusion standard model in fixed rat spinal cord with combined linear and planar encoding
  publication-title: Neuroimage
– volume: 14
  start-page: 82
  year: 2011
  end-page: 89
  ident: bib0028
  article-title: Axon diameter mapping in crossing fibers with diffusion MRI
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 276
  start-page: 48
  year: 2014
  end-page: 71
  ident: bib0003
  article-title: The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants
  publication-title: Neuroscience
– volume: 34
  start-page: 369
  year: 1971
  end-page: 387
  ident: bib0012
  article-title: Focal dysplasia of the cerebral cortex in epilepsy
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 9
  start-page: e49855
  year: 2020
  ident: bib0020
  article-title: Noninvasive quantification of axon radii using diffusion MRI
  publication-title: Elife
– volume: 28
  start-page: 133
  year: 1979
  end-page: 141
  ident: bib0060
  article-title: Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance
  publication-title: Biophys. J.
– volume: 74
  start-page: 1902
  year: 2014
  end-page: 1912
  ident: bib0063
  article-title: Noninvasive quantification of solid tumor microstructure using VERDICT MRI
  publication-title: Cancer Res.
– reference: Schiavi, S. et al
– volume: 103
  start-page: 255
  year: 1994
  end-page: 260
  ident: bib0084
  article-title: Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle
  publication-title: J. Magn. Reson. B
– volume: 215
  year: 2020
  ident: bib0040
  article-title: SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI
  publication-title: Neuroimage
– volume: 185
  start-page: 119
  year: 2019
  end-page: 128
  ident: bib0069
  article-title: Axons morphometry in the human spinal cord
  publication-title: Neuroimage
– volume: 30
  start-page: 2393
  year: 2022
  ident: bib0090
  article-title: Early microstructural aberrations in a mouse model of Alzheimer's disease detected by Soma and Neurite Density Imaging
  publication-title: Proc. Intl. Soc. Mag. Reson. Med.
– volume: 82
  start-page: 3603
  year: 2022
  end-page: 3613
  ident: bib0057
  article-title: Selective cell size MRI differentiates brain tumors from radiation necrosis
  publication-title: Cancer Res.
– volume: 142
  start-page: 394
  year: 2016
  end-page: 406
  ident: bib0078
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
– volume: 52
  start-page: 20
  year: 2010
  end-page: 31
  ident: bib0005
  article-title: Age-related regional variations of the corpus callosum identified by diffusion tensor tractography
  publication-title: Neuroimage
– volume: 598
  start-page: 143
  year: 1992
  end-page: 153
  ident: bib0070
  article-title: Fiber composition of the human corpus callosum
  publication-title: Brain Res.
– volume: 223
  year: 2020
  ident: bib0092
  article-title: The impact of realistic axonal shape on axon diameter estimation using diffusion MRI
  publication-title: Neuroimage
– volume: 30
  year: 2017
  ident: bib0038
  article-title: Resolution limit of cylinder diameter estimation by diffusion MRI: the impact of gradient waveform and orientation dispersion
  publication-title: NMR Biomed.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 16
  ident: bib0074
  article-title: Exploring the significance of morphological diversity for cerebellar granule cell excitability
  publication-title: Sci. Rep.
– volume: 10
  year: 2015
  ident: bib0033
  article-title: size distribution imaging by non-uniform oscillating-gradient spin echo (NOGSE) MRI
  publication-title: PLoS One
– volume: 30
  start-page: 1426
  year: 2022
  ident: bib0046
  article-title: Time dependence at ultra-high diffusion weighting reveals fast compartmental exchange in rat cortex in vivo
  publication-title: Proc. Intl. Soc. Mag. Reson. Med.
– volume: 222
  year: 2020
  ident: bib0026
  article-title: Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI
  publication-title: Neuroimage
– volume: 82
  start-page: 316
  year: 1991
  end-page: 320
  ident: bib0008
  article-title: Sensory nerve pathology in amyotrophic lateral sclerosis
  publication-title: Acta Neuropathol.
– start-page: 34
  year: 2016
  end-page: 44
  ident: bib0065
  article-title: Microstructure imaging sequence simulation toolbox
  publication-title: Simulation and Synthesis in Medical Imaging
– volume: 129
  start-page: 74
  year: 1997
  end-page: 84
  ident: bib0066
  article-title: A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms
  publication-title: J. Magn. Reson.
– volume: 103
  start-page: 10
  year: 2014
  end-page: 19
  ident: bib0031
  article-title: Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy
  publication-title: Neuroimage
– volume: 54
  start-page: 386
  year: 2001
  end-page: 392
  ident: bib0009
  article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis
  publication-title: Mol. Pathol.
– reference: Callaghan, R., Alexander, D.C., Palombo, M. & Zhang, H. Impact of within-voxel heterogeneity in fibre geometry on spherical deconvolution. Preprint at 10.48550/ARXIV.2103.08237 (2021).
– volume: 227
  year: 2021
  ident: bib0019
  article-title: A simple estimate of axon size with diffusion MRI
  publication-title: Neuroimage
– volume: 32
  start-page: e3841
  year: 2019
  ident: bib0054
  article-title: Imaging brain microstructure with diffusion MRI: practicality and applications
  publication-title: NMR Biomed.
– volume: 132
  start-page: 1210
  year: 2009
  end-page: 1220
  ident: bib0027
  article-title: measurement of axon diameter distribution in the corpus callosum of rat brain
  publication-title: Brain
– volume: 72
  start-page: 1366
  year: 2014
  end-page: 1374
  ident: bib0056
  article-title: Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains
  publication-title: Magn. Reson. Med.
– volume: 241
  year: 2021
  ident: bib0041
  article-title: Mapping complex cell morphology in the grey matter with double diffusion encoding MR: a simulation study
  publication-title: Neuroimage
– volume: 13
  year: 2015
  ident: bib0015
  article-title: diffusion magnetic resonance imaging: what water tells us about biological tissues
  publication-title: PLoS Biol.
– volume: 182
  start-page: 329
  year: 2018
  end-page: 342
  ident: bib0050
  article-title: Diffusion time dependence of microstructural parameters in fixed spinal cord
  publication-title: Neuroimage
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  ident: bib0082
  article-title: NODDI: practical
  publication-title: Neuroimage
– volume: 254
  year: 2022
  ident: bib0077
  article-title: Soma and neurite density MRI (SANDI) of the in-vivo mouse brain and comparison with the Allen Brain Atlas
  publication-title: Neuroimage
– volume: 21
  start-page: 165
  year: 2008
  end-page: 174
  ident: bib0032
  article-title: High b-value q-space diffusion MRS of nerves: structural information and comparison with histological evidence
  publication-title: NMR Biomed.
– volume: 247
  year: 2022
  ident: bib0093
  article-title: Correlation Tensor MRI deciphers underlying kurtosis sources in stroke
  publication-title: Neuroimage
– volume: 220
  year: 2020
  ident: bib0095
  article-title: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation
  publication-title: Neuroimage
– volume: 132
  start-page: 1210
  year: 2009
  ident: 10.1016/j.neuroimage.2023.119930_bib0027
  article-title: In vivo measurement of axon diameter distribution in the corpus callosum of rat brain
  publication-title: Brain
  doi: 10.1093/brain/awp042
– volume: 127
  start-page: 131
  year: 1939
  ident: 10.1016/j.neuroimage.2023.119930_bib0006
  article-title: Conduction velocity and diameter of nerve fibers
  publication-title: Am. J. Physiol. Leg. Content
  doi: 10.1152/ajplegacy.1939.127.1.131
– volume: 30
  start-page: 1426
  year: 2022
  ident: 10.1016/j.neuroimage.2023.119930_bib0046
  article-title: Time dependence at ultra-high diffusion weighting reveals fast compartmental exchange in rat cortex in vivo
  publication-title: Proc. Intl. Soc. Mag. Reson. Med.
– volume: 107
  start-page: 14472
  year: 2010
  ident: 10.1016/j.neuroimage.2023.119930_bib0094
  article-title: Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1004841107
– volume: 28
  start-page: 133
  year: 1979
  ident: 10.1016/j.neuroimage.2023.119930_bib0060
  article-title: Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(79)85164-4
– volume: 18
  start-page: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2023.119930_bib0035
  article-title: Axon radius estimation with oscillating gradient spin echo (OGSE) diffusion MRI
  publication-title: Diffus. Fundam.
  doi: 10.62721/diffusion-fundamentals.18.665
– volume: 28
  start-page: 1354
  year: 2009
  ident: 10.1016/j.neuroimage.2023.119930_bib0080
  article-title: Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2015756
– volume: 34
  start-page: 15425
  year: 2014
  ident: 10.1016/j.neuroimage.2023.119930_bib0004
  article-title: Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0203-14.2014
– volume: 82
  start-page: 3603
  year: 2022
  ident: 10.1016/j.neuroimage.2023.119930_bib0057
  article-title: Selective cell size MRI differentiates brain tumors from radiation necrosis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-21-2929
– volume: 32
  start-page: 203
  year: 2007
  ident: 10.1016/j.neuroimage.2023.119930_bib0010
  article-title: Neuron somal size is decreased in the lateral amygdalar nucleus of subjects with bipolar disorder
  publication-title: J. Psychiatry Neurosci.
– volume: 30
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119930_bib0038
  article-title: Resolution limit of cylinder diameter estimation by diffusion MRI: the impact of gradient waveform and orientation dispersion
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3711
– year: 2019
  ident: 10.1016/j.neuroimage.2023.119930_bib0058
  article-title: Temporal diffusion ratio (TDR): a diffusion MRI technique to map the fraction and spatial distribution of large axons in the living human brain
– volume: 598
  start-page: 143
  year: 1992
  ident: 10.1016/j.neuroimage.2023.119930_bib0070
  article-title: Fiber composition of the human corpus callosum
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(92)90178-C
– volume: 10
  year: 2015
  ident: 10.1016/j.neuroimage.2023.119930_bib0033
  article-title: size distribution imaging by non-uniform oscillating-gradient spin echo (NOGSE) MRI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0133201
– volume: 13
  year: 2015
  ident: 10.1016/j.neuroimage.2023.119930_bib0015
  article-title: diffusion magnetic resonance imaging: what water tells us about biological tissues
  publication-title: PLoS Biol.
– volume: 215
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119930_bib0040
  article-title: SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116835
– volume: 8
  start-page: 785
  year: 2016
  ident: 10.1016/j.neuroimage.2023.119930_bib0013
  article-title: Diffusion weighted imaging: technique and applications
  publication-title: World J. Radiol.
  doi: 10.4329/wjr.v8.i9.785
– volume: 185
  start-page: 119
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119930_bib0069
  article-title: Axons morphometry in the human spinal cord
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.033
– volume: 210
  start-page: 151
  year: 2011
  ident: 10.1016/j.neuroimage.2023.119930_bib0068
  article-title: The matrix formalism for generalised gradients with time-varying orientation in diffusion NMR
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2011.02.022
– volume: 247
  year: 2022
  ident: 10.1016/j.neuroimage.2023.119930_bib0093
  article-title: Correlation Tensor MRI deciphers underlying kurtosis sources in stroke
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118833
– volume: 225
  start-page: 1277
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119930_bib0022
  article-title: High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-019-01961-2
– volume: 51
  start-page: 1360
  year: 2010
  ident: 10.1016/j.neuroimage.2023.119930_bib0029
  article-title: Quantifying axon diameter and intra-cellular volume fraction in excised mouse spinal cord with q-space imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.063
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119930_bib0074
  article-title: Exploring the significance of morphological diversity for cerebellar granule cell excitability
  publication-title: Sci. Rep.
  doi: 10.1038/srep46147
– volume: 220
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119930_bib0095
  article-title: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117107
– volume: 206
  start-page: 41
  year: 2010
  ident: 10.1016/j.neuroimage.2023.119930_bib0067
  article-title: Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2010.05.017
– volume: 596
  start-page: 1723
  year: 2018
  ident: 10.1016/j.neuroimage.2023.119930_bib0011
  article-title: The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis
  publication-title: J. Physiol.
  doi: 10.1113/JP275498
– volume: 52
  start-page: 193
  year: 1965
  ident: 10.1016/j.neuroimage.2023.119930_bib0081
  article-title: equatorial distributions on a sphere
  publication-title: Biometrika
  doi: 10.1093/biomet/52.1-2.193
– volume: 25
  start-page: 795
  year: 2012
  ident: 10.1016/j.neuroimage.2023.119930_bib0091
  article-title: The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1795
– volume: 75
  start-page: 688
  year: 2016
  ident: 10.1016/j.neuroimage.2023.119930_bib0034
  article-title: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: insight from a simulation study
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25631
– volume: 30
  start-page: 2393
  year: 2022
  ident: 10.1016/j.neuroimage.2023.119930_bib0090
  article-title: Early microstructural aberrations in a mouse model of Alzheimer's disease detected by Soma and Neurite Density Imaging
  publication-title: Proc. Intl. Soc. Mag. Reson. Med.
– volume: 59
  start-page: 1347
  year: 2008
  ident: 10.1016/j.neuroimage.2023.119930_bib0017
  article-title: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21577
– volume: 63
  start-page: 902
  year: 2010
  ident: 10.1016/j.neuroimage.2023.119930_bib0079
  article-title: Multiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22267
– volume: 9
  start-page: e49855
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119930_bib0020
  article-title: Noninvasive quantification of axon radii using diffusion MRI
  publication-title: Elife
  doi: 10.7554/eLife.49855
– volume: 103
  start-page: 10
  year: 2014
  ident: 10.1016/j.neuroimage.2023.119930_bib0031
  article-title: Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.006
– volume: 14
  start-page: 82
  year: 2011
  ident: 10.1016/j.neuroimage.2023.119930_bib0028
  article-title: Axon diameter mapping in crossing fibers with diffusion MRI
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– start-page: 766
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119930_bib0088
  article-title: Assessing the feasibility of estimating axon diameter using diffusion models and machine learning
– volume: 86
  start-page: 754
  year: 2021
  ident: 10.1016/j.neuroimage.2023.119930_bib0048
  article-title: Time dependence in diffusion MRI predicts tissue outcome in ischemic stroke patients
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28743
– volume: 29
  start-page: 33
  year: 2016
  ident: 10.1016/j.neuroimage.2023.119930_bib0059
  article-title: Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3450
– volume: 256
  year: 2022
  ident: 10.1016/j.neuroimage.2023.119930_bib0044
  article-title: Neurite Exchange Imaging (NEXI): a minimal model of diffusion in gray matter with inter-compartment water exchange
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119277
– ident: 10.1016/j.neuroimage.2023.119930_bib0039
  doi: 10.1101/2020.10.01.320507
– volume: 44
  start-page: 713
  year: 2000
  ident: 10.1016/j.neuroimage.2023.119930_bib0049
  article-title: Displacement imaging of spinal cord using q-space diffusion-weighted MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200011)44:5<713::AID-MRM9>3.0.CO;2-6
– volume: 222
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119930_bib0026
  article-title: Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117197
– volume: 28
  start-page: 1489
  year: 2015
  ident: 10.1016/j.neuroimage.2023.119930_bib0062
  article-title: Detection of acute nervous system injury with advanced diffusion-weighted MRI: a simulation and sensitivity analysis
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3405
– volume: 142
  start-page: 394
  year: 2016
  ident: 10.1016/j.neuroimage.2023.119930_bib0078
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.08.016
– volume: 103
  start-page: 255
  year: 1994
  ident: 10.1016/j.neuroimage.2023.119930_bib0084
  article-title: Evaluation of restricted diffusion in cylinders. Phosphocreatine in rabbit leg muscle
  publication-title: J. Magn. Reson. B
  doi: 10.1006/jmrb.1994.1038
– volume: 72
  start-page: 1366
  year: 2014
  ident: 10.1016/j.neuroimage.2023.119930_bib0056
  article-title: Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25441
– start-page: 34
  year: 2016
  ident: 10.1016/j.neuroimage.2023.119930_bib0065
  article-title: Microstructure imaging sequence simulation toolbox
– volume: 81
  start-page: 1247
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119930_bib0024
  article-title: Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27463
– volume: 74
  start-page: 1902
  year: 2014
  ident: 10.1016/j.neuroimage.2023.119930_bib0063
  article-title: Noninvasive quantification of solid tumor microstructure using VERDICT MRI
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-2511
– ident: 10.1016/j.neuroimage.2023.119930_bib0096
– volume: 37
  start-page: 103
  year: 1997
  ident: 10.1016/j.neuroimage.2023.119930_bib0016
  article-title: An analytical model of restricted diffusion in bovine optic nerve
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910370115
– volume: 60
  start-page: 4508
  year: 1974
  ident: 10.1016/j.neuroimage.2023.119930_bib0085
  article-title: Spin echo of spins diffusing in a bounded medium
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1680931
– volume: 82
  start-page: 316
  year: 1991
  ident: 10.1016/j.neuroimage.2023.119930_bib0008
  article-title: Sensory nerve pathology in amyotrophic lateral sclerosis
  publication-title: Acta Neuropathol.
  doi: 10.1007/BF00308818
– volume: 227
  year: 2021
  ident: 10.1016/j.neuroimage.2023.119930_bib0019
  article-title: A simple estimate of axon size with diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117619
– volume: 34
  start-page: 369
  year: 1971
  ident: 10.1016/j.neuroimage.2023.119930_bib0012
  article-title: Focal dysplasia of the cerebral cortex in epilepsy
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.34.4.369
– volume: 52
  start-page: 20
  year: 2010
  ident: 10.1016/j.neuroimage.2023.119930_bib0005
  article-title: Age-related regional variations of the corpus callosum identified by diffusion tensor tractography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.072
– volume: 231
  year: 2021
  ident: 10.1016/j.neuroimage.2023.119930_bib0075
  article-title: Beyond the diffusion standard model in fixed rat spinal cord with combined linear and planar encoding
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.117849
– volume: 9
  start-page: 1
  year: 2022
  ident: 10.1016/j.neuroimage.2023.119930_bib0076
  article-title: Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients
  publication-title: Sci Data
  doi: 10.1038/s41597-021-01092-6
– volume: 28
  start-page: 4426
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119930_bib0043
  article-title: Improving neural soma imaging using the power spectrum of the free gradient waveforms
  publication-title: Proc. Intl. Soc. Mag. Reson. Med.
– volume: 277
  start-page: 117
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119930_bib0089
  article-title: Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2017.02.017
– ident: 10.1016/j.neuroimage.2023.119930_bib0042
  doi: 10.1101/2022.04.08.487640
– volume: 7
  year: 2018
  ident: 10.1016/j.neuroimage.2023.119930_bib0073
  article-title: Recent advances in understanding the mechanisms of cerebellar granule cell development and function and their contribution to behavior
  publication-title: F1000Res
  doi: 10.12688/f1000research.15021.1
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119930_bib0064
  article-title: Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the early detection of therapeutic response
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65956-4
– volume: 241
  year: 2021
  ident: 10.1016/j.neuroimage.2023.119930_bib0041
  article-title: Mapping complex cell morphology in the grey matter with double diffusion encoding MR: a simulation study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118424
– volume: 32
  start-page: e4170
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119930_bib0087
  article-title: Single- and double-Diffusion encoding MRI for studying ex vivo apparent axon diameter distribution in spinal cord white matter
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.4170
– volume: 54
  start-page: 386
  year: 2001
  ident: 10.1016/j.neuroimage.2023.119930_bib0009
  article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis
  publication-title: Mol. Pathol.
– volume: 39
  start-page: 1336
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119930_bib0037
  article-title: Oscillating-gradient diffusion magnetic resonance imaging detects acute subcellular structural changes in the mouse forebrain after neonatal hypoxia-ischemia
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678X18759859
– volume: 9
  start-page: 535
  year: 2018
  ident: 10.1016/j.neuroimage.2023.119930_bib0014
  article-title: Clinical applications of diffusion weighted imaging in neuroradiology
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0624-3
– year: 2021
  ident: 10.1016/j.neuroimage.2023.119930_bib0072
  article-title: Large-scale analysis of brain cell morphometry informs microstructure modelling of gray matter
– volume: 55
  start-page: 215
  year: 1998
  ident: 10.1016/j.neuroimage.2023.119930_bib0071
  article-title: Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.55.3.215
– volume: 129
  start-page: 74
  year: 1997
  ident: 10.1016/j.neuroimage.2023.119930_bib0066
  article-title: A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1997.1233
– volume: 223
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119930_bib0092
  article-title: The impact of realistic axonal shape on axon diameter estimation using diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117228
– volume: 5
  start-page: 58
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119930_bib0047
  article-title: Time-dependent diffusion MRI in cancer: tissue modeling and applications
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2017.00058
– volume: 29
  start-page: 400
  year: 2016
  ident: 10.1016/j.neuroimage.2023.119930_bib0053
  article-title: Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3484
– volume: 254
  year: 2022
  ident: 10.1016/j.neuroimage.2023.119930_bib0077
  article-title: Soma and neurite density MRI (SANDI) of the in-vivo mouse brain and comparison with the Allen Brain Atlas
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119135
– volume: 6
  year: 2018
  ident: 10.1016/j.neuroimage.2023.119930_bib0030
  article-title: Axon diameters and myelin content modulate microscopic fractional anisotropy at short diffusion times in fixed rat spinal cord
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2018.00049
– volume: 61
  start-page: 1000
  year: 2012
  ident: 10.1016/j.neuroimage.2023.119930_bib0082
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.072
– volume: 49
  start-page: 206
  year: 2003
  ident: 10.1016/j.neuroimage.2023.119930_bib0036
  article-title: Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10385
– volume: 4
  start-page: 663
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119930_bib0083
  article-title: Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology?
  publication-title: Ann. Clin. Transl. Neurol.
  doi: 10.1002/acn3.445
– volume: 118
  start-page: 494
  year: 2015
  ident: 10.1016/j.neuroimage.2023.119930_bib0023
  article-title: In vivo mapping of human spinal cord microstructure at 300mT/m
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.06.038
– volume: 29
  start-page: 293
  year: 2016
  ident: 10.1016/j.neuroimage.2023.119930_bib0025
  article-title: Towards higher sensitivity and stability of axon diameter estimation with diffusion-weighted MRI
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3462
– volume: 32
  start-page: e3841
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119930_bib0054
  article-title: Imaging brain microstructure with diffusion MRI: practicality and applications
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3841
– volume: 52
  start-page: 1374
  year: 2010
  ident: 10.1016/j.neuroimage.2023.119930_bib0018
  article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.043
– volume: 11
  start-page: 393
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119930_bib0002
  article-title: Microstructural changes of the human brain from early to mid-adulthood
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00393
– volume: 21
  start-page: 165
  year: 2008
  ident: 10.1016/j.neuroimage.2023.119930_bib0032
  article-title: High b-value q-space diffusion MRS of nerves: structural information and comparison with histological evidence
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1175
– volume: 182
  start-page: 314
  year: 2018
  ident: 10.1016/j.neuroimage.2023.119930_bib0021
  article-title: Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter stud y i: an experimental n viable nerve tissue
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.060
– volume: 15
  start-page: 2813
  year: 2021
  ident: 10.1016/j.neuroimage.2023.119930_bib0001
  article-title: Age and sex effects on advanced white matter microstructure measures in 15,628 older adults: a UK biobank study
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-021-00548-y
– volume: 3
  start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119930_bib0051
  article-title: A time-dependent diffusion MRI signature of axon caliber variations and beading
  publication-title: Communications Biology
  doi: 10.1038/s42003-020-1050-x
– volume: 182
  start-page: 329
  year: 2018
  ident: 10.1016/j.neuroimage.2023.119930_bib0050
  article-title: Diffusion time dependence of microstructural parameters in fixed spinal cord
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.039
– volume: 251
  year: 2022
  ident: 10.1016/j.neuroimage.2023.119930_bib0045
  article-title: Diffusion time dependence, power-law scaling, and exchange in gray matter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.118976
– volume: 122
  start-page: 373
  year: 2015
  ident: 10.1016/j.neuroimage.2023.119930_bib0086
  article-title: Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.074
– volume: 79
  start-page: 3172
  year: 2018
  ident: 10.1016/j.neuroimage.2023.119930_bib0055
  article-title: On modeling
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27101
– volume: 185
  start-page: 379
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119930_bib0061
  article-title: On the scaling behavior of water diffusion in human brain white matter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.09.075
– volume: 276
  start-page: 48
  year: 2014
  ident: 10.1016/j.neuroimage.2023.119930_bib0003
  article-title: The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2013.12.044
– volume: 217
  start-page: 29
  year: 1982
  ident: 10.1016/j.neuroimage.2023.119930_bib0007
  article-title: On the relation between fibre diameter and conduction velocity in myelinated nerve fibres
  publication-title: Proc. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rspb.1982.0092
– volume: 84
  start-page: 1564
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119930_bib0052
  article-title: Diffusion-time dependence of diffusional kurtosis in the mouse brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28189
SSID ssj0009148
Score 2.4742835
Snippet •Temporal Diffusion Ratio (TDR) maps areas of restricted diffusion using two different gradient waveforms.•The two optimised gradient waveforms have: long...
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with...
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with...
Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique ( Dell’Acqua et al., proc. ISMRM 2019 ) which provides contrast between areas with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119930
SubjectTerms Amyotrophic lateral sclerosis
Animals
Axon diameter
Axons
Computer Simulation
Diffusion
Diffusion Magnetic Resonance Imaging - methods
Image Processing, Computer-Assisted - methods
Kurtosis
Microstructure
Optimization
Rats
Spinal cord
TDR
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqHhAXxDcLBRmJAxzSTWzHceAELVWFBEhlK_Vm-SslaDdbld0rv52Z2EkJXFbiuIm9cmaeZ56T5zEhr6StYPUvy0xxU2fCNCGzvFQZl2XBGwBV43uV7xd5ei4-XZQXe-Ro2AuDssoU-2NM76N1ujJP1pxfte38GzADSDfIUGKiwx3sokKsH_66kXnUhYjb4UqeYeuk5okar75mZLuCmXuIx4hD_IB0nU9SVF_Jf5Kp_mWifwsq_8hQJ3fJnUQt6fs4-ntkL3T3ya3P6eP5A7JcxDJUS3rcNs0WX5PRM3QMfb04PntDgb5SHCUkM4ondkCEBDpK_dD4Lf0K8WWV9D_UdJ6ihmTYW0l9WCHZjJB6SM5PPi6OTrN02ELmJM83mbBe1NIbb2pr8gDztMlLx5lh3oqqxnlqCmtskbtCemtcgMzvKliPKCuN5PwR2e_WXXhCKDfOCuaN8s4LwypbslCWnNVYLE_lZkaqwb7apUrkeCDGUg-Ssx_6xjMaPaOjZ2akGHtexWocO_T5gC4c22M97f7C-vpSJ0Bp5ZhljhW84FY0iivpuW1koyzw-VyGGakHAOjBrBBk4Y_aHQbwbuw7gfaOvQ8GvOkUXn5qVink2pzxGXk53gYA4Nce04X1FttUAjwKy_0ZeRzhOdqAwzIRX3WBJybAnRhpeqdrv_fFxyugwEAJn_7XQz0jt_FXVEAdkP3N9TY8B3K3sS_62fsbo-BP3A
  priority: 102
  providerName: Elsevier
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA66gvgi3q2uEsEHfai2SZqk-iDquiyCCssszFvIpdWRmc66O_P_PadJO1ZB5rVNSppz-5KcfIeQ59IpWP3LKtfc1rmwbZM7Xumcy6rkLShVG_os36_y5Ex8nlfztOF2mdIqB5_YO-qw9rhH_popjfCCM_7u_FeOVaPwdDWV0LhKrpWARLB0g5qrHeluKeJVuIrnGhqkTJ6Y39XzRS5WYLWvsIQ4-A4I1cUkPPUs_pMo9S8K_TuZ8o_odHyL3Eywkr6PenCbXGm6O-T6l3RwfpcsZ5GCakmPFm27xS0yeopCoS9mR6cvKUBXiqOEQEaxWgd4R4CiNAyN39Bv4FtWKfeH2i5QzB8Z7lXS0KwQaEZ1ukfOjj_NPp7kqdBC7iUvNrlwQdQy2GBrZ4sGbLQtKs-ZZcEJVaON2tJZVxa-lMFZ30DU9wrWItpJKzm_Tw66ddc8JJRb7wQLVgcfhGXKVaypKs5qJMrThc2IGubX-MRCjsUwlmZIN_tpdpIxKBkTJZORcux5Hpk49ujzAUU4tkcu7f7B-uK7SaZptGeOeVbykjvRaq5l4K6VrXaA5QvZZKQeFMAM0woOFj602GMAb8e-CdJEqLJn78NB30xyLZdmZwgZeTa-BgXAkx7bNesttlECJApL_Yw8iOo5zgGHJSJuc4EkJoo7maTpm27xoyceVwB_AQ4--v-wHpMb-A8xvemQHGwuts0TQG4b97Q3z9-2eESQ
  priority: 102
  providerName: ProQuest
Title Temporal Diffusion Ratio (TDR) for imaging restricted diffusion: Optimisation and pre-clinical demonstration
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811923000782
https://dx.doi.org/10.1016/j.neuroimage.2023.119930
https://www.ncbi.nlm.nih.gov/pubmed/36750150
https://www.proquest.com/docview/2780054323
https://www.proquest.com/docview/2774496446
https://pubmed.ncbi.nlm.nih.gov/PMC7615244
https://doaj.org/article/8c2b2c21313b4f8386d3bf6f8b81d06e
Volume 269
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgkRAXxHuzLJWROMAhS2IntgOnXXZXBURBVVfqzfIroqjNoqW98tuZiZOwhQM9cGmkxk7cmc8z3yTTGUJeCCsh-hdlqrip0sLUIbW8VCkXZc5rAFXt2yzfiRhfFB_m5fxaqy_MCYvlgaPgXivHLHMs5zm3Ra24Ep7bWtTKAtPKREDrC3frg6m-3C6w_C5vJ2ZztdUhFyvYo0fYMBwsBTjmbMsZtTX7t3zS35zzz9TJa77o_B6525FIehwXf5_cCM0DcvtT95r8IVnOYsGpJT1d1PUGH4jRKaqAvpydTl9RIKoUVwlui2JvDrCFQDyp7we_oZ_Bkqy6TB9qGk8xW6T_FyX1YYW0MoLnEbk4P5u9G6ddW4XUCZ6t08L6ohLeeFNZkwXYkXVWOs4M87aQFe5Ik1tj88zlwlvjAvh4JyHyUFYYwfljstdcNmGfUG6cLZg3yjtfGCZtyUJZclZhWTyVmYTIXr7adTXHsfXFUvfJZd_0b81o1IyOmklIPsz8Hutu7DDnBFU4jMfK2e0XgCfd4Un_C08JqXoA6F6sYE7hQosdFvB2mNsRmEhMdpx92ONNd4bkh2ZSIavmjCfk-XAaAIDvdUwTLjc4RhagUQjsE_IkwnOQAYeAEB9qgSa2gLslpO0zzeJrW2ZcAtkF8nfwP6T6lNzBXxpTng7J3vpqE54Bm1vbEbl59DOHTzmXI3Lr-P3H8QSOJ2eTL9NRu6l_AdoFUG8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIQEviDuFAUYCCR4Cie04DgghoEwduyBNndQ341ugqE3H1grxp_iNnBMnLQUJ7WWviR05Pp8_f7aPzyHksbQFrP5lnihuykSYKiSW5yrhMs94BaCqfOPleyAHR-LjKB9tkF_dXRh0q-w4sSFqP3O4R_6CFQrlBWf8zfH3BLNG4elql0IjwmI3_PwBS7bT1zt9sO8TxrY_DN8PkjarQOIkT-eJsF6U0htvSmvSAICs0txxZpi3oigRkCazxmapy6S3xgWY4lwBwltZaSRugALlXxB4xAjjpxgVqyC_mYhX73KeqCwrW8-h6E_WxKccT4ElnmPKcuAqkAbp2nTYZA1YmxX_Vb1_O2_-MRtuXyVXWhlL30bcXSMbob5OLu63B_U3yGQYQ15NaH9cVQvckqOHCAL6dNg_fEZBKlNsJUycFLODABuD9KW-K_ySfgIum7a-RtTUnqK_SnePk_owRWEb4XuTHJ2LCW6RzXpWhzuEcuOsYN4o77wwrLA5C3nOWYmB-VRqeqTo-le7Nuo5Jt-Y6M697ZteWUajZXS0TI9ky5rHMfLHGeq8QxMuy2Ps7ubB7OSLbqlAK8cscyzjGbeiUlxJz20lK2Vh7ZDK0CNlBwDddSsQOnxofIYGvFrWbSVUlEZnrL3V4U23VHaqVwOvRx4tXwMA8GTJ1GG2wDKFAIsKIXvkdoTnsg84LElxWw0ssQbctU5af1OPvzaBzguQ2yA_7_6_WQ_JpcFwf0_v7Rzs3iOX8X-ia9UW2ZyfLMJ9UI1z-6AZqpR8Pm9u-A3VPII1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWmTZp4QXxTGGAkkOAhLLEdJwFNiNFVG4MyVZu0N89fgaI2HVsrxF_kV3Fv4rQUJNSXvTZ25PqenHtsX99LyDNpMlj9yzTKuS4ioUsfGZ7mEZdpwksAVenqKN--3D8RH07T0zXyq70Lg2GVLSfWRO0mFvfIt1mWo7zgjG-XISziqNt7e_49wgpSeNLaltPQocyC26nTjYVLHof-5w9Yzl3uHHTB9s8Z6-0dv9-PQsWByEoeTyNhnCik004XRscewFrGqeVMM2dEViBYdWK0SWKbSGe09eD-bAaiPDdSS9wcBXewkYHXh4Xgxu5e_2iwSAGciOZiXsqjPEmKEFfURJvV2SuHY-CQV1jQHJgMhEO85CzrmgJLPvNfTfx3aOcfvrJ3g1wPIpe-a1B5k6z56hbZ_BSO8W-T0XGTEGtEu8OynOGGHR0gROiL4-7gJQUhTXGU4FYp1g4BrgZhTF3b-DX9DEw3DpFIVFeOYjRLe8uTOj9G2duA-w45uRIj3CXr1aTy9wnl2hrBnM6ddUKzzKTMpylnBabty2PdIVk7v8qGnOhYmmOk2uC3b2phGYWWUY1lOiSZ9zxv8oKs0GcXTThvj5m96x8mF19UIAqVW2aYZQlPuBFlznPpuCllmRtYWcTSd0jRAkC10wp0Dy8arjCAN_O-QWA1wmnF3lst3lQguku1-Cw75On8MQAAz5105SczbJMJsKgQskPuNfCczwGHBStuuoElloC7NEnLT6rh1zoNegZiHMTpg_8P6wnZBJ5QHw_6hw_JNfw7TdzVFlmfXsz8I5CUU_M4fKuUnF01PfwG3XyNEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Diffusion+Ratio+%28TDR%29+for+imaging+restricted+diffusion%3A+Optimisation+and+pre-clinical+demonstration&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=William+Warner&rft.au=Marco+Palombo&rft.au=Renata+Cruz&rft.au=Ross+Callaghan&rft.date=2023-04-01&rft.pub=Elsevier&rft.eissn=1095-9572&rft.volume=269&rft.spage=119930&rft_id=info:doi/10.1016%2Fj.neuroimage.2023.119930&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8c2b2c21313b4f8386d3bf6f8b81d06e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon