Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls
Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 145; no. Pt B; pp. 137 - 165 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.01.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2016.02.079 |
Cover
Abstract | Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead.
•Past efforts on classification of brain disorders are comprehensively reviewed.•The common pitfalls from machine learning point of view are discussed.•Emerging trends related to single-subject prediction are reviewed and discussed. |
---|---|
AbstractList | Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there are extensive evidences showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead. Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead. •Past efforts on classification of brain disorders are comprehensively reviewed.•The common pitfalls from machine learning point of view are discussed.•Emerging trends related to single-subject prediction are reviewed and discussed. Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead. Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead.Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead. |
Author | Sui, Jing Arbabshirani, Mohammad R. Plis, Sergey Calhoun, Vince D. |
AuthorAffiliation | c Department of ECE, University of New Mexico, Albuquerque, NM, USA a The Mind Research Network, Albuquerque, NM, USA, 87106 b Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China, 100190 |
AuthorAffiliation_xml | – name: a The Mind Research Network, Albuquerque, NM, USA, 87106 – name: c Department of ECE, University of New Mexico, Albuquerque, NM, USA – name: b Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China, 100190 |
Author_xml | – sequence: 1 givenname: Mohammad R. surname: Arbabshirani fullname: Arbabshirani, Mohammad R. organization: The Mind Research Network, Albuquerque, NM 87106, USA – sequence: 2 givenname: Sergey surname: Plis fullname: Plis, Sergey organization: The Mind Research Network, Albuquerque, NM 87106, USA – sequence: 3 givenname: Jing surname: Sui fullname: Sui, Jing organization: The Mind Research Network, Albuquerque, NM 87106, USA – sequence: 4 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. organization: The Mind Research Network, Albuquerque, NM 87106, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27012503$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv3CAUhVGVqnm0f6FC6qYbu4ANmC6qtlFfUqRESrtGDFxPcT0wBTtS_n2xJp08VrOCC-d-3MM5RUchBkAIU1JTQsW7oQ4wp-g3Zg01Kyc1YTWR6hk6oUTxSnHJjpY9b6qOUnWMTnMeCCGKtt0LdMwkoYyT5gRdX_uwHgHneTWAnfA2gfN28jHg2ONVMj5g53NMDlLGpdg_XPre46sUNz5DxiY4vPVTb8Yxv0TPy5rh1d16hn59_fLz_Ht1cfntx_mni8qKhkxVSzriuOp4D6qlArilwEshJdima5tWCUqNcaQRRAK4pmcrqZzowLRMtbY5Qx923O282oCzEKZkRr1NZbx0q6Px-vFN8L_1Ot7o4pxyKgrg7R0gxb8z5EkXMxbG0QSIc9a0Y0JIxhkv0jdPpEOcUyj2iooz1TVSLKrXDyfaj_L_v4ug2wlsijkn6PcSSvQSrR70fbR6iVYTpku09273rdZPZkmqePPjIYDPOwCUTG48JJ2th2BL4KlEr130h0A-PoHY0QdvzfgHbg9D_APkft3B |
CitedBy_id | crossref_primary_10_1002_hbm_24580 crossref_primary_10_1016_j_schres_2022_01_058 crossref_primary_10_1038_s41746_021_00521_5 crossref_primary_10_1176_appi_ajp_2017_16070813 crossref_primary_10_1002_alz_12967 crossref_primary_10_1016_j_nicl_2021_102663 crossref_primary_10_1186_s40708_023_00188_6 crossref_primary_10_1016_j_nicl_2019_101725 crossref_primary_10_1007_s00500_020_04943_3 crossref_primary_10_1016_j_nicl_2019_101837 crossref_primary_10_1016_j_cpr_2022_102193 crossref_primary_10_1080_21507740_2020_1740352 crossref_primary_10_1007_s12264_017_0150_1 crossref_primary_10_1016_j_biopsych_2018_12_003 crossref_primary_10_1371_journal_pone_0249502 crossref_primary_10_1007_s10803_018_3509_x crossref_primary_10_1298_ptr_E10181 crossref_primary_10_1016_j_jestch_2024_101855 crossref_primary_10_1111_ene_13887 crossref_primary_10_1016_j_neurobiolaging_2021_07_007 crossref_primary_10_1016_j_biopsych_2020_02_016 crossref_primary_10_1371_journal_pone_0212582 crossref_primary_10_1038_s41467_020_20655_6 crossref_primary_10_1016_j_biopsych_2020_02_015 crossref_primary_10_1109_ACCESS_2020_3041895 crossref_primary_10_1111_pcn_12502 crossref_primary_10_1016_j_biosystems_2023_105110 crossref_primary_10_1371_journal_pone_0305630 crossref_primary_10_1007_s00330_019_5997_2 crossref_primary_10_3389_fnins_2020_00327 crossref_primary_10_1016_j_bspc_2022_104047 crossref_primary_10_1016_j_neuroimage_2021_118844 crossref_primary_10_1002_jmri_29364 crossref_primary_10_1007_s11517_023_02942_8 crossref_primary_10_3390_microorganisms10081658 crossref_primary_10_1016_j_dib_2020_105213 crossref_primary_10_1145_3492865 crossref_primary_10_1515_revneuro_2023_0050 crossref_primary_10_1016_j_neunet_2025_107335 crossref_primary_10_1016_j_neuroimage_2018_05_051 crossref_primary_10_1038_s44220_023_00151_8 crossref_primary_10_1097_WCO_0000000000000967 crossref_primary_10_2139_ssrn_4192591 crossref_primary_10_3389_fpsyt_2024_1463654 crossref_primary_10_1016_j_neuroimage_2023_120497 crossref_primary_10_1002_hbm_25574 crossref_primary_10_1016_j_nicl_2019_101741 crossref_primary_10_1016_j_bspc_2023_104892 crossref_primary_10_1002_jnr_24951 crossref_primary_10_1523_JNEUROSCI_1312_22_2022 crossref_primary_10_1093_nc_nix010 crossref_primary_10_1111_jopy_12788 crossref_primary_10_3389_fnins_2019_00448 crossref_primary_10_3390_ijms24031911 crossref_primary_10_1016_j_nicl_2019_101747 crossref_primary_10_3389_fpsyt_2024_1448145 crossref_primary_10_1038_s41598_022_20274_9 crossref_primary_10_1109_TBME_2020_2964724 crossref_primary_10_1016_j_asoc_2021_107375 crossref_primary_10_1002_hbm_25205 crossref_primary_10_1016_j_neuroimage_2017_02_031 crossref_primary_10_1038_s41598_023_41359_z crossref_primary_10_1038_srep45347 crossref_primary_10_1016_j_media_2022_102430 crossref_primary_10_3389_fnhum_2021_643410 crossref_primary_10_1038_s41467_023_44271_2 crossref_primary_10_1016_j_neuroimage_2017_03_057 crossref_primary_10_1007_s12021_020_09468_6 crossref_primary_10_1016_j_bpsc_2021_12_010 crossref_primary_10_1016_j_jneumeth_2020_108756 crossref_primary_10_3233_JAD_201591 crossref_primary_10_1016_j_nicl_2021_102898 crossref_primary_10_1016_j_pnpbp_2018_06_010 crossref_primary_10_1017_S003329171700201X crossref_primary_10_1016_j_neures_2020_01_012 crossref_primary_10_3233_JAD_170964 crossref_primary_10_1016_j_artmed_2020_101926 crossref_primary_10_1038_s41591_020_0793_8 crossref_primary_10_3389_fnins_2018_00900 crossref_primary_10_32604_iasc_2021_015049 crossref_primary_10_1093_schbul_sby189 crossref_primary_10_1002_hbm_25436 crossref_primary_10_1016_j_teler_2024_100171 crossref_primary_10_1016_j_schres_2021_06_011 crossref_primary_10_1002_hbm_26529 crossref_primary_10_1016_j_neubiorev_2022_104972 crossref_primary_10_3389_fnins_2023_1120781 crossref_primary_10_1038_s41398_020_01013_y crossref_primary_10_1117_1_NPh_11_4_045015 crossref_primary_10_3233_JAD_170893 crossref_primary_10_1177_20406223211051002 crossref_primary_10_1515_revneuro_2023_0117 crossref_primary_10_1007_s00429_020_02136_0 crossref_primary_10_1038_s41598_018_19177_5 crossref_primary_10_1016_j_jad_2024_11_061 crossref_primary_10_1016_j_cmpb_2024_108446 crossref_primary_10_1109_TBME_2017_2759511 crossref_primary_10_1016_j_euroneuro_2021_04_002 crossref_primary_10_1371_journal_pone_0224365 crossref_primary_10_3389_fneur_2021_642241 crossref_primary_10_1016_j_biopsych_2022_07_025 crossref_primary_10_1002_hbm_25627 crossref_primary_10_1016_j_biopsych_2022_05_014 crossref_primary_10_1016_j_ajcnut_2024_09_003 crossref_primary_10_1515_revneuro_2022_0122 crossref_primary_10_1038_s41598_020_78095_7 crossref_primary_10_1016_j_schres_2019_07_015 crossref_primary_10_1038_s41380_019_0446_9 crossref_primary_10_1016_j_neuroimage_2017_11_010 crossref_primary_10_3390_brainsci12070883 crossref_primary_10_1111_exsy_13623 crossref_primary_10_1016_j_nicl_2019_101775 crossref_primary_10_3389_fvets_2022_802272 crossref_primary_10_3389_fninf_2019_00053 crossref_primary_10_1080_03007995_2022_2043654 crossref_primary_10_1093_gigascience_giy130 crossref_primary_10_1016_j_nicl_2020_102181 crossref_primary_10_3389_fneur_2019_00789 crossref_primary_10_1109_TMI_2019_2929959 crossref_primary_10_2196_24560 crossref_primary_10_1016_j_compbiomed_2018_09_004 crossref_primary_10_1176_appi_focus_20190042 crossref_primary_10_1002_hbm_24886 crossref_primary_10_1002_hbm_24527 crossref_primary_10_3389_fneur_2022_812439 crossref_primary_10_1002_hbm_24682 crossref_primary_10_3390_brainsci14090880 crossref_primary_10_1016_j_media_2023_102913 crossref_primary_10_1016_j_neuron_2018_06_009 crossref_primary_10_1109_JBHI_2018_2857217 crossref_primary_10_1016_j_pnpbp_2024_111061 crossref_primary_10_1016_j_spen_2020_100803 crossref_primary_10_1016_j_tics_2019_03_009 crossref_primary_10_1080_13658816_2021_1931237 crossref_primary_10_1002_hbm_24797 crossref_primary_10_3389_fnins_2017_00543 crossref_primary_10_1007_s11042_020_10128_9 crossref_primary_10_1002_hbm_24554 crossref_primary_10_1093_scan_nsae023 crossref_primary_10_1111_adb_12705 crossref_primary_10_1038_s41398_023_02536_w crossref_primary_10_1109_TCSS_2023_3270569 crossref_primary_10_3389_fpsyt_2022_938694 crossref_primary_10_1007_s00429_020_02113_7 crossref_primary_10_1007_s10278_023_00889_8 crossref_primary_10_1016_j_nicl_2021_102584 crossref_primary_10_1109_TMI_2022_3203899 crossref_primary_10_1016_j_biopsych_2019_06_021 crossref_primary_10_1016_j_bpsc_2017_11_007 crossref_primary_10_1038_s41598_020_60527_z crossref_primary_10_1016_j_arr_2024_102183 crossref_primary_10_3390_math9233101 crossref_primary_10_1016_j_cmpb_2020_105765 crossref_primary_10_1016_j_conb_2018_12_010 crossref_primary_10_1016_j_heliyon_2024_e32548 crossref_primary_10_3390_s22145407 crossref_primary_10_1016_j_neuropsychologia_2024_108967 crossref_primary_10_1109_TPAMI_2021_3125686 crossref_primary_10_1093_brain_awab425 crossref_primary_10_1016_j_eng_2019_06_008 crossref_primary_10_1002_hbm_23763 crossref_primary_10_1093_cercor_bhac217 crossref_primary_10_3389_fnhum_2018_00152 crossref_primary_10_1002_hbm_24979 crossref_primary_10_1007_s00062_024_01422_2 crossref_primary_10_3389_fnagi_2023_1158579 crossref_primary_10_1016_j_jad_2021_04_081 crossref_primary_10_3389_fninf_2021_676491 crossref_primary_10_1016_j_jad_2017_06_055 crossref_primary_10_1038_s41398_023_02309_5 crossref_primary_10_1007_s11357_023_00831_4 crossref_primary_10_1186_s13229_021_00439_5 crossref_primary_10_1007_s00234_025_03544_x crossref_primary_10_1016_j_neuroimage_2021_118329 crossref_primary_10_1109_TMI_2023_3305378 crossref_primary_10_1186_s11689_021_09405_x crossref_primary_10_1093_ehjci_jey003 crossref_primary_10_1038_s41746_024_01123_7 crossref_primary_10_1016_j_neuroimage_2024_120695 crossref_primary_10_1093_cercor_bhz134 crossref_primary_10_1093_pcmedi_pbaa029 crossref_primary_10_1002_jmri_26723 crossref_primary_10_1111_epi_17989 crossref_primary_10_1038_s41598_022_06651_4 crossref_primary_10_2147_NDT_S337814 crossref_primary_10_1146_annurev_statistics_040522_100329 crossref_primary_10_1016_j_jad_2022_10_042 crossref_primary_10_1109_TPAMI_2020_3028391 crossref_primary_10_1007_s11042_024_19165_0 crossref_primary_10_1016_j_compbiomed_2018_05_006 crossref_primary_10_3389_fnins_2023_1242543 crossref_primary_10_3389_fnins_2021_710133 crossref_primary_10_1007_s11042_022_13809_9 crossref_primary_10_1038_s42256_019_0069_5 crossref_primary_10_3233_JAD_230030 crossref_primary_10_1016_j_biopsych_2022_05_031 crossref_primary_10_1093_braincomms_fcab298 crossref_primary_10_1515_bmt_2016_0239 crossref_primary_10_1038_s41598_025_90460_y crossref_primary_10_1016_j_ajp_2025_104451 crossref_primary_10_1038_s41467_019_13785_z crossref_primary_10_3389_fnins_2017_00749 crossref_primary_10_3389_fninf_2017_00059 crossref_primary_10_3389_fnins_2022_957181 crossref_primary_10_1016_j_neuroimage_2019_05_082 crossref_primary_10_1038_s41398_024_02954_4 crossref_primary_10_3389_fnsys_2018_00068 crossref_primary_10_3389_fninf_2020_00010 crossref_primary_10_1016_j_csda_2022_107525 crossref_primary_10_1016_j_media_2024_103436 crossref_primary_10_1111_acps_12824 crossref_primary_10_1016_j_bpsc_2019_11_007 crossref_primary_10_1016_j_neuroimage_2019_02_062 crossref_primary_10_1093_cercor_bhab397 crossref_primary_10_1016_j_jneumeth_2017_12_016 crossref_primary_10_1002_hbm_24867 crossref_primary_10_1002_hbm_24505 crossref_primary_10_1016_j_dcn_2021_100966 crossref_primary_10_3389_fmicb_2022_914124 crossref_primary_10_1007_s40820_019_0239_3 crossref_primary_10_1111_nmo_14994 crossref_primary_10_1109_TMI_2022_3219260 crossref_primary_10_1177_0962280218823036 crossref_primary_10_1371_journal_pone_0211558 crossref_primary_10_3390_ijms21030969 crossref_primary_10_1038_s41398_022_02134_2 crossref_primary_10_1016_j_nicl_2018_01_032 crossref_primary_10_1007_s00702_016_1673_8 crossref_primary_10_3389_fnhum_2019_00164 crossref_primary_10_1016_j_neuroimage_2019_116276 crossref_primary_10_1038_s41598_017_02307_w crossref_primary_10_1038_s41598_022_22597_z crossref_primary_10_1038_s41539_020_00081_5 crossref_primary_10_1007_s11682_019_00186_5 crossref_primary_10_1016_j_biopsych_2018_07_020 crossref_primary_10_1111_ejn_15842 crossref_primary_10_1016_j_schres_2017_05_027 crossref_primary_10_1007_s10489_023_05155_6 crossref_primary_10_1016_j_jphotobiol_2021_112207 crossref_primary_10_1038_s41380_022_01840_z crossref_primary_10_1186_s12888_021_03503_9 crossref_primary_10_1089_brain_2022_0001 crossref_primary_10_1098_rstb_2019_0661 crossref_primary_10_1016_j_neubiorev_2022_104552 crossref_primary_10_1038_s41598_024_64487_6 crossref_primary_10_1177_1352458520943788 crossref_primary_10_3390_app13106099 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1002_brb3_2746 crossref_primary_10_3389_fnhum_2021_746499 crossref_primary_10_1016_j_neuroimage_2020_117127 crossref_primary_10_3233_JAD_181006 crossref_primary_10_31590_ejosat_999914 crossref_primary_10_3233_JAD_181004 crossref_primary_10_1016_j_bpsc_2018_04_004 crossref_primary_10_1038_s41467_020_18037_z crossref_primary_10_1016_j_pneurobio_2019_01_008 crossref_primary_10_1093_braincomms_fcae007 crossref_primary_10_1002_hbm_24716 crossref_primary_10_1109_TNNLS_2020_3007943 crossref_primary_10_3389_fnhum_2023_1276994 crossref_primary_10_1016_j_neuroimage_2019_03_055 crossref_primary_10_3389_fnagi_2022_979183 crossref_primary_10_1007_s00415_018_8990_9 crossref_primary_10_1038_s41562_019_0811_3 crossref_primary_10_2174_1570159X22999240531160344 crossref_primary_10_1093_brain_awab439 crossref_primary_10_1016_j_neuroimage_2016_12_012 crossref_primary_10_1002_hbm_24947 crossref_primary_10_1007_s11831_021_09674_8 crossref_primary_10_3389_fpsyt_2018_00333 crossref_primary_10_1016_j_pnpbp_2018_09_014 crossref_primary_10_1002_mpr_1818 crossref_primary_10_1080_21681163_2017_1356750 crossref_primary_10_3389_fnins_2022_1053783 crossref_primary_10_3390_sym12121995 crossref_primary_10_3389_fnins_2022_1097244 crossref_primary_10_3389_fpsyt_2022_828773 crossref_primary_10_1007_s00213_021_05885_w crossref_primary_10_2214_AJR_19_21082 crossref_primary_10_1038_s41380_019_0365_9 crossref_primary_10_1016_j_neuroimage_2018_08_042 crossref_primary_10_1016_j_celrep_2023_113597 crossref_primary_10_1007_s12144_022_03977_0 crossref_primary_10_31988_SciTrends_8436 crossref_primary_10_1007_s11042_018_6287_8 crossref_primary_10_3389_fneur_2021_669076 crossref_primary_10_1126_sciadv_aay2739 crossref_primary_10_1523_ENEURO_0512_19_2019 crossref_primary_10_1162_netn_a_00038 crossref_primary_10_1016_j_neuroimage_2022_119636 crossref_primary_10_1038_s41398_019_0663_7 crossref_primary_10_1063_5_0155567 crossref_primary_10_1162_netn_a_00275 crossref_primary_10_3389_fpsyt_2021_655292 crossref_primary_10_1088_1741_2552_aa9ee9 crossref_primary_10_1089_brain_2018_0657 crossref_primary_10_1155_2022_3372217 crossref_primary_10_3389_fnins_2022_902528 crossref_primary_10_3233_JAD_215164 crossref_primary_10_1016_j_neuroimage_2021_118048 crossref_primary_10_1016_j_neuroimage_2021_118044 crossref_primary_10_1016_j_eswa_2023_122253 crossref_primary_10_1038_s42003_024_06461_6 crossref_primary_10_1093_brain_awaa160 crossref_primary_10_1080_08839514_2021_2004655 crossref_primary_10_3389_fpsyt_2016_00177 crossref_primary_10_1016_j_neuroimage_2018_08_029 crossref_primary_10_1142_S021821302030001X crossref_primary_10_1017_S0033291717003920 crossref_primary_10_1007_s00115_017_0456_2 crossref_primary_10_1088_1741_2552_acad2b crossref_primary_10_1002_wcs_1460 crossref_primary_10_1186_s13195_021_00900_w crossref_primary_10_1038_tp_2017_164 crossref_primary_10_1162_netn_a_00383 crossref_primary_10_3389_fnins_2023_1140801 crossref_primary_10_1007_s12021_021_09525_8 crossref_primary_10_1177_1550059418782093 crossref_primary_10_3389_fneur_2017_00633 crossref_primary_10_1093_cercor_bhx229 crossref_primary_10_1007_s13369_024_09362_2 crossref_primary_10_1159_000527224 crossref_primary_10_1038_s41597_021_01004_8 crossref_primary_10_1002_hbm_26098 crossref_primary_10_1146_annurev_clinpsy_032816_045037 crossref_primary_10_1371_journal_pone_0230409 crossref_primary_10_1016_j_mri_2019_05_031 crossref_primary_10_3390_diagnostics13172773 crossref_primary_10_3390_diagnostics13172774 crossref_primary_10_1016_j_neubiorev_2020_04_026 crossref_primary_10_1016_j_clinph_2020_07_016 crossref_primary_10_1007_s12021_024_09669_3 crossref_primary_10_3389_fpsyg_2020_00220 crossref_primary_10_1038_s41593_022_01059_9 crossref_primary_10_1007_s44202_022_00027_5 crossref_primary_10_1017_S0033291718004002 crossref_primary_10_3389_fnins_2016_00466 crossref_primary_10_4018_IJSSCI_318677 crossref_primary_10_1038_s41398_020_00962_8 crossref_primary_10_1109_MPULS_2020_2993657 crossref_primary_10_1093_schbul_sbab112 crossref_primary_10_1038_s41380_020_0679_7 crossref_primary_10_1038_s41467_021_26703_z crossref_primary_10_6339_24_JDS1128 crossref_primary_10_1007_s12021_017_9324_2 crossref_primary_10_1016_j_nicl_2023_103320 crossref_primary_10_3389_fnhum_2019_00203 crossref_primary_10_1016_j_nicl_2018_02_007 crossref_primary_10_1038_s41598_024_84616_5 crossref_primary_10_1093_cercor_bhac137 crossref_primary_10_1002_jcv2_12184 crossref_primary_10_3389_fnins_2019_01282 crossref_primary_10_1016_j_jneumeth_2018_08_017 crossref_primary_10_1016_j_bpsc_2018_06_003 crossref_primary_10_3389_fnins_2019_01165 crossref_primary_10_1016_j_bbrc_2023_08_034 crossref_primary_10_1109_TMI_2021_3077079 crossref_primary_10_3390_diagnostics14232698 crossref_primary_10_1016_j_nicl_2018_03_037 crossref_primary_10_3390_biomedicines11041108 crossref_primary_10_1002_hbm_25181 crossref_primary_10_1002_hbm_26391 crossref_primary_10_1038_s41598_019_49970_9 crossref_primary_10_1192_bjp_2019_88 crossref_primary_10_3233_JAD_215244 crossref_primary_10_1016_j_jad_2019_05_067 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_1016_j_neuroimage_2017_06_061 crossref_primary_10_1016_j_media_2018_06_001 crossref_primary_10_1038_s41746_022_00592_y crossref_primary_10_3389_fnhum_2017_00157 crossref_primary_10_1016_j_neuroimage_2018_06_001 crossref_primary_10_1109_TMI_2018_2829802 crossref_primary_10_1016_j_jneumeth_2022_109539 crossref_primary_10_1016_j_neuropsychologia_2022_108418 crossref_primary_10_1016_j_neuroimage_2019_116456 crossref_primary_10_1016_j_neuropsychologia_2017_11_025 crossref_primary_10_1007_s13042_023_01980_w crossref_primary_10_1111_ene_15119 crossref_primary_10_1136_jnnp_2021_327211 crossref_primary_10_3389_fdata_2023_1241899 crossref_primary_10_31887_DCNS_2018_20_2_vcalhoun crossref_primary_10_1093_scan_nsaa115 crossref_primary_10_1002_hbm_25095 crossref_primary_10_1016_j_schres_2017_10_023 crossref_primary_10_3389_fnhum_2017_00362 crossref_primary_10_1002_brb3_1808 crossref_primary_10_1109_ACCESS_2019_2941912 crossref_primary_10_3389_fninf_2022_949926 crossref_primary_10_1371_journal_pone_0262367 crossref_primary_10_1038_s41598_023_33077_3 crossref_primary_10_1142_S0129065720500471 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_1155_2021_1302989 crossref_primary_10_1038_s41598_023_49461_y crossref_primary_10_1186_s13195_022_00983_z crossref_primary_10_1016_j_nicl_2019_102084 crossref_primary_10_1002_admt_202401585 crossref_primary_10_1016_j_media_2020_101850 crossref_primary_10_1016_j_patter_2025_101185 crossref_primary_10_1088_1741_2552_ac9aaf crossref_primary_10_1016_j_neuroimage_2019_116348 crossref_primary_10_3389_fpsyt_2018_00242 crossref_primary_10_54751_revistafoco_v18n3_003 crossref_primary_10_1002_hbm_26290 crossref_primary_10_1016_j_dadm_2019_06_002 crossref_primary_10_1002_sim_7915 crossref_primary_10_1016_j_nicl_2023_103349 crossref_primary_10_1016_j_neubiorev_2017_11_002 crossref_primary_10_1016_j_bpsc_2020_05_013 crossref_primary_10_1109_TBME_2023_3294223 crossref_primary_10_1523_ENEURO_0286_23_2024 crossref_primary_10_1016_j_neuroimage_2021_118469 crossref_primary_10_1007_s11682_023_00765_7 crossref_primary_10_1016_j_ebiom_2023_104540 crossref_primary_10_1093_braincomms_fcaa057 crossref_primary_10_1093_cercor_bhad499 crossref_primary_10_1007_s44196_023_00225_6 crossref_primary_10_1007_s10462_025_11146_5 crossref_primary_10_1002_hbm_25276 crossref_primary_10_1016_j_neuroimage_2023_119885 crossref_primary_10_1016_j_bpsc_2022_07_012 crossref_primary_10_1259_bjr_20170505 crossref_primary_10_1016_j_media_2020_101848 crossref_primary_10_3389_fnagi_2022_818871 crossref_primary_10_1038_s41398_019_0607_2 crossref_primary_10_1016_j_jpsychires_2022_09_051 crossref_primary_10_1007_s11682_019_00191_8 crossref_primary_10_1186_s12868_023_00819_y crossref_primary_10_1016_j_cortex_2018_06_013 crossref_primary_10_1016_j_nicl_2022_103082 crossref_primary_10_1007_s11604_018_0794_4 crossref_primary_10_1109_JBHI_2021_3139701 crossref_primary_10_1007_s11682_020_00410_7 crossref_primary_10_2174_1567205018666210218150223 crossref_primary_10_1016_j_nicl_2021_102712 crossref_primary_10_1111_cns_13048 crossref_primary_10_1016_j_nicl_2020_102530 crossref_primary_10_1007_s11682_020_00358_8 crossref_primary_10_1016_j_jneumeth_2021_109271 crossref_primary_10_1038_s41380_024_02682_7 crossref_primary_10_1162_imag_a_00251 crossref_primary_10_3389_fnins_2022_863016 crossref_primary_10_1016_j_jneumeth_2024_110322 crossref_primary_10_1002_sim_9553 crossref_primary_10_1016_j_pscychresns_2018_12_013 crossref_primary_10_3389_fneur_2019_01037 crossref_primary_10_1016_j_ebiom_2018_03_017 crossref_primary_10_1016_j_nicl_2018_11_017 crossref_primary_10_1109_TPAMI_2018_2889096 crossref_primary_10_3390_biomedicines9040403 crossref_primary_10_1016_j_isci_2024_110159 crossref_primary_10_1093_ijnp_pyx059 crossref_primary_10_1038_s41598_022_09821_6 crossref_primary_10_1017_S0033291722000757 crossref_primary_10_1016_j_compmedimag_2022_102057 crossref_primary_10_1016_j_jad_2021_10_122 crossref_primary_10_1016_j_media_2020_101947 crossref_primary_10_1038_s41380_018_0228_9 crossref_primary_10_1111_acps_13233 crossref_primary_10_1088_1741_2552_ad8839 crossref_primary_10_3389_fpsyt_2019_00371 crossref_primary_10_15212_RADSCI_2023_0008 crossref_primary_10_2174_0117450179315688240607052117 crossref_primary_10_3390_ai6020023 crossref_primary_10_1016_j_neubiorev_2019_07_010 crossref_primary_10_1016_j_biopsych_2017_09_032 crossref_primary_10_1109_MSP_2022_3155951 crossref_primary_10_1038_s41380_020_00931_z crossref_primary_10_1038_s41386_021_01020_7 crossref_primary_10_1016_j_neuroimage_2018_11_057 crossref_primary_10_1109_TMI_2021_3051604 crossref_primary_10_1038_s41746_017_0015_z crossref_primary_10_1111_cns_14037 crossref_primary_10_1080_21681163_2023_2227736 crossref_primary_10_3389_fnhum_2020_00237 crossref_primary_10_5498_wjp_v14_i6_804 crossref_primary_10_1259_bjr_20190365 crossref_primary_10_3390_app11083636 crossref_primary_10_1007_s00429_019_01969_8 crossref_primary_10_1038_s41398_022_02162_y crossref_primary_10_1016_j_neulet_2020_135519 crossref_primary_10_1089_cmb_2020_0252 crossref_primary_10_1080_13825585_2022_2138255 crossref_primary_10_1089_brain_2023_0040 crossref_primary_10_1016_j_jad_2022_05_120 crossref_primary_10_1016_j_media_2019_03_012 crossref_primary_10_1016_j_neuroimage_2018_06_024 crossref_primary_10_3389_fnins_2023_1205931 crossref_primary_10_1002_wps_21159 crossref_primary_10_1016_j_neuroimage_2023_120412 crossref_primary_10_1109_ACCESS_2019_2940198 crossref_primary_10_7769_gesec_v16i1_4406 crossref_primary_10_1162_imag_a_00233 crossref_primary_10_3390_healthcare9080961 crossref_primary_10_1016_j_plrev_2019_05_002 crossref_primary_10_1016_j_jneumeth_2020_108701 crossref_primary_10_1038_s41598_020_65384_4 crossref_primary_10_3390_mti8090076 crossref_primary_10_1007_s43441_021_00355_z crossref_primary_10_3389_fnins_2021_665578 crossref_primary_10_3389_fmed_2022_805230 crossref_primary_10_1093_schbul_sbac047 crossref_primary_10_1109_ACCESS_2023_3321220 crossref_primary_10_1002_ima_22213 crossref_primary_10_1016_j_schres_2023_01_014 crossref_primary_10_1016_j_neuroimage_2024_120827 crossref_primary_10_1016_j_neuroimage_2017_04_061 crossref_primary_10_1159_000525262 crossref_primary_10_1016_j_neurobiolaging_2017_08_009 crossref_primary_10_1007_s12596_018_0508_4 crossref_primary_10_1016_j_jneumeth_2018_01_003 crossref_primary_10_1109_JPROC_2019_2913145 crossref_primary_10_1055_a_1300_2162 crossref_primary_10_3389_fnins_2019_01203 crossref_primary_10_1016_j_jneumeth_2019_03_011 crossref_primary_10_3390_brainsci14121266 crossref_primary_10_1080_0361073X_2024_2313940 crossref_primary_10_1016_j_sleep_2024_11_012 crossref_primary_10_57197_JDR_2024_0042 crossref_primary_10_1016_j_tins_2019_02_001 crossref_primary_10_1145_3564752 crossref_primary_10_1016_j_biopsych_2022_09_024 crossref_primary_10_1162_imag_a_00331 crossref_primary_10_1016_j_artmed_2019_06_003 crossref_primary_10_1016_j_nic_2019_09_007 crossref_primary_10_1093_schbul_sby091 crossref_primary_10_1002_hbm_25013 crossref_primary_10_1016_j_tics_2018_03_005 crossref_primary_10_1038_s41398_020_00965_5 crossref_primary_10_1111_pcn_13625 crossref_primary_10_1002_hbm_24282 crossref_primary_10_3390_jpm11100957 crossref_primary_10_1002_jmri_29470 crossref_primary_10_1016_j_dadm_2018_07_004 crossref_primary_10_1111_ejn_14083 crossref_primary_10_1016_j_jpsychires_2024_03_019 crossref_primary_10_1093_schbul_sbz067 crossref_primary_10_1371_journal_pone_0207967 crossref_primary_10_1016_j_neuroimage_2023_119990 crossref_primary_10_1016_j_neuroimage_2022_119210 crossref_primary_10_1016_j_neurobiolaging_2021_12_015 crossref_primary_10_1016_j_schres_2019_05_044 crossref_primary_10_1371_journal_pbio_3001627 crossref_primary_10_1016_j_jad_2020_11_072 crossref_primary_10_1111_epi_18343 crossref_primary_10_1016_j_neunet_2023_04_018 crossref_primary_10_1111_pcn_13736 crossref_primary_10_1007_s13721_024_00482_1 crossref_primary_10_2139_ssrn_3915423 crossref_primary_10_3389_fpsyt_2017_00099 crossref_primary_10_1080_23273798_2023_2177315 crossref_primary_10_1192_j_eurpsy_2021_2248 crossref_primary_10_3389_fnins_2021_724391 crossref_primary_10_4103_1673_5374_233433 crossref_primary_10_1038_s41598_018_32454_7 crossref_primary_10_1016_j_neuroimage_2017_10_047 crossref_primary_10_1016_j_nic_2017_06_012 crossref_primary_10_1016_j_scib_2024_03_006 crossref_primary_10_1109_ACCESS_2020_3016734 |
Cites_doi | 10.3389/fnsys.2012.00068 10.3389/fnhum.2013.00520 10.1016/j.neuroimage.2011.06.044 10.1016/j.biopsych.2011.07.014 10.1016/j.media.2014.04.006 10.1161/STROKEAHA.108.530832 10.1016/j.jneumeth.2015.08.020 10.3389/fnins.2013.00133 10.3389/fnhum.2013.00670 10.1111/j.1467-9868.2005.00503.x 10.1038/srep10499 10.3389/fnhum.2012.00145 10.1016/j.neuroimage.2012.09.058 10.3389/fnagi.2014.00260 10.1371/journal.pone.0021896 10.3233/JAD-141605 10.1016/j.cortex.2015.02.008 10.1016/j.neubiorev.2015.08.001 10.1007/s00234-008-0463-x 10.1016/j.neuroimage.2015.05.018 10.3389/fnins.2015.00307 10.3389/fnins.2014.00229 10.1016/j.neuroimage.2011.10.018 10.1016/j.neuroimage.2010.10.081 10.1016/j.neuroimage.2011.01.050 10.1186/1471-244X-11-18 10.1371/journal.pmed.0020151 10.1371/journal.pone.0129250 10.1016/j.nicl.2015.04.002 10.3389/fnhum.2013.00235 10.1016/j.ejrad.2013.04.009 10.1016/j.neuroimage.2009.05.036 10.1016/S0197-4580(00)00238-4 10.3389/fnsys.2012.00069 10.1016/j.schres.2014.10.033 10.1186/1475-925X-11-50 10.1016/j.neuroimage.2011.08.070 10.4306/pi.2015.12.1.92 10.1016/j.cmpb.2015.08.004 10.1371/journal.pone.0079476 10.1016/j.neuroimage.2013.04.063 10.1001/jamapsychiatry.2013.104 10.1093/brain/awq075 10.1016/j.neuroimage.2007.10.012 10.1016/j.neuroimage.2014.04.009 10.1109/42.712137 10.1212/WNL.49.3.786 10.1148/radiol.11101975 10.1016/j.pscychresns.2015.07.001 10.2105/AJPH.84.8.1261 10.1371/journal.pone.0044877 10.1007/s11682-008-9028-1 10.1016/j.neuroimage.2011.05.023 10.1037/0021-843X.95.4.378 10.1002/hbm.20995 10.1016/j.cortex.2014.08.011 10.1016/j.neuroimage.2011.01.008 10.1093/brain/awr263 10.1016/j.jpsychires.2012.11.017 10.1002/hbm.22278 10.1016/j.ijdevneu.2015.07.007 10.1017/S1041610202008281 10.1016/j.neuroimage.2010.11.079 10.1111/jon.12163 10.1016/j.neuroimage.2015.02.037 10.1016/j.neuroimage.2014.10.044 10.1016/j.nicl.2015.06.003 10.1523/JNEUROSCI.5413-09.2010 10.4103/1673-5374.125344 10.3233/JAD-2010-100840 10.1016/j.neuroimage.2014.10.002 10.1016/S0140-6736(97)09218-0 10.3389/fncir.2014.00064 10.1016/j.nicl.2014.12.013 10.1177/1558689812454457 10.1002/hbm.22431 10.1002/hbm.22156 10.1212/01.wnl.0000341768.28646.b6 10.1093/brain/awv111 10.1002/hbm.20934 10.4258/hir.2014.20.1.61 10.1016/j.pscychresns.2012.11.005 10.1016/j.neuroimage.2007.11.001 10.1016/j.neuroimage.2011.11.002 10.1016/j.nicl.2014.09.005 10.1049/htl.2013.0022 10.1016/j.neuroimage.2011.05.055 10.1016/j.compbiomed.2015.07.006 10.1371/journal.pone.0123524 10.1016/j.biopsych.2007.03.015 10.1016/j.neuroimage.2009.11.046 10.3389/fnsys.2012.00078 10.1016/j.pscychresns.2013.09.008 10.3389/fnsys.2012.00066 10.1016/j.neuroimage.2011.10.080 10.1016/j.neuroimage.2015.10.079 10.1016/j.bbr.2015.04.010 10.1038/mp.2010.70 10.3233/JAD-150334 10.1016/j.neuroimage.2009.11.011 10.1016/j.neuroimage.2009.12.092 10.1016/j.acra.2007.10.020 10.1016/j.neuroimage.2011.05.083 10.1371/journal.pone.0025446 10.1016/j.nicl.2013.05.004 10.1016/j.neuroimage.2010.01.005 10.1016/j.pscychresns.2014.05.014 10.1371/journal.pone.0045972 10.1016/S0140-6736(06)68542-5 10.1016/j.neuroimage.2013.09.015 10.1016/j.neuroimage.2012.03.079 10.1016/j.neuroimage.2011.08.013 10.1097/00002093-200110000-00002 10.1093/brain/awm319 10.1186/1471-2342-14-21 10.1111/j.1467-9868.2007.00607.x 10.1016/j.neuroimage.2010.03.051 10.1016/j.biopsych.2004.10.020 10.1002/gps.4262 10.1007/s12021-013-9184-3 10.1109/TITB.2008.923773 10.1016/j.jneumeth.2013.09.001 10.1109/TITB.2008.917893 10.1001/archpsyc.1994.03950010008002 10.1016/j.neulet.2011.07.049 10.1093/arclin/11.6.521 10.3174/ajnr.A0620 10.1371/journal.pone.0029482 10.1109/TMI.2012.2206047 10.1001/archpsyc.62.11.1218 10.1001/jama.289.23.3095 10.31887/DCNS.2014.16.4/pdazzan 10.1016/j.jaac.2013.12.024 10.1371/journal.pone.0032441 10.1002/hbm.20166 10.1016/0165-0270(94)90191-0 10.1002/jmri.21049 10.1016/j.neuroimage.2009.12.047 10.3389/fninf.2013.00012 10.1016/j.compmedimag.2012.08.002 10.3233/JAD-2010-1322 10.1016/j.neuroimage.2014.03.048 10.1002/hbm.20463 10.1038/npp.2015.22 10.1002/hbm.20632 10.1016/j.nicl.2015.09.017 10.1016/j.neuroimage.2007.11.041 10.2174/156720512802455359 10.1109/TMI.2011.2162961 10.1016/j.neuroimage.2010.10.026 10.1073/pnas.87.24.9868 10.1186/2047-217X-3-29 10.1111/pcn.12106 10.3389/fnsys.2012.00063 10.1002/jmri.1076 10.1016/j.neuroimage.2009.08.024 10.1016/j.neuroimage.2009.01.026 10.1385/NI:5:1:11 10.1016/j.neuroimage.2010.11.004 10.1002/hbm.20204 10.1007/s12021-010-9094-6 10.1016/j.neuroimage.2011.10.002 10.1016/j.schres.2006.05.007 10.3389/fninf.2014.00035 10.1016/S0004-3702(97)00063-5 10.1016/j.jpsychires.2013.06.010 10.1016/j.schres.2012.01.001 10.1016/j.neuroimage.2006.08.018 10.1176/appi.ajp.161.5.896 10.1016/j.neuroimage.2013.12.015 10.1002/hbm.22411 10.3389/fpsyt.2013.00095 10.1073/pnas.0911855107 10.3389/fncom.2014.00060 10.1109/TBME.2010.2080679 10.1109/TPAMI.2012.142 10.1371/journal.pone.0064925 10.1016/j.clinph.2015.02.060 10.1371/journal.pone.0119089 10.1007/s00702-011-0693-7 10.1080/10629360500108053 10.1109/TMI.2012.2216543 10.1002/hbm.20655 10.1155/2014/862307 10.1371/journal.pone.0025349 10.1148/radiol.2511080924 10.1038/mp.2013.78 10.1017/S1092852900016151 10.1016/j.neuroimage.2011.10.015 10.1016/j.pnpbp.2012.12.005 10.3174/ajnr.A3223 10.1002/hbm.20691 10.1016/S0022-510X(01)00669-4 10.1016/j.neuron.2014.03.020 10.1016/j.neuroimage.2011.10.003 10.1016/j.jalz.2011.03.008 10.1016/j.compbiomed.2013.07.004 10.1111/j.1525-1497.2004.30091.x 10.1016/j.neuron.2014.05.044 10.3389/fnagi.2014.00020 10.1016/j.neuroimage.2014.11.021 10.3174/ajnr.A3713 10.1109/TCYB.2014.2379621 10.1093/schbul/sbn140 10.1016/j.jneumeth.2013.10.003 10.3389/fpsyt.2012.00053 10.1016/j.neurobiolaging.2006.09.013 10.3389/fneur.2011.00054 10.1016/j.neuroimage.2012.09.065 10.1016/S0004-3702(97)00043-X 10.1016/j.neuroimage.2008.04.255 10.1109/TBME.2014.2372011 10.1038/sj.mp.4001857 10.1023/A:1012487302797 10.1016/j.nicl.2013.09.003 10.1016/j.neuroimage.2011.03.051 10.1038/mp.2012.84 10.1016/j.neuroimage.2013.05.041 10.1016/j.pscychresns.2012.04.007 10.3389/fnsys.2012.00074 10.1016/j.pscychresns.2015.03.004 10.1155/2013/253670 10.1016/0165-1781(95)02651-C 10.1016/j.biopsych.2008.07.025 10.1016/j.neuroimage.2010.12.066 10.1111/jon.12280 10.1016/j.neunet.2012.02.035 10.1016/j.neuroimage.2011.06.029 10.1016/j.neuroimage.2013.06.033 10.1525/jer.2010.5.3.9 10.1016/j.neuroimage.2009.05.056 10.1016/j.neuroimage.2013.10.065 10.1016/S1566-2772(00)00003-7 10.1016/j.jpsychires.2015.06.002 10.1371/journal.pone.0021047 10.1016/j.schres.2012.04.021 10.1007/s11682-013-9264-x 10.1093/brain/aws084 10.1007/s00787-014-0593-0 10.1016/j.neuroimage.2011.09.069 10.1016/j.euroneuro.2014.01.004 10.1155/2014/706157 10.1109/TBME.2015.2404809 10.1002/hbm.22386 10.1093/brain/awh332 10.1016/j.biopsych.2015.02.017 10.3389/fnsys.2012.00059 10.1016/j.neurobiolaging.2014.05.037 10.1016/j.mri.2011.11.001 10.2174/156720501206150716120332 10.1016/0045-9380(88)90017-5 10.1016/j.neubiorev.2012.01.004 10.1016/j.neuroimage.2013.08.053 10.1016/j.neuroimage.2010.06.013 10.3389/fnsys.2012.00075 10.1016/j.neurobiolaging.2013.06.015 10.1016/j.mri.2014.05.008 10.1016/j.nicl.2013.12.012 10.3233/JAD-131928 10.1109/TBME.2013.2284195 10.1016/j.schres.2015.08.011 10.1212/WNL.48.4.978 10.1002/hbm.22254 10.1016/j.neuroimage.2007.11.029 10.1016/j.bbr.2015.04.013 10.1111/j.1440-1819.2012.02397.x 10.1016/j.neuroimage.2011.06.042 10.1109/TCBB.2012.141 10.1016/j.neuroimage.2008.02.043 10.1093/oxfordjournals.schbul.a007087 10.3389/fnhum.2013.00702 10.3389/fninf.2011.00033 10.1155/2015/814104 10.1109/TMI.2006.887380 10.3389/fncom.2015.00132 10.1016/j.neunet.2015.04.002 10.1016/j.neuroimage.2011.11.066 10.1371/journal.pone.0113879 10.1016/j.neurobiolaging.2014.04.037 10.1109/TAMD.2015.2440298 10.1016/j.jad.2008.11.021 10.1002/hbm.22531 10.1016/j.pscychresns.2010.09.016 10.1002/hbm.22759 10.1016/j.neuroimage.2015.05.049 10.1016/j.neuroimage.2013.03.066 10.1016/j.biopsych.2009.07.019 10.1093/cercor/bht165 10.1002/hbm.22542 10.1097/00004583-200403000-00018 10.1016/j.nicl.2014.09.009 10.1016/j.neuroimage.2007.09.073 10.3233/JAD-2011-101371 10.1155/2013/867924 10.1016/j.jalz.2007.04.381 10.1037/0894-4105.12.3.426 10.3389/fnhum.2010.00192 10.1016/j.neuroimage.2012.10.051 10.1186/1475-925X-12-10 10.1016/j.media.2006.07.006 10.3389/fncom.2015.00066 10.1007/s00787-015-0678-4 10.1016/j.neuroimage.2008.11.007 10.1080/01621459.1988.10478691 10.1007/s00429-013-0687-3 10.1155/2015/865265 10.1016/j.neuroimage.2013.08.048 10.1016/S0197-4580(03)00084-8 10.1016/j.neuroimage.2014.03.067 10.1109/TMI.2011.2114362 10.1371/journal.pone.0041282 10.1186/s12888-015-0685-5 10.1177/155005940803900206 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 15, 2017 |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 15, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2016.02.079 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 165 |
ExternalDocumentID | PMC5031516 4287300011 27012503 10_1016_j_neuroimage_2016_02_079 S105381191600210X |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA040487 – fundername: NIBIB NIH HHS grantid: R01 EB006841 – fundername: NIBIB NIH HHS grantid: R01 EB005846 – fundername: NIGMS NIH HHS grantid: P20 GM103472 – fundername: NIBIB NIH HHS grantid: R01 EB020407 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c630t-4080d5985fe9416e5c1e55fe77ec384349611aad03607eed3f2b79d68ea4294c3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 14:29:26 EDT 2025 Fri Sep 05 12:24:41 EDT 2025 Wed Aug 13 04:39:05 EDT 2025 Thu Apr 03 07:04:09 EDT 2025 Tue Jul 01 03:01:47 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 Fri Feb 23 02:25:04 EST 2024 Tue Aug 26 20:08:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt B |
Keywords | Neuroimaging Brain disorders Machine learning Classification Prediction |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c630t-4080d5985fe9416e5c1e55fe77ec384349611aad03607eed3f2b79d68ea4294c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.neuroimage.2016.02.079 |
PMID | 27012503 |
PQID | 1852983765 |
PQPubID | 2031077 |
PageCount | 29 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5031516 proquest_miscellaneous_1826672525 proquest_journals_1852983765 pubmed_primary_27012503 crossref_primary_10_1016_j_neuroimage_2016_02_079 crossref_citationtrail_10_1016_j_neuroimage_2016_02_079 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_02_079 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_02_079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-15 |
PublicationDateYYYYMMDD | 2017-01-15 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Rice (bb1410) 1999; 60 Yu, Liu, Shen (bb1760) 2015 Nir, Villalon-Reina, Prasad, Jahanshad, Joshi, Toga, Bernstein, Jack, Weiner, Thompson (bb1235) 2015; 36 Keator, Grethe, Marcus, Ozyurt, Gadde, Murphy, Pieper, Greve, Notestine, Bockholt (bb0920) 2008; 12 Anderson, Nielsen, Froehlich, DuBray, Druzgal, Cariello, Cooperrider, Zielinski, Ravichandran, Fletcher (bb0050) 2011; 134 Zhang, Shen (bb1820) 2012; 7 Koch, Hägele, Haynes, Heinz, Schlagenhauf, Sterzer (bb0970) 2015; 10 Haller, Missonnier, Herrmann, Rodriguez, Deiber, Nguyen, Gold, Lovblad, Giannakopoulos (bb0740) 2013; 34 Fung, Deng, Zhao, Li, Qu, Li, Zeng, Jin, Ma, Yu, Wang, Shum, Chan (bb0630) 2015; 15 Kaufmann, Skatun, Alnaes, Doan, Duff, Tonnesen, Roussos, Ueland, Aminoff, Lagerberg, Agartz, Melle, Smith, Andreassen, Westlye (bb0910) 2015; 1–10 Watanabe, Kessler, Scott, Angstadt, Sripada (bb1655) 2014; 96 Caan, Vermeer, van Vliet, Majoie, Peters, den Heeten, Vos (bb0220) 2006; 10 Lee, Park, Han (bb1010) 2013; 43 Wee, Yap, Li, Denny, Browndyke, Potter, Welsh-Bohmer, Wang, Shen (bb1665) 2011; 54 Gill (bb0650) 2007; 77 Li, Wang, Wu, Shi, Zhou, Lin, Shen (bb1050) 2012; 33 Calderoni, Retico, Biagi, Tancredi, Muratori, Tosetti (bb0225) 2012; 59 Lerch, Pruessner, Zijdenbos, Collins, Teipel, Hampel, Evans (bb1020) 2008; 29 Liu, Zhang, Adeli-Mosabbeb, Shen (bb1085) 2015 MacMaster, Carrey, Langevin, Jaworska, Crawford (bb1115) 2014; 8 Andersen, Rayens, Liu, Smith (bb0035) 2012; 30 Kambeitz, Kambeitz-Ilankovic, Leucht, Wood, Davatzikos, Malchow, Falkai, Koutsouleris (bb0890) 2015; 40 Jack, Petersen, Xu, Waring, O'Brien, Tangalos, Smith, Ivnik, Kokmen (bb0845) 1997; 49 Arbabshirani, Calhoun (bb0065) 2011 Kasparek, Thomaz, Sato, Schwarz, Janousova, Marecek, Prikryl, Vanicek, Fujita, Ceskova (bb0900) 2011; 191 Stonnington, Chu, Klöppel, Jack, Ashburner, Frackowiak (bb1505) 2010; 51 Dukart, Mueller, Barthel, Villringer, Sabri, Schroeter (bb0490) 2013; 212 Segovia, Holt, Spencer, Górriz, Ramírez, Puntonet, Phillips, Chura, Baron-Cohen, Suckling (bb1470) 2014; 8 ) Arbabshirani, Kiehl, Pearlson, Calhoun (bb0070) 2013; 7 Fekete, Wilf, Rubin, Edelman, Malach, Mujica-Parodi (bb0590) 2013 Peng, Lin, Zhang, Wang (bb1310) 2013; 8 Wolf, Grunwald, Kruggel, Riedel-Heller, Angerhöfer, Hojjatoleslami, Hensel, Arendt, Gertz (bb1690) 2001; 22 Costafreda, Fu, Picchioni, Toulopoulou, McDonald, Kravariti, Walshe, Prata, Murray, McGuire (bb0380) 2011; 11 Nakamura, Kawasaki, Suzuki, Hagino, Kurokawa, Takahashi, Niu, Matsui, Seto, Kurachi (bb1220) 2004; 30 Anticevic, Cole, Repovs, Murray, Brumbaugh, Winkler, Savic, Krystal, Pearlson, Glahn (bb0055) 2014; 24 Chyzhyk, Savio, Graña (bb0355) 2015; 68 H2O [WWW Document], 2015. (URL Klöppel, Abdulkadir, Jack, Koutsouleris, Mourão-Miranda, Vemuri (bb0950) 2012; 61 Gaonkar, Davatzikos (bb0635) 2013; 78 Shen, Wang, Liu, Hu (bb1485) 2010; 49 Tangaro, Amoroso, Brescia, Cavuoti, Chincarini, Errico, Inglese, Longo, Maglietta, Tateo, Riccio, Bellotti (bb1585) 2015; 2015 Lewinsohn, Duncan, Stanton, Hautzinger (bb1030) 1986; 95 Raamana, Wen, Kochan, Brodaty, Sachdev, Wang, Beg (bb1385) 2014; 6 Demirci, Clark, Magnotta, Andreasen, Lauriello, Kiehl, Pearlson, Calhoun (bb0445) 2008; 2 Orrù, Pettersson-Yeo, Marquand, Sartori, Mechelli (bb1260) 2012; 36 Shimizu, Yoshimoto, Toki, Takamura, Yoshimura, Okamoto, Yamawaki, Doya (bb1490) 2015; 10 Calhoun, Arbabshirani (bb0235) 2012 Chaudhuri, Monteleoni, Sarwate (bb0320) 2011; 12 Wing (bb1685) 1997; 350 Kohavi, John (bb0975) 1997; 97 Michael, Baum, Fries, Ho, Pierson, Andreasen, Calhoun (bb1165) 2009; 30 Just, Cherkassky, Buchweitz, Keller, Mitchell (bb0885) 2014; 9 Bockholt, Scully, Courtney, Rachakonda, Scott, Caprihan, Fries, Kalyanam, Segall, de la Garza (bb0180) 2009; 3 Lemm, Blankertz, Dickhaus, Müller (bb1015) 2011; 56 Gauthier, Reisberg, Zaudig, Petersen, Ritchie, Broich, Belleville, Brodaty, Bennett, Chertkow (bb0640) 2006; 367 Ingalhalikar, Smith, Bloy, Gur, Roberts, Verma (bb0825) 2012; 15 Retico, Bosco, Cerello, Fiorina, Chincarini, Fantacci (bb1395) 2015; 25 Sarwate, Plis, Turner, Arbabshirani, Calhoun (bb1440) 2014; 8 Yang, Liu, Sui, Pearlson, Calhoun (bb1720) 2010; 4 Iannaccone, Hauser, Ball, Brandeis, Walitza, Brem (bb0805) 2015; 24 Liang, Lauterbur (bb1055) 2000 Ingalhalikar, Parker, Bloy, Roberts, Verma (bb0820) 2011; 57 Colby, Rudie, Brown, Douglas, Cohen, Shehzad (bb0360) 2012; 6 Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (bb1365) 2014; 84 Zhang, Huang, Shen (bb1830) 2014; 6 Wang, Fan, Bhatt, Davatzikos (bb1645) 2010; 50 Sabuncu, Van Leemput (bb1420) 2012; 31 Sato, Hoexter, Fujita, Rohde (bb1445) 2012; 6 Boubela, Kalcher, Huf, Seidel, Derntl, Pezawas, Našel, Moser (bb0195) 2015; 5 Bleich-Cohen, Jamshy, Sharon, Weizman, Intrator, Poyurovsky, Hendler (bb0170) 2014; 160 Chu, Hsu, Chou, Bandettini, Lin (bb0350) 2012; 60 Ota, Sato, Ishikawa, Hori, Sasayama, Hattori, Teraishi, Obu, Nakata, Nemoto, Moriguchi, Hashimoto, Kunugi (bb1285) 2012; 66 Su, Wang, Shen, Feng, Hu (bb1510) 2013; 7 Dyrba, Ewers, Wegrzyn, Kilimann, Plant, Oswald, Meindl, Pievani, Bokde, Fellgiebel, Filippi, Hampel, Klöppel, Hauenstein, Kirste, Teipel (bb0500) 2013; 8 Fan, Shen, Davatzikos (bb0565) 2005; 8 Yu, Liu, Thung, Shen (bb1765) 2014; 9 Petersen, Negash (bb1325) 2008; 13 Janousova, Schwarz, Kasparek (bb0855) 2015; 232 Levman, Takahashi (bb1025) 2015; 9 Cetin, Christensen, Abbott, Stephen, Mayer, Cañive, Bustillo, Pearlson, Calhoun (bb0300) 2014; 97 Takayanagi, Takahashi, Orikabe, Mozue, Kawasaki, Nakamura, Sato, Itokawa, Yamasue, Kasai, Kurachi, Okazaki, Suzuki (bb1565) 2011; 6 Tognin, Pettersson-Yeo, Valli, Hutton, Woolley, Allen, McGuire, Mechelli (bb1590) 2013; 4 Veronese, Castellani, Peruzzo, Bellani, Brambilla (bb1635) 2013; 2013 Bengio (bb0140) 2013 Miller, Priebe, Qiu, Fischl, Kolasny, Brown, Park, Ratnanather, Busa, Jovicich, Yu, Dickerson, Buckner (bb1170) 2009; 30 Dyrba, Grothe, Kirste, Teipel (bb0505) 2015; 36 Gerardin, Chételat, Chupin, Cuingnet, Desgranges, Kim, Niethammer, Dubois, Lehéricy, Garnero, Eustache, Colliot (bb0645) 2009; 47 Lim, Marquand, Cubillo, Smith, Chantiluke, Simmons, Mehta, Rubia (bb1070) 2013 Sui, Pearlson, Caprihan, Adali, Kiehl, Liu, Yamamoto, Calhoun (bb1535) 2011; 57 Dai, Wang, Hua, He (bb0415) 2012; 6 Polat, Demirel, Kitis, Simsek, Haznedaroglu, Coburn, Kumral, Gonul (bb1350) 2012; 9 Bansal, Staib, Laine, Hao, Xu, Liu, Weissman, Peterson (bb0110) 2012 Suk, Lee, Shen, Initiative (bb1545) 2013; 220 Bai, Chan, Luk (bb0095) 2005 Sidhu, Asgarian, Greiner, Brown (bb1495) 2012; 6 Bottino, Castro, Gomes, Buchpiguel, Marchetti, Neto (bb0190) 2002; 14 Cheng, Newman, Goñi, Kent, Howell, Bolbecker, Puce, O'Donnell, Hetrick (bb0340) 2015; 168 Gong, Wu, Scarpazza, Lui, Jia, Marquand, Huang, McGuire, Mechelli (bb0660) 2011; 55 Sun, van Erp, Thompson, Bearden, Daley, Kushan, Hardt, Nuechterlein, Toga, Cannon (bb1550) 2009; 66 Zhang, Davatzikos (bb1810) 2013; 79 Blum, Langley (bb0175) 1997; 97 Fan, Resnick, Wu, Davatzikos (bb0560) 2008; 41 Dey, Rao, Shah (bb0460) 2012; 6 Alberg, Park, Hager, Brock, Diener-West (bb0025) 2004; 19 Wee, Yap, Shen (bb1670) 2013; 34 Bhugra (bb0150) 2005; 2 Bassett, Nelson, Mueller, Camchong, Lim (bb0115) 2012; 59 Davatzikos, Shen, Gur, Wu, Liu, Fan, Hughett, Turetsky, Gur (bb0425) 2005; 62 Calhoun, Adali, Giuliani, Pekar, Kiehl, Pearlson (bb0245) 2006; 27 Cao, Duan, Lin, Calhoun, Wang (bb0260) 2013; 6 Mahanand, Suresh, Sundararajan, Aswatha Kumar (bb1125) 2012; 32 Dey, Rao, Shah (bb0465) 2014; 8 Kaufer, Miller, Itti, Fairbanks, Li, Fishman, Kushi, Cummings (bb0905) 1997; 48 Morar, Dragović, Waters, Chandler, Kalaydjieva, Jablensky (bb1190) 2011; 16 Murdaugh, Shinkareva, Deshpande, Wang, Pennick, Kana (bb1210) 2012 Sato, Hoexter, Oliveira, Brammer, Murphy, Ecker (bb1450) 2013; 47 Beheshti, Demirel (bb0125) 2015; 64 Calhoun, Sui (bb0240) 2016 Tang, Wang, Cao, Tan (bb1580) 2012; 11 Qiu, Younes, Miller, Csernansky (bb1380) 2008; 40 Plis, Hjelm, Salakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (bb1340) 2014; 8 Zou, Hastie (bb1855) 2005; 67 Buccigrossi, Ellisman, Grethe, Haselgrove, Kennedy, Martone, Preuss, Reynolds, Sullivan, Turner (bb0215) 2007 Gori, Giuliano, Muratori, Saviozzi, Oliva, Tancredi, Cosenza, Tosetti, Calderoni, Retico (bb0670) 2015; 25 Green, Cairns, Wu, Dragovic, Jablensky, Tooney, Scott, Carr (bb0700) 2013; 18 Cheng, Liu, Zhang, Munsell, Shen (bb0335) 2015; 62 Filipovych, Davatzikos, Initiative (bb0595) 2011; 55 Ota, Oishi, Ito, Fukuyama (bb1275) 2014; 221 Baker, Silva, Calhoun, Sarwate, Plis (bb0105) 2015 Haller, Nguyen, Rodriguez, Emch, Gold, Bartsch, Lovblad, Giannakopoulos (bb0745) 2010; 22 Hampel, Teipel, Bayer, Alexander, Schwarz, Schapiro, Rapoport, Möller (bb0750) 2002; 194 Johnston, Mwangi, Matthews, Coghill, Konrad, Steele (bb0875) 2014; 35 Uddin, Menon, Young, Ryali, Chen, Khouzam, Minshew, Hardan (bb1605) 2011; 70 Cui, Wen, Lipnicki, Beg, Jin, Luo, Zhu, Kochan, Reppermund, Zhuang, Raamana, Liu, Trollor, Wang, Brodaty, Sachdev (bb0400) 2012; 59 Apostolova, Hwang, Kohannim, Avila, Elashoff, Jack, Shaw, Trojanowski, Weiner, Thompson (bb0060) 2014; 4 Casanova, Hsu, Espeland (bb0275) 2012; 7 Chincarini, Bosco, Calvini, Gemme, Esposito, Olivieri, Rei, Squarcia, Rodriguez, Bellotti, Cerello, De Mitri, Retico, Nobili (bb0345) 2011; 58 Csernansky, Schindler, Splinter, Wang, Gado, Selemon, Rastogi-Cruz, Posener, Thompson, Miller (bb0390) 2004; 161 McAlonan, Cheung, Cheung, Suckling, Lam, Tai, Yip, Murphy, Chua (bb1135) 2005; 128 Heinrichs, Zakzanis (bb0775) 1998; 12 Zhang, Dong, Phillips, Wang, Ji, Yang, Yuan (bb1825) 2015; 9 Minshew, Payton (bb1180) 1988; 18 Hinrichs, Singh, Mukherjee, Xu, Chung, Johnson (bb0785) 2009; 48 Ma, Li, Yu, He, Li (bb1110) 2013; 8 Frisoni, Beltramello, Weiss, Geroldi, Bianchetti, Trabucchi (bb0625) 1996; 17 Tang, Holland, Dale, Younes, Miller (bb1570) 2014; 35 Castellani, Rossato, Murino, Bellani, Rambaldelli, Perlini, Tomelleri, Tansella, Brambilla (bb0280) 2012; 119 Zhou, Greicius, Gennatas, Growdon, Jang, Rabinovici, Kramer, Weiner, Miller, Seeley (bb1840) 2010; 133 Abdulkadir, Mortamet, Vemuri, Jack, Krueger, Klöppel (bb0005) 2011; 58 Beltrachini, Chincarini (10.1016/j.neuroimage.2016.02.079_bb0345) 2011; 58 Miller (10.1016/j.neuroimage.2016.02.079_bb1170) 2009; 30 Morar (10.1016/j.neuroimage.2016.02.079_bb1190) 2011; 16 Calhoun (10.1016/j.neuroimage.2016.02.079_bb0230) 2009; 13 Lerch (10.1016/j.neuroimage.2016.02.079_bb1020) 2008; 29 Serpa (10.1016/j.neuroimage.2016.02.079_bb1480) 2014; 2014 Veronese (10.1016/j.neuroimage.2016.02.079_bb1635) 2013; 2013 Zu (10.1016/j.neuroimage.2016.02.079_bb1860) 2015 Zarei (10.1016/j.neuroimage.2016.02.079_bb1790) 2009; 40 Gauthier (10.1016/j.neuroimage.2016.02.079_bb0640) 2006; 367 Mehta (10.1016/j.neuroimage.2016.02.079_bb1155) 1988; 83 Kawasaki (10.1016/j.neuroimage.2016.02.079_bb0915) 2007; 34 Gray (10.1016/j.neuroimage.2016.02.079_bb0695) 2013; 65 Sui (10.1016/j.neuroimage.2016.02.079_bb1525) 2009; 46 Batmanghelich (10.1016/j.neuroimage.2016.02.079_bb0120) 2012; 31 Gaonkar (10.1016/j.neuroimage.2016.02.079_bb0635) 2013; 78 Apostolova (10.1016/j.neuroimage.2016.02.079_bb0060) 2014; 4 Demirci (10.1016/j.neuroimage.2016.02.079_bb0440) 2008; 39 Watanabe (10.1016/j.neuroimage.2016.02.079_bb1655) 2014; 96 Farzan (10.1016/j.neuroimage.2016.02.079_bb0585) 2015; 290 Retico (10.1016/j.neuroimage.2016.02.079_bb1395) 2015; 25 Power (10.1016/j.neuroimage.2016.02.079_bb1370) 2015; 105 Green (10.1016/j.neuroimage.2016.02.079_bb0700) 2013; 18 Ogawa (10.1016/j.neuroimage.2016.02.079_bb1245) 1990; 87 Brown (10.1016/j.neuroimage.2016.02.079_bb0210) 2012; 6 Dyrba (10.1016/j.neuroimage.2016.02.079_bb0505) 2015; 36 Deshpande (10.1016/j.neuroimage.2016.02.079_bb0450) 2013; 7 Lewinsohn (10.1016/j.neuroimage.2016.02.079_bb1030) 1986; 95 Wolz (10.1016/j.neuroimage.2016.02.079_bb1700) 2011; 6 Yu (10.1016/j.neuroimage.2016.02.079_bb1765) 2014; 9 Calhoun (10.1016/j.neuroimage.2016.02.079_bb0235) 2012 Csernansky (10.1016/j.neuroimage.2016.02.079_bb0390) 2004; 161 Uddin (10.1016/j.neuroimage.2016.02.079_bb1605) 2011; 70 Sundermann (10.1016/j.neuroimage.2016.02.079_bb1555) 2014; 39 Chen (10.1016/j.neuroimage.2016.02.079_bb0330) 2014; 221 Wu (10.1016/j.neuroimage.2016.02.079_bb1705) 2013; 10 Sato (10.1016/j.neuroimage.2016.02.079_bb1450) 2013; 47 Dyrba (10.1016/j.neuroimage.2016.02.079_bb0500) 2013; 8 Haller (10.1016/j.neuroimage.2016.02.079_bb0745) 2010; 22 Pennanen (10.1016/j.neuroimage.2016.02.079_bb1315) 2004; 25 McCarley (10.1016/j.neuroimage.2016.02.079_bb1140) 2008; 39 Park (10.1016/j.neuroimage.2016.02.079_bb1300) 2015 Chaudhuri (10.1016/j.neuroimage.2016.02.079_bb0320) 2011; 12 Power (10.1016/j.neuroimage.2016.02.079_bb1365) 2014; 84 Albert (10.1016/j.neuroimage.2016.02.079_bb0030) 2011; 7 Hart (10.1016/j.neuroimage.2016.02.079_bb0760) 2014; 53 Su (10.1016/j.neuroimage.2016.02.079_bb1510) 2013; 7 Yu (10.1016/j.neuroimage.2016.02.079_bb1750) 2013; 8 Vemuri (10.1016/j.neuroimage.2016.02.079_bb1620) 2008; 39 Arribas (10.1016/j.neuroimage.2016.02.079_bb0085) 2010; 57 Sui (10.1016/j.neuroimage.2016.02.079_bb1520) 2013; 7 Colby (10.1016/j.neuroimage.2016.02.079_bb0360) 2012; 6 Li (10.1016/j.neuroimage.2016.02.079_bb1040) 2014; 32 McEvoy (10.1016/j.neuroimage.2016.02.079_bb1145) 2009; 251 Jablensky (10.1016/j.neuroimage.2016.02.079_bb0835) 2006; 11 Lahmiri (10.1016/j.neuroimage.2016.02.079_bb0990) 2014; 1 Casanova (10.1016/j.neuroimage.2016.02.079_bb0275) 2012; 7 Keator (10.1016/j.neuroimage.2016.02.079_bb0920) 2008; 12 Cuingnet (10.1016/j.neuroimage.2016.02.079_bb0405) 2011; 56 Granziera (10.1016/j.neuroimage.2016.02.079_bb0690) 2015; 8 Chen (10.1016/j.neuroimage.2016.02.079_bb0325) 2015; 8 Dwork (10.1016/j.neuroimage.2016.02.079_bb0495) 2006; 1–12 Çetin (10.1016/j.neuroimage.2016.02.079_bb0305) 2015; 9 Fekete (10.1016/j.neuroimage.2016.02.079_bb0590) 2013 Kambeitz (10.1016/j.neuroimage.2016.02.079_bb0890) 2015; 40 Bleich-Cohen (10.1016/j.neuroimage.2016.02.079_bb0170) 2014; 160 Freeborough (10.1016/j.neuroimage.2016.02.079_bb0620) 1998; 17 Tangaro (10.1016/j.neuroimage.2016.02.079_bb1585) 2015; 2015 Ecker (10.1016/j.neuroimage.2016.02.079_bb0515) 2010; 49 Gould (10.1016/j.neuroimage.2016.02.079_bb0680) 2014; 6 Janousova (10.1016/j.neuroimage.2016.02.079_bb0855) 2015; 232 Kessler (10.1016/j.neuroimage.2016.02.079_bb0930) 1994; 51 Eskildsen (10.1016/j.neuroimage.2016.02.079_bb0535) 2013; 65 Guo (10.1016/j.neuroimage.2016.02.079_bb0710) 2014; 9 Anderson (10.1016/j.neuroimage.2016.02.079_bb0040) 2013; 7 Takayanagi (10.1016/j.neuroimage.2016.02.079_bb1565) 2011; 6 Pereira (10.1016/j.neuroimage.2016.02.079_bb1320) 2009; 45 Foland-Ross (10.1016/j.neuroimage.2016.02.079_bb0605) 2015; 46 Liu (10.1016/j.neuroimage.2016.02.079_bb1080) 2014; 84 Anderson (10.1016/j.neuroimage.2016.02.079_bb0045) 2014; 102 Bishop (10.1016/j.neuroimage.2016.02.079_bb0160) 2006 Wang (10.1016/j.neuroimage.2016.02.079_bb1650) 2013; 82 Kriegeskorte (10.1016/j.neuroimage.2016.02.079_bb0985) 2015; xiv Akshoomoff (10.1016/j.neuroimage.2016.02.079_bb0020) 2004; 43 Beheshti (10.1016/j.neuroimage.2016.02.079_bb0125) 2015; 64 Bhugra (10.1016/j.neuroimage.2016.02.079_bb0150) 2005; 2 10.1016/j.neuroimage.2016.02.079_bb0730 Schnack (10.1016/j.neuroimage.2016.02.079_bb1460) 2014; 84 Ota (10.1016/j.neuroimage.2016.02.079_bb1275) 2014; 221 Caan (10.1016/j.neuroimage.2016.02.079_bb0220) 2006; 10 Collingridge (10.1016/j.neuroimage.2016.02.079_bb0365) 2013; 7 Koutsouleris (10.1016/j.neuroimage.2016.02.079_bb0980) 2015 Ortiz (10.1016/j.neuroimage.2016.02.079_bb1265) 2015; 9 Frisoni (10.1016/j.neuroimage.2016.02.079_bb0625) 1996; 17 Iwabuchi (10.1016/j.neuroimage.2016.02.079_bb0830) 2013; 4 Kim (10.1016/j.neuroimage.2016.02.079_bb0940) 2015; 124 Le Bihan (10.1016/j.neuroimage.2016.02.079_bb1000) 2001; 13 Association (10.1016/j.neuroimage.2016.02.079_bb0090) 2003 Michael (10.1016/j.neuroimage.2016.02.079_bb1165) 2009; 30 Wing (10.1016/j.neuroimage.2016.02.079_bb1685) 1997; 350 Cui (10.1016/j.neuroimage.2016.02.079_bb0395) 2011; 6 Mahanand (10.1016/j.neuroimage.2016.02.079_bb1125) 2012; 32 Biswal (10.1016/j.neuroimage.2016.02.079_bb0165) 2010; 107 Consortium, A.-200 (10.1016/j.neuroimage.2016.02.079_bb0370) 2012; 6 Bansal (10.1016/j.neuroimage.2016.02.079_bb0110) 2012 Chyzhyk (10.1016/j.neuroimage.2016.02.079_bb0355) 2015; 68 Challis (10.1016/j.neuroimage.2016.02.079_bb0310) 2015; 112 Liu (10.1016/j.neuroimage.2016.02.079_bb1090) 2014; 35 Segovia (10.1016/j.neuroimage.2016.02.079_bb1470) 2014; 8 Peng (10.1016/j.neuroimage.2016.02.079_bb1310) 2013; 8 Power (10.1016/j.neuroimage.2016.02.079_bb1360) 2012; 59 Alberg (10.1016/j.neuroimage.2016.02.079_bb0025) 2004; 19 Zhou (10.1016/j.neuroimage.2016.02.079_bb1845) 2014; 9 Zhang (10.1016/j.neuroimage.2016.02.079_bb1805) 2011; 30 Epstein (10.1016/j.neuroimage.2016.02.079_bb0525) 2001; 1 Sarwate (10.1016/j.neuroimage.2016.02.079_bb1440) 2014; 8 Kessler (10.1016/j.neuroimage.2016.02.079_bb0925) 2003; 289 Hampel (10.1016/j.neuroimage.2016.02.079_bb0750) 2002; 194 Wee (10.1016/j.neuroimage.2016.02.079_bb1660) 2014; 35 Dai (10.1016/j.neuroimage.2016.02.079_bb0415) 2012; 6 Gill (10.1016/j.neuroimage.2016.02.079_bb0650) 2007; 77 Honorio (10.1016/j.neuroimage.2016.02.079_bb0800) 2012; 31 Kim (10.1016/j.neuroimage.2016.02.079_bb0945) 2010 Prasad (10.1016/j.neuroimage.2016.02.079_bb1375) 2015; 36 Kaufer (10.1016/j.neuroimage.2016.02.079_bb0905) 1997; 48 Kohavi (10.1016/j.neuroimage.2016.02.079_bb0975) 1997; 97 Sato (10.1016/j.neuroimage.2016.02.079_bb1455) 2015; 233 Castellani (10.1016/j.neuroimage.2016.02.079_bb0280) 2012; 119 Cao (10.1016/j.neuroimage.2016.02.079_bb0265) 2014; 68 Ota (10.1016/j.neuroimage.2016.02.079_bb1285) 2012; 66 Nir (10.1016/j.neuroimage.2016.02.079_bb1235) 2015; 36 Zeng (10.1016/j.neuroimage.2016.02.079_bb1800) 2014; 35 Wolfers (10.1016/j.neuroimage.2016.02.079_bb1695) 2015; 57 Shimizu (10.1016/j.neuroimage.2016.02.079_bb1490) 2015; 10 Good (10.1016/j.neuroimage.2016.02.079_bb0665) 2006 Li (10.1016/j.neuroimage.2016.02.079_bb1045) 2007; 28 Cui (10.1016/j.neuroimage.2016.02.079_bb0400) 2012; 59 Tang (10.1016/j.neuroimage.2016.02.079_bb1575) 2015; 44 Calhoun (10.1016/j.neuroimage.2016.02.079_bb0255) 2008; 29 Coupé (10.1016/j.neuroimage.2016.02.079_bb0385) 2012; 59 Lord (10.1016/j.neuroimage.2016.02.079_bb1095) 2012; 7 Petersen (10.1016/j.neuroimage.2016.02.079_bb1325) 2008; 13 Zhang (10.1016/j.neuroimage.2016.02.079_bb1830) 2014; 6 Bottino (10.1016/j.neuroimage.2016.02.079_bb0190) 2002; 14 Libero (10.1016/j.neuroimage.2016.02.079_bb1060) 2015; 66 Young (10.1016/j.neuroimage.2016.02.079_bb1740) 2009; 30 Liu (10.1016/j.neuroimage.2016.02.079_bb1085) 2015 Tang (10.1016/j.neuroimage.2016.02.079_bb1570) 2014; 35 Retico (10.1016/j.neuroimage.2016.02.079_bb1405) 2014; 29 Deshpande (10.1016/j.neuroimage.2016.02.079_bb0455) 2015; 45 Gollub (10.1016/j.neuroimage.2016.02.079_bb0655) 2013; 11 Hebert (10.1016/j.neuroimage.2016.02.079_bb0770) 2001; 15 Fan (10.1016/j.neuroimage.2016.02.079_bb0550) 2008; 63 Ingalhalikar (10.1016/j.neuroimage.2016.02.079_bb0820) 2011; 57 Calhoun (10.1016/j.neuroimage.2016.02.079_bb0245) 2006; 27 Iannaccone (10.1016/j.neuroimage.2016.02.079_bb0805) 2015; 24 Wee (10.1016/j.neuroimage.2016.02.079_bb1665) 2011; 54 Zou (10.1016/j.neuroimage.2016.02.079_bb1855) 2005; 67 Guyon (10.1016/j.neuroimage.2016.02.079_bb0720) 2003; 3 Min (10.1016/j.neuroimage.2016.02.079_bb1175) 2014; 35 Graña (10.1016/j.neuroimage.2016.02.079_bb0685) 2011; 502 Abdulkadir (10.1016/j.neuroimage.2016.02.079_bb0005) 2011; 58 Ardekani (10.1016/j.neuroimage.2016.02.079_bb0075) 2011; 32 Falahati (10.1016/j.neuroimage.2016.02.079_bb0545) 2014; 41 MacMaster (10.1016/j.neuroimage.2016.02.079_bb1115) 2014; 8 Wee (10.1016/j.neuroimage.2016.02.079_bb1670) 2013; 34 Rice (10.1016/j.neuroimage.2016.02.079_bb1410) 1999; 60 Murdaugh (10.1016/j.neuroimage.2016.02.079_bb1210) 2012 McAlonan (10.1016/j.neuroimage.2016.02.079_bb1135) 2005; 128 Mourão-Miranda (10.1016/j.neuroimage.2016.02.079_bb1200) 2012; 7 Baker (10.1016/j.neuroimage.2016.02.079_bb0105) 2015 Anticevic (10.1016/j.neuroimage.2016.02.079_bb0055) 2014; 24 Jafri (10.1016/j.neuroimage.2016.02.079_bb0850) 2008; 39 Hinrichs (10.1016/j.neuroimage.2016.02.079_bb0790) 2011; 55 Fan (10.1016/j.neuroimage.2016.02.079_bb0570) 2007; 26 Heinrichs (10.1016/j.neuroimage.2016.02.079_bb0775) 1998; 12 K |
References_xml | – volume: 34 start-page: 235 year: 2007 end-page: 242 ident: bb0915 article-title: Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls publication-title: NeuroImage – year: 2015 ident: bb1860 article-title: Label-aligned multi-task feature learning for multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Brain Imaging Behav. – volume: 82 start-page: 1205 year: 2014 end-page: 1208 ident: bb0480 article-title: The cost of brain diseases: a burden or a challenge? publication-title: Neuron – volume: 289 start-page: 3095 year: 2003 end-page: 3105 ident: bb0925 article-title: The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R) publication-title: JAMA – volume: 41 start-page: 277 year: 2008 end-page: 285 ident: bb0560 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study publication-title: NeuroImage – volume: 7 start-page: 359 year: 2015 end-page: 366 ident: bb1345 article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards publication-title: NeuroImage Clin. – volume: 59 start-page: 2045 year: 2012 end-page: 2056 ident: bb1675 article-title: Identification of MCI individuals using structural and functional connectivity networks publication-title: NeuroImage – year: 2013 ident: bb1070 article-title: Disorder-Specific Predictive Classification of Adolescents with Attention Deficit Hyperactivity Disorder (ADHD) Relative to Autism Using Structural Magnetic Resonance Imaging – volume: 18 start-page: 774 year: 2013 end-page: 780 ident: bb0700 article-title: Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia publication-title: Mol. Psychiatry – volume: 36 start-page: 591 year: 2012 end-page: 600 ident: bb0810 article-title: Automatic brain caudate nuclei segmentation and classification in diagnostic of attention-deficit/hyperactivity disorder publication-title: Comput. Med. Imaging Graphs. – volume: 83 start-page: 148 year: 2013 end-page: 157 ident: bb1075 article-title: Locally linear embedding (LLE) for MRI based Alzheimer's disease classification publication-title: NeuroImage – year: 2006 ident: bb0160 article-title: Pattern Recognition and Machine Learning (Information Science and Statistics) – volume: 12 start-page: 592 year: 2015 end-page: 603 ident: bb0130 article-title: Integration of cognitive tests and resting state fMRI for the individual identification of mild cognitive impairment publication-title: Curr. Alzheimer Res. – volume: 54 start-page: 171 year: 1994 end-page: 187 ident: bb0470 article-title: Functional magnetic resonance imaging (FMRI) of the human brain publication-title: J. Neurosci. Methods – volume: 27 start-page: 598 year: 2006 end-page: 610 ident: bb0250 article-title: A method for multitask fMRI data fusion applied to schizophrenia publication-title: Hum. Brain Mapp. – volume: 221 start-page: 22 year: 2014 end-page: 31 ident: bb0330 article-title: Detecting brain structural changes as biomarker from magnetic resonance images using a local feature based SVM approach publication-title: J. Neurosci. Methods – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: bb0965 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain – volume: 212 start-page: 89 year: 2013 end-page: 98 ident: bb0015 article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment publication-title: Psychiatry Res. – volume: 17 start-page: 913 year: 1996 end-page: 923 ident: bb0625 article-title: Linear measures of atrophy in mild Alzheimer disease publication-title: AJNR Am. J. Neuroradiol. – volume: 15 start-page: 298 year: 2015 ident: bb0630 article-title: Distinguishing bipolar and major depressive disorders by brain structural morphometry: a pilot study publication-title: BMC Psychiatry – volume: 51 start-page: 8 year: 1994 end-page: 19 ident: bb0930 article-title: Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey publication-title: Arch. Gen. Psychiatry – volume: 39 start-page: 1186 year: 2008 end-page: 1197 ident: bb1620 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: NeuroImage – volume: 66 start-page: 611 year: 2012 end-page: 617 ident: bb1285 article-title: Discrimination of female schizophrenia patients from healthy women using multiple structural brain measures obtained with voxel-based morphometry publication-title: Psychiatry Clin. Neurosci. – volume: 62 start-page: 1218 year: 2005 end-page: 1227 ident: bb0425 article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities publication-title: Arch. Gen. Psychiatry – volume: 6 start-page: 63 year: 2012 ident: bb0415 article-title: Classification of ADHD children through multimodal magnetic resonance imaging publication-title: Front. Syst. Neurosci. – volume: 5 start-page: 1391 year: 2004 end-page: 1415 ident: bb0765 article-title: The entire regularization path for the support vector machine publication-title: J. Mach. Learn. Res. – volume: 5 start-page: 9 year: 2010 end-page: 16 ident: bb1105 article-title: Glad you asked: participants' opinions of re-consent for dbGap data submission publication-title: J. Empir. Res. Hum. Res. Ethics – volume: 8 year: 2013 ident: bb1750 article-title: Convergent and divergent functional connectivity patterns in schizophrenia and depression publication-title: PLoS One – volume: 6 start-page: 20 year: 2014 ident: bb0780 article-title: Regions of interest computed by SVM wrapped method for Alzheimer's disease examination from segmented MRI publication-title: Front. Aging Neurosci. – volume: 6 year: 2011 ident: bb1700 article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease publication-title: PLoS One – volume: 31 start-page: 1339 year: 2010 end-page: 1347 ident: bb1205 article-title: Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease publication-title: Hum. Brain Mapp. – volume: 3 start-page: 53 year: 2012 ident: bb0705 article-title: Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls publication-title: Front. Psychiatry – volume: 367 start-page: 1262 year: 2006 end-page: 1270 ident: bb0640 article-title: Mild cognitive impairment publication-title: Lancet – volume: 40 start-page: 1742 year: 2015 end-page: 1751 ident: bb0890 article-title: Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies publication-title: Neuropsychopharmacology – volume: 30 start-page: 1441 year: 2011 end-page: 1454 ident: bb1805 article-title: ODVBA: optimally-discriminative voxel-based analysis publication-title: IEEE Trans. Med. Imaging – volume: 9 start-page: 321 year: 2011 end-page: 333 ident: bb0895 article-title: Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses publication-title: Neuroinformatics – volume: 5 year: 2011 ident: bb1465 article-title: COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets publication-title: Front. Neuroinform. – volume: 30 start-page: 10612 year: 2010 end-page: 10623 ident: bb0510 article-title: Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach publication-title: J. Neurosci. – volume: 117 start-page: 1 year: 2009 end-page: 17 ident: bb1100 article-title: Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies publication-title: J. Affect. Disord. – volume: 33 year: 2012 ident: bb1050 article-title: Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features publication-title: Neurobiol. Aging – volume: 7 start-page: 10 year: 2013 end-page: 3389 ident: bb0070 article-title: Classification of schizophrenia patients based on resting-state functional network connectivity publication-title: Front. Neurosci. – volume: 66 start-page: 46 year: 2015 end-page: 59 ident: bb1060 article-title: Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates publication-title: Cortex – volume: 8 year: 2013 ident: bb1310 article-title: Extreme learning machine-based classification of ADHD using brain structural MRI data publication-title: PLoS One – volume: 214 start-page: 306 year: 2013 end-page: 312 ident: bb1680 article-title: Identifying major depressive disorder using Hurst exponent of resting-state brain networks publication-title: Psychiatry Res. – volume: 45 start-page: 2668 year: 2015 end-page: 2679 ident: bb0455 article-title: Fully connected Cascade Artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data publication-title: IEEE Trans Cybern – volume: 9 start-page: 132 year: 2015 ident: bb1265 article-title: Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's disease diagnosis publication-title: Front. Comput. Neurosci. – volume: 126 start-page: 2132 year: 2015 end-page: 2141 ident: bb0935 article-title: Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory publication-title: Clin. Neurophysiol. – volume: 6 start-page: 260 year: 2014 ident: bb1830 article-title: Integrative analysis of multi-dimensional imaging genomics data for Alzheimer's disease prediction publication-title: Front. Aging Neurosci. – volume: 32 start-page: 313 year: 2012 end-page: 322 ident: bb1125 article-title: Identification of brain regions responsible for Alzheimer's disease using a Self-adaptive Resource Allocation Network publication-title: Neural Netw. – volume: 57 start-page: 918 year: 2011 end-page: 927 ident: bb0820 article-title: Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD publication-title: NeuroImage – year: 2015 ident: bb1760 article-title: Graph-guided joint prediction of class label and clinical scores for the Alzheimer's disease publication-title: Brain Struct. Funct. – volume: 51 start-page: 1405 year: 2010 end-page: 1413 ident: bb1505 article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer's disease publication-title: NeuroImage – volume: 212 start-page: 230 year: 2013 end-page: 236 ident: bb0490 article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI publication-title: Psychiatry Res. – volume: 29 start-page: 1265 year: 2008 end-page: 1275 ident: bb0255 article-title: Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder publication-title: Hum. Brain Mapp. – volume: 8 start-page: 1 year: 2005 end-page: 8 ident: bb0565 article-title: Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 64 start-page: 1035 year: 2008 end-page: 1041 ident: bb1735 article-title: Multivariate pattern analysis of functional magnetic resonance imaging data reveals deficits in distributed representations in schizophrenia publication-title: Biol. Psychiatry – volume: 251 start-page: 195 year: 2009 end-page: 205 ident: bb1145 article-title: Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment publication-title: Radiology – volume: 58 start-page: 793 year: 2011 end-page: 804 ident: bb1195 article-title: Patient classification as an outlier detection problem: an application of the One-Class Support Vector Machine publication-title: NeuroImage – start-page: 4418 year: 2011 end-page: 4421 ident: bb0065 article-title: Functional network connectivity during rest and task: comparison of healthy controls and schizophrenic patients publication-title: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE – volume: 32 start-page: 1043 year: 2014 end-page: 1051 ident: bb1040 article-title: Discriminative analysis of multivariate features from structural MRI and diffusion tensor images publication-title: Magn. Reson. Imaging – volume: 62 start-page: 1805 year: 2015 end-page: 1817 ident: bb0335 article-title: Domain transfer learning for MCI conversion prediction publication-title: IEEE Trans. Biomed. Eng. – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bb0840 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging – year: 2014 ident: bb1500 article-title: The tenth annual MLSP competition: schizophrenia classification challenge the mind research network, 1101 Yale Blvd., Albuquerque, New Mexico 87106 publication-title: IEEE International Workshop on Machine Learning for Signal Processing. Remis, France – volume: 97 start-page: 117 year: 2014 end-page: 126 ident: bb0300 article-title: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia publication-title: NeuroImage – volume: 39 start-page: 1774 year: 2008 end-page: 1782 ident: bb0440 article-title: A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia publication-title: NeuroImage – volume: 24 start-page: 3116 year: 2014 end-page: 3130 ident: bb0055 article-title: Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness publication-title: Cereb. Cortex – volume: 84 start-page: 320 year: 2014 end-page: 341 ident: bb1365 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: NeuroImage – volume: 96 start-page: 183 year: 2014 end-page: 202 ident: bb1655 article-title: Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine publication-title: NeuroImage – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: bb1835 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: NeuroImage – volume: 17 start-page: 475 year: 1998 end-page: 479 ident: bb0620 article-title: MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease publication-title: IEEE Trans. Med. Imaging – volume: 31 start-page: 2290 year: 2012 end-page: 2306 ident: bb1420 article-title: The relevance voxel machine (RVoxM): a self-tuning Bayesian model for informative image-based prediction publication-title: IEEE Trans. Med. Imaging – volume: 3 start-page: 186 year: 2007 end-page: 191 ident: bb0200 article-title: Forecasting the global burden of Alzheimer's disease publication-title: Alzheimers Dement. – start-page: 10 year: 2010 ident: bb1780 article-title: Spark: cluster computing with working sets publication-title: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing – volume: 6 start-page: 1 year: 2012 end-page: 12 ident: bb0485 article-title: High classification accuracy for schizophrenia with rest and task fMRI data publication-title: Front. Hum. Neurosci. – volume: 78 start-page: 794 year: 2015 end-page: 804 ident: bb1540 article-title: In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia publication-title: Biol. Psychiatry – volume: 2 start-page: 735 year: 2013 end-page: 745 ident: bb1745 article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment publication-title: NeuroImage Clin. – volume: 124 start-page: 1084 year: 2016 end-page: 1088 ident: bb0995 article-title: An open platform for compiling, curating, and disseminating neuroimaging data publication-title: NeuroImage – reference: ) – volume: 6 start-page: 229 year: 2014 end-page: 236 ident: bb0680 article-title: Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: a support vector machine learning approach publication-title: NeuroImage Clin. – year: 2015 ident: bb1300 article-title: Connectivity analysis and feature classification in attention deficit hyperactivity disorder sub-types: a task functional magnetic resonance imaging study publication-title: Brain Topogr. – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bb1615 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage – reference: H2O [WWW Document], 2015. (URL – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: bb0475 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry – volume: 35 start-page: 5052 year: 2014 end-page: 5070 ident: bb1175 article-title: Multi-atlas based representations for Alzheimer's disease diagnosis publication-title: Hum. Brain Mapp. – volume: 7 start-page: 235 year: 2013 ident: bb1520 article-title: Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA publication-title: Front. Hum. Neurosci. – volume: 70 start-page: 869 year: 2013 end-page: 879 ident: bb1610 article-title: Salience network-based classification and prediction of symptom severity in children with autism publication-title: JAMA Psychiatry – volume: 65 start-page: 167 year: 2013 end-page: 175 ident: bb0695 article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer's disease publication-title: NeuroImage – volume: 194 start-page: 15 year: 2002 end-page: 19 ident: bb0750 article-title: Age transformation of combined hippocampus and amygdala volume improves diagnostic accuracy in Alzheimer's disease publication-title: J. Neurol. Sci. – volume: 10 year: 2015 ident: bb1775 article-title: Multimodal discrimination of Alzheimer's disease based on regional cortical atrophy and hypometabolism publication-title: PLoS One – volume: 53 start-page: 569 year: 2014 end-page: 578 ident: bb0760 article-title: Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based on pattern classification of temporal processing publication-title: J. Am. Acad. Child Adolesc. Psychiatry – volume: 12 start-page: 92 year: 2015 end-page: 102 ident: bb0880 article-title: Automated classification to predict the progression of Alzheimer's disease using whole-brain volumetry and DTI publication-title: Psychiatry Investig. – volume: 2 start-page: 372 year: 2005 ident: bb0150 article-title: The global prevalence of schizophrenia publication-title: PLoS Med. – volume: 65 start-page: 511 year: 2013 end-page: 521 ident: bb0535 article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning publication-title: NeuroImage – volume: 56 start-page: 387 year: 2011 end-page: 399 ident: bb1015 article-title: Introduction to machine learning for brain imaging publication-title: NeuroImage – volume: 107 start-page: 4734 year: 2010 end-page: 4739 ident: bb0165 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. – volume: 168 start-page: 345 year: 2015 end-page: 352 ident: bb0340 article-title: Nodal centrality of functional network in the differentiation of schizophrenia publication-title: Schizophr. Res. – volume: 35 start-page: 3414 year: 2014 end-page: 3430 ident: bb1660 article-title: Diagnosis of autism spectrum disorders using regional and interregional morphological features publication-title: Hum. Brain Mapp. – year: 2015 ident: bb0295 article-title: Simulation of structural magnetic resonance images for deep learning pre-training publication-title: IEEE International Symposium on Biomedical Imaging. New York, NY, USA – volume: 35 start-page: 5179 year: 2014 end-page: 5189 ident: bb0875 article-title: Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification publication-title: Hum. Brain Mapp. – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bb1855 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.) – year: 1960 ident: bb0600 article-title: The Design of Experiments – start-page: 206 year: 2012 end-page: 230 ident: bb0235 article-title: Neuroimaging-based automatic classification of schizophrenia publication-title: Bioprediction, Biomarkers and Bad Behavior – volume: 9 year: 2014 ident: bb1845 article-title: Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning publication-title: PLoS One – volume: 39 start-page: 1666 year: 2008 end-page: 1681 ident: bb0850 article-title: A method for functional network connectivity among spatially independent resting-state components in schizophrenia publication-title: NeuroImage – volume: 220 start-page: 841 year: 2013 end-page: 859 ident: bb1545 article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis publication-title: Brain Struct. Funct. – volume: 31 start-page: 2062 year: 2012 end-page: 2072 ident: bb0800 article-title: Can a single brain region predict a disorder? publication-title: IEEE Trans. Med. Imaging – volume: 19 start-page: 1263 year: 2010 end-page: 1272 ident: bb1255 article-title: Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease publication-title: J. Alzheimers Dis. – volume: 160 start-page: 196 year: 2014 end-page: 200 ident: bb0170 article-title: Machine learning fMRI classifier delineates subgroups of schizophrenia patients publication-title: Schizophr. Res. – volume: 8 start-page: 631 year: 2015 end-page: 639 ident: bb0690 article-title: A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment publication-title: Neuroimage Clin. – volume: 35 start-page: 3083 year: 2014 end-page: 3094 ident: bb0755 article-title: Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD publication-title: Hum. Brain Mapp. – volume: 47 start-page: 453 year: 2013 end-page: 459 ident: bb1450 article-title: Inter-regional cortical thickness correlations are associated with autistic symptoms: a machine-learning approach publication-title: J. Psychiatr. Res. – volume: 7 start-page: 702 year: 2013 ident: bb1510 article-title: Discriminative analysis of non-linear brain connectivity in schizophrenia: an fMRI study publication-title: Front. Hum. Neurosci. – volume: 25 start-page: 552 year: 2015 end-page: 563 ident: bb1395 article-title: Predictive models based on support vector machines: whole-brain versus regional analysis of structural MRI in the Alzheimer's disease publication-title: J. Neuroimaging – volume: 3 start-page: 29 year: 2014 ident: bb1600 article-title: The rise of large-scale imaging studies in psychiatry publication-title: Gigascience – volume: xiv start-page: 29876 year: 2015 ident: bb0985 article-title: Deep neural networks: a new framework for modelling biological vision and brain information processing publication-title: Bioresources – volume: 4 start-page: 461 year: 2014 end-page: 472 ident: bb0060 article-title: ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease publication-title: Neuroimage Clin. – volume: 8 start-page: 64 year: 2014 ident: bb0465 article-title: Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects publication-title: Front. Neural. Circuits – volume: 105 start-page: 536 year: 2015 end-page: 551 ident: bb1370 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI publication-title: NeuroImage – volume: 58 start-page: 785 year: 2011 end-page: 792 ident: bb0005 article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier publication-title: NeuroImage – volume: 161 start-page: 896 year: 2004 end-page: 902 ident: bb0390 article-title: Abnormalities of thalamic volume and shape in schizophrenia publication-title: Am. J. Psychiatry – volume: 5 start-page: 11 year: 2007 end-page: 33 ident: bb1130 article-title: The extensible neuroimaging archive toolkit publication-title: Neuroinformatics – volume: 18 start-page: 618 year: 1988 end-page: 694 ident: bb1180 article-title: New perspectives in autism. Part 2: The differential diagnosis and neurobiology of autism publication-title: Curr. Probl. Pediatr. – start-page: 78 year: 2004 ident: bb1225 article-title: Feature selection, L 1 vs. L 2 regularization, and rotational invariance publication-title: Proceedings of the Twenty-first International Conference on Machine Learning – volume: 6 start-page: 74 year: 2012 ident: bb1495 article-title: Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD publication-title: Front. Syst. Neurosci. – volume: 57 start-page: 328 year: 2015 end-page: 349 ident: bb1695 article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics publication-title: Neurosci. Biobehav. Rev. – volume: 24 start-page: 427 year: 2015 end-page: 440 ident: bb1330 article-title: Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model publication-title: Eur. Child Adolesc. Psychiatry – volume: 58 start-page: 469 year: 2011 end-page: 480 ident: bb0345 article-title: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease publication-title: NeuroImage – volume: 6 start-page: 78 year: 2012 ident: bb0185 article-title: Network, anatomical, and non-imaging measures for the prediction of ADHD diagnosis in individual subjects publication-title: Front. Syst. Neurosci. – volume: 61 start-page: 457 year: 2012 end-page: 463 ident: bb0950 article-title: Diagnostic neuroimaging across diseases publication-title: NeuroImage – volume: 50 start-page: 162 year: 2010 end-page: 174 ident: bb1335 article-title: Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease publication-title: NeuroImage – volume: 3 start-page: 279 year: 2013 end-page: 289 ident: bb1795 article-title: Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level publication-title: NeuroImage Clin. – volume: 34 start-page: 2815 year: 2013 end-page: 2826 ident: bb0010 article-title: How early can we predict Alzheimer's disease using computational anatomy? publication-title: Neurobiol. Aging – volume: 139 start-page: 7 year: 2012 end-page: 12 ident: bb1625 article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia publication-title: Schizophr. Res. – volume: 43 start-page: 1313 year: 2013 end-page: 1320 ident: bb1010 article-title: Classification of diffusion tensor images for the early detection of Alzheimer's disease publication-title: Comput. Biol. Med. – volume: 7 year: 2012 ident: bb1200 article-title: Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents publication-title: PLoS One – volume: 12 start-page: 426 year: 1998 ident: bb0775 article-title: Neurocognitive deficit in schizophrenia: a quantitative review of the evidence publication-title: Neuropsychology – year: 2006 ident: bb0665 article-title: Permutation, Parametric, and Bootstrap Tests of Hypotheses – volume: 35 start-page: 58 year: 2009 end-page: 66 ident: bb0610 article-title: Tuning in to the voices: a multisite FMRI study of auditory hallucinations publication-title: Schizophr. Bull. – volume: 128 start-page: 268 year: 2005 end-page: 276 ident: bb1135 article-title: Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism publication-title: Brain – volume: 9 start-page: 1 year: 2015 end-page: 15 ident: bb0305 article-title: Enhanced disease characterization through multi network functional normalization in fMRI publication-title: Front. Neurosci. – volume: 31 start-page: 51 year: 2012 end-page: 69 ident: bb0120 article-title: Generative-discriminative basis learning for medical imaging publication-title: IEEE Trans. Med. Imaging – volume: 47 start-page: 1476 year: 2009 end-page: 1486 ident: bb0645 article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging publication-title: NeuroImage – volume: 44 start-page: 599 year: 2015 end-page: 611 ident: bb1575 article-title: Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer's disease publication-title: J. Alzheimers Dis. – volume: 43 start-page: 349 year: 2004 end-page: 357 ident: bb0020 article-title: Outcome classification of preschool children with autism spectrum disorders using MRI brain measures publication-title: J. Am. Acad. Child Adolesc. Psychiatry – volume: 97 start-page: 245 year: 1997 end-page: 271 ident: bb0175 article-title: Selection of relevant features and examples in machine learning publication-title: Artif. Intell. – volume: 4 start-page: 192 year: 2010 ident: bb1720 article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia publication-title: Front. Hum. Neurosci. – volume: 59 start-page: 1209 year: 2012 end-page: 1217 ident: bb0400 article-title: Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach publication-title: NeuroImage – start-page: 5432 year: 2015 end-page: 5435 ident: bb1630 article-title: The impact of data preprocessing in traumatic brain injury detection using functional magnetic resonance imaging publication-title: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE – volume: 8 start-page: 119 year: 2014 end-page: 127 ident: bb1115 article-title: Disorder-specific volumetric brain difference in adolescent major depressive disorder and bipolar depression publication-title: Brain Imaging Behav. – volume: 83 start-page: 999 year: 1988 end-page: 1005 ident: bb1155 article-title: Importance sampling for estimating exact probabilities in permutational inference publication-title: J. Am. Stat. Assoc. – volume: 82 start-page: 1552 year: 2013 end-page: 1557 ident: bb1650 article-title: Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder publication-title: Eur. J. Radiol. – volume: 7 start-page: 520 year: 2013 ident: bb0040 article-title: Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial publication-title: Front. Hum. Neurosci. – volume: 61 start-page: 576 year: 2014 end-page: 589 ident: bb0865 article-title: Integration of network topological and connectivity properties for neuroimaging classification publication-title: IEEE Trans. Biomed. Eng. – volume: 40 start-page: 68 year: 2008 end-page: 76 ident: bb1380 article-title: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer's type publication-title: NeuroImage – volume: 11 start-page: 815 year: 2006 end-page: 836 ident: bb0835 article-title: Subtyping schizophrenia: implications for genetic research publication-title: Mol. Psychiatry – volume: 66 start-page: 119 year: 2013 end-page: 132 ident: bb1515 article-title: Three-way (N-way) fusion of brain imaging data based on mCCA publication-title: NeuroImage – volume: 6 year: 2011 ident: bb0145 article-title: Breast cancer affects both the hippocampus volume and the episodic autobiographical memory retrieval publication-title: PLoS One – volume: 30 start-page: 1667 year: 2009 end-page: 1677 ident: bb1740 article-title: Patterns of structural complexity in Alzheimer's disease and frontotemporal dementia publication-title: Hum. Brain Mapp. – year: 2015 ident: bb0105 article-title: Large scale collaboration with autonomy: decentralized data ICA publication-title: IEEE Machine Learning for Signal Processing Workshop. Boston, MA – volume: 124 start-page: 127 year: 2015 end-page: 146 ident: bb0940 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: NeuroImage – volume: 6 start-page: 75 year: 2012 ident: bb0460 article-title: Exploiting the brain's network structure in identifying ADHD subjects publication-title: Front. Syst. Neurosci. – volume: 61 year: 2012 ident: bb0100 article-title: Prevalence of autism spectrum disorders: autism and developmental disabilities monitoring network, 14 sites, United States, 2008 publication-title: Morb. Mortal. Wkly. Rep. Surveill. Summ. – volume: 8 start-page: 238 year: 2015 end-page: 245 ident: bb0325 article-title: Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism publication-title: Neuroimage Clin. – volume: 2013 start-page: 867924 year: 2013 ident: bb1635 article-title: Machine learning approaches: from theory to application in schizophrenia publication-title: Comput. Math. Methods Med. – volume: 64 start-page: 208 year: 2015 end-page: 216 ident: bb0125 article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease publication-title: Comput. Biol. Med. – volume: 63 start-page: 118 year: 2008 end-page: 124 ident: bb0550 article-title: Unaffected family members and schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study publication-title: Biol. Psychiatry – volume: 29 start-page: 231 year: 2013 end-page: 239 ident: bb1400 article-title: Neuroimaging-based methods for autism identification: a possible translational application? publication-title: Funct. Neurol. – volume: 48 start-page: 138 year: 2009 end-page: 149 ident: bb0785 article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset publication-title: NeuroImage – volume: 6 year: 2011 ident: bb0395 article-title: Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors publication-title: PLoS One – volume: 95 start-page: 378 year: 1986 ident: bb1030 article-title: Age at first onset for nonbipolar depression publication-title: J. Abnorm. Psychol. – volume: 59 start-page: 2187 year: 2012 end-page: 2195 ident: bb0420 article-title: Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3) publication-title: NeuroImage – volume: 1 start-page: 10 year: 2001 end-page: 18 ident: bb0525 article-title: Neuropsychiatry at the millennium: the potential for mind/brain integration through emerging interdisciplinary research strategies publication-title: Clin. Neurosci. Res. – volume: 40 start-page: 110 year: 2008 end-page: 120 ident: bb1850 article-title: Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder publication-title: NeuroImage – volume: 8 start-page: 35 year: 2014 ident: bb1440 article-title: Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation publication-title: Front. Neuroinform. – volume: 41 start-page: 685 year: 2014 end-page: 708 ident: bb0545 article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging publication-title: J. Alzheimers Dis. – volume: 223 start-page: 179 year: 2014 end-page: 186 ident: bb1390 article-title: Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia publication-title: Psychiatry Res. – volume: 35 start-page: 3701 year: 2014 end-page: 3725 ident: bb1570 article-title: Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting publication-title: Hum. Brain Mapp. – volume: 13 start-page: 27 year: 2012 end-page: 66 ident: bb0205 article-title: Conditional likelihood maximisation: a unifying framework for mutual information feature selection publication-title: J. Mach. Learn. Res. – volume: 256 start-page: 168 year: 2015 end-page: 183 ident: bb1280 article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease publication-title: J. Neurosci. Methods – volume: 56 start-page: 766 year: 2011 end-page: 781 ident: bb0405 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage – volume: 14 start-page: 21 year: 2014 ident: bb1065 article-title: Brain region's relative proximity as marker for Alzheimer's disease based on structural MRI publication-title: BMC Med. Imaging – volume: 77 start-page: 55 year: 2007 end-page: 61 ident: bb0650 article-title: Efficient calculation of p-values in linear-statistic permutation significance tests publication-title: J. Stat. Comput. Simul. – volume: 2 start-page: 54 year: 2011 ident: bb1250 article-title: Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to Alzheimer's disease publication-title: Front. Neurol. – volume: 16 start-page: 860 year: 2011 end-page: 866 ident: bb1190 article-title: Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition publication-title: Mol. Psychiatry – volume: 9 start-page: 789 year: 2012 end-page: 794 ident: bb1350 article-title: Computer based classification of MR scans in first time applicant Alzheimer patients publication-title: Curr. Alzheimer Res. – volume: 84 start-page: 1261 year: 1994 end-page: 1264 ident: bb0530 article-title: The US economic and social costs of Alzheimer's disease revisited publication-title: Am. J. Public Health – volume: 6 start-page: 284 year: 2014 end-page: 295 ident: bb1385 article-title: Novel ThickNet features for the discrimination of amnestic MCI subtypes publication-title: Neuroimage Clin. – volume: 135 start-page: 28 year: 2012 end-page: 33 ident: bb1730 article-title: Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia publication-title: Schizophr. Res. – volume: 16 start-page: 491 year: 2014 end-page: 503 ident: bb0430 article-title: Neuroimaging biomarkers to predict treatment response in schizophrenia: the end of 30 publication-title: Dialogues Clin. Neurosci. – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bb0725 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: 233 start-page: 289 year: 2015 end-page: 291 ident: bb1455 article-title: Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression publication-title: Psychiatry Res. – volume: 350 start-page: 1761 year: 1997 end-page: 1766 ident: bb1685 article-title: The autistic spectrum publication-title: Lancet – year: 2003 ident: bb0090 article-title: Diagnostic and Statistical Manual of Mental Disorders: DSM-5 – volume: 1–10 year: 2015 ident: bb0910 article-title: Disintegration of sensorimotor brain networks in schizophrenia publication-title: Schizophr. Bull. – volume: 36 start-page: S121 year: 2015 end-page: S131 ident: bb1375 article-title: Brain connectivity and novel network measures for Alzheimer's disease classification publication-title: Neurobiol. Aging – volume: 32 start-page: 1 year: 2011 end-page: 9 ident: bb0075 article-title: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers publication-title: Hum. Brain Mapp. – volume: 124 start-page: 1065 year: 2016 end-page: 1068 ident: bb0520 article-title: Sharing the wealth: neuroimaging data repositories publication-title: NeuroImage – year: 2012 ident: bb1210 article-title: Differential Deactivation during Mentalizing and Classification of Autism Based on Default Mode Network Connectivity – volume: 13 start-page: 534 year: 2001 end-page: 546 ident: bb1000 article-title: Diffusion tensor imaging: concepts and applications publication-title: J. Magn. Reson. Imaging – volume: 30 start-page: 1056 year: 2015 end-page: 1067 ident: bb1305 article-title: Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction publication-title: Int. J. Geriatr. Psychiatry – volume: 112 start-page: 232 year: 2015 end-page: 243 ident: bb0310 article-title: Gaussian process classification of Alzheimer's disease and mild cognitive impairment from resting-state fMRI publication-title: NeuroImage – volume: 288 start-page: 94 year: 2015 end-page: 102 ident: bb1770 article-title: State-based functional connectivity changes associate with cognitive decline in amnestic mild cognitive impairment subjects publication-title: Behav. Brain Res. – volume: 64 start-page: 479 year: 1985 end-page: 486 ident: bb1160 article-title: Self-diffusion NMR imaging using stimulated echoes publication-title: J. Magn. Reson. – volume: 82 start-page: 695 year: 2014 end-page: 708 ident: bb1560 article-title: Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep publication-title: Neuron – volume: 2012 year: 2012 ident: bb1530 article-title: Three-way fMRI–DTI–Methylation data fusion based on MCCA publication-title: Eng. Med. Biol. Soc. – volume: 6 start-page: 68 year: 2012 ident: bb1445 article-title: Evaluation of pattern recognition and feature extraction methods in ADHD prediction publication-title: Front. Syst. Neurosci. – volume: 36 start-page: 1140 year: 2012 end-page: 1152 ident: bb1260 article-title: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review publication-title: Neurosci. Biobehav. Rev. – volume: 66 start-page: 1055 year: 2009 end-page: 1060 ident: bb1550 article-title: Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms publication-title: Biol. Psychiatry – volume: 56 start-page: 212 year: 2011 end-page: 219 ident: bb0375 article-title: Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment publication-title: NeuroImage – volume: 46 start-page: 125 year: 2015 end-page: 131 ident: bb0605 article-title: Cortical thickness predicts the first onset of major depression in adolescence publication-title: Int. J. Dev. Neurosci. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bb0720 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 460 year: 2004 end-page: 465 ident: bb0025 article-title: The use of “overall accuracy” to evaluate the validity of screening or diagnostic tests publication-title: J. Gen. Intern. Med. – volume: 30 start-page: 2132 year: 2009 end-page: 2141 ident: bb1170 article-title: Collaborative computational anatomy: an MRI morphometry study of the human brain via diffeomorphic metric mapping publication-title: Hum. Brain Mapp. – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: bb1185 article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: NeuroImage – volume: 29 start-page: 231 year: 2014 end-page: 239 ident: bb1405 article-title: Neuroimaging-based methods for autism identification: a possible translational application? publication-title: Funct. Neurol. – volume: 34 start-page: 3411 year: 2013 end-page: 3425 ident: bb1670 article-title: Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns publication-title: Hum. Brain Mapp. – volume: 45 start-page: S199 year: 2009 end-page: S209 ident: bb1320 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: NeuroImage – volume: 7 year: 2013 ident: bb1355 article-title: Toward open sharing of task-based fMRI data: the OpenfMRI project publication-title: Front. Neuroinform. – volume: 135 start-page: 1508 year: 2012 end-page: 1521 ident: bb1215 article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder publication-title: Brain – volume: 259 start-page: 834 year: 2011 end-page: 843 ident: bb1150 article-title: Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis publication-title: Radiology – volume: 105 start-page: 493 year: 2015 end-page: 506 ident: bb1415 article-title: Sparse network-based models for patient classification using fMRI publication-title: NeuroImage – volume: 54 start-page: 1812 year: 2011 end-page: 1822 ident: bb1665 article-title: Enriched white matter connectivity networks for accurate identification of MCI patients publication-title: NeuroImage – volume: 10 year: 2015 ident: bb1490 article-title: Toward probabilistic diagnosis and understanding of depression based on functional MRI data analysis with logistic group LASSO publication-title: PLoS One – volume: 25 start-page: 866 year: 2015 end-page: 874 ident: bb0670 article-title: Gray matter alterations in young children with autism spectrum disorders: comparing morphometry at the voxel and regional level publication-title: J. Neuroimaging – start-page: 1 year: 2010 end-page: 17 ident: bb0945 article-title: Identification of imaging biomarkers in schizophrenia: a coefficient-constrained independent component analysis of the mind multi-site schizophrenia study publication-title: Neuroinformatics – volume: 50 start-page: 589 year: 2010 end-page: 599 ident: bb0860 article-title: Predictive models of autism spectrum disorder based on brain regional cortical thickness publication-title: NeuroImage – volume: 27 start-page: 47 year: 2006 end-page: 62 ident: bb0245 article-title: Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data publication-title: Hum. Brain Mapp. – volume: 72 start-page: 426 year: 2009 end-page: 431 ident: bb0955 article-title: Automatic detection of preclinical neurodegeneration presymptomatic Huntington disease publication-title: Neurology – volume: 502 start-page: 225 year: 2011 end-page: 229 ident: bb0685 article-title: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson's correlation publication-title: Neurosci. Lett. – volume: 48 start-page: 978 year: 1997 end-page: 985 ident: bb0905 article-title: Midline cerebral morphometry distinguishes frontotemporal dementia and Alzheimer's disease publication-title: Neurology – volume: 6 start-page: 59 year: 2012 ident: bb0360 article-title: Insights into multimodal imaging classification of ADHD publication-title: Front. Syst. Neurosci. – volume: 10 start-page: 173 year: 2013 end-page: 180 ident: bb1705 article-title: The receiver operational characteristic for binary classification with multiple indices and its application to the neuroimaging study of Alzheimer's disease publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – volume: 55 start-page: 1497 year: 2011 end-page: 1503 ident: bb0660 article-title: Prognostic prediction of therapeutic response in depression using high-field MR imaging publication-title: NeuroImage – start-page: 471 year: 2005 end-page: 483 ident: bb0095 article-title: Principal component analysis for distributed data sets with updating publication-title: Proceedings of the 6th International Conference on Advanced Parallel Processing Technologies, APPT’05 – volume: 22 start-page: 177 year: 2001 end-page: 186 ident: bb1690 article-title: Hippocampal volume discriminates between normal cognition; questionable and mild dementia in the elderly publication-title: Neurobiol. Aging – volume: 30 start-page: 393 year: 2004 end-page: 404 ident: bb1220 article-title: Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects publication-title: Schizophr. Bull. – volume: 2015 start-page: 865265 year: 2015 ident: bb0675 article-title: Inclusion of neuropsychological scores in atrophy models improves diagnostic classification of Alzheimer's disease and mild cognitive impairment publication-title: Comput. Intell. Neurosci. – volume: 59 start-page: 3736 year: 2012 end-page: 3747 ident: bb0385 article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease publication-title: NeuroImage – volume: 2014 start-page: 862307 year: 2014 ident: bb0580 article-title: An ensemble-of-classifiers based approach for early diagnosis of Alzheimer's disease: classification using structural features of brain images publication-title: Comput. Math. Methods Med. – volume: 87 start-page: 297 year: 2006 end-page: 306 ident: bb1290 article-title: Classification of adolescent psychotic disorders using linear discriminant analysis publication-title: Schizophr. Res. – volume: 35 start-page: 682 year: 2013 end-page: 696 ident: bb0410 article-title: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 1–12 year: 2006 ident: bb0495 article-title: Differential privacy publication-title: Autom. Lang. Program. – volume: 10 year: 2015 ident: bb0970 article-title: Diagnostic classification of schizophrenia patients on the basis of regional reward-related fMRI signal patterns publication-title: PLoS One – volume: 2 start-page: 207 year: 2008 end-page: 226 ident: bb0445 article-title: A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from a multi-site fMRI schizophrenia study publication-title: Brain Imaging Behav. – volume: 7 start-page: 670 year: 2013 ident: bb0450 article-title: Identification of neural connectivity signatures of autism using machine learning publication-title: Front. Hum. Neurosci. – volume: 4 start-page: 187 year: 2013 ident: bb1590 article-title: Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis publication-title: Front. Psychiatry – volume: 26 start-page: 462 year: 2007 end-page: 470 ident: bb1640 article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type publication-title: IEEE Trans. Med. Imaging – year: 2015 ident: bb0870 article-title: Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data publication-title: IEEE Trans. Auton. Ment. Dev. – volume: 6 start-page: 66 year: 2012 ident: bb0315 article-title: ADHD classification by a texture analysis of anatomical brain MRI data publication-title: Front. Syst. Neurosci. – volume: 26 start-page: 93 year: 2007 end-page: 105 ident: bb0570 article-title: COMPARE: classification of morphological patterns using adaptive regional elements publication-title: Comp. A J. Comp. Educ. – volume: 8 year: 2013 ident: bb0500 article-title: Robust automated detection of microstructural white matter degeneration in Alzheimer's disease using machine learning classification of multicenter DTI data publication-title: PLoS One – volume: 7 year: 2012 ident: bb1095 article-title: Changes in community structure of resting state functional connectivity in unipolar depression publication-title: PLoS One – volume: 59 start-page: 2196 year: 2012 end-page: 2207 ident: bb0115 article-title: Altered resting state complexity in schizophrenia publication-title: NeuroImage – volume: 6 start-page: 1 year: 2011 end-page: 10 ident: bb1565 article-title: Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness publication-title: PLoS One – volume: 7 year: 2012 ident: bb1820 article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers publication-title: PLoS One – volume: 58 start-page: 526 year: 2011 end-page: 536 ident: bb0290 article-title: Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia publication-title: NeuroImage – volume: 63 start-page: 55 year: 2015 end-page: 67 ident: bb0815 article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control publication-title: Cortex – volume: 25 start-page: 303 year: 2004 end-page: 310 ident: bb1315 article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD publication-title: Neurobiol. Aging – volume: 122 start-page: 182 year: 2015 end-page: 190 ident: bb1710 article-title: Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment publication-title: Comput. Methods Prog. Biomed. – volume: 42 start-page: 675 year: 2008 end-page: 682 ident: bb0270 article-title: Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements publication-title: NeuroImage – volume: 2014 start-page: 706157 year: 2014 ident: bb1480 article-title: Neuroanatomical classification in a population-based sample of psychotic major depression and bipolar I disorder with 1 publication-title: Biomed. Res. Int. – volume: 11 start-page: 18 year: 2011 ident: bb0380 article-title: Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder publication-title: BMC Psychiatry – volume: 49 start-page: 3110 year: 2010 end-page: 3121 ident: bb1485 article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI publication-title: NeuroImage – volume: 60 start-page: 59 year: 2012 end-page: 70 ident: bb0350 article-title: Does feature selection improve classification accuracy? impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: NeuroImage – volume: 3 year: 2009 ident: bb0180 article-title: Mining the mind research network: a novel framework for exploring large scale, heterogeneous translational neuroscience research data sources publication-title: Front. Neuroinform. – volume: 35 start-page: 1305 year: 2014 end-page: 1319 ident: bb1090 article-title: Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis publication-title: Hum. Brain Mapp. – volume: 47 start-page: 1383 year: 2013 end-page: 1388 ident: bb1270 article-title: Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain publication-title: J. Psychiatr. Res. – volume: 29 start-page: 23 year: 2008 end-page: 30 ident: bb1020 article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls publication-title: Neurobiol. Aging – volume: 9 start-page: 532 year: 2015 end-page: 544 ident: bb1025 article-title: Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders publication-title: NeuroImage Clin. – volume: 13 start-page: 45 year: 2008 end-page: 53 ident: bb1325 article-title: Mild cognitive impairment: an overview publication-title: CNS Spectr. – start-page: 1000 year: 2007 ident: bb0215 article-title: The neuroimaging informatics tools and resources clearinghouse (NITRC) publication-title: AMIA Annual Symposium Proceedings/AMIA Symposium. AMIA Symposium – volume: 87 start-page: 9868 year: 1990 end-page: 9872 ident: bb1245 article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation publication-title: Proc. Natl. Acad. Sci. – volume: 59 start-page: 895 year: 2012 end-page: 907 ident: bb1815 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease publication-title: NeuroImage – volume: 57 start-page: 1215 year: 2005 end-page: 1220 ident: bb0155 article-title: Attention-deficit/hyperactivity disorder: a selective overview publication-title: Biol. Psychiatry – volume: 6 start-page: 1 year: 2012 end-page: 22 ident: bb0210 article-title: ADHD-200 global competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements publication-title: Front. Syst. Neurosci. – volume: 34 start-page: 283 year: 2013 end-page: 291 ident: bb0740 article-title: Individual classification of mild cognitive impairment subtypes by support vector machine analysis of white matter DTI publication-title: AJNR Am. J. Neuroradiol. – year: 2015 ident: bb1085 article-title: Inherent structure based multi-view learning with multi-template feature representation for Alzheimer's disease diagnosis publication-title: IEEE Trans. Biomed. Eng. – year: 2012 ident: bb0110 article-title: Anatomical Brain Images Alone Can Accurately Diagnose Chronic Neuropsychiatric Illnesses – volume: 24 start-page: 545 year: 2014 end-page: 552 ident: bb0715 article-title: Decreased regional activity of default-mode network in unaffected siblings of schizophrenia patients at rest publication-title: Eur. Neuropsychopharmacol. – volume: 4 start-page: 95 year: 2013 ident: bb0830 article-title: Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging publication-title: Front. Psychiatry – volume: 68 start-page: 91 year: 2015 end-page: 98 ident: bb1425 article-title: Subcortical volumes differentiate major depressive disorder, bipolar disorder, and remitted major depressive disorder publication-title: J. Psychiatr. Res. – volume: 290 start-page: 124 year: 2015 end-page: 130 ident: bb0585 article-title: Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longitudinal brain atrophy patterns publication-title: Behav. Brain Res. – volume: 14 start-page: 59 year: 2002 end-page: 72 ident: bb0190 article-title: Volumetric MRI measurements can differentiate Alzheimer's disease, mild cognitive impairment, and normal aging publication-title: Int. Psychogeriatr. – volume: 20 start-page: 61 year: 2014 end-page: 68 ident: bb1005 article-title: Online learning for classification of Alzheimer disease based on cortical thickness and hippocampal shape analysis publication-title: Heal. Inf. Res – volume: 79 start-page: 94 year: 2013 end-page: 110 ident: bb1810 article-title: Optimally-discriminative voxel-based morphometry significantly increases the ability to detect group differences in schizophrenia, mild cognitive impairment, and Alzheimer's disease publication-title: NeuroImage – volume: 7 start-page: 81 year: 2013 end-page: 97 ident: bb0365 article-title: A primer on quantitized data analysis and permutation testing publication-title: J. Mix. Methods Res. – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: bb0975 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – volume: 6 year: 2012 ident: bb0370 article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Front. Syst. Neurosci. – volume: 55 start-page: 1109 year: 2011 end-page: 1119 ident: bb0595 article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI) publication-title: NeuroImage – volume: 8 year: 2014 ident: bb1470 article-title: Identifying endophenotypes of autism: a multivariate approach publication-title: Front. Comput. Neurosci. – volume: 40 start-page: 773 year: 2009 end-page: 779 ident: bb1790 article-title: Regional white matter integrity differentiates between vascular dementia and Alzheimer disease publication-title: Stroke – volume: 133 start-page: 1352 year: 2010 end-page: 1367 ident: bb1840 article-title: Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease publication-title: Brain – volume: 7 start-page: 270 year: 2011 end-page: 279 ident: bb0030 article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement. – volume: 2015 start-page: 814104 year: 2015 ident: bb1585 article-title: Feature selection based on machine learning in MRIs for hippocampal segmentation publication-title: Comput. Math. Methods Med. – volume: 12 start-page: 10 year: 2013 ident: bb1755 article-title: Functional connectivity-based signatures of schizophrenia revealed by multiclass pattern analysis of resting-state fMRI from schizophrenic patients and their healthy siblings publication-title: Biomed. Eng. Online – volume: 96 start-page: 245 year: 2014 end-page: 260 ident: bb0795 article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks publication-title: NeuroImage – year: 1998 ident: bb0735 article-title: Practical Feature Subset Selection for Machine Learning – volume: 28 start-page: 1339 year: 2007 end-page: 1345 ident: bb1045 article-title: Hippocampal shape analysis of Alzheimer disease based on machine learning methods publication-title: AJNR Am. J. Neuroradiol. – volume: 6 start-page: 80 year: 2012 ident: bb0540 article-title: Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data publication-title: Front. Syst. Neurosci. – volume: 57 start-page: 119 year: 1995 end-page: 130 ident: bb0435 article-title: Discriminant analysis of MRI measures as a method to determine the presence of dementia of the Alzheimer type publication-title: Psychiatry Res. – volume: 9 start-page: 66 year: 2015 ident: bb1825 article-title: Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning publication-title: Front. Comput. Neurosci. – volume: 9 start-page: 307 year: 2015 ident: bb1435 article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach publication-title: Front. Neurosci. – volume: 134 start-page: 3742 year: 2011 end-page: 3754 ident: bb0050 article-title: Functional connectivity magnetic resonance imaging classification of autism publication-title: Brain – volume: 68 start-page: 110 year: 2014 end-page: 119 ident: bb0265 article-title: Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis publication-title: Psychiatry Clin. Neurosci. – volume: 11 start-page: 521 year: 1996 end-page: 528 ident: bb1475 article-title: Prediction of group membership in developmental dyslexia, attention deficit hyperactivity disorder, and normal controls using brain morphometric analysis of magnetic resonance imaging publication-title: Arch. Clin. Neuropsychol. – volume: 30 start-page: 446 year: 2012 end-page: 452 ident: bb0035 article-title: Partial least squares for discrimination in fMRI data publication-title: Magn. Reson. Imaging – year: 2015 ident: bb0980 article-title: Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers publication-title: Brain – volume: 7 year: 2012 ident: bb1240 article-title: Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment publication-title: PLoS One – volume: 70 start-page: 833 year: 2011 end-page: 841 ident: bb1605 article-title: Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism publication-title: Biol. Psychiatry – volume: 84 start-page: 299 year: 2014 end-page: 306 ident: bb1460 article-title: Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects publication-title: NeuroImage – volume: 47 start-page: 939 year: 2015 end-page: 954 ident: bb0960 article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study publication-title: J. Alzheimers Dis. – volume: 232 start-page: 237 year: 2015 end-page: 249 ident: bb0855 article-title: Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition publication-title: Psychiatry Res. Neuroimaging – start-page: 8 year: 2013 ident: bb0590 article-title: Combining classification with fMRI-Derived complex network measures for potential neurodiagnostics publication-title: PLoS One – volume: 49 start-page: 786 year: 1997 end-page: 794 ident: bb0845 article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease publication-title: Neurology – volume: 7 start-page: 19 year: 2012 ident: bb0135 article-title: Deep learning of representations for unsupervised and transfer learning publication-title: Unsupervised Transf. Learn. Challenges Mach. Learn. – volume: 60 start-page: 1 year: 1999 end-page: 478 ident: bb1410 article-title: The economic impact of schizophrenia publication-title: J. Clin. Psychiatry – volume: 9 year: 2014 ident: bb1765 article-title: Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals publication-title: PLoS One – volume: 78 start-page: 270 year: 2013 end-page: 283 ident: bb0635 article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification publication-title: NeuroImage – volume: 22 start-page: 315 year: 2010 end-page: 327 ident: bb0745 article-title: Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data publication-title: J. Alzheimers Dis. – volume: 9 year: 2014 ident: bb1035 article-title: An efficient approach for differentiating Alzheimer's disease from normal elderly based on multicenter MRI using gray-level invariant features publication-title: PLoS One – volume: 39 start-page: 57 year: 2008 end-page: 60 ident: bb1140 article-title: Combining ERP and structural MRI information in first episode schizophrenia and bipolar disorder publication-title: Clin. EEG Neurosci. – start-page: 1 year: 2013 end-page: 37 ident: bb0140 article-title: Deep learning of representations: looking forward publication-title: Statistical Language and Speech Processing – volume: 15 start-page: 254 year: 2012 end-page: 261 ident: bb0825 article-title: Identifying sub-populations via unsupervised cluster analysis on multi-edge similarity graphs publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 5 year: 2015 ident: bb0195 article-title: fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions publication-title: Sci. Rep. – volume: 15 start-page: 169 year: 2001 end-page: 173 ident: bb0770 article-title: Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050 publication-title: Alzheimer Dis. Assoc. Disord. – volume: 8 year: 2014 ident: bb1340 article-title: Deep learning for neuroimaging: a validation study publication-title: Front. Neurosci. – volume: 84 start-page: 466 year: 2014 end-page: 475 ident: bb1080 article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification publication-title: NeuroImage – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bb1360 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 50 start-page: 1519 year: 2010 end-page: 1535 ident: bb1645 article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables publication-title: NeuroImage – volume: 2013 start-page: 253670 year: 2013 ident: bb1715 article-title: Discrimination between Alzheimer's disease and mild cognitive impairment using SOM and PSO-SVM publication-title: Comput. Math. Methods Med. – year: 2000 ident: bb1055 article-title: Principles of Magnetic Resonance Imaging – volume: 61 start-page: 606 year: 2012 end-page: 612 ident: bb1230 article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples publication-title: NeuroImage – volume: 57 start-page: 839 year: 2011 end-page: 855 ident: bb1535 article-title: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA publication-title: NeuroImage – volume: 11 start-page: 50 year: 2012 ident: bb1580 article-title: Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis publication-title: Biomed. Eng. Online – volume: 43 start-page: 116 year: 2013 end-page: 125 ident: bb1785 article-title: Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry – volume: 35 start-page: 1630 year: 2014 end-page: 1641 ident: bb1800 article-title: Unsupervised classification of major depression using functional connectivity MRI publication-title: Hum. Brain Mapp. – volume: 59 start-page: 1013 year: 2012 end-page: 1022 ident: bb0225 article-title: Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses publication-title: NeuroImage – volume: 39 start-page: 848 year: 2014 end-page: 855 ident: bb1555 article-title: Multivariate classification of blood oxygen level-dependent fMRI data with diagnostic intention: a clinical perspective publication-title: Am. J. Neuroradiol. – volume: 221 start-page: 139 year: 2014 end-page: 150 ident: bb1275 article-title: A comparison of three brain atlases for MCI prediction publication-title: J. Neurosci. Methods – volume: 36 start-page: S132 year: 2015 end-page: S140 ident: bb1235 article-title: Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease publication-title: Neurobiol. Aging – volume: 24 start-page: 1279 year: 2015 end-page: 1289 ident: bb0805 article-title: Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging publication-title: Eur. Child Adolesc. Psychiatry – volume: 24 start-page: 775 year: 2011 end-page: 783 ident: bb1725 article-title: Independent component analysis-based classification of Alzheimer's disease MRI data publication-title: J. Alzheimers Dis. – volume: 36 start-page: 2118 year: 2015 end-page: 2131 ident: bb0505 article-title: Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM publication-title: Hum. Brain Mapp. – volume: 46 start-page: 73 year: 2009 end-page: 86 ident: bb1525 article-title: An ICA-based method for the identification of optimal fMRI features and components using combined group-discriminative techniques publication-title: NeuroImage – volume: 7 year: 2012 ident: bb0575 article-title: Increased cortical–limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging publication-title: PLoS One – volume: 7 year: 2012 ident: bb0275 article-title: Classification of structural MRI images in Alzheimer's disease from the perspective of ill-posed problems publication-title: PLoS One – volume: 49 start-page: 44 year: 2010 end-page: 56 ident: bb0515 article-title: Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach publication-title: NeuroImage – volume: 1 start-page: 32 year: 2014 end-page: 36 ident: bb0990 article-title: New approach for automatic classification of Alzheimer's disease, mild cognitive impairment and healthy brain magnetic resonance images publication-title: Heal. Technol. Lett. – volume: 12 start-page: 1069 year: 2011 end-page: 1109 ident: bb0320 article-title: Differentially private empirical risk minimization publication-title: J. Mach. Learn. Res. – volume: 191 start-page: 174 year: 2011 end-page: 181 ident: bb0900 article-title: Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects publication-title: Psychiatry Res. Neuroimaging – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: bb0615 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: NeuroImage – volume: 12 start-page: 162 year: 2008 end-page: 172 ident: bb0920 article-title: A national human neuroimaging collaboratory enabled by the Biomedical Informatics Research Network (BIRN) publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 69 start-page: 659 year: 2007 end-page: 677 ident: bb1295 article-title: L1-regularization path algorithm for generalized linear models publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.) – volume: 119 start-page: 395 year: 2012 end-page: 404 ident: bb0280 article-title: Classification of schizophrenia using feature-based morphometry publication-title: J. Neural Transm. – volume: 9 start-page: 153 year: 2014 end-page: 163 ident: bb0710 article-title: Resting-state functional connectivity abnormalities in first-onset unmedicated depression publication-title: Neural. Regen. Res. – volume: 9 year: 2014 ident: bb0885 article-title: Identifying autism from neural representations of social interactions: neurocognitive markers of autism publication-title: PLoS One – volume: 30 start-page: 2512 year: 2009 end-page: 2529 ident: bb1165 article-title: A method to fuse fMRI tasks through spatial correlations: applied to schizophrenia publication-title: Hum. Brain Mapp. – volume: 87 start-page: 1 year: 2014 end-page: 17 ident: bb0285 article-title: A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia publication-title: NeuroImage – volume: 68 start-page: 23 year: 2015 end-page: 33 ident: bb0355 article-title: Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM publication-title: Neural Netw. – volume: 8 year: 2013 ident: bb1110 article-title: Alterations in regional homogeneity of spontaneous brain activity in late-life subthreshold depression publication-title: PLoS One – volume: 10 start-page: 841 year: 2006 end-page: 849 ident: bb0220 article-title: Shaving diffusion tensor images in discriminant analysis: a study into schizophrenia publication-title: Med. Image Anal. – volume: 55 start-page: 574 year: 2011 end-page: 589 ident: bb0790 article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population publication-title: NeuroImage – volume: 18 start-page: 808 year: 2014 end-page: 818 ident: bb1595 article-title: Multiple instance learning for classification of dementia in brain MRI publication-title: Med. Image Anal. – volume: 13 start-page: 711 year: 2009 end-page: 720 ident: bb0230 article-title: Feature-based fusion of medical imaging data publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 51 start-page: 73 year: 2009 end-page: 83 ident: bb1120 article-title: Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI publication-title: Neuroradiology – volume: 56 start-page: 2058 year: 2011 end-page: 2067 ident: bb0555 article-title: Discriminant analysis of functional connectivity patterns on Grassmann manifold publication-title: NeuroImage – volume: 102 start-page: 207 year: 2014 end-page: 219 ident: bb0045 article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD publication-title: NeuroImage – volume: 15 start-page: 274 year: 2008 end-page: 284 ident: bb0080 article-title: Automated method for identification of patients with Alzheimer's disease based on three-dimensional MR images publication-title: Acad. Radiol. – volume: 57 start-page: 2850 year: 2010 end-page: 2860 ident: bb0085 article-title: Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data publication-title: IEEE Trans. Biomed. Eng. – volume: 6 start-page: S2 year: 2013 ident: bb0260 article-title: Integrating fMRI and SNP data for biomarker identification for schizophrenia with a sparse representation based variable selection method publication-title: BMC Med. Genet. – year: 2016 ident: bb0240 article-title: Multimodal fusion of brain imaging data: a key to finding the missing link (s) in complex mental illness publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging – volume: 11 start-page: 367 year: 2013 end-page: 388 ident: bb0655 article-title: The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia publication-title: Neuroinformatics – volume: 6 start-page: 68 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1445 article-title: Evaluation of pattern recognition and feature extraction methods in ADHD prediction publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00068 – volume: 7 start-page: 520 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0040 article-title: Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00520 – volume: 58 start-page: 526 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0290 article-title: Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.044 – volume: 70 start-page: 833 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1605 article-title: Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2011.07.014 – volume: 18 start-page: 808 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1595 article-title: Multiple instance learning for classification of dementia in brain MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.04.006 – volume: 40 start-page: 773 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb1790 article-title: Regional white matter integrity differentiates between vascular dementia and Alzheimer disease publication-title: Stroke doi: 10.1161/STROKEAHA.108.530832 – volume: 256 start-page: 168 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1280 article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.08.020 – volume: 7 start-page: 10 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0070 article-title: Classification of schizophrenia patients based on resting-state functional network connectivity publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00133 – volume: 7 start-page: 670 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0450 article-title: Identification of neural connectivity signatures of autism using machine learning publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00670 – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.neuroimage.2016.02.079_bb1855 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.) doi: 10.1111/j.1467-9868.2005.00503.x – volume: 5 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0195 article-title: fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions publication-title: Sci. Rep. doi: 10.1038/srep10499 – volume: 6 start-page: 1 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0485 article-title: High classification accuracy for schizophrenia with rest and task fMRI data publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2012.00145 – volume: 65 start-page: 511 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0535 article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.09.058 – volume: 6 start-page: 260 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1830 article-title: Integrative analysis of multi-dimensional imaging genomics data for Alzheimer's disease prediction publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2014.00260 – volume: 6 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0395 article-title: Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors publication-title: PLoS One doi: 10.1371/journal.pone.0021896 – volume: 44 start-page: 599 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1575 article-title: Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer's disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-141605 – volume: 66 start-page: 46 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1060 article-title: Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates publication-title: Cortex doi: 10.1016/j.cortex.2015.02.008 – volume: 57 start-page: 328 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1695 article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2015.08.001 – volume: 51 start-page: 73 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb1120 article-title: Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI publication-title: Neuroradiology doi: 10.1007/s00234-008-0463-x – volume: 124 start-page: 127 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0940 article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.05.018 – year: 2016 ident: 10.1016/j.neuroimage.2016.02.079_bb0240 article-title: Multimodal fusion of brain imaging data: a key to finding the missing link (s) in complex mental illness publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging – volume: 9 start-page: 307 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1435 article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00307 – volume: 33 issue: 427 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1050 article-title: Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features publication-title: Neurobiol. Aging – year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1070 – volume: 8 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1340 article-title: Deep learning for neuroimaging: a validation study publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00229 – year: 2003 ident: 10.1016/j.neuroimage.2016.02.079_bb0090 – volume: 59 start-page: 2142 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1360 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 55 start-page: 574 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0790 article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.081 – volume: 56 start-page: 212 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0375 article-title: Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.050 – volume: 11 start-page: 18 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0380 article-title: Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder publication-title: BMC Psychiatry doi: 10.1186/1471-244X-11-18 – volume: 2 start-page: 372 year: 2005 ident: 10.1016/j.neuroimage.2016.02.079_bb0150 article-title: The global prevalence of schizophrenia publication-title: PLoS Med. doi: 10.1371/journal.pmed.0020151 – volume: 10 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1775 article-title: Multimodal discrimination of Alzheimer's disease based on regional cortical atrophy and hypometabolism publication-title: PLoS One doi: 10.1371/journal.pone.0129250 – volume: 4 start-page: 187 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1590 article-title: Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis publication-title: Front. Psychiatry – volume: 8 start-page: 238 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0325 article-title: Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2015.04.002 – volume: 7 start-page: 235 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1520 article-title: Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA+jICA publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00235 – volume: 82 start-page: 1552 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1650 article-title: Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2013.04.009 – volume: 47 start-page: 1476 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb0645 article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.036 – volume: 22 start-page: 177 year: 2001 ident: 10.1016/j.neuroimage.2016.02.079_bb1690 article-title: Hippocampal volume discriminates between normal cognition; questionable and mild dementia in the elderly publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(00)00238-4 – volume: 6 start-page: 1 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0210 article-title: ADHD-200 global competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00069 – volume: 160 start-page: 196 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0170 article-title: Machine learning fMRI classifier delineates subgroups of schizophrenia patients publication-title: Schizophr. Res. doi: 10.1016/j.schres.2014.10.033 – volume: 11 start-page: 50 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1580 article-title: Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-11-50 – volume: 59 start-page: 1013 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0225 article-title: Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.070 – volume: 6 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0370 article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Front. Syst. Neurosci. – volume: 12 start-page: 92 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0880 article-title: Automated classification to predict the progression of Alzheimer's disease using whole-brain volumetry and DTI publication-title: Psychiatry Investig. doi: 10.4306/pi.2015.12.1.92 – volume: 122 start-page: 182 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1710 article-title: Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2015.08.004 – volume: 8 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1310 article-title: Extreme learning machine-based classification of ADHD using brain structural MRI data publication-title: PLoS One doi: 10.1371/journal.pone.0079476 – volume: 79 start-page: 94 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1810 article-title: Optimally-discriminative voxel-based morphometry significantly increases the ability to detect group differences in schizophrenia, mild cognitive impairment, and Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.063 – volume: 70 start-page: 869 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1610 article-title: Salience network-based classification and prediction of symptom severity in children with autism publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2013.104 – volume: 133 start-page: 1352 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb1840 article-title: Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awq075 – volume: 39 start-page: 1774 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb0440 article-title: A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.10.012 – volume: 97 start-page: 117 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0300 article-title: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.009 – volume: 17 start-page: 475 year: 1998 ident: 10.1016/j.neuroimage.2016.02.079_bb0620 article-title: MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.712137 – volume: 49 start-page: 786 year: 1997 ident: 10.1016/j.neuroimage.2016.02.079_bb0845 article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.49.3.786 – volume: 259 start-page: 834 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1150 article-title: Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis publication-title: Radiology doi: 10.1148/radiol.11101975 – volume: 233 start-page: 289 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1455 article-title: Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2015.07.001 – volume: 84 start-page: 1261 year: 1994 ident: 10.1016/j.neuroimage.2016.02.079_bb0530 article-title: The US economic and social costs of Alzheimer's disease revisited publication-title: Am. J. Public Health doi: 10.2105/AJPH.84.8.1261 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0275 article-title: Classification of structural MRI images in Alzheimer's disease from the perspective of ill-posed problems publication-title: PLoS One doi: 10.1371/journal.pone.0044877 – volume: 2 start-page: 207 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb0445 article-title: A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from a multi-site fMRI schizophrenia study publication-title: Brain Imaging Behav. doi: 10.1007/s11682-008-9028-1 – volume: 57 start-page: 918 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0820 article-title: Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.05.023 – volume: 95 start-page: 378 year: 1986 ident: 10.1016/j.neuroimage.2016.02.079_bb1030 article-title: Age at first onset for nonbipolar depression publication-title: J. Abnorm. Psychol. doi: 10.1037/0021-843X.95.4.378 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.neuroimage.2016.02.079_bb0720 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 32 start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0075 article-title: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20995 – volume: 63 start-page: 55 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0815 article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control publication-title: Cortex doi: 10.1016/j.cortex.2014.08.011 – volume: 55 start-page: 856 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1835 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.008 – volume: 134 start-page: 3742 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0050 article-title: Functional connectivity magnetic resonance imaging classification of autism publication-title: Brain doi: 10.1093/brain/awr263 – volume: 47 start-page: 453 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1450 article-title: Inter-regional cortical thickness correlations are associated with autistic symptoms: a machine-learning approach publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2012.11.017 – volume: 35 start-page: 1630 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1800 article-title: Unsupervised classification of major depression using functional connectivity MRI publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22278 – volume: 46 start-page: 125 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0605 article-title: Cortical thickness predicts the first onset of major depression in adolescence publication-title: Int. J. Dev. Neurosci. doi: 10.1016/j.ijdevneu.2015.07.007 – volume: 14 start-page: 59 year: 2002 ident: 10.1016/j.neuroimage.2016.02.079_bb0190 article-title: Volumetric MRI measurements can differentiate Alzheimer's disease, mild cognitive impairment, and normal aging publication-title: Int. Psychogeriatr. doi: 10.1017/S1041610202008281 – volume: 55 start-page: 1497 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0660 article-title: Prognostic prediction of therapeutic response in depression using high-field MR imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.11.079 – volume: 25 start-page: 552 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1395 article-title: Predictive models based on support vector machines: whole-brain versus regional analysis of structural MRI in the Alzheimer's disease publication-title: J. Neuroimaging doi: 10.1111/jon.12163 – volume: 112 start-page: 232 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0310 article-title: Gaussian process classification of Alzheimer's disease and mild cognitive impairment from resting-state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.037 – volume: 105 start-page: 536 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1370 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.10.044 – volume: 8 start-page: 631 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0690 article-title: A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2015.06.003 – volume: 30 start-page: 10612 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb0510 article-title: Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5413-09.2010 – volume: 9 start-page: 153 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0710 article-title: Resting-state functional connectivity abnormalities in first-onset unmedicated depression publication-title: Neural. Regen. Res. doi: 10.4103/1673-5374.125344 – volume: 22 start-page: 315 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb0745 article-title: Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-100840 – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1185 article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 9 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1035 article-title: An efficient approach for differentiating Alzheimer's disease from normal elderly based on multicenter MRI using gray-level invariant features publication-title: PLoS One – volume: 350 start-page: 1761 year: 1997 ident: 10.1016/j.neuroimage.2016.02.079_bb1685 article-title: The autistic spectrum publication-title: Lancet doi: 10.1016/S0140-6736(97)09218-0 – volume: 8 start-page: 64 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0465 article-title: Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects publication-title: Front. Neural. Circuits doi: 10.3389/fncir.2014.00064 – volume: 7 start-page: 359 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1345 article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2014.12.013 – volume: 7 start-page: 81 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0365 article-title: A primer on quantitized data analysis and permutation testing publication-title: J. Mix. Methods Res. doi: 10.1177/1558689812454457 – volume: 35 start-page: 3701 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1570 article-title: Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22431 – volume: 34 start-page: 3411 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1670 article-title: Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22156 – volume: 72 start-page: 426 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb0955 article-title: Automatic detection of preclinical neurodegeneration presymptomatic Huntington disease publication-title: Neurology doi: 10.1212/01.wnl.0000341768.28646.b6 – year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0980 article-title: Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers publication-title: Brain doi: 10.1093/brain/awv111 – volume: 31 start-page: 1339 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb1205 article-title: Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20934 – volume: 20 start-page: 61 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1005 article-title: Online learning for classification of Alzheimer disease based on cortical thickness and hippocampal shape analysis publication-title: Heal. Inf. Res doi: 10.4258/hir.2014.20.1.61 – volume: 212 start-page: 89 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0015 article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2012.11.005 – volume: 39 start-page: 1666 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb0850 article-title: A method for functional network connectivity among spatially independent resting-state components in schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.11.001 – volume: 61 start-page: 457 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0950 article-title: Diagnostic neuroimaging across diseases publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.002 – volume: 6 start-page: 284 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1385 article-title: Novel ThickNet features for the discrimination of amnestic MCI subtypes publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2014.09.005 – volume: 1 start-page: 32 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0990 article-title: New approach for automatic classification of Alzheimer's disease, mild cognitive impairment and healthy brain magnetic resonance images publication-title: Heal. Technol. Lett. doi: 10.1049/htl.2013.0022 – volume: 57 start-page: 839 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1535 article-title: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+joint ICA model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.05.055 – volume: 64 start-page: 208 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0125 article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.07.006 – volume: 9 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1765 article-title: Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals publication-title: PLoS One – volume: 10 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1490 article-title: Toward probabilistic diagnosis and understanding of depression based on functional MRI data analysis with logistic group LASSO publication-title: PLoS One doi: 10.1371/journal.pone.0123524 – volume: 63 start-page: 118 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb0550 article-title: Unaffected family members and schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2007.03.015 – volume: 50 start-page: 162 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb1335 article-title: Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.11.046 – volume: 29 start-page: 231 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1400 article-title: Neuroimaging-based methods for autism identification: a possible translational application? publication-title: Funct. Neurol. – volume: 6 start-page: 78 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0185 article-title: Network, anatomical, and non-imaging measures for the prediction of ADHD diagnosis in individual subjects publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00078 – volume: 214 start-page: 306 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1680 article-title: Identifying major depressive disorder using Hurst exponent of resting-state brain networks publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2013.09.008 – volume: 6 start-page: 66 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0315 article-title: ADHD classification by a texture analysis of anatomical brain MRI data publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00066 – volume: 59 start-page: 3736 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0385 article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.080 – volume: 26 start-page: 93 year: 2007 ident: 10.1016/j.neuroimage.2016.02.079_bb0570 article-title: COMPARE: classification of morphological patterns using adaptive regional elements publication-title: Comp. A J. Comp. Educ. – volume: 8 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1750 article-title: Convergent and divergent functional connectivity patterns in schizophrenia and depression publication-title: PLoS One – volume: 124 start-page: 1065 year: 2016 ident: 10.1016/j.neuroimage.2016.02.079_bb0520 article-title: Sharing the wealth: neuroimaging data repositories publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.10.079 – volume: 290 start-page: 124 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0585 article-title: Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longitudinal brain atrophy patterns publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2015.04.010 – volume: 16 start-page: 860 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1190 article-title: Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition publication-title: Mol. Psychiatry doi: 10.1038/mp.2010.70 – volume: 2012 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1530 article-title: Three-way fMRI–DTI–Methylation data fusion based on MCCA+jICA and its application to schizophrenia publication-title: Eng. Med. Biol. Soc. – volume: 47 start-page: 939 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0960 article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-150334 – volume: 49 start-page: 3110 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb1485 article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.11.011 – volume: 50 start-page: 1519 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb1645 article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.092 – ident: 10.1016/j.neuroimage.2016.02.079_bb0730 – volume: 15 start-page: 274 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb0080 article-title: Automated method for identification of patients with Alzheimer's disease based on three-dimensional MR images publication-title: Acad. Radiol. doi: 10.1016/j.acra.2007.10.020 – volume: 58 start-page: 469 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0345 article-title: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.05.083 – volume: 1–12 year: 2006 ident: 10.1016/j.neuroimage.2016.02.079_bb0495 article-title: Differential privacy publication-title: Autom. Lang. Program. – volume: 6 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1700 article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease publication-title: PLoS One doi: 10.1371/journal.pone.0025446 – volume: 2 start-page: 735 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1745 article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2013.05.004 – year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1760 article-title: Graph-guided joint prediction of class label and clinical scores for the Alzheimer's disease publication-title: Brain Struct. Funct. – volume: 50 start-page: 883 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb0615 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 223 start-page: 179 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1390 article-title: Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2014.05.014 – volume: 9 start-page: 1 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0305 article-title: Enhanced disease characterization through multi network functional normalization in fMRI publication-title: Front. Neurosci. – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0575 article-title: Increased cortical–limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging publication-title: PLoS One doi: 10.1371/journal.pone.0045972 – volume: 367 start-page: 1262 year: 2006 ident: 10.1016/j.neuroimage.2016.02.079_bb0640 article-title: Mild cognitive impairment publication-title: Lancet doi: 10.1016/S0140-6736(06)68542-5 – volume: 84 start-page: 466 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1080 article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.09.015 – volume: 61 start-page: 606 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1230 article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.079 – volume: 59 start-page: 1209 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0400 article-title: Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.013 – volume: 12 start-page: 1069 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0320 article-title: Differentially private empirical risk minimization publication-title: J. Mach. Learn. Res. – volume: 15 start-page: 169 year: 2001 ident: 10.1016/j.neuroimage.2016.02.079_bb0770 article-title: Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050 publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/00002093-200110000-00002 – volume: 131 start-page: 681 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb0965 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 14 start-page: 21 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1065 article-title: Brain region's relative proximity as marker for Alzheimer's disease based on structural MRI publication-title: BMC Med. Imaging doi: 10.1186/1471-2342-14-21 – volume: 69 start-page: 659 year: 2007 ident: 10.1016/j.neuroimage.2016.02.079_bb1295 article-title: L1-regularization path algorithm for generalized linear models publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.) doi: 10.1111/j.1467-9868.2007.00607.x – volume: 51 start-page: 1405 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb1505 article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.051 – start-page: 206 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0235 article-title: Neuroimaging-based automatic classification of schizophrenia – volume: 57 start-page: 1215 year: 2005 ident: 10.1016/j.neuroimage.2016.02.079_bb0155 article-title: Attention-deficit/hyperactivity disorder: a selective overview publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2004.10.020 – volume: 30 start-page: 1056 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1305 article-title: Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.4262 – volume: 11 start-page: 367 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0655 article-title: The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia publication-title: Neuroinformatics doi: 10.1007/s12021-013-9184-3 – volume: 13 start-page: 711 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb0230 article-title: Feature-based fusion of medical imaging data publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2008.923773 – volume: 221 start-page: 22 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0330 article-title: Detecting brain structural changes as biomarker from magnetic resonance images using a local feature based SVM approach publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.09.001 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1820 article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers publication-title: PLoS One – volume: 12 start-page: 162 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb0920 article-title: A national human neuroimaging collaboratory enabled by the Biomedical Informatics Research Network (BIRN) publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2008.917893 – volume: 51 start-page: 8 year: 1994 ident: 10.1016/j.neuroimage.2016.02.079_bb0930 article-title: Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.1994.03950010008002 – volume: 502 start-page: 225 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0685 article-title: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson's correlation publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2011.07.049 – volume: 11 start-page: 521 year: 1996 ident: 10.1016/j.neuroimage.2016.02.079_bb1475 article-title: Prediction of group membership in developmental dyslexia, attention deficit hyperactivity disorder, and normal controls using brain morphometric analysis of magnetic resonance imaging publication-title: Arch. Clin. Neuropsychol. doi: 10.1093/arclin/11.6.521 – volume: 28 start-page: 1339 year: 2007 ident: 10.1016/j.neuroimage.2016.02.079_bb1045 article-title: Hippocampal shape analysis of Alzheimer disease based on machine learning methods publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A0620 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1200 article-title: Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents publication-title: PLoS One doi: 10.1371/journal.pone.0029482 – volume: 31 start-page: 2062 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0800 article-title: Can a single brain region predict a disorder? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2206047 – volume: 62 start-page: 1218 year: 2005 ident: 10.1016/j.neuroimage.2016.02.079_bb0425 article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.62.11.1218 – volume: 289 start-page: 3095 year: 2003 ident: 10.1016/j.neuroimage.2016.02.079_bb0925 article-title: The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R) publication-title: JAMA doi: 10.1001/jama.289.23.3095 – volume: 16 start-page: 491 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0430 article-title: Neuroimaging biomarkers to predict treatment response in schizophrenia: the end of 30years of solitude? publication-title: Dialogues Clin. Neurosci. doi: 10.31887/DCNS.2014.16.4/pdazzan – volume: 53 start-page: 569 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0760 article-title: Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based on pattern classification of temporal processing publication-title: J. Am. Acad. Child Adolesc. Psychiatry doi: 10.1016/j.jaac.2013.12.024 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1240 article-title: Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment publication-title: PLoS One doi: 10.1371/journal.pone.0032441 – volume: 27 start-page: 47 year: 2006 ident: 10.1016/j.neuroimage.2016.02.079_bb0245 article-title: Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20166 – volume: 54 start-page: 171 year: 1994 ident: 10.1016/j.neuroimage.2016.02.079_bb0470 article-title: Functional magnetic resonance imaging (FMRI) of the human brain publication-title: J. Neurosci. Methods doi: 10.1016/0165-0270(94)90191-0 – volume: 27 start-page: 685 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb0840 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 50 start-page: 589 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb0860 article-title: Predictive models of autism spectrum disorder based on brain regional cortical thickness publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.047 – volume: 7 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1355 article-title: Toward open sharing of task-based fMRI data: the OpenfMRI project publication-title: Front. Neuroinform. doi: 10.3389/fninf.2013.00012 – volume: 36 start-page: 591 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0810 article-title: Automatic brain caudate nuclei segmentation and classification in diagnostic of attention-deficit/hyperactivity disorder publication-title: Comput. Med. Imaging Graphs. doi: 10.1016/j.compmedimag.2012.08.002 – start-page: 1 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb0945 article-title: Identification of imaging biomarkers in schizophrenia: a coefficient-constrained independent component analysis of the mind multi-site schizophrenia study publication-title: Neuroinformatics – volume: 19 start-page: 1263 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb1255 article-title: Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-1322 – year: 1960 ident: 10.1016/j.neuroimage.2016.02.079_bb0600 – volume: 96 start-page: 245 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0795 article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.03.048 – volume: 13 start-page: 27 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0205 article-title: Conditional likelihood maximisation: a unifying framework for mutual information feature selection publication-title: J. Mach. Learn. Res. – volume: 29 start-page: 1265 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb0255 article-title: Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20463 – volume: 40 start-page: 1742 issue: 7 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0890 article-title: Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies publication-title: Neuropsychopharmacology doi: 10.1038/npp.2015.22 – volume: 30 start-page: 1667 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb1740 article-title: Patterns of structural complexity in Alzheimer's disease and frontotemporal dementia publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20632 – start-page: 1 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0140 article-title: Deep learning of representations: looking forward – volume: 9 start-page: 532 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1025 article-title: Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2015.09.017 – volume: 40 start-page: 68 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb1380 article-title: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer's type publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.11.041 – volume: 9 start-page: 789 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1350 article-title: Computer based classification of MR scans in first time applicant Alzheimer patients publication-title: Curr. Alzheimer Res. doi: 10.2174/156720512802455359 – start-page: 5432 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1630 article-title: The impact of data preprocessing in traumatic brain injury detection using functional magnetic resonance imaging – volume: 31 start-page: 51 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0120 article-title: Generative-discriminative basis learning for medical imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2162961 – volume: 54 start-page: 1812 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1665 article-title: Enriched white matter connectivity networks for accurate identification of MCI patients publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.026 – volume: 87 start-page: 9868 year: 1990 ident: 10.1016/j.neuroimage.2016.02.079_bb1245 article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.87.24.9868 – volume: 3 start-page: 29 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1600 article-title: The rise of large-scale imaging studies in psychiatry publication-title: Gigascience doi: 10.1186/2047-217X-3-29 – volume: 68 start-page: 110 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0265 article-title: Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis publication-title: Psychiatry Clin. Neurosci. doi: 10.1111/pcn.12106 – volume: 6 start-page: 63 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0415 article-title: Classification of ADHD children through multimodal magnetic resonance imaging publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00063 – volume: 13 start-page: 534 year: 2001 ident: 10.1016/j.neuroimage.2016.02.079_bb1000 article-title: Diffusion tensor imaging: concepts and applications publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1076 – volume: 29 start-page: 231 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1405 article-title: Neuroimaging-based methods for autism identification: a possible translational application? publication-title: Funct. Neurol. – volume: 49 start-page: 44 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb0515 article-title: Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.08.024 – volume: 46 start-page: 73 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb1525 article-title: An ICA-based method for the identification of optimal fMRI features and components using combined group-discriminative techniques publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.026 – volume: 5 start-page: 11 year: 2007 ident: 10.1016/j.neuroimage.2016.02.079_bb1130 article-title: The extensible neuroimaging archive toolkit publication-title: Neuroinformatics doi: 10.1385/NI:5:1:11 – year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1300 article-title: Connectivity analysis and feature classification in attention deficit hyperactivity disorder sub-types: a task functional magnetic resonance imaging study publication-title: Brain Topogr. – volume: 56 start-page: 387 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1015 article-title: Introduction to machine learning for brain imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.11.004 – volume: 27 start-page: 598 year: 2006 ident: 10.1016/j.neuroimage.2016.02.079_bb0250 article-title: A method for multitask fMRI data fusion applied to schizophrenia publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20204 – volume: 9 start-page: 321 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0895 article-title: Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses publication-title: Neuroinformatics doi: 10.1007/s12021-010-9094-6 – volume: 59 start-page: 2196 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0115 article-title: Altered resting state complexity in schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.002 – volume: 87 start-page: 297 year: 2006 ident: 10.1016/j.neuroimage.2016.02.079_bb1290 article-title: Classification of adolescent psychotic disorders using linear discriminant analysis publication-title: Schizophr. Res. doi: 10.1016/j.schres.2006.05.007 – year: 2006 ident: 10.1016/j.neuroimage.2016.02.079_bb0160 – volume: 8 start-page: 35 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1440 article-title: Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00035 – start-page: 10 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb1780 article-title: Spark: cluster computing with working sets – volume: 97 start-page: 245 year: 1997 ident: 10.1016/j.neuroimage.2016.02.079_bb0175 article-title: Selection of relevant features and examples in machine learning publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00063-5 – year: 1998 ident: 10.1016/j.neuroimage.2016.02.079_bb0735 – volume: 47 start-page: 1383 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1270 article-title: Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2013.06.010 – volume: 135 start-page: 28 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1730 article-title: Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2012.01.001 – volume: 34 start-page: 235 year: 2007 ident: 10.1016/j.neuroimage.2016.02.079_bb0915 article-title: Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.08.018 – volume: 161 start-page: 896 year: 2004 ident: 10.1016/j.neuroimage.2016.02.079_bb0390 article-title: Abnormalities of thalamic volume and shape in schizophrenia publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.161.5.896 – volume: 102 start-page: 207 issue: Pt 1 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0045 article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.015 – volume: 35 start-page: 3414 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1660 article-title: Diagnosis of autism spectrum disorders using regional and interregional morphological features publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22411 – volume: 4 start-page: 95 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0830 article-title: Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2013.00095 – volume: 107 start-page: 4734 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb0165 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0911855107 – volume: 8 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1470 article-title: Identifying endophenotypes of autism: a multivariate approach publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2014.00060 – volume: 57 start-page: 2850 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb0085 article-title: Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2080679 – volume: 35 start-page: 682 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0410 article-title: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.142 – volume: 60 start-page: 1 issue: suppl 1 year: 1999 ident: 10.1016/j.neuroimage.2016.02.079_bb1410 article-title: The economic impact of schizophrenia publication-title: J. Clin. Psychiatry – volume: 8 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0500 article-title: Robust automated detection of microstructural white matter degeneration in Alzheimer's disease using machine learning classification of multicenter DTI data publication-title: PLoS One doi: 10.1371/journal.pone.0064925 – volume: 126 start-page: 2132 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0935 article-title: Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.02.060 – volume: 10 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0970 article-title: Diagnostic classification of schizophrenia patients on the basis of regional reward-related fMRI signal patterns publication-title: PLoS One doi: 10.1371/journal.pone.0119089 – volume: 119 start-page: 395 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0280 article-title: Classification of schizophrenia using feature-based morphometry publication-title: J. Neural Transm. doi: 10.1007/s00702-011-0693-7 – volume: 77 start-page: 55 year: 2007 ident: 10.1016/j.neuroimage.2016.02.079_bb0650 article-title: Efficient calculation of p-values in linear-statistic permutation significance tests publication-title: J. Stat. Comput. Simul. doi: 10.1080/10629360500108053 – volume: 31 start-page: 2290 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1420 article-title: The relevance voxel machine (RVoxM): a self-tuning Bayesian model for informative image-based prediction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2216543 – volume: 30 start-page: 2132 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb1170 article-title: Collaborative computational anatomy: an MRI morphometry study of the human brain via diffeomorphic metric mapping publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20655 – volume: 2014 start-page: 862307 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0580 article-title: An ensemble-of-classifiers based approach for early diagnosis of Alzheimer's disease: classification using structural features of brain images publication-title: Comput. Math. Methods Med. doi: 10.1155/2014/862307 – volume: 6 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0145 article-title: Breast cancer affects both the hippocampus volume and the episodic autobiographical memory retrieval publication-title: PLoS One doi: 10.1371/journal.pone.0025349 – volume: 251 start-page: 195 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb1145 article-title: Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment publication-title: Radiology doi: 10.1148/radiol.2511080924 – volume: 19 start-page: 659 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0475 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.78 – volume: 13 start-page: 45 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb1325 article-title: Mild cognitive impairment: an overview publication-title: CNS Spectr. doi: 10.1017/S1092852900016151 – volume: 59 start-page: 2045 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1675 article-title: Identification of MCI individuals using structural and functional connectivity networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.015 – volume: 43 start-page: 116 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1785 article-title: Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2012.12.005 – volume: 34 start-page: 283 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0740 article-title: Individual classification of mild cognitive impairment subtypes by support vector machine analysis of white matter DTI publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A3223 – volume: 30 start-page: 2512 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb1165 article-title: A method to fuse fMRI tasks through spatial correlations: applied to schizophrenia publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20691 – volume: 194 start-page: 15 year: 2002 ident: 10.1016/j.neuroimage.2016.02.079_bb0750 article-title: Age transformation of combined hippocampus and amygdala volume improves diagnostic accuracy in Alzheimer's disease publication-title: J. Neurol. Sci. doi: 10.1016/S0022-510X(01)00669-4 – volume: 82 start-page: 695 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1560 article-title: Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep publication-title: Neuron doi: 10.1016/j.neuron.2014.03.020 – volume: 61 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0100 article-title: Prevalence of autism spectrum disorders: autism and developmental disabilities monitoring network, 14 sites, United States, 2008 publication-title: Morb. Mortal. Wkly. Rep. Surveill. Summ. – volume: 59 start-page: 2187 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0420 article-title: Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3) publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.003 – volume: 7 start-page: 270 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0030 article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2011.03.008 – volume: 43 start-page: 1313 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1010 article-title: Classification of diffusion tensor images for the early detection of Alzheimer's disease publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.07.004 – volume: 19 start-page: 460 year: 2004 ident: 10.1016/j.neuroimage.2016.02.079_bb0025 article-title: The use of “overall accuracy” to evaluate the validity of screening or diagnostic tests publication-title: J. Gen. Intern. Med. doi: 10.1111/j.1525-1497.2004.30091.x – volume: 82 start-page: 1205 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0480 article-title: The cost of brain diseases: a burden or a challenge? publication-title: Neuron doi: 10.1016/j.neuron.2014.05.044 – volume: 6 start-page: 20 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0780 article-title: Regions of interest computed by SVM wrapped method for Alzheimer's disease examination from segmented MRI publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2014.00020 – volume: 105 start-page: 493 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1415 article-title: Sparse network-based models for patient classification using fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.11.021 – volume: 39 start-page: 848 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1555 article-title: Multivariate classification of blood oxygen level-dependent fMRI data with diagnostic intention: a clinical perspective publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A3713 – year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1500 article-title: The tenth annual MLSP competition: schizophrenia classification challenge the mind research network, 1101 Yale Blvd., Albuquerque, New Mexico 87106 – volume: 45 start-page: 2668 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0455 article-title: Fully connected Cascade Artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2379621 – volume: 17 start-page: 913 year: 1996 ident: 10.1016/j.neuroimage.2016.02.079_bb0625 article-title: Linear measures of atrophy in mild Alzheimer disease publication-title: AJNR Am. J. Neuroradiol. – volume: 35 start-page: 58 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb0610 article-title: Tuning in to the voices: a multisite FMRI study of auditory hallucinations publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbn140 – volume: 221 start-page: 139 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1275 article-title: A comparison of three brain atlases for MCI prediction publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.10.003 – volume: 3 start-page: 53 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0705 article-title: Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2012.00053 – volume: 29 start-page: 23 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb1020 article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.09.013 – volume: 2 start-page: 54 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1250 article-title: Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to Alzheimer's disease publication-title: Front. Neurol. doi: 10.3389/fneur.2011.00054 – volume: 65 start-page: 167 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0695 article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.09.065 – volume: 97 start-page: 273 year: 1997 ident: 10.1016/j.neuroimage.2016.02.079_bb0975 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 6 start-page: S2 issue: Suppl. 3 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0260 article-title: Integrating fMRI and SNP data for biomarker identification for schizophrenia with a sparse representation based variable selection method publication-title: BMC Med. Genet. – volume: 42 start-page: 675 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb0270 article-title: Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.04.255 – year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1085 article-title: Inherent structure based multi-view learning with multi-template feature representation for Alzheimer's disease diagnosis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2372011 – volume: 11 start-page: 815 year: 2006 ident: 10.1016/j.neuroimage.2016.02.079_bb0835 article-title: Subtyping schizophrenia: implications for genetic research publication-title: Mol. Psychiatry doi: 10.1038/sj.mp.4001857 – volume: 46 start-page: 389 year: 2002 ident: 10.1016/j.neuroimage.2016.02.079_bb0725 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 3 start-page: 279 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1795 article-title: Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2013.09.003 – year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1860 article-title: Label-aligned multi-task feature learning for multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Brain Imaging Behav. – year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1210 – volume: 56 start-page: 2058 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0555 article-title: Discriminant analysis of functional connectivity patterns on Grassmann manifold publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.051 – volume: 18 start-page: 774 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0700 article-title: Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia publication-title: Mol. Psychiatry doi: 10.1038/mp.2012.84 – volume: 8 start-page: 1 year: 2005 ident: 10.1016/j.neuroimage.2016.02.079_bb0565 article-title: Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1615 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 6 start-page: 80 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0540 article-title: Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data publication-title: Front. Syst. Neurosci. – volume: 212 start-page: 230 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0490 article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2012.04.007 – volume: 6 start-page: 74 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1495 article-title: Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00074 – volume: 232 start-page: 237 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0855 article-title: Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition publication-title: Psychiatry Res. Neuroimaging doi: 10.1016/j.pscychresns.2015.03.004 – volume: 2013 start-page: 253670 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1715 article-title: Discrimination between Alzheimer's disease and mild cognitive impairment using SOM and PSO-SVM publication-title: Comput. Math. Methods Med. doi: 10.1155/2013/253670 – volume: 57 start-page: 119 year: 1995 ident: 10.1016/j.neuroimage.2016.02.079_bb0435 article-title: Discriminant analysis of MRI measures as a method to determine the presence of dementia of the Alzheimer type publication-title: Psychiatry Res. doi: 10.1016/0165-1781(95)02651-C – volume: 64 start-page: 1035 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb1735 article-title: Multivariate pattern analysis of functional magnetic resonance imaging data reveals deficits in distributed representations in schizophrenia publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2008.07.025 – volume: 55 start-page: 1109 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0595 article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI) publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.066 – volume: 25 start-page: 866 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0670 article-title: Gray matter alterations in young children with autism spectrum disorders: comparing morphometry at the voxel and regional level publication-title: J. Neuroimaging doi: 10.1111/jon.12280 – volume: 32 start-page: 313 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1125 article-title: Identification of brain regions responsible for Alzheimer's disease using a Self-adaptive Resource Allocation Network publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.02.035 – volume: 58 start-page: 785 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0005 article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.029 – volume: 83 start-page: 148 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1075 article-title: Locally linear embedding (LLE) for MRI based Alzheimer's disease classification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.06.033 – volume: 5 start-page: 9 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb1105 article-title: Glad you asked: participants' opinions of re-consent for dbGap data submission publication-title: J. Empir. Res. Hum. Res. Ethics doi: 10.1525/jer.2010.5.3.9 – volume: 48 start-page: 138 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb0785 article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.056 – year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0110 – year: 2006 ident: 10.1016/j.neuroimage.2016.02.079_bb0665 – volume: 64 start-page: 479 year: 1985 ident: 10.1016/j.neuroimage.2016.02.079_bb1160 article-title: Self-diffusion NMR imaging using stimulated echoes publication-title: J. Magn. Reson. – volume: 87 start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0285 article-title: A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.10.065 – volume: 1 start-page: 10 year: 2001 ident: 10.1016/j.neuroimage.2016.02.079_bb0525 article-title: Neuropsychiatry at the millennium: the potential for mind/brain integration through emerging interdisciplinary research strategies publication-title: Clin. Neurosci. Res. doi: 10.1016/S1566-2772(00)00003-7 – volume: 68 start-page: 91 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1425 article-title: Subcortical volumes differentiate major depressive disorder, bipolar disorder, and remitted major depressive disorder publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2015.06.002 – volume: 6 start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1565 article-title: Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness publication-title: PLoS One doi: 10.1371/journal.pone.0021047 – volume: 139 start-page: 7 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1625 article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2012.04.021 – volume: 8 start-page: 119 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1115 article-title: Disorder-specific volumetric brain difference in adolescent major depressive disorder and bipolar depression publication-title: Brain Imaging Behav. doi: 10.1007/s11682-013-9264-x – volume: 135 start-page: 1508 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1215 article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder publication-title: Brain doi: 10.1093/brain/aws084 – volume: 24 start-page: 427 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1330 article-title: Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model publication-title: Eur. Child Adolesc. Psychiatry doi: 10.1007/s00787-014-0593-0 – volume: 59 start-page: 895 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1815 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.069 – volume: 24 start-page: 545 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0715 article-title: Decreased regional activity of default-mode network in unaffected siblings of schizophrenia patients at rest publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2014.01.004 – volume: 2014 start-page: 706157 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1480 article-title: Neuroanatomical classification in a population-based sample of psychotic major depression and bipolar I disorder with 1year of diagnostic stability publication-title: Biomed. Res. Int. doi: 10.1155/2014/706157 – start-page: 4418 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0065 article-title: Functional network connectivity during rest and task: comparison of healthy controls and schizophrenic patients – volume: 62 start-page: 1805 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0335 article-title: Domain transfer learning for MCI conversion prediction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2404809 – volume: 35 start-page: 3083 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0755 article-title: Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22386 – volume: 128 start-page: 268 year: 2005 ident: 10.1016/j.neuroimage.2016.02.079_bb1135 article-title: Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism publication-title: Brain doi: 10.1093/brain/awh332 – volume: 78 start-page: 794 issue: 11 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1540 article-title: In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2015.02.017 – volume: 6 start-page: 59 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0360 article-title: Insights into multimodal imaging classification of ADHD publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00059 – volume: 36 start-page: S132 issue: Suppl. 1 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1235 article-title: Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.05.037 – volume: 30 start-page: 446 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0035 article-title: Partial least squares for discrimination in fMRI data publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2011.11.001 – volume: 12 start-page: 592 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0130 article-title: Integration of cognitive tests and resting state fMRI for the individual identification of mild cognitive impairment publication-title: Curr. Alzheimer Res. doi: 10.2174/156720501206150716120332 – volume: 18 start-page: 618 year: 1988 ident: 10.1016/j.neuroimage.2016.02.079_bb1180 article-title: New perspectives in autism. Part 2: The differential diagnosis and neurobiology of autism publication-title: Curr. Probl. Pediatr. doi: 10.1016/0045-9380(88)90017-5 – volume: 15 start-page: 254 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0825 article-title: Identifying sub-populations via unsupervised cluster analysis on multi-edge similarity graphs publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 9 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1845 article-title: Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning publication-title: PLoS One – volume: 36 start-page: 1140 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1260 article-title: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2012.01.004 – volume: 84 start-page: 299 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1460 article-title: Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.08.053 – volume: 56 start-page: 766 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0405 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 6 start-page: 75 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0460 article-title: Exploiting the brain's network structure in identifying ADHD subjects publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00075 – volume: 34 start-page: 2815 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0010 article-title: How early can we predict Alzheimer's disease using computational anatomy? publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.06.015 – volume: 32 start-page: 1043 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1040 article-title: Discriminative analysis of multivariate features from structural MRI and diffusion tensor images publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2014.05.008 – volume: 4 start-page: 461 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0060 article-title: ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2013.12.012 – volume: 41 start-page: 685 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0545 article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-131928 – volume: 5 start-page: 1391 year: 2004 ident: 10.1016/j.neuroimage.2016.02.079_bb0765 article-title: The entire regularization path for the support vector machine publication-title: J. Mach. Learn. Res. – volume: 61 start-page: 576 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0865 article-title: Integration of network topological and connectivity properties for neuroimaging classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2284195 – start-page: 78 year: 2004 ident: 10.1016/j.neuroimage.2016.02.079_bb1225 article-title: Feature selection, L 1 vs. L 2 regularization, and rotational invariance – volume: 168 start-page: 345 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0340 article-title: Nodal centrality of functional network in the differentiation of schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2015.08.011 – volume: 48 start-page: 978 year: 1997 ident: 10.1016/j.neuroimage.2016.02.079_bb0905 article-title: Midline cerebral morphometry distinguishes frontotemporal dementia and Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.48.4.978 – volume: 35 start-page: 1305 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1090 article-title: Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22254 – volume: 1–10 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0910 article-title: Disintegration of sensorimotor brain networks in schizophrenia publication-title: Schizophr. Bull. – volume: 40 start-page: 110 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb1850 article-title: Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.11.029 – volume: 288 start-page: 94 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1770 article-title: State-based functional connectivity changes associate with cognitive decline in amnestic mild cognitive impairment subjects publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2015.04.013 – volume: 66 start-page: 611 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1285 article-title: Discrimination of female schizophrenia patients from healthy women using multiple structural brain measures obtained with voxel-based morphometry publication-title: Psychiatry Clin. Neurosci. doi: 10.1111/j.1440-1819.2012.02397.x – volume: 8 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1110 article-title: Alterations in regional homogeneity of spontaneous brain activity in late-life subthreshold depression publication-title: PLoS One – volume: 58 start-page: 793 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1195 article-title: Patient classification as an outlier detection problem: an application of the One-Class Support Vector Machine publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.042 – volume: 10 start-page: 173 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1705 article-title: The receiver operational characteristic for binary classification with multiple indices and its application to the neuroimaging study of Alzheimer's disease publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2012.141 – volume: 3 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb0180 article-title: Mining the mind research network: a novel framework for exploring large scale, heterogeneous translational neuroscience research data sources publication-title: Front. Neuroinform. – volume: 41 start-page: 277 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb0560 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.02.043 – start-page: 471 year: 2005 ident: 10.1016/j.neuroimage.2016.02.079_bb0095 article-title: Principal component analysis for distributed data sets with updating – volume: 30 start-page: 393 year: 2004 ident: 10.1016/j.neuroimage.2016.02.079_bb1220 article-title: Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects publication-title: Schizophr. Bull. doi: 10.1093/oxfordjournals.schbul.a007087 – volume: 7 start-page: 702 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1510 article-title: Discriminative analysis of non-linear brain connectivity in schizophrenia: an fMRI study publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00702 – volume: 5 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1465 article-title: COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets publication-title: Front. Neuroinform. doi: 10.3389/fninf.2011.00033 – volume: 2015 start-page: 814104 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1585 article-title: Feature selection based on machine learning in MRIs for hippocampal segmentation publication-title: Comput. Math. Methods Med. doi: 10.1155/2015/814104 – year: 2000 ident: 10.1016/j.neuroimage.2016.02.079_bb1055 – volume: 26 start-page: 462 year: 2007 ident: 10.1016/j.neuroimage.2016.02.079_bb1640 article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.887380 – volume: 9 start-page: 132 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1265 article-title: Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's disease diagnosis publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2015.00132 – volume: 68 start-page: 23 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0355 article-title: Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM publication-title: Neural Netw. doi: 10.1016/j.neunet.2015.04.002 – year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0105 article-title: Large scale collaboration with autonomy: decentralized data ICA – volume: 60 start-page: 59 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0350 article-title: Does feature selection improve classification accuracy? impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.066 – volume: 9 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0885 article-title: Identifying autism from neural representations of social interactions: neurocognitive markers of autism publication-title: PLoS One doi: 10.1371/journal.pone.0113879 – volume: 36 start-page: S121 issue: Suppl. 1 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1375 article-title: Brain connectivity and novel network measures for Alzheimer's disease classification publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.04.037 – year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0870 article-title: Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2440298 – volume: 117 start-page: 1 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb1100 article-title: Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2008.11.021 – volume: 35 start-page: 5052 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1175 article-title: Multi-atlas based representations for Alzheimer's disease diagnosis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22531 – volume: 191 start-page: 174 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb0900 article-title: Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects publication-title: Psychiatry Res. Neuroimaging doi: 10.1016/j.pscychresns.2010.09.016 – volume: 36 start-page: 2118 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0505 article-title: Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22759 – volume: 124 start-page: 1084 year: 2016 ident: 10.1016/j.neuroimage.2016.02.079_bb0995 article-title: An open platform for compiling, curating, and disseminating neuroimaging data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.05.049 – volume: 78 start-page: 270 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0635 article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.066 – volume: 66 start-page: 1055 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb1550 article-title: Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2009.07.019 – volume: 24 start-page: 3116 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0055 article-title: Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness publication-title: Cereb. Cortex doi: 10.1093/cercor/bht165 – volume: 35 start-page: 5179 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0875 article-title: Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22542 – volume: 43 start-page: 349 year: 2004 ident: 10.1016/j.neuroimage.2016.02.079_bb0020 article-title: Outcome classification of preschool children with autism spectrum disorders using MRI brain measures publication-title: J. Am. Acad. Child Adolesc. Psychiatry doi: 10.1097/00004583-200403000-00018 – volume: 6 start-page: 229 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb0680 article-title: Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: a support vector machine learning approach publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2014.09.009 – volume: 39 start-page: 1186 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb1620 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.073 – volume: 24 start-page: 775 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1725 article-title: Independent component analysis-based classification of Alzheimer's disease MRI data publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-101371 – volume: 2013 start-page: 867924 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1635 article-title: Machine learning approaches: from theory to application in schizophrenia publication-title: Comput. Math. Methods Med. doi: 10.1155/2013/867924 – year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0295 article-title: Simulation of structural magnetic resonance images for deep learning pre-training – volume: 3 start-page: 186 year: 2007 ident: 10.1016/j.neuroimage.2016.02.079_bb0200 article-title: Forecasting the global burden of Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2007.04.381 – volume: 12 start-page: 426 year: 1998 ident: 10.1016/j.neuroimage.2016.02.079_bb0775 article-title: Neurocognitive deficit in schizophrenia: a quantitative review of the evidence publication-title: Neuropsychology doi: 10.1037/0894-4105.12.3.426 – volume: 4 start-page: 192 year: 2010 ident: 10.1016/j.neuroimage.2016.02.079_bb1720 article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2010.00192 – volume: 66 start-page: 119 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1515 article-title: Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.051 – volume: 12 start-page: 10 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1755 article-title: Functional connectivity-based signatures of schizophrenia revealed by multiclass pattern analysis of resting-state fMRI from schizophrenic patients and their healthy siblings publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-12-10 – volume: 10 start-page: 841 year: 2006 ident: 10.1016/j.neuroimage.2016.02.079_bb0220 article-title: Shaving diffusion tensor images in discriminant analysis: a study into schizophrenia publication-title: Med. Image Anal. doi: 10.1016/j.media.2006.07.006 – volume: 9 start-page: 66 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb1825 article-title: Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2015.00066 – volume: 24 start-page: 1279 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0805 article-title: Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging publication-title: Eur. Child Adolesc. Psychiatry doi: 10.1007/s00787-015-0678-4 – volume: 45 start-page: S199 year: 2009 ident: 10.1016/j.neuroimage.2016.02.079_bb1320 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 83 start-page: 999 year: 1988 ident: 10.1016/j.neuroimage.2016.02.079_bb1155 article-title: Importance sampling for estimating exact probabilities in permutational inference publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1988.10478691 – volume: 220 start-page: 841 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb1545 article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0687-3 – start-page: 8 year: 2013 ident: 10.1016/j.neuroimage.2016.02.079_bb0590 article-title: Combining classification with fMRI-Derived complex network measures for potential neurodiagnostics publication-title: PLoS One – volume: 2015 start-page: 865265 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0675 article-title: Inclusion of neuropsychological scores in atrophy models improves diagnostic classification of Alzheimer's disease and mild cognitive impairment publication-title: Comput. Intell. Neurosci. doi: 10.1155/2015/865265 – volume: 84 start-page: 320 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1365 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 25 start-page: 303 year: 2004 ident: 10.1016/j.neuroimage.2016.02.079_bb1315 article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(03)00084-8 – volume: 96 start-page: 183 year: 2014 ident: 10.1016/j.neuroimage.2016.02.079_bb1655 article-title: Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.03.067 – start-page: 1000 year: 2007 ident: 10.1016/j.neuroimage.2016.02.079_bb0215 article-title: The neuroimaging informatics tools and resources clearinghouse (NITRC) – volume: 30 start-page: 1441 year: 2011 ident: 10.1016/j.neuroimage.2016.02.079_bb1805 article-title: ODVBA: optimally-discriminative voxel-based analysis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2114362 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb1095 article-title: Changes in community structure of resting state functional connectivity in unipolar depression publication-title: PLoS One doi: 10.1371/journal.pone.0041282 – volume: 15 start-page: 298 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0630 article-title: Distinguishing bipolar and major depressive disorders by brain structural morphometry: a pilot study publication-title: BMC Psychiatry doi: 10.1186/s12888-015-0685-5 – volume: 39 start-page: 57 year: 2008 ident: 10.1016/j.neuroimage.2016.02.079_bb1140 article-title: Combining ERP and structural MRI information in first episode schizophrenia and bipolar disorder publication-title: Clin. EEG Neurosci. doi: 10.1177/155005940803900206 – volume: 7 start-page: 19 year: 2012 ident: 10.1016/j.neuroimage.2016.02.079_bb0135 article-title: Deep learning of representations for unsupervised and transfer learning publication-title: Unsupervised Transf. Learn. Challenges Mach. Learn. – volume: xiv start-page: 29876 year: 2015 ident: 10.1016/j.neuroimage.2016.02.079_bb0985 article-title: Deep neural networks: a new framework for modelling biological vision and brain information processing publication-title: Bioresources |
SSID | ssj0009148 |
Score | 2.6798825 |
SecondaryResourceType | review_article |
Snippet | Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 137 |
SubjectTerms | Alzheimer's disease Attention deficit hyperactivity disorder Biomarkers Brain Diseases - classification Brain Diseases - diagnostic imaging Brain disorders Brain research Classification Dyslexia Humans Machine Learning Medical imaging Neural networks Neuroimaging NMR Nuclear magnetic resonance Prediction Researchers Schizophrenia Studies |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZdC2MvY1u3NW03NOirmWRbkt0-jDJWyqCl0BXyJvTLLCO10zj5_3dny067jZEXg5AO5NNJ90k6fUfIibBO-tK4xEgRktx5lVgjPXxMxVnFbRHw7fDVtby8y79PxTQeuLUxrHJYE7uF2jcOz8g_4yPfEnZTUnxZPCSYNQpvV2MKjWdkr6MuA3tWU7Uh3eV5_xROZEkBDWIkTx_f1fFFzu5h1mKAl-yYOzGg69_u6W_4-WcU5SO3dPGKvIx4kp73BvCa7IT6DXl-FW_M98ntLfimeaDt2uKJC10ssQpHgzYVtZgggvrIwNlSKIwdBrlTerNswBBCS03t6WK2qsx83r4ldxfffny9TGIihcTJjK1gj1gwL8oCA8sAgAXheBBQUCq4rMiRM55zYzx4M6bAaWZValXpJYwTuKvcZe_Ibt3U4YDQ4NMA-2luqgBbs0IWmau8lQXLHauYshOiBv1pF1nGMdnFXA_hZL_0RvMaNa9ZqkHzE8JHyUXPtLGFTDkMkR5eksLap8EdbCF7NspGtNGjiC2ljweL0HHWt3pjoxPyaayGYcJLGFOHZo1tABKpVKTQ5n1vQOPvpgrggmAZKPGJaY0NkAv8aU09-9lxggvM1sHl4f-7dURepAhLGE-4OCa7q-U6fABQtbIfu5nzG2Y4JSs priority: 102 providerName: ProQuest |
Title | Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191600210X https://dx.doi.org/10.1016/j.neuroimage.2016.02.079 https://www.ncbi.nlm.nih.gov/pubmed/27012503 https://www.proquest.com/docview/1852983765 https://www.proquest.com/docview/1826672525 https://pubmed.ncbi.nlm.nih.gov/PMC5031516 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFe0PguG5OReA21k9hO4GlUm8rHqmplUt8sx3ZEUEmrfrzyt3OXOBkFHirx4sixT0rOZ99d8rs7Qt6IwkqXGxsZKXyUWqeiwkgHjSk5K3mReYwdvp7I8W36aS7mR2TUxcIgrDKc_e2Z3pzW4c4wcHO4qqrhDCwDUDfgb8jGcZljBHuqUNbf_ryDeeQ8bcPhRBLh7IDmaTFeTc7I6gfsXAR5ySZ7J4K6_q2i_jZB_0RS_qaark7Iw2BT0ov2sR-RI18_Jvevw1_zJ2Q2A_208HSzK_CrC12tcQhXhC5LWmCRCOpCFs4NhU7_wED3jk7XSxAGv6GmdnRVbUuzWGyektury6-jcRSKKURWJmwLfmLGnMgzBJeBEeaF5V5ARylvkyzFvPGcG-NAozEFijMp40LlTsJagcpKbfKMHNfL2r8g1LvYg0_NTenBPctkltjSFTJjqWUlU8WAqI5_2oZM41jwYqE7SNl3fcd5jZzXLNbA-QHhPeWqzbZxAE3eLZHuoknh_NOgEg6gfd_T7kndgdRnnUTosPM3GoPRc_D6pRiQ1_0wLBP-iDG1X-5wDphFKhYxzHneClD_urECk0GwBJi4J1r9BMwHvj9SV9-avOACK3Zw-fK_XuqUPIjRcmE84uKMHG_XO_8K7K5tcd5sLGjVXJ2Texejmy9TvH78PJ7A9cPlZHrzC4TaNjU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkICXic_RMcBI8BhhJ7GdgCaEgKlj64S0TeqbcWxHFHVJ17RC_FP8jbvLVxkg1Je9VIrsq5zz-e538X0Q8lJkVrrU2MBI4YPYOhVkRjr4MTlnOc8Sj7nDo2M5PIs_j8V4g_zqcmEwrLLTibWidqXFb-SvMck3BW9KineziwC7RuHtatdCoxGLQ__zB7hs1d7BR9jfV2G4_-n0wzBouwoEVkZsAQ5TwpxIE4yyAjTiheVewINS3kZJjAXUOTfGgWpnCixIlIeZSp2ERYPujm0E_3uD3IwjwFZwftRYrYr88rhJvRNRkHCetpFDTTxZXZ9ycg5aAgPKZF0pFAPI_m0O_4a7f0Zt_mYG9--SrRa_0veNwN0jG764T26N2hv6B-TkBGzh1NNqmeEXHjqb4xDuPi1zmmFDCuraip8VhYd-wUD3hn6ZlyB4vqKmcHQ2WeRmOq0ekrNrYfEjslmUhX9MqHehB_-dm9yDK5jIJLK5y2TCYstyprIBUR3_tG2rmmNzjanuwte-6xXnNXJes1AD5weE95SzprLHGjRpt0W6y1wFXavB_KxB-7anbdFNg1rWpN7tJEK3WqbSqzMxIC_6YdgmvPQxhS-XOAcgmApFCHO2GwHqXzdUAE8Ei4CJV0Srn4C1x6-OFJNvdQ1ygd1BuNz5_7Kek9vD09GRPjo4PnxC7oQIiRgPuNglm4v50j8FQLfIntWniJKv131sLwHAuWFF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ028IL7pGGAkeIwWO7GTgCYEbNXGWFUxJu3Nc2xHFHVpaVoh_kX-Ku4SJ2WAUF_2EimyL0rO5_uI735HyAuRG2kzbQIthQtiY5Mg19LCRRcsLFieOqwdPhnKw7P4w7k43yA_21oYTKtsdWKtqO3U4D_yXSzyzSCakmK38GkRo_3Bm9m3ADtI4Ulr205D-zYLdq-GG_NFHsfux3cI56q9o31Y-5ecDw4-vz8MfMeBwMgoXEAwlYZWZClmYIGn4oRhTsBNkjgTpTGCqzOmtQW1HyZgXaKC50lmJXwQ6PXYRPDcG2QzASvJe2Tz3cFw9GkFAczipjBPREHKWObzippssxq9cnwJOgTTzWSNI4rpZf82ln87w3_mdP5mJAe3yS3v3dK3jTjeIRuuvEu2Tvz5_T1yegqWcuJotczx_w-dzXEIZYNOC5pjuwpqPR5oReGme2Gge0VH8ymIpauoLi2djReFnkyq--TsWpj8gPTKaekeEeosdxDdM104CBRTmUamsLlMw9iERZjkfZK0_FPGY55j642JapPbvqoV5xVyXoVcAef7hHWUswb3Yw2arF0i1da1giZWYJzWoH3d0Xrfp_Fp1qTeaSVCeR1UqdWO6ZPn3TAsEx4J6dJNlzgHHLSECw5zHjYC1H0uT8B5EWEETLwiWt0ERCa_OlKOv9QI5QJ7hzC5_f_Xeka2YAurj0fD48fkJkd_KWQBEzukt5gv3RPw9hb5U7-NKLm47p37C2HfbAc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+subject+prediction+of+brain+disorders+in+neuroimaging%3A+Promises+and+pitfalls&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Arbabshirani%2C+Mohammad+R.&rft.au=Plis%2C+Sergey&rft.au=Sui%2C+Jing&rft.au=Calhoun%2C+Vince+D.&rft.date=2017-01-15&rft.issn=1053-8119&rft.volume=145&rft.spage=137&rft.epage=165&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.02.079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2016_02_079 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |