Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls

Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 145; no. Pt B; pp. 137 - 165
Main Authors Arbabshirani, Mohammad R., Plis, Sergey, Sui, Jing, Calhoun, Vince D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.01.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2016.02.079

Cover

Abstract Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead. •Past efforts on classification of brain disorders are comprehensively reviewed.•The common pitfalls from machine learning point of view are discussed.•Emerging trends related to single-subject prediction are reviewed and discussed.
AbstractList Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there are extensive evidences showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead.
Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead. •Past efforts on classification of brain disorders are comprehensively reviewed.•The common pitfalls from machine learning point of view are discussed.•Emerging trends related to single-subject prediction are reviewed and discussed.
Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead.
Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead.Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead.
Author Sui, Jing
Arbabshirani, Mohammad R.
Plis, Sergey
Calhoun, Vince D.
AuthorAffiliation c Department of ECE, University of New Mexico, Albuquerque, NM, USA
a The Mind Research Network, Albuquerque, NM, USA, 87106
b Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China, 100190
AuthorAffiliation_xml – name: a The Mind Research Network, Albuquerque, NM, USA, 87106
– name: c Department of ECE, University of New Mexico, Albuquerque, NM, USA
– name: b Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China, 100190
Author_xml – sequence: 1
  givenname: Mohammad R.
  surname: Arbabshirani
  fullname: Arbabshirani, Mohammad R.
  organization: The Mind Research Network, Albuquerque, NM 87106, USA
– sequence: 2
  givenname: Sergey
  surname: Plis
  fullname: Plis, Sergey
  organization: The Mind Research Network, Albuquerque, NM 87106, USA
– sequence: 3
  givenname: Jing
  surname: Sui
  fullname: Sui, Jing
  organization: The Mind Research Network, Albuquerque, NM 87106, USA
– sequence: 4
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: The Mind Research Network, Albuquerque, NM 87106, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27012503$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv3CAUhVGVqnm0f6FC6qYbu4ANmC6qtlFfUqRESrtGDFxPcT0wBTtS_n2xJp08VrOCC-d-3MM5RUchBkAIU1JTQsW7oQ4wp-g3Zg01Kyc1YTWR6hk6oUTxSnHJjpY9b6qOUnWMTnMeCCGKtt0LdMwkoYyT5gRdX_uwHgHneTWAnfA2gfN28jHg2ONVMj5g53NMDlLGpdg_XPre46sUNz5DxiY4vPVTb8Yxv0TPy5rh1d16hn59_fLz_Ht1cfntx_mni8qKhkxVSzriuOp4D6qlArilwEshJdima5tWCUqNcaQRRAK4pmcrqZzowLRMtbY5Qx923O282oCzEKZkRr1NZbx0q6Px-vFN8L_1Ot7o4pxyKgrg7R0gxb8z5EkXMxbG0QSIc9a0Y0JIxhkv0jdPpEOcUyj2iooz1TVSLKrXDyfaj_L_v4ug2wlsijkn6PcSSvQSrR70fbR6iVYTpku09273rdZPZkmqePPjIYDPOwCUTG48JJ2th2BL4KlEr130h0A-PoHY0QdvzfgHbg9D_APkft3B
CitedBy_id crossref_primary_10_1002_hbm_24580
crossref_primary_10_1016_j_schres_2022_01_058
crossref_primary_10_1038_s41746_021_00521_5
crossref_primary_10_1176_appi_ajp_2017_16070813
crossref_primary_10_1002_alz_12967
crossref_primary_10_1016_j_nicl_2021_102663
crossref_primary_10_1186_s40708_023_00188_6
crossref_primary_10_1016_j_nicl_2019_101725
crossref_primary_10_1007_s00500_020_04943_3
crossref_primary_10_1016_j_nicl_2019_101837
crossref_primary_10_1016_j_cpr_2022_102193
crossref_primary_10_1080_21507740_2020_1740352
crossref_primary_10_1007_s12264_017_0150_1
crossref_primary_10_1016_j_biopsych_2018_12_003
crossref_primary_10_1371_journal_pone_0249502
crossref_primary_10_1007_s10803_018_3509_x
crossref_primary_10_1298_ptr_E10181
crossref_primary_10_1016_j_jestch_2024_101855
crossref_primary_10_1111_ene_13887
crossref_primary_10_1016_j_neurobiolaging_2021_07_007
crossref_primary_10_1016_j_biopsych_2020_02_016
crossref_primary_10_1371_journal_pone_0212582
crossref_primary_10_1038_s41467_020_20655_6
crossref_primary_10_1016_j_biopsych_2020_02_015
crossref_primary_10_1109_ACCESS_2020_3041895
crossref_primary_10_1111_pcn_12502
crossref_primary_10_1016_j_biosystems_2023_105110
crossref_primary_10_1371_journal_pone_0305630
crossref_primary_10_1007_s00330_019_5997_2
crossref_primary_10_3389_fnins_2020_00327
crossref_primary_10_1016_j_bspc_2022_104047
crossref_primary_10_1016_j_neuroimage_2021_118844
crossref_primary_10_1002_jmri_29364
crossref_primary_10_1007_s11517_023_02942_8
crossref_primary_10_3390_microorganisms10081658
crossref_primary_10_1016_j_dib_2020_105213
crossref_primary_10_1145_3492865
crossref_primary_10_1515_revneuro_2023_0050
crossref_primary_10_1016_j_neunet_2025_107335
crossref_primary_10_1016_j_neuroimage_2018_05_051
crossref_primary_10_1038_s44220_023_00151_8
crossref_primary_10_1097_WCO_0000000000000967
crossref_primary_10_2139_ssrn_4192591
crossref_primary_10_3389_fpsyt_2024_1463654
crossref_primary_10_1016_j_neuroimage_2023_120497
crossref_primary_10_1002_hbm_25574
crossref_primary_10_1016_j_nicl_2019_101741
crossref_primary_10_1016_j_bspc_2023_104892
crossref_primary_10_1002_jnr_24951
crossref_primary_10_1523_JNEUROSCI_1312_22_2022
crossref_primary_10_1093_nc_nix010
crossref_primary_10_1111_jopy_12788
crossref_primary_10_3389_fnins_2019_00448
crossref_primary_10_3390_ijms24031911
crossref_primary_10_1016_j_nicl_2019_101747
crossref_primary_10_3389_fpsyt_2024_1448145
crossref_primary_10_1038_s41598_022_20274_9
crossref_primary_10_1109_TBME_2020_2964724
crossref_primary_10_1016_j_asoc_2021_107375
crossref_primary_10_1002_hbm_25205
crossref_primary_10_1016_j_neuroimage_2017_02_031
crossref_primary_10_1038_s41598_023_41359_z
crossref_primary_10_1038_srep45347
crossref_primary_10_1016_j_media_2022_102430
crossref_primary_10_3389_fnhum_2021_643410
crossref_primary_10_1038_s41467_023_44271_2
crossref_primary_10_1016_j_neuroimage_2017_03_057
crossref_primary_10_1007_s12021_020_09468_6
crossref_primary_10_1016_j_bpsc_2021_12_010
crossref_primary_10_1016_j_jneumeth_2020_108756
crossref_primary_10_3233_JAD_201591
crossref_primary_10_1016_j_nicl_2021_102898
crossref_primary_10_1016_j_pnpbp_2018_06_010
crossref_primary_10_1017_S003329171700201X
crossref_primary_10_1016_j_neures_2020_01_012
crossref_primary_10_3233_JAD_170964
crossref_primary_10_1016_j_artmed_2020_101926
crossref_primary_10_1038_s41591_020_0793_8
crossref_primary_10_3389_fnins_2018_00900
crossref_primary_10_32604_iasc_2021_015049
crossref_primary_10_1093_schbul_sby189
crossref_primary_10_1002_hbm_25436
crossref_primary_10_1016_j_teler_2024_100171
crossref_primary_10_1016_j_schres_2021_06_011
crossref_primary_10_1002_hbm_26529
crossref_primary_10_1016_j_neubiorev_2022_104972
crossref_primary_10_3389_fnins_2023_1120781
crossref_primary_10_1038_s41398_020_01013_y
crossref_primary_10_1117_1_NPh_11_4_045015
crossref_primary_10_3233_JAD_170893
crossref_primary_10_1177_20406223211051002
crossref_primary_10_1515_revneuro_2023_0117
crossref_primary_10_1007_s00429_020_02136_0
crossref_primary_10_1038_s41598_018_19177_5
crossref_primary_10_1016_j_jad_2024_11_061
crossref_primary_10_1016_j_cmpb_2024_108446
crossref_primary_10_1109_TBME_2017_2759511
crossref_primary_10_1016_j_euroneuro_2021_04_002
crossref_primary_10_1371_journal_pone_0224365
crossref_primary_10_3389_fneur_2021_642241
crossref_primary_10_1016_j_biopsych_2022_07_025
crossref_primary_10_1002_hbm_25627
crossref_primary_10_1016_j_biopsych_2022_05_014
crossref_primary_10_1016_j_ajcnut_2024_09_003
crossref_primary_10_1515_revneuro_2022_0122
crossref_primary_10_1038_s41598_020_78095_7
crossref_primary_10_1016_j_schres_2019_07_015
crossref_primary_10_1038_s41380_019_0446_9
crossref_primary_10_1016_j_neuroimage_2017_11_010
crossref_primary_10_3390_brainsci12070883
crossref_primary_10_1111_exsy_13623
crossref_primary_10_1016_j_nicl_2019_101775
crossref_primary_10_3389_fvets_2022_802272
crossref_primary_10_3389_fninf_2019_00053
crossref_primary_10_1080_03007995_2022_2043654
crossref_primary_10_1093_gigascience_giy130
crossref_primary_10_1016_j_nicl_2020_102181
crossref_primary_10_3389_fneur_2019_00789
crossref_primary_10_1109_TMI_2019_2929959
crossref_primary_10_2196_24560
crossref_primary_10_1016_j_compbiomed_2018_09_004
crossref_primary_10_1176_appi_focus_20190042
crossref_primary_10_1002_hbm_24886
crossref_primary_10_1002_hbm_24527
crossref_primary_10_3389_fneur_2022_812439
crossref_primary_10_1002_hbm_24682
crossref_primary_10_3390_brainsci14090880
crossref_primary_10_1016_j_media_2023_102913
crossref_primary_10_1016_j_neuron_2018_06_009
crossref_primary_10_1109_JBHI_2018_2857217
crossref_primary_10_1016_j_pnpbp_2024_111061
crossref_primary_10_1016_j_spen_2020_100803
crossref_primary_10_1016_j_tics_2019_03_009
crossref_primary_10_1080_13658816_2021_1931237
crossref_primary_10_1002_hbm_24797
crossref_primary_10_3389_fnins_2017_00543
crossref_primary_10_1007_s11042_020_10128_9
crossref_primary_10_1002_hbm_24554
crossref_primary_10_1093_scan_nsae023
crossref_primary_10_1111_adb_12705
crossref_primary_10_1038_s41398_023_02536_w
crossref_primary_10_1109_TCSS_2023_3270569
crossref_primary_10_3389_fpsyt_2022_938694
crossref_primary_10_1007_s00429_020_02113_7
crossref_primary_10_1007_s10278_023_00889_8
crossref_primary_10_1016_j_nicl_2021_102584
crossref_primary_10_1109_TMI_2022_3203899
crossref_primary_10_1016_j_biopsych_2019_06_021
crossref_primary_10_1016_j_bpsc_2017_11_007
crossref_primary_10_1038_s41598_020_60527_z
crossref_primary_10_1016_j_arr_2024_102183
crossref_primary_10_3390_math9233101
crossref_primary_10_1016_j_cmpb_2020_105765
crossref_primary_10_1016_j_conb_2018_12_010
crossref_primary_10_1016_j_heliyon_2024_e32548
crossref_primary_10_3390_s22145407
crossref_primary_10_1016_j_neuropsychologia_2024_108967
crossref_primary_10_1109_TPAMI_2021_3125686
crossref_primary_10_1093_brain_awab425
crossref_primary_10_1016_j_eng_2019_06_008
crossref_primary_10_1002_hbm_23763
crossref_primary_10_1093_cercor_bhac217
crossref_primary_10_3389_fnhum_2018_00152
crossref_primary_10_1002_hbm_24979
crossref_primary_10_1007_s00062_024_01422_2
crossref_primary_10_3389_fnagi_2023_1158579
crossref_primary_10_1016_j_jad_2021_04_081
crossref_primary_10_3389_fninf_2021_676491
crossref_primary_10_1016_j_jad_2017_06_055
crossref_primary_10_1038_s41398_023_02309_5
crossref_primary_10_1007_s11357_023_00831_4
crossref_primary_10_1186_s13229_021_00439_5
crossref_primary_10_1007_s00234_025_03544_x
crossref_primary_10_1016_j_neuroimage_2021_118329
crossref_primary_10_1109_TMI_2023_3305378
crossref_primary_10_1186_s11689_021_09405_x
crossref_primary_10_1093_ehjci_jey003
crossref_primary_10_1038_s41746_024_01123_7
crossref_primary_10_1016_j_neuroimage_2024_120695
crossref_primary_10_1093_cercor_bhz134
crossref_primary_10_1093_pcmedi_pbaa029
crossref_primary_10_1002_jmri_26723
crossref_primary_10_1111_epi_17989
crossref_primary_10_1038_s41598_022_06651_4
crossref_primary_10_2147_NDT_S337814
crossref_primary_10_1146_annurev_statistics_040522_100329
crossref_primary_10_1016_j_jad_2022_10_042
crossref_primary_10_1109_TPAMI_2020_3028391
crossref_primary_10_1007_s11042_024_19165_0
crossref_primary_10_1016_j_compbiomed_2018_05_006
crossref_primary_10_3389_fnins_2023_1242543
crossref_primary_10_3389_fnins_2021_710133
crossref_primary_10_1007_s11042_022_13809_9
crossref_primary_10_1038_s42256_019_0069_5
crossref_primary_10_3233_JAD_230030
crossref_primary_10_1016_j_biopsych_2022_05_031
crossref_primary_10_1093_braincomms_fcab298
crossref_primary_10_1515_bmt_2016_0239
crossref_primary_10_1038_s41598_025_90460_y
crossref_primary_10_1016_j_ajp_2025_104451
crossref_primary_10_1038_s41467_019_13785_z
crossref_primary_10_3389_fnins_2017_00749
crossref_primary_10_3389_fninf_2017_00059
crossref_primary_10_3389_fnins_2022_957181
crossref_primary_10_1016_j_neuroimage_2019_05_082
crossref_primary_10_1038_s41398_024_02954_4
crossref_primary_10_3389_fnsys_2018_00068
crossref_primary_10_3389_fninf_2020_00010
crossref_primary_10_1016_j_csda_2022_107525
crossref_primary_10_1016_j_media_2024_103436
crossref_primary_10_1111_acps_12824
crossref_primary_10_1016_j_bpsc_2019_11_007
crossref_primary_10_1016_j_neuroimage_2019_02_062
crossref_primary_10_1093_cercor_bhab397
crossref_primary_10_1016_j_jneumeth_2017_12_016
crossref_primary_10_1002_hbm_24867
crossref_primary_10_1002_hbm_24505
crossref_primary_10_1016_j_dcn_2021_100966
crossref_primary_10_3389_fmicb_2022_914124
crossref_primary_10_1007_s40820_019_0239_3
crossref_primary_10_1111_nmo_14994
crossref_primary_10_1109_TMI_2022_3219260
crossref_primary_10_1177_0962280218823036
crossref_primary_10_1371_journal_pone_0211558
crossref_primary_10_3390_ijms21030969
crossref_primary_10_1038_s41398_022_02134_2
crossref_primary_10_1016_j_nicl_2018_01_032
crossref_primary_10_1007_s00702_016_1673_8
crossref_primary_10_3389_fnhum_2019_00164
crossref_primary_10_1016_j_neuroimage_2019_116276
crossref_primary_10_1038_s41598_017_02307_w
crossref_primary_10_1038_s41598_022_22597_z
crossref_primary_10_1038_s41539_020_00081_5
crossref_primary_10_1007_s11682_019_00186_5
crossref_primary_10_1016_j_biopsych_2018_07_020
crossref_primary_10_1111_ejn_15842
crossref_primary_10_1016_j_schres_2017_05_027
crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_1016_j_jphotobiol_2021_112207
crossref_primary_10_1038_s41380_022_01840_z
crossref_primary_10_1186_s12888_021_03503_9
crossref_primary_10_1089_brain_2022_0001
crossref_primary_10_1098_rstb_2019_0661
crossref_primary_10_1016_j_neubiorev_2022_104552
crossref_primary_10_1038_s41598_024_64487_6
crossref_primary_10_1177_1352458520943788
crossref_primary_10_3390_app13106099
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1002_brb3_2746
crossref_primary_10_3389_fnhum_2021_746499
crossref_primary_10_1016_j_neuroimage_2020_117127
crossref_primary_10_3233_JAD_181006
crossref_primary_10_31590_ejosat_999914
crossref_primary_10_3233_JAD_181004
crossref_primary_10_1016_j_bpsc_2018_04_004
crossref_primary_10_1038_s41467_020_18037_z
crossref_primary_10_1016_j_pneurobio_2019_01_008
crossref_primary_10_1093_braincomms_fcae007
crossref_primary_10_1002_hbm_24716
crossref_primary_10_1109_TNNLS_2020_3007943
crossref_primary_10_3389_fnhum_2023_1276994
crossref_primary_10_1016_j_neuroimage_2019_03_055
crossref_primary_10_3389_fnagi_2022_979183
crossref_primary_10_1007_s00415_018_8990_9
crossref_primary_10_1038_s41562_019_0811_3
crossref_primary_10_2174_1570159X22999240531160344
crossref_primary_10_1093_brain_awab439
crossref_primary_10_1016_j_neuroimage_2016_12_012
crossref_primary_10_1002_hbm_24947
crossref_primary_10_1007_s11831_021_09674_8
crossref_primary_10_3389_fpsyt_2018_00333
crossref_primary_10_1016_j_pnpbp_2018_09_014
crossref_primary_10_1002_mpr_1818
crossref_primary_10_1080_21681163_2017_1356750
crossref_primary_10_3389_fnins_2022_1053783
crossref_primary_10_3390_sym12121995
crossref_primary_10_3389_fnins_2022_1097244
crossref_primary_10_3389_fpsyt_2022_828773
crossref_primary_10_1007_s00213_021_05885_w
crossref_primary_10_2214_AJR_19_21082
crossref_primary_10_1038_s41380_019_0365_9
crossref_primary_10_1016_j_neuroimage_2018_08_042
crossref_primary_10_1016_j_celrep_2023_113597
crossref_primary_10_1007_s12144_022_03977_0
crossref_primary_10_31988_SciTrends_8436
crossref_primary_10_1007_s11042_018_6287_8
crossref_primary_10_3389_fneur_2021_669076
crossref_primary_10_1126_sciadv_aay2739
crossref_primary_10_1523_ENEURO_0512_19_2019
crossref_primary_10_1162_netn_a_00038
crossref_primary_10_1016_j_neuroimage_2022_119636
crossref_primary_10_1038_s41398_019_0663_7
crossref_primary_10_1063_5_0155567
crossref_primary_10_1162_netn_a_00275
crossref_primary_10_3389_fpsyt_2021_655292
crossref_primary_10_1088_1741_2552_aa9ee9
crossref_primary_10_1089_brain_2018_0657
crossref_primary_10_1155_2022_3372217
crossref_primary_10_3389_fnins_2022_902528
crossref_primary_10_3233_JAD_215164
crossref_primary_10_1016_j_neuroimage_2021_118048
crossref_primary_10_1016_j_neuroimage_2021_118044
crossref_primary_10_1016_j_eswa_2023_122253
crossref_primary_10_1038_s42003_024_06461_6
crossref_primary_10_1093_brain_awaa160
crossref_primary_10_1080_08839514_2021_2004655
crossref_primary_10_3389_fpsyt_2016_00177
crossref_primary_10_1016_j_neuroimage_2018_08_029
crossref_primary_10_1142_S021821302030001X
crossref_primary_10_1017_S0033291717003920
crossref_primary_10_1007_s00115_017_0456_2
crossref_primary_10_1088_1741_2552_acad2b
crossref_primary_10_1002_wcs_1460
crossref_primary_10_1186_s13195_021_00900_w
crossref_primary_10_1038_tp_2017_164
crossref_primary_10_1162_netn_a_00383
crossref_primary_10_3389_fnins_2023_1140801
crossref_primary_10_1007_s12021_021_09525_8
crossref_primary_10_1177_1550059418782093
crossref_primary_10_3389_fneur_2017_00633
crossref_primary_10_1093_cercor_bhx229
crossref_primary_10_1007_s13369_024_09362_2
crossref_primary_10_1159_000527224
crossref_primary_10_1038_s41597_021_01004_8
crossref_primary_10_1002_hbm_26098
crossref_primary_10_1146_annurev_clinpsy_032816_045037
crossref_primary_10_1371_journal_pone_0230409
crossref_primary_10_1016_j_mri_2019_05_031
crossref_primary_10_3390_diagnostics13172773
crossref_primary_10_3390_diagnostics13172774
crossref_primary_10_1016_j_neubiorev_2020_04_026
crossref_primary_10_1016_j_clinph_2020_07_016
crossref_primary_10_1007_s12021_024_09669_3
crossref_primary_10_3389_fpsyg_2020_00220
crossref_primary_10_1038_s41593_022_01059_9
crossref_primary_10_1007_s44202_022_00027_5
crossref_primary_10_1017_S0033291718004002
crossref_primary_10_3389_fnins_2016_00466
crossref_primary_10_4018_IJSSCI_318677
crossref_primary_10_1038_s41398_020_00962_8
crossref_primary_10_1109_MPULS_2020_2993657
crossref_primary_10_1093_schbul_sbab112
crossref_primary_10_1038_s41380_020_0679_7
crossref_primary_10_1038_s41467_021_26703_z
crossref_primary_10_6339_24_JDS1128
crossref_primary_10_1007_s12021_017_9324_2
crossref_primary_10_1016_j_nicl_2023_103320
crossref_primary_10_3389_fnhum_2019_00203
crossref_primary_10_1016_j_nicl_2018_02_007
crossref_primary_10_1038_s41598_024_84616_5
crossref_primary_10_1093_cercor_bhac137
crossref_primary_10_1002_jcv2_12184
crossref_primary_10_3389_fnins_2019_01282
crossref_primary_10_1016_j_jneumeth_2018_08_017
crossref_primary_10_1016_j_bpsc_2018_06_003
crossref_primary_10_3389_fnins_2019_01165
crossref_primary_10_1016_j_bbrc_2023_08_034
crossref_primary_10_1109_TMI_2021_3077079
crossref_primary_10_3390_diagnostics14232698
crossref_primary_10_1016_j_nicl_2018_03_037
crossref_primary_10_3390_biomedicines11041108
crossref_primary_10_1002_hbm_25181
crossref_primary_10_1002_hbm_26391
crossref_primary_10_1038_s41598_019_49970_9
crossref_primary_10_1192_bjp_2019_88
crossref_primary_10_3233_JAD_215244
crossref_primary_10_1016_j_jad_2019_05_067
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_1016_j_neuroimage_2017_06_061
crossref_primary_10_1016_j_media_2018_06_001
crossref_primary_10_1038_s41746_022_00592_y
crossref_primary_10_3389_fnhum_2017_00157
crossref_primary_10_1016_j_neuroimage_2018_06_001
crossref_primary_10_1109_TMI_2018_2829802
crossref_primary_10_1016_j_jneumeth_2022_109539
crossref_primary_10_1016_j_neuropsychologia_2022_108418
crossref_primary_10_1016_j_neuroimage_2019_116456
crossref_primary_10_1016_j_neuropsychologia_2017_11_025
crossref_primary_10_1007_s13042_023_01980_w
crossref_primary_10_1111_ene_15119
crossref_primary_10_1136_jnnp_2021_327211
crossref_primary_10_3389_fdata_2023_1241899
crossref_primary_10_31887_DCNS_2018_20_2_vcalhoun
crossref_primary_10_1093_scan_nsaa115
crossref_primary_10_1002_hbm_25095
crossref_primary_10_1016_j_schres_2017_10_023
crossref_primary_10_3389_fnhum_2017_00362
crossref_primary_10_1002_brb3_1808
crossref_primary_10_1109_ACCESS_2019_2941912
crossref_primary_10_3389_fninf_2022_949926
crossref_primary_10_1371_journal_pone_0262367
crossref_primary_10_1038_s41598_023_33077_3
crossref_primary_10_1142_S0129065720500471
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_1155_2021_1302989
crossref_primary_10_1038_s41598_023_49461_y
crossref_primary_10_1186_s13195_022_00983_z
crossref_primary_10_1016_j_nicl_2019_102084
crossref_primary_10_1002_admt_202401585
crossref_primary_10_1016_j_media_2020_101850
crossref_primary_10_1016_j_patter_2025_101185
crossref_primary_10_1088_1741_2552_ac9aaf
crossref_primary_10_1016_j_neuroimage_2019_116348
crossref_primary_10_3389_fpsyt_2018_00242
crossref_primary_10_54751_revistafoco_v18n3_003
crossref_primary_10_1002_hbm_26290
crossref_primary_10_1016_j_dadm_2019_06_002
crossref_primary_10_1002_sim_7915
crossref_primary_10_1016_j_nicl_2023_103349
crossref_primary_10_1016_j_neubiorev_2017_11_002
crossref_primary_10_1016_j_bpsc_2020_05_013
crossref_primary_10_1109_TBME_2023_3294223
crossref_primary_10_1523_ENEURO_0286_23_2024
crossref_primary_10_1016_j_neuroimage_2021_118469
crossref_primary_10_1007_s11682_023_00765_7
crossref_primary_10_1016_j_ebiom_2023_104540
crossref_primary_10_1093_braincomms_fcaa057
crossref_primary_10_1093_cercor_bhad499
crossref_primary_10_1007_s44196_023_00225_6
crossref_primary_10_1007_s10462_025_11146_5
crossref_primary_10_1002_hbm_25276
crossref_primary_10_1016_j_neuroimage_2023_119885
crossref_primary_10_1016_j_bpsc_2022_07_012
crossref_primary_10_1259_bjr_20170505
crossref_primary_10_1016_j_media_2020_101848
crossref_primary_10_3389_fnagi_2022_818871
crossref_primary_10_1038_s41398_019_0607_2
crossref_primary_10_1016_j_jpsychires_2022_09_051
crossref_primary_10_1007_s11682_019_00191_8
crossref_primary_10_1186_s12868_023_00819_y
crossref_primary_10_1016_j_cortex_2018_06_013
crossref_primary_10_1016_j_nicl_2022_103082
crossref_primary_10_1007_s11604_018_0794_4
crossref_primary_10_1109_JBHI_2021_3139701
crossref_primary_10_1007_s11682_020_00410_7
crossref_primary_10_2174_1567205018666210218150223
crossref_primary_10_1016_j_nicl_2021_102712
crossref_primary_10_1111_cns_13048
crossref_primary_10_1016_j_nicl_2020_102530
crossref_primary_10_1007_s11682_020_00358_8
crossref_primary_10_1016_j_jneumeth_2021_109271
crossref_primary_10_1038_s41380_024_02682_7
crossref_primary_10_1162_imag_a_00251
crossref_primary_10_3389_fnins_2022_863016
crossref_primary_10_1016_j_jneumeth_2024_110322
crossref_primary_10_1002_sim_9553
crossref_primary_10_1016_j_pscychresns_2018_12_013
crossref_primary_10_3389_fneur_2019_01037
crossref_primary_10_1016_j_ebiom_2018_03_017
crossref_primary_10_1016_j_nicl_2018_11_017
crossref_primary_10_1109_TPAMI_2018_2889096
crossref_primary_10_3390_biomedicines9040403
crossref_primary_10_1016_j_isci_2024_110159
crossref_primary_10_1093_ijnp_pyx059
crossref_primary_10_1038_s41598_022_09821_6
crossref_primary_10_1017_S0033291722000757
crossref_primary_10_1016_j_compmedimag_2022_102057
crossref_primary_10_1016_j_jad_2021_10_122
crossref_primary_10_1016_j_media_2020_101947
crossref_primary_10_1038_s41380_018_0228_9
crossref_primary_10_1111_acps_13233
crossref_primary_10_1088_1741_2552_ad8839
crossref_primary_10_3389_fpsyt_2019_00371
crossref_primary_10_15212_RADSCI_2023_0008
crossref_primary_10_2174_0117450179315688240607052117
crossref_primary_10_3390_ai6020023
crossref_primary_10_1016_j_neubiorev_2019_07_010
crossref_primary_10_1016_j_biopsych_2017_09_032
crossref_primary_10_1109_MSP_2022_3155951
crossref_primary_10_1038_s41380_020_00931_z
crossref_primary_10_1038_s41386_021_01020_7
crossref_primary_10_1016_j_neuroimage_2018_11_057
crossref_primary_10_1109_TMI_2021_3051604
crossref_primary_10_1038_s41746_017_0015_z
crossref_primary_10_1111_cns_14037
crossref_primary_10_1080_21681163_2023_2227736
crossref_primary_10_3389_fnhum_2020_00237
crossref_primary_10_5498_wjp_v14_i6_804
crossref_primary_10_1259_bjr_20190365
crossref_primary_10_3390_app11083636
crossref_primary_10_1007_s00429_019_01969_8
crossref_primary_10_1038_s41398_022_02162_y
crossref_primary_10_1016_j_neulet_2020_135519
crossref_primary_10_1089_cmb_2020_0252
crossref_primary_10_1080_13825585_2022_2138255
crossref_primary_10_1089_brain_2023_0040
crossref_primary_10_1016_j_jad_2022_05_120
crossref_primary_10_1016_j_media_2019_03_012
crossref_primary_10_1016_j_neuroimage_2018_06_024
crossref_primary_10_3389_fnins_2023_1205931
crossref_primary_10_1002_wps_21159
crossref_primary_10_1016_j_neuroimage_2023_120412
crossref_primary_10_1109_ACCESS_2019_2940198
crossref_primary_10_7769_gesec_v16i1_4406
crossref_primary_10_1162_imag_a_00233
crossref_primary_10_3390_healthcare9080961
crossref_primary_10_1016_j_plrev_2019_05_002
crossref_primary_10_1016_j_jneumeth_2020_108701
crossref_primary_10_1038_s41598_020_65384_4
crossref_primary_10_3390_mti8090076
crossref_primary_10_1007_s43441_021_00355_z
crossref_primary_10_3389_fnins_2021_665578
crossref_primary_10_3389_fmed_2022_805230
crossref_primary_10_1093_schbul_sbac047
crossref_primary_10_1109_ACCESS_2023_3321220
crossref_primary_10_1002_ima_22213
crossref_primary_10_1016_j_schres_2023_01_014
crossref_primary_10_1016_j_neuroimage_2024_120827
crossref_primary_10_1016_j_neuroimage_2017_04_061
crossref_primary_10_1159_000525262
crossref_primary_10_1016_j_neurobiolaging_2017_08_009
crossref_primary_10_1007_s12596_018_0508_4
crossref_primary_10_1016_j_jneumeth_2018_01_003
crossref_primary_10_1109_JPROC_2019_2913145
crossref_primary_10_1055_a_1300_2162
crossref_primary_10_3389_fnins_2019_01203
crossref_primary_10_1016_j_jneumeth_2019_03_011
crossref_primary_10_3390_brainsci14121266
crossref_primary_10_1080_0361073X_2024_2313940
crossref_primary_10_1016_j_sleep_2024_11_012
crossref_primary_10_57197_JDR_2024_0042
crossref_primary_10_1016_j_tins_2019_02_001
crossref_primary_10_1145_3564752
crossref_primary_10_1016_j_biopsych_2022_09_024
crossref_primary_10_1162_imag_a_00331
crossref_primary_10_1016_j_artmed_2019_06_003
crossref_primary_10_1016_j_nic_2019_09_007
crossref_primary_10_1093_schbul_sby091
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1016_j_tics_2018_03_005
crossref_primary_10_1038_s41398_020_00965_5
crossref_primary_10_1111_pcn_13625
crossref_primary_10_1002_hbm_24282
crossref_primary_10_3390_jpm11100957
crossref_primary_10_1002_jmri_29470
crossref_primary_10_1016_j_dadm_2018_07_004
crossref_primary_10_1111_ejn_14083
crossref_primary_10_1016_j_jpsychires_2024_03_019
crossref_primary_10_1093_schbul_sbz067
crossref_primary_10_1371_journal_pone_0207967
crossref_primary_10_1016_j_neuroimage_2023_119990
crossref_primary_10_1016_j_neuroimage_2022_119210
crossref_primary_10_1016_j_neurobiolaging_2021_12_015
crossref_primary_10_1016_j_schres_2019_05_044
crossref_primary_10_1371_journal_pbio_3001627
crossref_primary_10_1016_j_jad_2020_11_072
crossref_primary_10_1111_epi_18343
crossref_primary_10_1016_j_neunet_2023_04_018
crossref_primary_10_1111_pcn_13736
crossref_primary_10_1007_s13721_024_00482_1
crossref_primary_10_2139_ssrn_3915423
crossref_primary_10_3389_fpsyt_2017_00099
crossref_primary_10_1080_23273798_2023_2177315
crossref_primary_10_1192_j_eurpsy_2021_2248
crossref_primary_10_3389_fnins_2021_724391
crossref_primary_10_4103_1673_5374_233433
crossref_primary_10_1038_s41598_018_32454_7
crossref_primary_10_1016_j_neuroimage_2017_10_047
crossref_primary_10_1016_j_nic_2017_06_012
crossref_primary_10_1016_j_scib_2024_03_006
crossref_primary_10_1109_ACCESS_2020_3016734
Cites_doi 10.3389/fnsys.2012.00068
10.3389/fnhum.2013.00520
10.1016/j.neuroimage.2011.06.044
10.1016/j.biopsych.2011.07.014
10.1016/j.media.2014.04.006
10.1161/STROKEAHA.108.530832
10.1016/j.jneumeth.2015.08.020
10.3389/fnins.2013.00133
10.3389/fnhum.2013.00670
10.1111/j.1467-9868.2005.00503.x
10.1038/srep10499
10.3389/fnhum.2012.00145
10.1016/j.neuroimage.2012.09.058
10.3389/fnagi.2014.00260
10.1371/journal.pone.0021896
10.3233/JAD-141605
10.1016/j.cortex.2015.02.008
10.1016/j.neubiorev.2015.08.001
10.1007/s00234-008-0463-x
10.1016/j.neuroimage.2015.05.018
10.3389/fnins.2015.00307
10.3389/fnins.2014.00229
10.1016/j.neuroimage.2011.10.018
10.1016/j.neuroimage.2010.10.081
10.1016/j.neuroimage.2011.01.050
10.1186/1471-244X-11-18
10.1371/journal.pmed.0020151
10.1371/journal.pone.0129250
10.1016/j.nicl.2015.04.002
10.3389/fnhum.2013.00235
10.1016/j.ejrad.2013.04.009
10.1016/j.neuroimage.2009.05.036
10.1016/S0197-4580(00)00238-4
10.3389/fnsys.2012.00069
10.1016/j.schres.2014.10.033
10.1186/1475-925X-11-50
10.1016/j.neuroimage.2011.08.070
10.4306/pi.2015.12.1.92
10.1016/j.cmpb.2015.08.004
10.1371/journal.pone.0079476
10.1016/j.neuroimage.2013.04.063
10.1001/jamapsychiatry.2013.104
10.1093/brain/awq075
10.1016/j.neuroimage.2007.10.012
10.1016/j.neuroimage.2014.04.009
10.1109/42.712137
10.1212/WNL.49.3.786
10.1148/radiol.11101975
10.1016/j.pscychresns.2015.07.001
10.2105/AJPH.84.8.1261
10.1371/journal.pone.0044877
10.1007/s11682-008-9028-1
10.1016/j.neuroimage.2011.05.023
10.1037/0021-843X.95.4.378
10.1002/hbm.20995
10.1016/j.cortex.2014.08.011
10.1016/j.neuroimage.2011.01.008
10.1093/brain/awr263
10.1016/j.jpsychires.2012.11.017
10.1002/hbm.22278
10.1016/j.ijdevneu.2015.07.007
10.1017/S1041610202008281
10.1016/j.neuroimage.2010.11.079
10.1111/jon.12163
10.1016/j.neuroimage.2015.02.037
10.1016/j.neuroimage.2014.10.044
10.1016/j.nicl.2015.06.003
10.1523/JNEUROSCI.5413-09.2010
10.4103/1673-5374.125344
10.3233/JAD-2010-100840
10.1016/j.neuroimage.2014.10.002
10.1016/S0140-6736(97)09218-0
10.3389/fncir.2014.00064
10.1016/j.nicl.2014.12.013
10.1177/1558689812454457
10.1002/hbm.22431
10.1002/hbm.22156
10.1212/01.wnl.0000341768.28646.b6
10.1093/brain/awv111
10.1002/hbm.20934
10.4258/hir.2014.20.1.61
10.1016/j.pscychresns.2012.11.005
10.1016/j.neuroimage.2007.11.001
10.1016/j.neuroimage.2011.11.002
10.1016/j.nicl.2014.09.005
10.1049/htl.2013.0022
10.1016/j.neuroimage.2011.05.055
10.1016/j.compbiomed.2015.07.006
10.1371/journal.pone.0123524
10.1016/j.biopsych.2007.03.015
10.1016/j.neuroimage.2009.11.046
10.3389/fnsys.2012.00078
10.1016/j.pscychresns.2013.09.008
10.3389/fnsys.2012.00066
10.1016/j.neuroimage.2011.10.080
10.1016/j.neuroimage.2015.10.079
10.1016/j.bbr.2015.04.010
10.1038/mp.2010.70
10.3233/JAD-150334
10.1016/j.neuroimage.2009.11.011
10.1016/j.neuroimage.2009.12.092
10.1016/j.acra.2007.10.020
10.1016/j.neuroimage.2011.05.083
10.1371/journal.pone.0025446
10.1016/j.nicl.2013.05.004
10.1016/j.neuroimage.2010.01.005
10.1016/j.pscychresns.2014.05.014
10.1371/journal.pone.0045972
10.1016/S0140-6736(06)68542-5
10.1016/j.neuroimage.2013.09.015
10.1016/j.neuroimage.2012.03.079
10.1016/j.neuroimage.2011.08.013
10.1097/00002093-200110000-00002
10.1093/brain/awm319
10.1186/1471-2342-14-21
10.1111/j.1467-9868.2007.00607.x
10.1016/j.neuroimage.2010.03.051
10.1016/j.biopsych.2004.10.020
10.1002/gps.4262
10.1007/s12021-013-9184-3
10.1109/TITB.2008.923773
10.1016/j.jneumeth.2013.09.001
10.1109/TITB.2008.917893
10.1001/archpsyc.1994.03950010008002
10.1016/j.neulet.2011.07.049
10.1093/arclin/11.6.521
10.3174/ajnr.A0620
10.1371/journal.pone.0029482
10.1109/TMI.2012.2206047
10.1001/archpsyc.62.11.1218
10.1001/jama.289.23.3095
10.31887/DCNS.2014.16.4/pdazzan
10.1016/j.jaac.2013.12.024
10.1371/journal.pone.0032441
10.1002/hbm.20166
10.1016/0165-0270(94)90191-0
10.1002/jmri.21049
10.1016/j.neuroimage.2009.12.047
10.3389/fninf.2013.00012
10.1016/j.compmedimag.2012.08.002
10.3233/JAD-2010-1322
10.1016/j.neuroimage.2014.03.048
10.1002/hbm.20463
10.1038/npp.2015.22
10.1002/hbm.20632
10.1016/j.nicl.2015.09.017
10.1016/j.neuroimage.2007.11.041
10.2174/156720512802455359
10.1109/TMI.2011.2162961
10.1016/j.neuroimage.2010.10.026
10.1073/pnas.87.24.9868
10.1186/2047-217X-3-29
10.1111/pcn.12106
10.3389/fnsys.2012.00063
10.1002/jmri.1076
10.1016/j.neuroimage.2009.08.024
10.1016/j.neuroimage.2009.01.026
10.1385/NI:5:1:11
10.1016/j.neuroimage.2010.11.004
10.1002/hbm.20204
10.1007/s12021-010-9094-6
10.1016/j.neuroimage.2011.10.002
10.1016/j.schres.2006.05.007
10.3389/fninf.2014.00035
10.1016/S0004-3702(97)00063-5
10.1016/j.jpsychires.2013.06.010
10.1016/j.schres.2012.01.001
10.1016/j.neuroimage.2006.08.018
10.1176/appi.ajp.161.5.896
10.1016/j.neuroimage.2013.12.015
10.1002/hbm.22411
10.3389/fpsyt.2013.00095
10.1073/pnas.0911855107
10.3389/fncom.2014.00060
10.1109/TBME.2010.2080679
10.1109/TPAMI.2012.142
10.1371/journal.pone.0064925
10.1016/j.clinph.2015.02.060
10.1371/journal.pone.0119089
10.1007/s00702-011-0693-7
10.1080/10629360500108053
10.1109/TMI.2012.2216543
10.1002/hbm.20655
10.1155/2014/862307
10.1371/journal.pone.0025349
10.1148/radiol.2511080924
10.1038/mp.2013.78
10.1017/S1092852900016151
10.1016/j.neuroimage.2011.10.015
10.1016/j.pnpbp.2012.12.005
10.3174/ajnr.A3223
10.1002/hbm.20691
10.1016/S0022-510X(01)00669-4
10.1016/j.neuron.2014.03.020
10.1016/j.neuroimage.2011.10.003
10.1016/j.jalz.2011.03.008
10.1016/j.compbiomed.2013.07.004
10.1111/j.1525-1497.2004.30091.x
10.1016/j.neuron.2014.05.044
10.3389/fnagi.2014.00020
10.1016/j.neuroimage.2014.11.021
10.3174/ajnr.A3713
10.1109/TCYB.2014.2379621
10.1093/schbul/sbn140
10.1016/j.jneumeth.2013.10.003
10.3389/fpsyt.2012.00053
10.1016/j.neurobiolaging.2006.09.013
10.3389/fneur.2011.00054
10.1016/j.neuroimage.2012.09.065
10.1016/S0004-3702(97)00043-X
10.1016/j.neuroimage.2008.04.255
10.1109/TBME.2014.2372011
10.1038/sj.mp.4001857
10.1023/A:1012487302797
10.1016/j.nicl.2013.09.003
10.1016/j.neuroimage.2011.03.051
10.1038/mp.2012.84
10.1016/j.neuroimage.2013.05.041
10.1016/j.pscychresns.2012.04.007
10.3389/fnsys.2012.00074
10.1016/j.pscychresns.2015.03.004
10.1155/2013/253670
10.1016/0165-1781(95)02651-C
10.1016/j.biopsych.2008.07.025
10.1016/j.neuroimage.2010.12.066
10.1111/jon.12280
10.1016/j.neunet.2012.02.035
10.1016/j.neuroimage.2011.06.029
10.1016/j.neuroimage.2013.06.033
10.1525/jer.2010.5.3.9
10.1016/j.neuroimage.2009.05.056
10.1016/j.neuroimage.2013.10.065
10.1016/S1566-2772(00)00003-7
10.1016/j.jpsychires.2015.06.002
10.1371/journal.pone.0021047
10.1016/j.schres.2012.04.021
10.1007/s11682-013-9264-x
10.1093/brain/aws084
10.1007/s00787-014-0593-0
10.1016/j.neuroimage.2011.09.069
10.1016/j.euroneuro.2014.01.004
10.1155/2014/706157
10.1109/TBME.2015.2404809
10.1002/hbm.22386
10.1093/brain/awh332
10.1016/j.biopsych.2015.02.017
10.3389/fnsys.2012.00059
10.1016/j.neurobiolaging.2014.05.037
10.1016/j.mri.2011.11.001
10.2174/156720501206150716120332
10.1016/0045-9380(88)90017-5
10.1016/j.neubiorev.2012.01.004
10.1016/j.neuroimage.2013.08.053
10.1016/j.neuroimage.2010.06.013
10.3389/fnsys.2012.00075
10.1016/j.neurobiolaging.2013.06.015
10.1016/j.mri.2014.05.008
10.1016/j.nicl.2013.12.012
10.3233/JAD-131928
10.1109/TBME.2013.2284195
10.1016/j.schres.2015.08.011
10.1212/WNL.48.4.978
10.1002/hbm.22254
10.1016/j.neuroimage.2007.11.029
10.1016/j.bbr.2015.04.013
10.1111/j.1440-1819.2012.02397.x
10.1016/j.neuroimage.2011.06.042
10.1109/TCBB.2012.141
10.1016/j.neuroimage.2008.02.043
10.1093/oxfordjournals.schbul.a007087
10.3389/fnhum.2013.00702
10.3389/fninf.2011.00033
10.1155/2015/814104
10.1109/TMI.2006.887380
10.3389/fncom.2015.00132
10.1016/j.neunet.2015.04.002
10.1016/j.neuroimage.2011.11.066
10.1371/journal.pone.0113879
10.1016/j.neurobiolaging.2014.04.037
10.1109/TAMD.2015.2440298
10.1016/j.jad.2008.11.021
10.1002/hbm.22531
10.1016/j.pscychresns.2010.09.016
10.1002/hbm.22759
10.1016/j.neuroimage.2015.05.049
10.1016/j.neuroimage.2013.03.066
10.1016/j.biopsych.2009.07.019
10.1093/cercor/bht165
10.1002/hbm.22542
10.1097/00004583-200403000-00018
10.1016/j.nicl.2014.09.009
10.1016/j.neuroimage.2007.09.073
10.3233/JAD-2011-101371
10.1155/2013/867924
10.1016/j.jalz.2007.04.381
10.1037/0894-4105.12.3.426
10.3389/fnhum.2010.00192
10.1016/j.neuroimage.2012.10.051
10.1186/1475-925X-12-10
10.1016/j.media.2006.07.006
10.3389/fncom.2015.00066
10.1007/s00787-015-0678-4
10.1016/j.neuroimage.2008.11.007
10.1080/01621459.1988.10478691
10.1007/s00429-013-0687-3
10.1155/2015/865265
10.1016/j.neuroimage.2013.08.048
10.1016/S0197-4580(03)00084-8
10.1016/j.neuroimage.2014.03.067
10.1109/TMI.2011.2114362
10.1371/journal.pone.0041282
10.1186/s12888-015-0685-5
10.1177/155005940803900206
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 15, 2017
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 15, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2016.02.079
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 165
ExternalDocumentID PMC5031516
4287300011
27012503
10_1016_j_neuroimage_2016_02_079
S105381191600210X
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA040487
– fundername: NIBIB NIH HHS
  grantid: R01 EB006841
– fundername: NIBIB NIH HHS
  grantid: R01 EB005846
– fundername: NIGMS NIH HHS
  grantid: P20 GM103472
– fundername: NIBIB NIH HHS
  grantid: R01 EB020407
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c630t-4080d5985fe9416e5c1e55fe77ec384349611aad03607eed3f2b79d68ea4294c3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 14:29:26 EDT 2025
Fri Sep 05 12:24:41 EDT 2025
Wed Aug 13 04:39:05 EDT 2025
Thu Apr 03 07:04:09 EDT 2025
Tue Jul 01 03:01:47 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
Fri Feb 23 02:25:04 EST 2024
Tue Aug 26 20:08:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Neuroimaging
Brain disorders
Machine learning
Classification
Prediction
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c630t-4080d5985fe9416e5c1e55fe77ec384349611aad03607eed3f2b79d68ea4294c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://doi.org/10.1016/j.neuroimage.2016.02.079
PMID 27012503
PQID 1852983765
PQPubID 2031077
PageCount 29
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5031516
proquest_miscellaneous_1826672525
proquest_journals_1852983765
pubmed_primary_27012503
crossref_primary_10_1016_j_neuroimage_2016_02_079
crossref_citationtrail_10_1016_j_neuroimage_2016_02_079
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_02_079
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_02_079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-15
PublicationDateYYYYMMDD 2017-01-15
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Rice (bb1410) 1999; 60
Yu, Liu, Shen (bb1760) 2015
Nir, Villalon-Reina, Prasad, Jahanshad, Joshi, Toga, Bernstein, Jack, Weiner, Thompson (bb1235) 2015; 36
Keator, Grethe, Marcus, Ozyurt, Gadde, Murphy, Pieper, Greve, Notestine, Bockholt (bb0920) 2008; 12
Anderson, Nielsen, Froehlich, DuBray, Druzgal, Cariello, Cooperrider, Zielinski, Ravichandran, Fletcher (bb0050) 2011; 134
Zhang, Shen (bb1820) 2012; 7
Koch, Hägele, Haynes, Heinz, Schlagenhauf, Sterzer (bb0970) 2015; 10
Haller, Missonnier, Herrmann, Rodriguez, Deiber, Nguyen, Gold, Lovblad, Giannakopoulos (bb0740) 2013; 34
Fung, Deng, Zhao, Li, Qu, Li, Zeng, Jin, Ma, Yu, Wang, Shum, Chan (bb0630) 2015; 15
Kaufmann, Skatun, Alnaes, Doan, Duff, Tonnesen, Roussos, Ueland, Aminoff, Lagerberg, Agartz, Melle, Smith, Andreassen, Westlye (bb0910) 2015; 1–10
Watanabe, Kessler, Scott, Angstadt, Sripada (bb1655) 2014; 96
Caan, Vermeer, van Vliet, Majoie, Peters, den Heeten, Vos (bb0220) 2006; 10
Lee, Park, Han (bb1010) 2013; 43
Wee, Yap, Li, Denny, Browndyke, Potter, Welsh-Bohmer, Wang, Shen (bb1665) 2011; 54
Gill (bb0650) 2007; 77
Li, Wang, Wu, Shi, Zhou, Lin, Shen (bb1050) 2012; 33
Calderoni, Retico, Biagi, Tancredi, Muratori, Tosetti (bb0225) 2012; 59
Lerch, Pruessner, Zijdenbos, Collins, Teipel, Hampel, Evans (bb1020) 2008; 29
Liu, Zhang, Adeli-Mosabbeb, Shen (bb1085) 2015
MacMaster, Carrey, Langevin, Jaworska, Crawford (bb1115) 2014; 8
Andersen, Rayens, Liu, Smith (bb0035) 2012; 30
Kambeitz, Kambeitz-Ilankovic, Leucht, Wood, Davatzikos, Malchow, Falkai, Koutsouleris (bb0890) 2015; 40
Jack, Petersen, Xu, Waring, O'Brien, Tangalos, Smith, Ivnik, Kokmen (bb0845) 1997; 49
Arbabshirani, Calhoun (bb0065) 2011
Kasparek, Thomaz, Sato, Schwarz, Janousova, Marecek, Prikryl, Vanicek, Fujita, Ceskova (bb0900) 2011; 191
Stonnington, Chu, Klöppel, Jack, Ashburner, Frackowiak (bb1505) 2010; 51
Dukart, Mueller, Barthel, Villringer, Sabri, Schroeter (bb0490) 2013; 212
Segovia, Holt, Spencer, Górriz, Ramírez, Puntonet, Phillips, Chura, Baron-Cohen, Suckling (bb1470) 2014; 8
)
Arbabshirani, Kiehl, Pearlson, Calhoun (bb0070) 2013; 7
Fekete, Wilf, Rubin, Edelman, Malach, Mujica-Parodi (bb0590) 2013
Peng, Lin, Zhang, Wang (bb1310) 2013; 8
Wolf, Grunwald, Kruggel, Riedel-Heller, Angerhöfer, Hojjatoleslami, Hensel, Arendt, Gertz (bb1690) 2001; 22
Costafreda, Fu, Picchioni, Toulopoulou, McDonald, Kravariti, Walshe, Prata, Murray, McGuire (bb0380) 2011; 11
Nakamura, Kawasaki, Suzuki, Hagino, Kurokawa, Takahashi, Niu, Matsui, Seto, Kurachi (bb1220) 2004; 30
Anticevic, Cole, Repovs, Murray, Brumbaugh, Winkler, Savic, Krystal, Pearlson, Glahn (bb0055) 2014; 24
Chyzhyk, Savio, Graña (bb0355) 2015; 68
H2O [WWW Document], 2015. (URL
Klöppel, Abdulkadir, Jack, Koutsouleris, Mourão-Miranda, Vemuri (bb0950) 2012; 61
Gaonkar, Davatzikos (bb0635) 2013; 78
Shen, Wang, Liu, Hu (bb1485) 2010; 49
Tangaro, Amoroso, Brescia, Cavuoti, Chincarini, Errico, Inglese, Longo, Maglietta, Tateo, Riccio, Bellotti (bb1585) 2015; 2015
Lewinsohn, Duncan, Stanton, Hautzinger (bb1030) 1986; 95
Raamana, Wen, Kochan, Brodaty, Sachdev, Wang, Beg (bb1385) 2014; 6
Demirci, Clark, Magnotta, Andreasen, Lauriello, Kiehl, Pearlson, Calhoun (bb0445) 2008; 2
Orrù, Pettersson-Yeo, Marquand, Sartori, Mechelli (bb1260) 2012; 36
Shimizu, Yoshimoto, Toki, Takamura, Yoshimura, Okamoto, Yamawaki, Doya (bb1490) 2015; 10
Calhoun, Arbabshirani (bb0235) 2012
Chaudhuri, Monteleoni, Sarwate (bb0320) 2011; 12
Wing (bb1685) 1997; 350
Kohavi, John (bb0975) 1997; 97
Michael, Baum, Fries, Ho, Pierson, Andreasen, Calhoun (bb1165) 2009; 30
Just, Cherkassky, Buchweitz, Keller, Mitchell (bb0885) 2014; 9
Bockholt, Scully, Courtney, Rachakonda, Scott, Caprihan, Fries, Kalyanam, Segall, de la Garza (bb0180) 2009; 3
Lemm, Blankertz, Dickhaus, Müller (bb1015) 2011; 56
Gauthier, Reisberg, Zaudig, Petersen, Ritchie, Broich, Belleville, Brodaty, Bennett, Chertkow (bb0640) 2006; 367
Ingalhalikar, Smith, Bloy, Gur, Roberts, Verma (bb0825) 2012; 15
Retico, Bosco, Cerello, Fiorina, Chincarini, Fantacci (bb1395) 2015; 25
Sarwate, Plis, Turner, Arbabshirani, Calhoun (bb1440) 2014; 8
Yang, Liu, Sui, Pearlson, Calhoun (bb1720) 2010; 4
Iannaccone, Hauser, Ball, Brandeis, Walitza, Brem (bb0805) 2015; 24
Liang, Lauterbur (bb1055) 2000
Ingalhalikar, Parker, Bloy, Roberts, Verma (bb0820) 2011; 57
Colby, Rudie, Brown, Douglas, Cohen, Shehzad (bb0360) 2012; 6
Power, Mitra, Laumann, Snyder, Schlaggar, Petersen (bb1365) 2014; 84
Zhang, Huang, Shen (bb1830) 2014; 6
Wang, Fan, Bhatt, Davatzikos (bb1645) 2010; 50
Sabuncu, Van Leemput (bb1420) 2012; 31
Sato, Hoexter, Fujita, Rohde (bb1445) 2012; 6
Boubela, Kalcher, Huf, Seidel, Derntl, Pezawas, Našel, Moser (bb0195) 2015; 5
Bleich-Cohen, Jamshy, Sharon, Weizman, Intrator, Poyurovsky, Hendler (bb0170) 2014; 160
Chu, Hsu, Chou, Bandettini, Lin (bb0350) 2012; 60
Ota, Sato, Ishikawa, Hori, Sasayama, Hattori, Teraishi, Obu, Nakata, Nemoto, Moriguchi, Hashimoto, Kunugi (bb1285) 2012; 66
Su, Wang, Shen, Feng, Hu (bb1510) 2013; 7
Dyrba, Ewers, Wegrzyn, Kilimann, Plant, Oswald, Meindl, Pievani, Bokde, Fellgiebel, Filippi, Hampel, Klöppel, Hauenstein, Kirste, Teipel (bb0500) 2013; 8
Fan, Shen, Davatzikos (bb0565) 2005; 8
Yu, Liu, Thung, Shen (bb1765) 2014; 9
Petersen, Negash (bb1325) 2008; 13
Janousova, Schwarz, Kasparek (bb0855) 2015; 232
Levman, Takahashi (bb1025) 2015; 9
Cetin, Christensen, Abbott, Stephen, Mayer, Cañive, Bustillo, Pearlson, Calhoun (bb0300) 2014; 97
Takayanagi, Takahashi, Orikabe, Mozue, Kawasaki, Nakamura, Sato, Itokawa, Yamasue, Kasai, Kurachi, Okazaki, Suzuki (bb1565) 2011; 6
Tognin, Pettersson-Yeo, Valli, Hutton, Woolley, Allen, McGuire, Mechelli (bb1590) 2013; 4
Veronese, Castellani, Peruzzo, Bellani, Brambilla (bb1635) 2013; 2013
Bengio (bb0140) 2013
Miller, Priebe, Qiu, Fischl, Kolasny, Brown, Park, Ratnanather, Busa, Jovicich, Yu, Dickerson, Buckner (bb1170) 2009; 30
Dyrba, Grothe, Kirste, Teipel (bb0505) 2015; 36
Gerardin, Chételat, Chupin, Cuingnet, Desgranges, Kim, Niethammer, Dubois, Lehéricy, Garnero, Eustache, Colliot (bb0645) 2009; 47
Lim, Marquand, Cubillo, Smith, Chantiluke, Simmons, Mehta, Rubia (bb1070) 2013
Sui, Pearlson, Caprihan, Adali, Kiehl, Liu, Yamamoto, Calhoun (bb1535) 2011; 57
Dai, Wang, Hua, He (bb0415) 2012; 6
Polat, Demirel, Kitis, Simsek, Haznedaroglu, Coburn, Kumral, Gonul (bb1350) 2012; 9
Bansal, Staib, Laine, Hao, Xu, Liu, Weissman, Peterson (bb0110) 2012
Suk, Lee, Shen, Initiative (bb1545) 2013; 220
Bai, Chan, Luk (bb0095) 2005
Sidhu, Asgarian, Greiner, Brown (bb1495) 2012; 6
Bottino, Castro, Gomes, Buchpiguel, Marchetti, Neto (bb0190) 2002; 14
Cheng, Newman, Goñi, Kent, Howell, Bolbecker, Puce, O'Donnell, Hetrick (bb0340) 2015; 168
Gong, Wu, Scarpazza, Lui, Jia, Marquand, Huang, McGuire, Mechelli (bb0660) 2011; 55
Sun, van Erp, Thompson, Bearden, Daley, Kushan, Hardt, Nuechterlein, Toga, Cannon (bb1550) 2009; 66
Zhang, Davatzikos (bb1810) 2013; 79
Blum, Langley (bb0175) 1997; 97
Fan, Resnick, Wu, Davatzikos (bb0560) 2008; 41
Dey, Rao, Shah (bb0460) 2012; 6
Alberg, Park, Hager, Brock, Diener-West (bb0025) 2004; 19
Wee, Yap, Shen (bb1670) 2013; 34
Bhugra (bb0150) 2005; 2
Bassett, Nelson, Mueller, Camchong, Lim (bb0115) 2012; 59
Davatzikos, Shen, Gur, Wu, Liu, Fan, Hughett, Turetsky, Gur (bb0425) 2005; 62
Calhoun, Adali, Giuliani, Pekar, Kiehl, Pearlson (bb0245) 2006; 27
Cao, Duan, Lin, Calhoun, Wang (bb0260) 2013; 6
Mahanand, Suresh, Sundararajan, Aswatha Kumar (bb1125) 2012; 32
Dey, Rao, Shah (bb0465) 2014; 8
Kaufer, Miller, Itti, Fairbanks, Li, Fishman, Kushi, Cummings (bb0905) 1997; 48
Morar, Dragović, Waters, Chandler, Kalaydjieva, Jablensky (bb1190) 2011; 16
Murdaugh, Shinkareva, Deshpande, Wang, Pennick, Kana (bb1210) 2012
Sato, Hoexter, Oliveira, Brammer, Murphy, Ecker (bb1450) 2013; 47
Beheshti, Demirel (bb0125) 2015; 64
Calhoun, Sui (bb0240) 2016
Tang, Wang, Cao, Tan (bb1580) 2012; 11
Qiu, Younes, Miller, Csernansky (bb1380) 2008; 40
Plis, Hjelm, Salakhutdinov, Allen, Bockholt, Long, Johnson, Paulsen, Turner, Calhoun (bb1340) 2014; 8
Zou, Hastie (bb1855) 2005; 67
Buccigrossi, Ellisman, Grethe, Haselgrove, Kennedy, Martone, Preuss, Reynolds, Sullivan, Turner (bb0215) 2007
Gori, Giuliano, Muratori, Saviozzi, Oliva, Tancredi, Cosenza, Tosetti, Calderoni, Retico (bb0670) 2015; 25
Green, Cairns, Wu, Dragovic, Jablensky, Tooney, Scott, Carr (bb0700) 2013; 18
Cheng, Liu, Zhang, Munsell, Shen (bb0335) 2015; 62
Filipovych, Davatzikos, Initiative (bb0595) 2011; 55
Ota, Oishi, Ito, Fukuyama (bb1275) 2014; 221
Baker, Silva, Calhoun, Sarwate, Plis (bb0105) 2015
Haller, Nguyen, Rodriguez, Emch, Gold, Bartsch, Lovblad, Giannakopoulos (bb0745) 2010; 22
Hampel, Teipel, Bayer, Alexander, Schwarz, Schapiro, Rapoport, Möller (bb0750) 2002; 194
Johnston, Mwangi, Matthews, Coghill, Konrad, Steele (bb0875) 2014; 35
Uddin, Menon, Young, Ryali, Chen, Khouzam, Minshew, Hardan (bb1605) 2011; 70
Cui, Wen, Lipnicki, Beg, Jin, Luo, Zhu, Kochan, Reppermund, Zhuang, Raamana, Liu, Trollor, Wang, Brodaty, Sachdev (bb0400) 2012; 59
Apostolova, Hwang, Kohannim, Avila, Elashoff, Jack, Shaw, Trojanowski, Weiner, Thompson (bb0060) 2014; 4
Casanova, Hsu, Espeland (bb0275) 2012; 7
Chincarini, Bosco, Calvini, Gemme, Esposito, Olivieri, Rei, Squarcia, Rodriguez, Bellotti, Cerello, De Mitri, Retico, Nobili (bb0345) 2011; 58
Csernansky, Schindler, Splinter, Wang, Gado, Selemon, Rastogi-Cruz, Posener, Thompson, Miller (bb0390) 2004; 161
McAlonan, Cheung, Cheung, Suckling, Lam, Tai, Yip, Murphy, Chua (bb1135) 2005; 128
Heinrichs, Zakzanis (bb0775) 1998; 12
Zhang, Dong, Phillips, Wang, Ji, Yang, Yuan (bb1825) 2015; 9
Minshew, Payton (bb1180) 1988; 18
Hinrichs, Singh, Mukherjee, Xu, Chung, Johnson (bb0785) 2009; 48
Ma, Li, Yu, He, Li (bb1110) 2013; 8
Frisoni, Beltramello, Weiss, Geroldi, Bianchetti, Trabucchi (bb0625) 1996; 17
Tang, Holland, Dale, Younes, Miller (bb1570) 2014; 35
Castellani, Rossato, Murino, Bellani, Rambaldelli, Perlini, Tomelleri, Tansella, Brambilla (bb0280) 2012; 119
Zhou, Greicius, Gennatas, Growdon, Jang, Rabinovici, Kramer, Weiner, Miller, Seeley (bb1840) 2010; 133
Abdulkadir, Mortamet, Vemuri, Jack, Krueger, Klöppel (bb0005) 2011; 58
Beltrachini,
Chincarini (10.1016/j.neuroimage.2016.02.079_bb0345) 2011; 58
Miller (10.1016/j.neuroimage.2016.02.079_bb1170) 2009; 30
Morar (10.1016/j.neuroimage.2016.02.079_bb1190) 2011; 16
Calhoun (10.1016/j.neuroimage.2016.02.079_bb0230) 2009; 13
Lerch (10.1016/j.neuroimage.2016.02.079_bb1020) 2008; 29
Serpa (10.1016/j.neuroimage.2016.02.079_bb1480) 2014; 2014
Veronese (10.1016/j.neuroimage.2016.02.079_bb1635) 2013; 2013
Zu (10.1016/j.neuroimage.2016.02.079_bb1860) 2015
Zarei (10.1016/j.neuroimage.2016.02.079_bb1790) 2009; 40
Gauthier (10.1016/j.neuroimage.2016.02.079_bb0640) 2006; 367
Mehta (10.1016/j.neuroimage.2016.02.079_bb1155) 1988; 83
Kawasaki (10.1016/j.neuroimage.2016.02.079_bb0915) 2007; 34
Gray (10.1016/j.neuroimage.2016.02.079_bb0695) 2013; 65
Sui (10.1016/j.neuroimage.2016.02.079_bb1525) 2009; 46
Batmanghelich (10.1016/j.neuroimage.2016.02.079_bb0120) 2012; 31
Gaonkar (10.1016/j.neuroimage.2016.02.079_bb0635) 2013; 78
Apostolova (10.1016/j.neuroimage.2016.02.079_bb0060) 2014; 4
Demirci (10.1016/j.neuroimage.2016.02.079_bb0440) 2008; 39
Watanabe (10.1016/j.neuroimage.2016.02.079_bb1655) 2014; 96
Farzan (10.1016/j.neuroimage.2016.02.079_bb0585) 2015; 290
Retico (10.1016/j.neuroimage.2016.02.079_bb1395) 2015; 25
Power (10.1016/j.neuroimage.2016.02.079_bb1370) 2015; 105
Green (10.1016/j.neuroimage.2016.02.079_bb0700) 2013; 18
Ogawa (10.1016/j.neuroimage.2016.02.079_bb1245) 1990; 87
Brown (10.1016/j.neuroimage.2016.02.079_bb0210) 2012; 6
Dyrba (10.1016/j.neuroimage.2016.02.079_bb0505) 2015; 36
Deshpande (10.1016/j.neuroimage.2016.02.079_bb0450) 2013; 7
Lewinsohn (10.1016/j.neuroimage.2016.02.079_bb1030) 1986; 95
Wolz (10.1016/j.neuroimage.2016.02.079_bb1700) 2011; 6
Yu (10.1016/j.neuroimage.2016.02.079_bb1765) 2014; 9
Calhoun (10.1016/j.neuroimage.2016.02.079_bb0235) 2012
Csernansky (10.1016/j.neuroimage.2016.02.079_bb0390) 2004; 161
Uddin (10.1016/j.neuroimage.2016.02.079_bb1605) 2011; 70
Sundermann (10.1016/j.neuroimage.2016.02.079_bb1555) 2014; 39
Chen (10.1016/j.neuroimage.2016.02.079_bb0330) 2014; 221
Wu (10.1016/j.neuroimage.2016.02.079_bb1705) 2013; 10
Sato (10.1016/j.neuroimage.2016.02.079_bb1450) 2013; 47
Dyrba (10.1016/j.neuroimage.2016.02.079_bb0500) 2013; 8
Haller (10.1016/j.neuroimage.2016.02.079_bb0745) 2010; 22
Pennanen (10.1016/j.neuroimage.2016.02.079_bb1315) 2004; 25
McCarley (10.1016/j.neuroimage.2016.02.079_bb1140) 2008; 39
Park (10.1016/j.neuroimage.2016.02.079_bb1300) 2015
Chaudhuri (10.1016/j.neuroimage.2016.02.079_bb0320) 2011; 12
Power (10.1016/j.neuroimage.2016.02.079_bb1365) 2014; 84
Albert (10.1016/j.neuroimage.2016.02.079_bb0030) 2011; 7
Hart (10.1016/j.neuroimage.2016.02.079_bb0760) 2014; 53
Su (10.1016/j.neuroimage.2016.02.079_bb1510) 2013; 7
Yu (10.1016/j.neuroimage.2016.02.079_bb1750) 2013; 8
Vemuri (10.1016/j.neuroimage.2016.02.079_bb1620) 2008; 39
Arribas (10.1016/j.neuroimage.2016.02.079_bb0085) 2010; 57
Sui (10.1016/j.neuroimage.2016.02.079_bb1520) 2013; 7
Colby (10.1016/j.neuroimage.2016.02.079_bb0360) 2012; 6
Li (10.1016/j.neuroimage.2016.02.079_bb1040) 2014; 32
McEvoy (10.1016/j.neuroimage.2016.02.079_bb1145) 2009; 251
Jablensky (10.1016/j.neuroimage.2016.02.079_bb0835) 2006; 11
Lahmiri (10.1016/j.neuroimage.2016.02.079_bb0990) 2014; 1
Casanova (10.1016/j.neuroimage.2016.02.079_bb0275) 2012; 7
Keator (10.1016/j.neuroimage.2016.02.079_bb0920) 2008; 12
Cuingnet (10.1016/j.neuroimage.2016.02.079_bb0405) 2011; 56
Granziera (10.1016/j.neuroimage.2016.02.079_bb0690) 2015; 8
Chen (10.1016/j.neuroimage.2016.02.079_bb0325) 2015; 8
Dwork (10.1016/j.neuroimage.2016.02.079_bb0495) 2006; 1–12
Çetin (10.1016/j.neuroimage.2016.02.079_bb0305) 2015; 9
Fekete (10.1016/j.neuroimage.2016.02.079_bb0590) 2013
Kambeitz (10.1016/j.neuroimage.2016.02.079_bb0890) 2015; 40
Bleich-Cohen (10.1016/j.neuroimage.2016.02.079_bb0170) 2014; 160
Freeborough (10.1016/j.neuroimage.2016.02.079_bb0620) 1998; 17
Tangaro (10.1016/j.neuroimage.2016.02.079_bb1585) 2015; 2015
Ecker (10.1016/j.neuroimage.2016.02.079_bb0515) 2010; 49
Gould (10.1016/j.neuroimage.2016.02.079_bb0680) 2014; 6
Janousova (10.1016/j.neuroimage.2016.02.079_bb0855) 2015; 232
Kessler (10.1016/j.neuroimage.2016.02.079_bb0930) 1994; 51
Eskildsen (10.1016/j.neuroimage.2016.02.079_bb0535) 2013; 65
Guo (10.1016/j.neuroimage.2016.02.079_bb0710) 2014; 9
Anderson (10.1016/j.neuroimage.2016.02.079_bb0040) 2013; 7
Takayanagi (10.1016/j.neuroimage.2016.02.079_bb1565) 2011; 6
Pereira (10.1016/j.neuroimage.2016.02.079_bb1320) 2009; 45
Foland-Ross (10.1016/j.neuroimage.2016.02.079_bb0605) 2015; 46
Liu (10.1016/j.neuroimage.2016.02.079_bb1080) 2014; 84
Anderson (10.1016/j.neuroimage.2016.02.079_bb0045) 2014; 102
Bishop (10.1016/j.neuroimage.2016.02.079_bb0160) 2006
Wang (10.1016/j.neuroimage.2016.02.079_bb1650) 2013; 82
Kriegeskorte (10.1016/j.neuroimage.2016.02.079_bb0985) 2015; xiv
Akshoomoff (10.1016/j.neuroimage.2016.02.079_bb0020) 2004; 43
Beheshti (10.1016/j.neuroimage.2016.02.079_bb0125) 2015; 64
Bhugra (10.1016/j.neuroimage.2016.02.079_bb0150) 2005; 2
10.1016/j.neuroimage.2016.02.079_bb0730
Schnack (10.1016/j.neuroimage.2016.02.079_bb1460) 2014; 84
Ota (10.1016/j.neuroimage.2016.02.079_bb1275) 2014; 221
Caan (10.1016/j.neuroimage.2016.02.079_bb0220) 2006; 10
Collingridge (10.1016/j.neuroimage.2016.02.079_bb0365) 2013; 7
Koutsouleris (10.1016/j.neuroimage.2016.02.079_bb0980) 2015
Ortiz (10.1016/j.neuroimage.2016.02.079_bb1265) 2015; 9
Frisoni (10.1016/j.neuroimage.2016.02.079_bb0625) 1996; 17
Iwabuchi (10.1016/j.neuroimage.2016.02.079_bb0830) 2013; 4
Kim (10.1016/j.neuroimage.2016.02.079_bb0940) 2015; 124
Le Bihan (10.1016/j.neuroimage.2016.02.079_bb1000) 2001; 13
Association (10.1016/j.neuroimage.2016.02.079_bb0090) 2003
Michael (10.1016/j.neuroimage.2016.02.079_bb1165) 2009; 30
Wing (10.1016/j.neuroimage.2016.02.079_bb1685) 1997; 350
Cui (10.1016/j.neuroimage.2016.02.079_bb0395) 2011; 6
Mahanand (10.1016/j.neuroimage.2016.02.079_bb1125) 2012; 32
Biswal (10.1016/j.neuroimage.2016.02.079_bb0165) 2010; 107
Consortium, A.-200 (10.1016/j.neuroimage.2016.02.079_bb0370) 2012; 6
Bansal (10.1016/j.neuroimage.2016.02.079_bb0110) 2012
Chyzhyk (10.1016/j.neuroimage.2016.02.079_bb0355) 2015; 68
Challis (10.1016/j.neuroimage.2016.02.079_bb0310) 2015; 112
Liu (10.1016/j.neuroimage.2016.02.079_bb1090) 2014; 35
Segovia (10.1016/j.neuroimage.2016.02.079_bb1470) 2014; 8
Peng (10.1016/j.neuroimage.2016.02.079_bb1310) 2013; 8
Power (10.1016/j.neuroimage.2016.02.079_bb1360) 2012; 59
Alberg (10.1016/j.neuroimage.2016.02.079_bb0025) 2004; 19
Zhou (10.1016/j.neuroimage.2016.02.079_bb1845) 2014; 9
Zhang (10.1016/j.neuroimage.2016.02.079_bb1805) 2011; 30
Epstein (10.1016/j.neuroimage.2016.02.079_bb0525) 2001; 1
Sarwate (10.1016/j.neuroimage.2016.02.079_bb1440) 2014; 8
Kessler (10.1016/j.neuroimage.2016.02.079_bb0925) 2003; 289
Hampel (10.1016/j.neuroimage.2016.02.079_bb0750) 2002; 194
Wee (10.1016/j.neuroimage.2016.02.079_bb1660) 2014; 35
Dai (10.1016/j.neuroimage.2016.02.079_bb0415) 2012; 6
Gill (10.1016/j.neuroimage.2016.02.079_bb0650) 2007; 77
Honorio (10.1016/j.neuroimage.2016.02.079_bb0800) 2012; 31
Kim (10.1016/j.neuroimage.2016.02.079_bb0945) 2010
Prasad (10.1016/j.neuroimage.2016.02.079_bb1375) 2015; 36
Kaufer (10.1016/j.neuroimage.2016.02.079_bb0905) 1997; 48
Kohavi (10.1016/j.neuroimage.2016.02.079_bb0975) 1997; 97
Sato (10.1016/j.neuroimage.2016.02.079_bb1455) 2015; 233
Castellani (10.1016/j.neuroimage.2016.02.079_bb0280) 2012; 119
Cao (10.1016/j.neuroimage.2016.02.079_bb0265) 2014; 68
Ota (10.1016/j.neuroimage.2016.02.079_bb1285) 2012; 66
Nir (10.1016/j.neuroimage.2016.02.079_bb1235) 2015; 36
Zeng (10.1016/j.neuroimage.2016.02.079_bb1800) 2014; 35
Wolfers (10.1016/j.neuroimage.2016.02.079_bb1695) 2015; 57
Shimizu (10.1016/j.neuroimage.2016.02.079_bb1490) 2015; 10
Good (10.1016/j.neuroimage.2016.02.079_bb0665) 2006
Li (10.1016/j.neuroimage.2016.02.079_bb1045) 2007; 28
Cui (10.1016/j.neuroimage.2016.02.079_bb0400) 2012; 59
Tang (10.1016/j.neuroimage.2016.02.079_bb1575) 2015; 44
Calhoun (10.1016/j.neuroimage.2016.02.079_bb0255) 2008; 29
Coupé (10.1016/j.neuroimage.2016.02.079_bb0385) 2012; 59
Lord (10.1016/j.neuroimage.2016.02.079_bb1095) 2012; 7
Petersen (10.1016/j.neuroimage.2016.02.079_bb1325) 2008; 13
Zhang (10.1016/j.neuroimage.2016.02.079_bb1830) 2014; 6
Bottino (10.1016/j.neuroimage.2016.02.079_bb0190) 2002; 14
Libero (10.1016/j.neuroimage.2016.02.079_bb1060) 2015; 66
Young (10.1016/j.neuroimage.2016.02.079_bb1740) 2009; 30
Liu (10.1016/j.neuroimage.2016.02.079_bb1085) 2015
Tang (10.1016/j.neuroimage.2016.02.079_bb1570) 2014; 35
Retico (10.1016/j.neuroimage.2016.02.079_bb1405) 2014; 29
Deshpande (10.1016/j.neuroimage.2016.02.079_bb0455) 2015; 45
Gollub (10.1016/j.neuroimage.2016.02.079_bb0655) 2013; 11
Hebert (10.1016/j.neuroimage.2016.02.079_bb0770) 2001; 15
Fan (10.1016/j.neuroimage.2016.02.079_bb0550) 2008; 63
Ingalhalikar (10.1016/j.neuroimage.2016.02.079_bb0820) 2011; 57
Calhoun (10.1016/j.neuroimage.2016.02.079_bb0245) 2006; 27
Iannaccone (10.1016/j.neuroimage.2016.02.079_bb0805) 2015; 24
Wee (10.1016/j.neuroimage.2016.02.079_bb1665) 2011; 54
Zou (10.1016/j.neuroimage.2016.02.079_bb1855) 2005; 67
Guyon (10.1016/j.neuroimage.2016.02.079_bb0720) 2003; 3
Min (10.1016/j.neuroimage.2016.02.079_bb1175) 2014; 35
Graña (10.1016/j.neuroimage.2016.02.079_bb0685) 2011; 502
Abdulkadir (10.1016/j.neuroimage.2016.02.079_bb0005) 2011; 58
Ardekani (10.1016/j.neuroimage.2016.02.079_bb0075) 2011; 32
Falahati (10.1016/j.neuroimage.2016.02.079_bb0545) 2014; 41
MacMaster (10.1016/j.neuroimage.2016.02.079_bb1115) 2014; 8
Wee (10.1016/j.neuroimage.2016.02.079_bb1670) 2013; 34
Rice (10.1016/j.neuroimage.2016.02.079_bb1410) 1999; 60
Murdaugh (10.1016/j.neuroimage.2016.02.079_bb1210) 2012
McAlonan (10.1016/j.neuroimage.2016.02.079_bb1135) 2005; 128
Mourão-Miranda (10.1016/j.neuroimage.2016.02.079_bb1200) 2012; 7
Baker (10.1016/j.neuroimage.2016.02.079_bb0105) 2015
Anticevic (10.1016/j.neuroimage.2016.02.079_bb0055) 2014; 24
Jafri (10.1016/j.neuroimage.2016.02.079_bb0850) 2008; 39
Hinrichs (10.1016/j.neuroimage.2016.02.079_bb0790) 2011; 55
Fan (10.1016/j.neuroimage.2016.02.079_bb0570) 2007; 26
Heinrichs (10.1016/j.neuroimage.2016.02.079_bb0775) 1998; 12
K
References_xml – volume: 34
  start-page: 235
  year: 2007
  end-page: 242
  ident: bb0915
  article-title: Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls
  publication-title: NeuroImage
– year: 2015
  ident: bb1860
  article-title: Label-aligned multi-task feature learning for multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Brain Imaging Behav.
– volume: 82
  start-page: 1205
  year: 2014
  end-page: 1208
  ident: bb0480
  article-title: The cost of brain diseases: a burden or a challenge?
  publication-title: Neuron
– volume: 289
  start-page: 3095
  year: 2003
  end-page: 3105
  ident: bb0925
  article-title: The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R)
  publication-title: JAMA
– volume: 41
  start-page: 277
  year: 2008
  end-page: 285
  ident: bb0560
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
  publication-title: NeuroImage
– volume: 7
  start-page: 359
  year: 2015
  end-page: 366
  ident: bb1345
  article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards
  publication-title: NeuroImage Clin.
– volume: 59
  start-page: 2045
  year: 2012
  end-page: 2056
  ident: bb1675
  article-title: Identification of MCI individuals using structural and functional connectivity networks
  publication-title: NeuroImage
– year: 2013
  ident: bb1070
  article-title: Disorder-Specific Predictive Classification of Adolescents with Attention Deficit Hyperactivity Disorder (ADHD) Relative to Autism Using Structural Magnetic Resonance Imaging
– volume: 18
  start-page: 774
  year: 2013
  end-page: 780
  ident: bb0700
  article-title: Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia
  publication-title: Mol. Psychiatry
– volume: 36
  start-page: 591
  year: 2012
  end-page: 600
  ident: bb0810
  article-title: Automatic brain caudate nuclei segmentation and classification in diagnostic of attention-deficit/hyperactivity disorder
  publication-title: Comput. Med. Imaging Graphs.
– volume: 83
  start-page: 148
  year: 2013
  end-page: 157
  ident: bb1075
  article-title: Locally linear embedding (LLE) for MRI based Alzheimer's disease classification
  publication-title: NeuroImage
– year: 2006
  ident: bb0160
  article-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
– volume: 12
  start-page: 592
  year: 2015
  end-page: 603
  ident: bb0130
  article-title: Integration of cognitive tests and resting state fMRI for the individual identification of mild cognitive impairment
  publication-title: Curr. Alzheimer Res.
– volume: 54
  start-page: 171
  year: 1994
  end-page: 187
  ident: bb0470
  article-title: Functional magnetic resonance imaging (FMRI) of the human brain
  publication-title: J. Neurosci. Methods
– volume: 27
  start-page: 598
  year: 2006
  end-page: 610
  ident: bb0250
  article-title: A method for multitask fMRI data fusion applied to schizophrenia
  publication-title: Hum. Brain Mapp.
– volume: 221
  start-page: 22
  year: 2014
  end-page: 31
  ident: bb0330
  article-title: Detecting brain structural changes as biomarker from magnetic resonance images using a local feature based SVM approach
  publication-title: J. Neurosci. Methods
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: bb0965
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
– volume: 212
  start-page: 89
  year: 2013
  end-page: 98
  ident: bb0015
  article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment
  publication-title: Psychiatry Res.
– volume: 17
  start-page: 913
  year: 1996
  end-page: 923
  ident: bb0625
  article-title: Linear measures of atrophy in mild Alzheimer disease
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 15
  start-page: 298
  year: 2015
  ident: bb0630
  article-title: Distinguishing bipolar and major depressive disorders by brain structural morphometry: a pilot study
  publication-title: BMC Psychiatry
– volume: 51
  start-page: 8
  year: 1994
  end-page: 19
  ident: bb0930
  article-title: Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey
  publication-title: Arch. Gen. Psychiatry
– volume: 39
  start-page: 1186
  year: 2008
  end-page: 1197
  ident: bb1620
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: NeuroImage
– volume: 66
  start-page: 611
  year: 2012
  end-page: 617
  ident: bb1285
  article-title: Discrimination of female schizophrenia patients from healthy women using multiple structural brain measures obtained with voxel-based morphometry
  publication-title: Psychiatry Clin. Neurosci.
– volume: 62
  start-page: 1218
  year: 2005
  end-page: 1227
  ident: bb0425
  article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities
  publication-title: Arch. Gen. Psychiatry
– volume: 6
  start-page: 63
  year: 2012
  ident: bb0415
  article-title: Classification of ADHD children through multimodal magnetic resonance imaging
  publication-title: Front. Syst. Neurosci.
– volume: 5
  start-page: 1391
  year: 2004
  end-page: 1415
  ident: bb0765
  article-title: The entire regularization path for the support vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 9
  year: 2010
  end-page: 16
  ident: bb1105
  article-title: Glad you asked: participants' opinions of re-consent for dbGap data submission
  publication-title: J. Empir. Res. Hum. Res. Ethics
– volume: 8
  year: 2013
  ident: bb1750
  article-title: Convergent and divergent functional connectivity patterns in schizophrenia and depression
  publication-title: PLoS One
– volume: 6
  start-page: 20
  year: 2014
  ident: bb0780
  article-title: Regions of interest computed by SVM wrapped method for Alzheimer's disease examination from segmented MRI
  publication-title: Front. Aging Neurosci.
– volume: 6
  year: 2011
  ident: bb1700
  article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease
  publication-title: PLoS One
– volume: 31
  start-page: 1339
  year: 2010
  end-page: 1347
  ident: bb1205
  article-title: Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease
  publication-title: Hum. Brain Mapp.
– volume: 3
  start-page: 53
  year: 2012
  ident: bb0705
  article-title: Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls
  publication-title: Front. Psychiatry
– volume: 367
  start-page: 1262
  year: 2006
  end-page: 1270
  ident: bb0640
  article-title: Mild cognitive impairment
  publication-title: Lancet
– volume: 40
  start-page: 1742
  year: 2015
  end-page: 1751
  ident: bb0890
  article-title: Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies
  publication-title: Neuropsychopharmacology
– volume: 30
  start-page: 1441
  year: 2011
  end-page: 1454
  ident: bb1805
  article-title: ODVBA: optimally-discriminative voxel-based analysis
  publication-title: IEEE Trans. Med. Imaging
– volume: 9
  start-page: 321
  year: 2011
  end-page: 333
  ident: bb0895
  article-title: Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses
  publication-title: Neuroinformatics
– volume: 5
  year: 2011
  ident: bb1465
  article-title: COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets
  publication-title: Front. Neuroinform.
– volume: 30
  start-page: 10612
  year: 2010
  end-page: 10623
  ident: bb0510
  article-title: Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach
  publication-title: J. Neurosci.
– volume: 117
  start-page: 1
  year: 2009
  end-page: 17
  ident: bb1100
  article-title: Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies
  publication-title: J. Affect. Disord.
– volume: 33
  year: 2012
  ident: bb1050
  article-title: Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features
  publication-title: Neurobiol. Aging
– volume: 7
  start-page: 10
  year: 2013
  end-page: 3389
  ident: bb0070
  article-title: Classification of schizophrenia patients based on resting-state functional network connectivity
  publication-title: Front. Neurosci.
– volume: 66
  start-page: 46
  year: 2015
  end-page: 59
  ident: bb1060
  article-title: Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates
  publication-title: Cortex
– volume: 8
  year: 2013
  ident: bb1310
  article-title: Extreme learning machine-based classification of ADHD using brain structural MRI data
  publication-title: PLoS One
– volume: 214
  start-page: 306
  year: 2013
  end-page: 312
  ident: bb1680
  article-title: Identifying major depressive disorder using Hurst exponent of resting-state brain networks
  publication-title: Psychiatry Res.
– volume: 45
  start-page: 2668
  year: 2015
  end-page: 2679
  ident: bb0455
  article-title: Fully connected Cascade Artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data
  publication-title: IEEE Trans Cybern
– volume: 9
  start-page: 132
  year: 2015
  ident: bb1265
  article-title: Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's disease diagnosis
  publication-title: Front. Comput. Neurosci.
– volume: 126
  start-page: 2132
  year: 2015
  end-page: 2141
  ident: bb0935
  article-title: Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory
  publication-title: Clin. Neurophysiol.
– volume: 6
  start-page: 260
  year: 2014
  ident: bb1830
  article-title: Integrative analysis of multi-dimensional imaging genomics data for Alzheimer's disease prediction
  publication-title: Front. Aging Neurosci.
– volume: 32
  start-page: 313
  year: 2012
  end-page: 322
  ident: bb1125
  article-title: Identification of brain regions responsible for Alzheimer's disease using a Self-adaptive Resource Allocation Network
  publication-title: Neural Netw.
– volume: 57
  start-page: 918
  year: 2011
  end-page: 927
  ident: bb0820
  article-title: Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD
  publication-title: NeuroImage
– year: 2015
  ident: bb1760
  article-title: Graph-guided joint prediction of class label and clinical scores for the Alzheimer's disease
  publication-title: Brain Struct. Funct.
– volume: 51
  start-page: 1405
  year: 2010
  end-page: 1413
  ident: bb1505
  article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
  publication-title: NeuroImage
– volume: 212
  start-page: 230
  year: 2013
  end-page: 236
  ident: bb0490
  article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI
  publication-title: Psychiatry Res.
– volume: 29
  start-page: 1265
  year: 2008
  end-page: 1275
  ident: bb0255
  article-title: Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder
  publication-title: Hum. Brain Mapp.
– volume: 8
  start-page: 1
  year: 2005
  end-page: 8
  ident: bb0565
  article-title: Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 64
  start-page: 1035
  year: 2008
  end-page: 1041
  ident: bb1735
  article-title: Multivariate pattern analysis of functional magnetic resonance imaging data reveals deficits in distributed representations in schizophrenia
  publication-title: Biol. Psychiatry
– volume: 251
  start-page: 195
  year: 2009
  end-page: 205
  ident: bb1145
  article-title: Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment
  publication-title: Radiology
– volume: 58
  start-page: 793
  year: 2011
  end-page: 804
  ident: bb1195
  article-title: Patient classification as an outlier detection problem: an application of the One-Class Support Vector Machine
  publication-title: NeuroImage
– start-page: 4418
  year: 2011
  end-page: 4421
  ident: bb0065
  article-title: Functional network connectivity during rest and task: comparison of healthy controls and schizophrenic patients
  publication-title: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE
– volume: 32
  start-page: 1043
  year: 2014
  end-page: 1051
  ident: bb1040
  article-title: Discriminative analysis of multivariate features from structural MRI and diffusion tensor images
  publication-title: Magn. Reson. Imaging
– volume: 62
  start-page: 1805
  year: 2015
  end-page: 1817
  ident: bb0335
  article-title: Domain transfer learning for MCI conversion prediction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bb0840
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– year: 2014
  ident: bb1500
  article-title: The tenth annual MLSP competition: schizophrenia classification challenge the mind research network, 1101 Yale Blvd., Albuquerque, New Mexico 87106
  publication-title: IEEE International Workshop on Machine Learning for Signal Processing. Remis, France
– volume: 97
  start-page: 117
  year: 2014
  end-page: 126
  ident: bb0300
  article-title: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia
  publication-title: NeuroImage
– volume: 39
  start-page: 1774
  year: 2008
  end-page: 1782
  ident: bb0440
  article-title: A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia
  publication-title: NeuroImage
– volume: 24
  start-page: 3116
  year: 2014
  end-page: 3130
  ident: bb0055
  article-title: Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness
  publication-title: Cereb. Cortex
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  ident: bb1365
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: NeuroImage
– volume: 96
  start-page: 183
  year: 2014
  end-page: 202
  ident: bb1655
  article-title: Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine
  publication-title: NeuroImage
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: bb1835
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: NeuroImage
– volume: 17
  start-page: 475
  year: 1998
  end-page: 479
  ident: bb0620
  article-title: MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease
  publication-title: IEEE Trans. Med. Imaging
– volume: 31
  start-page: 2290
  year: 2012
  end-page: 2306
  ident: bb1420
  article-title: The relevance voxel machine (RVoxM): a self-tuning Bayesian model for informative image-based prediction
  publication-title: IEEE Trans. Med. Imaging
– volume: 3
  start-page: 186
  year: 2007
  end-page: 191
  ident: bb0200
  article-title: Forecasting the global burden of Alzheimer's disease
  publication-title: Alzheimers Dement.
– start-page: 10
  year: 2010
  ident: bb1780
  article-title: Spark: cluster computing with working sets
  publication-title: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing
– volume: 6
  start-page: 1
  year: 2012
  end-page: 12
  ident: bb0485
  article-title: High classification accuracy for schizophrenia with rest and task fMRI data
  publication-title: Front. Hum. Neurosci.
– volume: 78
  start-page: 794
  year: 2015
  end-page: 804
  ident: bb1540
  article-title: In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia
  publication-title: Biol. Psychiatry
– volume: 2
  start-page: 735
  year: 2013
  end-page: 745
  ident: bb1745
  article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment
  publication-title: NeuroImage Clin.
– volume: 124
  start-page: 1084
  year: 2016
  end-page: 1088
  ident: bb0995
  article-title: An open platform for compiling, curating, and disseminating neuroimaging data
  publication-title: NeuroImage
– reference: )
– volume: 6
  start-page: 229
  year: 2014
  end-page: 236
  ident: bb0680
  article-title: Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: a support vector machine learning approach
  publication-title: NeuroImage Clin.
– year: 2015
  ident: bb1300
  article-title: Connectivity analysis and feature classification in attention deficit hyperactivity disorder sub-types: a task functional magnetic resonance imaging study
  publication-title: Brain Topogr.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bb1615
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
– reference: H2O [WWW Document], 2015. (URL
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: bb0475
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
– volume: 35
  start-page: 5052
  year: 2014
  end-page: 5070
  ident: bb1175
  article-title: Multi-atlas based representations for Alzheimer's disease diagnosis
  publication-title: Hum. Brain Mapp.
– volume: 7
  start-page: 235
  year: 2013
  ident: bb1520
  article-title: Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA
  publication-title: Front. Hum. Neurosci.
– volume: 70
  start-page: 869
  year: 2013
  end-page: 879
  ident: bb1610
  article-title: Salience network-based classification and prediction of symptom severity in children with autism
  publication-title: JAMA Psychiatry
– volume: 65
  start-page: 167
  year: 2013
  end-page: 175
  ident: bb0695
  article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer's disease
  publication-title: NeuroImage
– volume: 194
  start-page: 15
  year: 2002
  end-page: 19
  ident: bb0750
  article-title: Age transformation of combined hippocampus and amygdala volume improves diagnostic accuracy in Alzheimer's disease
  publication-title: J. Neurol. Sci.
– volume: 10
  year: 2015
  ident: bb1775
  article-title: Multimodal discrimination of Alzheimer's disease based on regional cortical atrophy and hypometabolism
  publication-title: PLoS One
– volume: 53
  start-page: 569
  year: 2014
  end-page: 578
  ident: bb0760
  article-title: Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based on pattern classification of temporal processing
  publication-title: J. Am. Acad. Child Adolesc. Psychiatry
– volume: 12
  start-page: 92
  year: 2015
  end-page: 102
  ident: bb0880
  article-title: Automated classification to predict the progression of Alzheimer's disease using whole-brain volumetry and DTI
  publication-title: Psychiatry Investig.
– volume: 2
  start-page: 372
  year: 2005
  ident: bb0150
  article-title: The global prevalence of schizophrenia
  publication-title: PLoS Med.
– volume: 65
  start-page: 511
  year: 2013
  end-page: 521
  ident: bb0535
  article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning
  publication-title: NeuroImage
– volume: 56
  start-page: 387
  year: 2011
  end-page: 399
  ident: bb1015
  article-title: Introduction to machine learning for brain imaging
  publication-title: NeuroImage
– volume: 107
  start-page: 4734
  year: 2010
  end-page: 4739
  ident: bb0165
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci.
– volume: 168
  start-page: 345
  year: 2015
  end-page: 352
  ident: bb0340
  article-title: Nodal centrality of functional network in the differentiation of schizophrenia
  publication-title: Schizophr. Res.
– volume: 35
  start-page: 3414
  year: 2014
  end-page: 3430
  ident: bb1660
  article-title: Diagnosis of autism spectrum disorders using regional and interregional morphological features
  publication-title: Hum. Brain Mapp.
– year: 2015
  ident: bb0295
  article-title: Simulation of structural magnetic resonance images for deep learning pre-training
  publication-title: IEEE International Symposium on Biomedical Imaging. New York, NY, USA
– volume: 35
  start-page: 5179
  year: 2014
  end-page: 5189
  ident: bb0875
  article-title: Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification
  publication-title: Hum. Brain Mapp.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bb1855
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.)
– year: 1960
  ident: bb0600
  article-title: The Design of Experiments
– start-page: 206
  year: 2012
  end-page: 230
  ident: bb0235
  article-title: Neuroimaging-based automatic classification of schizophrenia
  publication-title: Bioprediction, Biomarkers and Bad Behavior
– volume: 9
  year: 2014
  ident: bb1845
  article-title: Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning
  publication-title: PLoS One
– volume: 39
  start-page: 1666
  year: 2008
  end-page: 1681
  ident: bb0850
  article-title: A method for functional network connectivity among spatially independent resting-state components in schizophrenia
  publication-title: NeuroImage
– volume: 220
  start-page: 841
  year: 2013
  end-page: 859
  ident: bb1545
  article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct. Funct.
– volume: 31
  start-page: 2062
  year: 2012
  end-page: 2072
  ident: bb0800
  article-title: Can a single brain region predict a disorder?
  publication-title: IEEE Trans. Med. Imaging
– volume: 19
  start-page: 1263
  year: 2010
  end-page: 1272
  ident: bb1255
  article-title: Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease
  publication-title: J. Alzheimers Dis.
– volume: 160
  start-page: 196
  year: 2014
  end-page: 200
  ident: bb0170
  article-title: Machine learning fMRI classifier delineates subgroups of schizophrenia patients
  publication-title: Schizophr. Res.
– volume: 8
  start-page: 631
  year: 2015
  end-page: 639
  ident: bb0690
  article-title: A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment
  publication-title: Neuroimage Clin.
– volume: 35
  start-page: 3083
  year: 2014
  end-page: 3094
  ident: bb0755
  article-title: Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD
  publication-title: Hum. Brain Mapp.
– volume: 47
  start-page: 453
  year: 2013
  end-page: 459
  ident: bb1450
  article-title: Inter-regional cortical thickness correlations are associated with autistic symptoms: a machine-learning approach
  publication-title: J. Psychiatr. Res.
– volume: 7
  start-page: 702
  year: 2013
  ident: bb1510
  article-title: Discriminative analysis of non-linear brain connectivity in schizophrenia: an fMRI study
  publication-title: Front. Hum. Neurosci.
– volume: 25
  start-page: 552
  year: 2015
  end-page: 563
  ident: bb1395
  article-title: Predictive models based on support vector machines: whole-brain versus regional analysis of structural MRI in the Alzheimer's disease
  publication-title: J. Neuroimaging
– volume: 3
  start-page: 29
  year: 2014
  ident: bb1600
  article-title: The rise of large-scale imaging studies in psychiatry
  publication-title: Gigascience
– volume: xiv
  start-page: 29876
  year: 2015
  ident: bb0985
  article-title: Deep neural networks: a new framework for modelling biological vision and brain information processing
  publication-title: Bioresources
– volume: 4
  start-page: 461
  year: 2014
  end-page: 472
  ident: bb0060
  article-title: ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease
  publication-title: Neuroimage Clin.
– volume: 8
  start-page: 64
  year: 2014
  ident: bb0465
  article-title: Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects
  publication-title: Front. Neural. Circuits
– volume: 105
  start-page: 536
  year: 2015
  end-page: 551
  ident: bb1370
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI
  publication-title: NeuroImage
– volume: 58
  start-page: 785
  year: 2011
  end-page: 792
  ident: bb0005
  article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier
  publication-title: NeuroImage
– volume: 161
  start-page: 896
  year: 2004
  end-page: 902
  ident: bb0390
  article-title: Abnormalities of thalamic volume and shape in schizophrenia
  publication-title: Am. J. Psychiatry
– volume: 5
  start-page: 11
  year: 2007
  end-page: 33
  ident: bb1130
  article-title: The extensible neuroimaging archive toolkit
  publication-title: Neuroinformatics
– volume: 18
  start-page: 618
  year: 1988
  end-page: 694
  ident: bb1180
  article-title: New perspectives in autism. Part 2: The differential diagnosis and neurobiology of autism
  publication-title: Curr. Probl. Pediatr.
– start-page: 78
  year: 2004
  ident: bb1225
  article-title: Feature selection, L 1 vs. L 2 regularization, and rotational invariance
  publication-title: Proceedings of the Twenty-first International Conference on Machine Learning
– volume: 6
  start-page: 74
  year: 2012
  ident: bb1495
  article-title: Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD
  publication-title: Front. Syst. Neurosci.
– volume: 57
  start-page: 328
  year: 2015
  end-page: 349
  ident: bb1695
  article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics
  publication-title: Neurosci. Biobehav. Rev.
– volume: 24
  start-page: 427
  year: 2015
  end-page: 440
  ident: bb1330
  article-title: Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model
  publication-title: Eur. Child Adolesc. Psychiatry
– volume: 58
  start-page: 469
  year: 2011
  end-page: 480
  ident: bb0345
  article-title: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease
  publication-title: NeuroImage
– volume: 6
  start-page: 78
  year: 2012
  ident: bb0185
  article-title: Network, anatomical, and non-imaging measures for the prediction of ADHD diagnosis in individual subjects
  publication-title: Front. Syst. Neurosci.
– volume: 61
  start-page: 457
  year: 2012
  end-page: 463
  ident: bb0950
  article-title: Diagnostic neuroimaging across diseases
  publication-title: NeuroImage
– volume: 50
  start-page: 162
  year: 2010
  end-page: 174
  ident: bb1335
  article-title: Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease
  publication-title: NeuroImage
– volume: 3
  start-page: 279
  year: 2013
  end-page: 289
  ident: bb1795
  article-title: Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level
  publication-title: NeuroImage Clin.
– volume: 34
  start-page: 2815
  year: 2013
  end-page: 2826
  ident: bb0010
  article-title: How early can we predict Alzheimer's disease using computational anatomy?
  publication-title: Neurobiol. Aging
– volume: 139
  start-page: 7
  year: 2012
  end-page: 12
  ident: bb1625
  article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia
  publication-title: Schizophr. Res.
– volume: 43
  start-page: 1313
  year: 2013
  end-page: 1320
  ident: bb1010
  article-title: Classification of diffusion tensor images for the early detection of Alzheimer's disease
  publication-title: Comput. Biol. Med.
– volume: 7
  year: 2012
  ident: bb1200
  article-title: Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents
  publication-title: PLoS One
– volume: 12
  start-page: 426
  year: 1998
  ident: bb0775
  article-title: Neurocognitive deficit in schizophrenia: a quantitative review of the evidence
  publication-title: Neuropsychology
– year: 2006
  ident: bb0665
  article-title: Permutation, Parametric, and Bootstrap Tests of Hypotheses
– volume: 35
  start-page: 58
  year: 2009
  end-page: 66
  ident: bb0610
  article-title: Tuning in to the voices: a multisite FMRI study of auditory hallucinations
  publication-title: Schizophr. Bull.
– volume: 128
  start-page: 268
  year: 2005
  end-page: 276
  ident: bb1135
  article-title: Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism
  publication-title: Brain
– volume: 9
  start-page: 1
  year: 2015
  end-page: 15
  ident: bb0305
  article-title: Enhanced disease characterization through multi network functional normalization in fMRI
  publication-title: Front. Neurosci.
– volume: 31
  start-page: 51
  year: 2012
  end-page: 69
  ident: bb0120
  article-title: Generative-discriminative basis learning for medical imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 47
  start-page: 1476
  year: 2009
  end-page: 1486
  ident: bb0645
  article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging
  publication-title: NeuroImage
– volume: 44
  start-page: 599
  year: 2015
  end-page: 611
  ident: bb1575
  article-title: Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer's disease
  publication-title: J. Alzheimers Dis.
– volume: 43
  start-page: 349
  year: 2004
  end-page: 357
  ident: bb0020
  article-title: Outcome classification of preschool children with autism spectrum disorders using MRI brain measures
  publication-title: J. Am. Acad. Child Adolesc. Psychiatry
– volume: 97
  start-page: 245
  year: 1997
  end-page: 271
  ident: bb0175
  article-title: Selection of relevant features and examples in machine learning
  publication-title: Artif. Intell.
– volume: 4
  start-page: 192
  year: 2010
  ident: bb1720
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia
  publication-title: Front. Hum. Neurosci.
– volume: 59
  start-page: 1209
  year: 2012
  end-page: 1217
  ident: bb0400
  article-title: Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach
  publication-title: NeuroImage
– start-page: 5432
  year: 2015
  end-page: 5435
  ident: bb1630
  article-title: The impact of data preprocessing in traumatic brain injury detection using functional magnetic resonance imaging
  publication-title: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
– volume: 8
  start-page: 119
  year: 2014
  end-page: 127
  ident: bb1115
  article-title: Disorder-specific volumetric brain difference in adolescent major depressive disorder and bipolar depression
  publication-title: Brain Imaging Behav.
– volume: 83
  start-page: 999
  year: 1988
  end-page: 1005
  ident: bb1155
  article-title: Importance sampling for estimating exact probabilities in permutational inference
  publication-title: J. Am. Stat. Assoc.
– volume: 82
  start-page: 1552
  year: 2013
  end-page: 1557
  ident: bb1650
  article-title: Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder
  publication-title: Eur. J. Radiol.
– volume: 7
  start-page: 520
  year: 2013
  ident: bb0040
  article-title: Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial
  publication-title: Front. Hum. Neurosci.
– volume: 61
  start-page: 576
  year: 2014
  end-page: 589
  ident: bb0865
  article-title: Integration of network topological and connectivity properties for neuroimaging classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 40
  start-page: 68
  year: 2008
  end-page: 76
  ident: bb1380
  article-title: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer's type
  publication-title: NeuroImage
– volume: 11
  start-page: 815
  year: 2006
  end-page: 836
  ident: bb0835
  article-title: Subtyping schizophrenia: implications for genetic research
  publication-title: Mol. Psychiatry
– volume: 66
  start-page: 119
  year: 2013
  end-page: 132
  ident: bb1515
  article-title: Three-way (N-way) fusion of brain imaging data based on mCCA
  publication-title: NeuroImage
– volume: 6
  year: 2011
  ident: bb0145
  article-title: Breast cancer affects both the hippocampus volume and the episodic autobiographical memory retrieval
  publication-title: PLoS One
– volume: 30
  start-page: 1667
  year: 2009
  end-page: 1677
  ident: bb1740
  article-title: Patterns of structural complexity in Alzheimer's disease and frontotemporal dementia
  publication-title: Hum. Brain Mapp.
– year: 2015
  ident: bb0105
  article-title: Large scale collaboration with autonomy: decentralized data ICA
  publication-title: IEEE Machine Learning for Signal Processing Workshop. Boston, MA
– volume: 124
  start-page: 127
  year: 2015
  end-page: 146
  ident: bb0940
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: NeuroImage
– volume: 6
  start-page: 75
  year: 2012
  ident: bb0460
  article-title: Exploiting the brain's network structure in identifying ADHD subjects
  publication-title: Front. Syst. Neurosci.
– volume: 61
  year: 2012
  ident: bb0100
  article-title: Prevalence of autism spectrum disorders: autism and developmental disabilities monitoring network, 14 sites, United States, 2008
  publication-title: Morb. Mortal. Wkly. Rep. Surveill. Summ.
– volume: 8
  start-page: 238
  year: 2015
  end-page: 245
  ident: bb0325
  article-title: Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism
  publication-title: Neuroimage Clin.
– volume: 2013
  start-page: 867924
  year: 2013
  ident: bb1635
  article-title: Machine learning approaches: from theory to application in schizophrenia
  publication-title: Comput. Math. Methods Med.
– volume: 64
  start-page: 208
  year: 2015
  end-page: 216
  ident: bb0125
  article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease
  publication-title: Comput. Biol. Med.
– volume: 63
  start-page: 118
  year: 2008
  end-page: 124
  ident: bb0550
  article-title: Unaffected family members and schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study
  publication-title: Biol. Psychiatry
– volume: 29
  start-page: 231
  year: 2013
  end-page: 239
  ident: bb1400
  article-title: Neuroimaging-based methods for autism identification: a possible translational application?
  publication-title: Funct. Neurol.
– volume: 48
  start-page: 138
  year: 2009
  end-page: 149
  ident: bb0785
  article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
  publication-title: NeuroImage
– volume: 6
  year: 2011
  ident: bb0395
  article-title: Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors
  publication-title: PLoS One
– volume: 95
  start-page: 378
  year: 1986
  ident: bb1030
  article-title: Age at first onset for nonbipolar depression
  publication-title: J. Abnorm. Psychol.
– volume: 59
  start-page: 2187
  year: 2012
  end-page: 2195
  ident: bb0420
  article-title: Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)
  publication-title: NeuroImage
– volume: 1
  start-page: 10
  year: 2001
  end-page: 18
  ident: bb0525
  article-title: Neuropsychiatry at the millennium: the potential for mind/brain integration through emerging interdisciplinary research strategies
  publication-title: Clin. Neurosci. Res.
– volume: 40
  start-page: 110
  year: 2008
  end-page: 120
  ident: bb1850
  article-title: Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder
  publication-title: NeuroImage
– volume: 8
  start-page: 35
  year: 2014
  ident: bb1440
  article-title: Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation
  publication-title: Front. Neuroinform.
– volume: 41
  start-page: 685
  year: 2014
  end-page: 708
  ident: bb0545
  article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging
  publication-title: J. Alzheimers Dis.
– volume: 223
  start-page: 179
  year: 2014
  end-page: 186
  ident: bb1390
  article-title: Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia
  publication-title: Psychiatry Res.
– volume: 35
  start-page: 3701
  year: 2014
  end-page: 3725
  ident: bb1570
  article-title: Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting
  publication-title: Hum. Brain Mapp.
– volume: 13
  start-page: 27
  year: 2012
  end-page: 66
  ident: bb0205
  article-title: Conditional likelihood maximisation: a unifying framework for mutual information feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 256
  start-page: 168
  year: 2015
  end-page: 183
  ident: bb1280
  article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease
  publication-title: J. Neurosci. Methods
– volume: 56
  start-page: 766
  year: 2011
  end-page: 781
  ident: bb0405
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage
– volume: 14
  start-page: 21
  year: 2014
  ident: bb1065
  article-title: Brain region's relative proximity as marker for Alzheimer's disease based on structural MRI
  publication-title: BMC Med. Imaging
– volume: 77
  start-page: 55
  year: 2007
  end-page: 61
  ident: bb0650
  article-title: Efficient calculation of p-values in linear-statistic permutation significance tests
  publication-title: J. Stat. Comput. Simul.
– volume: 2
  start-page: 54
  year: 2011
  ident: bb1250
  article-title: Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to Alzheimer's disease
  publication-title: Front. Neurol.
– volume: 16
  start-page: 860
  year: 2011
  end-page: 866
  ident: bb1190
  article-title: Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition
  publication-title: Mol. Psychiatry
– volume: 9
  start-page: 789
  year: 2012
  end-page: 794
  ident: bb1350
  article-title: Computer based classification of MR scans in first time applicant Alzheimer patients
  publication-title: Curr. Alzheimer Res.
– volume: 84
  start-page: 1261
  year: 1994
  end-page: 1264
  ident: bb0530
  article-title: The US economic and social costs of Alzheimer's disease revisited
  publication-title: Am. J. Public Health
– volume: 6
  start-page: 284
  year: 2014
  end-page: 295
  ident: bb1385
  article-title: Novel ThickNet features for the discrimination of amnestic MCI subtypes
  publication-title: Neuroimage Clin.
– volume: 135
  start-page: 28
  year: 2012
  end-page: 33
  ident: bb1730
  article-title: Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia
  publication-title: Schizophr. Res.
– volume: 16
  start-page: 491
  year: 2014
  end-page: 503
  ident: bb0430
  article-title: Neuroimaging biomarkers to predict treatment response in schizophrenia: the end of 30
  publication-title: Dialogues Clin. Neurosci.
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bb0725
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 233
  start-page: 289
  year: 2015
  end-page: 291
  ident: bb1455
  article-title: Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression
  publication-title: Psychiatry Res.
– volume: 350
  start-page: 1761
  year: 1997
  end-page: 1766
  ident: bb1685
  article-title: The autistic spectrum
  publication-title: Lancet
– year: 2003
  ident: bb0090
  article-title: Diagnostic and Statistical Manual of Mental Disorders: DSM-5
– volume: 1–10
  year: 2015
  ident: bb0910
  article-title: Disintegration of sensorimotor brain networks in schizophrenia
  publication-title: Schizophr. Bull.
– volume: 36
  start-page: S121
  year: 2015
  end-page: S131
  ident: bb1375
  article-title: Brain connectivity and novel network measures for Alzheimer's disease classification
  publication-title: Neurobiol. Aging
– volume: 32
  start-page: 1
  year: 2011
  end-page: 9
  ident: bb0075
  article-title: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers
  publication-title: Hum. Brain Mapp.
– volume: 124
  start-page: 1065
  year: 2016
  end-page: 1068
  ident: bb0520
  article-title: Sharing the wealth: neuroimaging data repositories
  publication-title: NeuroImage
– year: 2012
  ident: bb1210
  article-title: Differential Deactivation during Mentalizing and Classification of Autism Based on Default Mode Network Connectivity
– volume: 13
  start-page: 534
  year: 2001
  end-page: 546
  ident: bb1000
  article-title: Diffusion tensor imaging: concepts and applications
  publication-title: J. Magn. Reson. Imaging
– volume: 30
  start-page: 1056
  year: 2015
  end-page: 1067
  ident: bb1305
  article-title: Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction
  publication-title: Int. J. Geriatr. Psychiatry
– volume: 112
  start-page: 232
  year: 2015
  end-page: 243
  ident: bb0310
  article-title: Gaussian process classification of Alzheimer's disease and mild cognitive impairment from resting-state fMRI
  publication-title: NeuroImage
– volume: 288
  start-page: 94
  year: 2015
  end-page: 102
  ident: bb1770
  article-title: State-based functional connectivity changes associate with cognitive decline in amnestic mild cognitive impairment subjects
  publication-title: Behav. Brain Res.
– volume: 64
  start-page: 479
  year: 1985
  end-page: 486
  ident: bb1160
  article-title: Self-diffusion NMR imaging using stimulated echoes
  publication-title: J. Magn. Reson.
– volume: 82
  start-page: 695
  year: 2014
  end-page: 708
  ident: bb1560
  article-title: Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep
  publication-title: Neuron
– volume: 2012
  year: 2012
  ident: bb1530
  article-title: Three-way fMRI–DTI–Methylation data fusion based on MCCA
  publication-title: Eng. Med. Biol. Soc.
– volume: 6
  start-page: 68
  year: 2012
  ident: bb1445
  article-title: Evaluation of pattern recognition and feature extraction methods in ADHD prediction
  publication-title: Front. Syst. Neurosci.
– volume: 36
  start-page: 1140
  year: 2012
  end-page: 1152
  ident: bb1260
  article-title: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
  publication-title: Neurosci. Biobehav. Rev.
– volume: 66
  start-page: 1055
  year: 2009
  end-page: 1060
  ident: bb1550
  article-title: Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms
  publication-title: Biol. Psychiatry
– volume: 56
  start-page: 212
  year: 2011
  end-page: 219
  ident: bb0375
  article-title: Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment
  publication-title: NeuroImage
– volume: 46
  start-page: 125
  year: 2015
  end-page: 131
  ident: bb0605
  article-title: Cortical thickness predicts the first onset of major depression in adolescence
  publication-title: Int. J. Dev. Neurosci.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bb0720
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 460
  year: 2004
  end-page: 465
  ident: bb0025
  article-title: The use of “overall accuracy” to evaluate the validity of screening or diagnostic tests
  publication-title: J. Gen. Intern. Med.
– volume: 30
  start-page: 2132
  year: 2009
  end-page: 2141
  ident: bb1170
  article-title: Collaborative computational anatomy: an MRI morphometry study of the human brain via diffeomorphic metric mapping
  publication-title: Hum. Brain Mapp.
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: bb1185
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: NeuroImage
– volume: 29
  start-page: 231
  year: 2014
  end-page: 239
  ident: bb1405
  article-title: Neuroimaging-based methods for autism identification: a possible translational application?
  publication-title: Funct. Neurol.
– volume: 34
  start-page: 3411
  year: 2013
  end-page: 3425
  ident: bb1670
  article-title: Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns
  publication-title: Hum. Brain Mapp.
– volume: 45
  start-page: S199
  year: 2009
  end-page: S209
  ident: bb1320
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
– volume: 7
  year: 2013
  ident: bb1355
  article-title: Toward open sharing of task-based fMRI data: the OpenfMRI project
  publication-title: Front. Neuroinform.
– volume: 135
  start-page: 1508
  year: 2012
  end-page: 1521
  ident: bb1215
  article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder
  publication-title: Brain
– volume: 259
  start-page: 834
  year: 2011
  end-page: 843
  ident: bb1150
  article-title: Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis
  publication-title: Radiology
– volume: 105
  start-page: 493
  year: 2015
  end-page: 506
  ident: bb1415
  article-title: Sparse network-based models for patient classification using fMRI
  publication-title: NeuroImage
– volume: 54
  start-page: 1812
  year: 2011
  end-page: 1822
  ident: bb1665
  article-title: Enriched white matter connectivity networks for accurate identification of MCI patients
  publication-title: NeuroImage
– volume: 10
  year: 2015
  ident: bb1490
  article-title: Toward probabilistic diagnosis and understanding of depression based on functional MRI data analysis with logistic group LASSO
  publication-title: PLoS One
– volume: 25
  start-page: 866
  year: 2015
  end-page: 874
  ident: bb0670
  article-title: Gray matter alterations in young children with autism spectrum disorders: comparing morphometry at the voxel and regional level
  publication-title: J. Neuroimaging
– start-page: 1
  year: 2010
  end-page: 17
  ident: bb0945
  article-title: Identification of imaging biomarkers in schizophrenia: a coefficient-constrained independent component analysis of the mind multi-site schizophrenia study
  publication-title: Neuroinformatics
– volume: 50
  start-page: 589
  year: 2010
  end-page: 599
  ident: bb0860
  article-title: Predictive models of autism spectrum disorder based on brain regional cortical thickness
  publication-title: NeuroImage
– volume: 27
  start-page: 47
  year: 2006
  end-page: 62
  ident: bb0245
  article-title: Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data
  publication-title: Hum. Brain Mapp.
– volume: 72
  start-page: 426
  year: 2009
  end-page: 431
  ident: bb0955
  article-title: Automatic detection of preclinical neurodegeneration presymptomatic Huntington disease
  publication-title: Neurology
– volume: 502
  start-page: 225
  year: 2011
  end-page: 229
  ident: bb0685
  article-title: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson's correlation
  publication-title: Neurosci. Lett.
– volume: 48
  start-page: 978
  year: 1997
  end-page: 985
  ident: bb0905
  article-title: Midline cerebral morphometry distinguishes frontotemporal dementia and Alzheimer's disease
  publication-title: Neurology
– volume: 6
  start-page: 59
  year: 2012
  ident: bb0360
  article-title: Insights into multimodal imaging classification of ADHD
  publication-title: Front. Syst. Neurosci.
– volume: 10
  start-page: 173
  year: 2013
  end-page: 180
  ident: bb1705
  article-title: The receiver operational characteristic for binary classification with multiple indices and its application to the neuroimaging study of Alzheimer's disease
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 55
  start-page: 1497
  year: 2011
  end-page: 1503
  ident: bb0660
  article-title: Prognostic prediction of therapeutic response in depression using high-field MR imaging
  publication-title: NeuroImage
– start-page: 471
  year: 2005
  end-page: 483
  ident: bb0095
  article-title: Principal component analysis for distributed data sets with updating
  publication-title: Proceedings of the 6th International Conference on Advanced Parallel Processing Technologies, APPT’05
– volume: 22
  start-page: 177
  year: 2001
  end-page: 186
  ident: bb1690
  article-title: Hippocampal volume discriminates between normal cognition; questionable and mild dementia in the elderly
  publication-title: Neurobiol. Aging
– volume: 30
  start-page: 393
  year: 2004
  end-page: 404
  ident: bb1220
  article-title: Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects
  publication-title: Schizophr. Bull.
– volume: 2015
  start-page: 865265
  year: 2015
  ident: bb0675
  article-title: Inclusion of neuropsychological scores in atrophy models improves diagnostic classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Comput. Intell. Neurosci.
– volume: 59
  start-page: 3736
  year: 2012
  end-page: 3747
  ident: bb0385
  article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease
  publication-title: NeuroImage
– volume: 2014
  start-page: 862307
  year: 2014
  ident: bb0580
  article-title: An ensemble-of-classifiers based approach for early diagnosis of Alzheimer's disease: classification using structural features of brain images
  publication-title: Comput. Math. Methods Med.
– volume: 87
  start-page: 297
  year: 2006
  end-page: 306
  ident: bb1290
  article-title: Classification of adolescent psychotic disorders using linear discriminant analysis
  publication-title: Schizophr. Res.
– volume: 35
  start-page: 682
  year: 2013
  end-page: 696
  ident: bb0410
  article-title: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 1–12
  year: 2006
  ident: bb0495
  article-title: Differential privacy
  publication-title: Autom. Lang. Program.
– volume: 10
  year: 2015
  ident: bb0970
  article-title: Diagnostic classification of schizophrenia patients on the basis of regional reward-related fMRI signal patterns
  publication-title: PLoS One
– volume: 2
  start-page: 207
  year: 2008
  end-page: 226
  ident: bb0445
  article-title: A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from a multi-site fMRI schizophrenia study
  publication-title: Brain Imaging Behav.
– volume: 7
  start-page: 670
  year: 2013
  ident: bb0450
  article-title: Identification of neural connectivity signatures of autism using machine learning
  publication-title: Front. Hum. Neurosci.
– volume: 4
  start-page: 187
  year: 2013
  ident: bb1590
  article-title: Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis
  publication-title: Front. Psychiatry
– volume: 26
  start-page: 462
  year: 2007
  end-page: 470
  ident: bb1640
  article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type
  publication-title: IEEE Trans. Med. Imaging
– year: 2015
  ident: bb0870
  article-title: Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data
  publication-title: IEEE Trans. Auton. Ment. Dev.
– volume: 6
  start-page: 66
  year: 2012
  ident: bb0315
  article-title: ADHD classification by a texture analysis of anatomical brain MRI data
  publication-title: Front. Syst. Neurosci.
– volume: 26
  start-page: 93
  year: 2007
  end-page: 105
  ident: bb0570
  article-title: COMPARE: classification of morphological patterns using adaptive regional elements
  publication-title: Comp. A J. Comp. Educ.
– volume: 8
  year: 2013
  ident: bb0500
  article-title: Robust automated detection of microstructural white matter degeneration in Alzheimer's disease using machine learning classification of multicenter DTI data
  publication-title: PLoS One
– volume: 7
  year: 2012
  ident: bb1095
  article-title: Changes in community structure of resting state functional connectivity in unipolar depression
  publication-title: PLoS One
– volume: 59
  start-page: 2196
  year: 2012
  end-page: 2207
  ident: bb0115
  article-title: Altered resting state complexity in schizophrenia
  publication-title: NeuroImage
– volume: 6
  start-page: 1
  year: 2011
  end-page: 10
  ident: bb1565
  article-title: Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness
  publication-title: PLoS One
– volume: 7
  year: 2012
  ident: bb1820
  article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
  publication-title: PLoS One
– volume: 58
  start-page: 526
  year: 2011
  end-page: 536
  ident: bb0290
  article-title: Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia
  publication-title: NeuroImage
– volume: 63
  start-page: 55
  year: 2015
  end-page: 67
  ident: bb0815
  article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control
  publication-title: Cortex
– volume: 25
  start-page: 303
  year: 2004
  end-page: 310
  ident: bb1315
  article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD
  publication-title: Neurobiol. Aging
– volume: 122
  start-page: 182
  year: 2015
  end-page: 190
  ident: bb1710
  article-title: Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment
  publication-title: Comput. Methods Prog. Biomed.
– volume: 42
  start-page: 675
  year: 2008
  end-page: 682
  ident: bb0270
  article-title: Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements
  publication-title: NeuroImage
– volume: 2014
  start-page: 706157
  year: 2014
  ident: bb1480
  article-title: Neuroanatomical classification in a population-based sample of psychotic major depression and bipolar I disorder with 1
  publication-title: Biomed. Res. Int.
– volume: 11
  start-page: 18
  year: 2011
  ident: bb0380
  article-title: Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder
  publication-title: BMC Psychiatry
– volume: 49
  start-page: 3110
  year: 2010
  end-page: 3121
  ident: bb1485
  article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI
  publication-title: NeuroImage
– volume: 60
  start-page: 59
  year: 2012
  end-page: 70
  ident: bb0350
  article-title: Does feature selection improve classification accuracy? impact of sample size and feature selection on classification using anatomical magnetic resonance images
  publication-title: NeuroImage
– volume: 3
  year: 2009
  ident: bb0180
  article-title: Mining the mind research network: a novel framework for exploring large scale, heterogeneous translational neuroscience research data sources
  publication-title: Front. Neuroinform.
– volume: 35
  start-page: 1305
  year: 2014
  end-page: 1319
  ident: bb1090
  article-title: Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis
  publication-title: Hum. Brain Mapp.
– volume: 47
  start-page: 1383
  year: 2013
  end-page: 1388
  ident: bb1270
  article-title: Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain
  publication-title: J. Psychiatr. Res.
– volume: 29
  start-page: 23
  year: 2008
  end-page: 30
  ident: bb1020
  article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls
  publication-title: Neurobiol. Aging
– volume: 9
  start-page: 532
  year: 2015
  end-page: 544
  ident: bb1025
  article-title: Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders
  publication-title: NeuroImage Clin.
– volume: 13
  start-page: 45
  year: 2008
  end-page: 53
  ident: bb1325
  article-title: Mild cognitive impairment: an overview
  publication-title: CNS Spectr.
– start-page: 1000
  year: 2007
  ident: bb0215
  article-title: The neuroimaging informatics tools and resources clearinghouse (NITRC)
  publication-title: AMIA Annual Symposium Proceedings/AMIA Symposium. AMIA Symposium
– volume: 87
  start-page: 9868
  year: 1990
  end-page: 9872
  ident: bb1245
  article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation
  publication-title: Proc. Natl. Acad. Sci.
– volume: 59
  start-page: 895
  year: 2012
  end-page: 907
  ident: bb1815
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
  publication-title: NeuroImage
– volume: 57
  start-page: 1215
  year: 2005
  end-page: 1220
  ident: bb0155
  article-title: Attention-deficit/hyperactivity disorder: a selective overview
  publication-title: Biol. Psychiatry
– volume: 6
  start-page: 1
  year: 2012
  end-page: 22
  ident: bb0210
  article-title: ADHD-200 global competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
  publication-title: Front. Syst. Neurosci.
– volume: 34
  start-page: 283
  year: 2013
  end-page: 291
  ident: bb0740
  article-title: Individual classification of mild cognitive impairment subtypes by support vector machine analysis of white matter DTI
  publication-title: AJNR Am. J. Neuroradiol.
– year: 2015
  ident: bb1085
  article-title: Inherent structure based multi-view learning with multi-template feature representation for Alzheimer's disease diagnosis
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2012
  ident: bb0110
  article-title: Anatomical Brain Images Alone Can Accurately Diagnose Chronic Neuropsychiatric Illnesses
– volume: 24
  start-page: 545
  year: 2014
  end-page: 552
  ident: bb0715
  article-title: Decreased regional activity of default-mode network in unaffected siblings of schizophrenia patients at rest
  publication-title: Eur. Neuropsychopharmacol.
– volume: 4
  start-page: 95
  year: 2013
  ident: bb0830
  article-title: Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging
  publication-title: Front. Psychiatry
– volume: 68
  start-page: 91
  year: 2015
  end-page: 98
  ident: bb1425
  article-title: Subcortical volumes differentiate major depressive disorder, bipolar disorder, and remitted major depressive disorder
  publication-title: J. Psychiatr. Res.
– volume: 290
  start-page: 124
  year: 2015
  end-page: 130
  ident: bb0585
  article-title: Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longitudinal brain atrophy patterns
  publication-title: Behav. Brain Res.
– volume: 14
  start-page: 59
  year: 2002
  end-page: 72
  ident: bb0190
  article-title: Volumetric MRI measurements can differentiate Alzheimer's disease, mild cognitive impairment, and normal aging
  publication-title: Int. Psychogeriatr.
– volume: 20
  start-page: 61
  year: 2014
  end-page: 68
  ident: bb1005
  article-title: Online learning for classification of Alzheimer disease based on cortical thickness and hippocampal shape analysis
  publication-title: Heal. Inf. Res
– volume: 79
  start-page: 94
  year: 2013
  end-page: 110
  ident: bb1810
  article-title: Optimally-discriminative voxel-based morphometry significantly increases the ability to detect group differences in schizophrenia, mild cognitive impairment, and Alzheimer's disease
  publication-title: NeuroImage
– volume: 7
  start-page: 81
  year: 2013
  end-page: 97
  ident: bb0365
  article-title: A primer on quantitized data analysis and permutation testing
  publication-title: J. Mix. Methods Res.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: bb0975
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– volume: 6
  year: 2012
  ident: bb0370
  article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
  publication-title: Front. Syst. Neurosci.
– volume: 55
  start-page: 1109
  year: 2011
  end-page: 1119
  ident: bb0595
  article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)
  publication-title: NeuroImage
– volume: 8
  year: 2014
  ident: bb1470
  article-title: Identifying endophenotypes of autism: a multivariate approach
  publication-title: Front. Comput. Neurosci.
– volume: 40
  start-page: 773
  year: 2009
  end-page: 779
  ident: bb1790
  article-title: Regional white matter integrity differentiates between vascular dementia and Alzheimer disease
  publication-title: Stroke
– volume: 133
  start-page: 1352
  year: 2010
  end-page: 1367
  ident: bb1840
  article-title: Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease
  publication-title: Brain
– volume: 7
  start-page: 270
  year: 2011
  end-page: 279
  ident: bb0030
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement.
– volume: 2015
  start-page: 814104
  year: 2015
  ident: bb1585
  article-title: Feature selection based on machine learning in MRIs for hippocampal segmentation
  publication-title: Comput. Math. Methods Med.
– volume: 12
  start-page: 10
  year: 2013
  ident: bb1755
  article-title: Functional connectivity-based signatures of schizophrenia revealed by multiclass pattern analysis of resting-state fMRI from schizophrenic patients and their healthy siblings
  publication-title: Biomed. Eng. Online
– volume: 96
  start-page: 245
  year: 2014
  end-page: 260
  ident: bb0795
  article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks
  publication-title: NeuroImage
– year: 1998
  ident: bb0735
  article-title: Practical Feature Subset Selection for Machine Learning
– volume: 28
  start-page: 1339
  year: 2007
  end-page: 1345
  ident: bb1045
  article-title: Hippocampal shape analysis of Alzheimer disease based on machine learning methods
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 6
  start-page: 80
  year: 2012
  ident: bb0540
  article-title: Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data
  publication-title: Front. Syst. Neurosci.
– volume: 57
  start-page: 119
  year: 1995
  end-page: 130
  ident: bb0435
  article-title: Discriminant analysis of MRI measures as a method to determine the presence of dementia of the Alzheimer type
  publication-title: Psychiatry Res.
– volume: 9
  start-page: 66
  year: 2015
  ident: bb1825
  article-title: Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning
  publication-title: Front. Comput. Neurosci.
– volume: 9
  start-page: 307
  year: 2015
  ident: bb1435
  article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach
  publication-title: Front. Neurosci.
– volume: 134
  start-page: 3742
  year: 2011
  end-page: 3754
  ident: bb0050
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
– volume: 68
  start-page: 110
  year: 2014
  end-page: 119
  ident: bb0265
  article-title: Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis
  publication-title: Psychiatry Clin. Neurosci.
– volume: 11
  start-page: 521
  year: 1996
  end-page: 528
  ident: bb1475
  article-title: Prediction of group membership in developmental dyslexia, attention deficit hyperactivity disorder, and normal controls using brain morphometric analysis of magnetic resonance imaging
  publication-title: Arch. Clin. Neuropsychol.
– volume: 30
  start-page: 446
  year: 2012
  end-page: 452
  ident: bb0035
  article-title: Partial least squares for discrimination in fMRI data
  publication-title: Magn. Reson. Imaging
– year: 2015
  ident: bb0980
  article-title: Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers
  publication-title: Brain
– volume: 7
  year: 2012
  ident: bb1240
  article-title: Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment
  publication-title: PLoS One
– volume: 70
  start-page: 833
  year: 2011
  end-page: 841
  ident: bb1605
  article-title: Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism
  publication-title: Biol. Psychiatry
– volume: 84
  start-page: 299
  year: 2014
  end-page: 306
  ident: bb1460
  article-title: Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects
  publication-title: NeuroImage
– volume: 47
  start-page: 939
  year: 2015
  end-page: 954
  ident: bb0960
  article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study
  publication-title: J. Alzheimers Dis.
– volume: 232
  start-page: 237
  year: 2015
  end-page: 249
  ident: bb0855
  article-title: Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition
  publication-title: Psychiatry Res. Neuroimaging
– start-page: 8
  year: 2013
  ident: bb0590
  article-title: Combining classification with fMRI-Derived complex network measures for potential neurodiagnostics
  publication-title: PLoS One
– volume: 49
  start-page: 786
  year: 1997
  end-page: 794
  ident: bb0845
  article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease
  publication-title: Neurology
– volume: 7
  start-page: 19
  year: 2012
  ident: bb0135
  article-title: Deep learning of representations for unsupervised and transfer learning
  publication-title: Unsupervised Transf. Learn. Challenges Mach. Learn.
– volume: 60
  start-page: 1
  year: 1999
  end-page: 478
  ident: bb1410
  article-title: The economic impact of schizophrenia
  publication-title: J. Clin. Psychiatry
– volume: 9
  year: 2014
  ident: bb1765
  article-title: Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals
  publication-title: PLoS One
– volume: 78
  start-page: 270
  year: 2013
  end-page: 283
  ident: bb0635
  article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
  publication-title: NeuroImage
– volume: 22
  start-page: 315
  year: 2010
  end-page: 327
  ident: bb0745
  article-title: Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data
  publication-title: J. Alzheimers Dis.
– volume: 9
  year: 2014
  ident: bb1035
  article-title: An efficient approach for differentiating Alzheimer's disease from normal elderly based on multicenter MRI using gray-level invariant features
  publication-title: PLoS One
– volume: 39
  start-page: 57
  year: 2008
  end-page: 60
  ident: bb1140
  article-title: Combining ERP and structural MRI information in first episode schizophrenia and bipolar disorder
  publication-title: Clin. EEG Neurosci.
– start-page: 1
  year: 2013
  end-page: 37
  ident: bb0140
  article-title: Deep learning of representations: looking forward
  publication-title: Statistical Language and Speech Processing
– volume: 15
  start-page: 254
  year: 2012
  end-page: 261
  ident: bb0825
  article-title: Identifying sub-populations via unsupervised cluster analysis on multi-edge similarity graphs
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 5
  year: 2015
  ident: bb0195
  article-title: fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions
  publication-title: Sci. Rep.
– volume: 15
  start-page: 169
  year: 2001
  end-page: 173
  ident: bb0770
  article-title: Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050
  publication-title: Alzheimer Dis. Assoc. Disord.
– volume: 8
  year: 2014
  ident: bb1340
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci.
– volume: 84
  start-page: 466
  year: 2014
  end-page: 475
  ident: bb1080
  article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification
  publication-title: NeuroImage
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bb1360
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 50
  start-page: 1519
  year: 2010
  end-page: 1535
  ident: bb1645
  article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables
  publication-title: NeuroImage
– volume: 2013
  start-page: 253670
  year: 2013
  ident: bb1715
  article-title: Discrimination between Alzheimer's disease and mild cognitive impairment using SOM and PSO-SVM
  publication-title: Comput. Math. Methods Med.
– year: 2000
  ident: bb1055
  article-title: Principles of Magnetic Resonance Imaging
– volume: 61
  start-page: 606
  year: 2012
  end-page: 612
  ident: bb1230
  article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
  publication-title: NeuroImage
– volume: 57
  start-page: 839
  year: 2011
  end-page: 855
  ident: bb1535
  article-title: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA
  publication-title: NeuroImage
– volume: 11
  start-page: 50
  year: 2012
  ident: bb1580
  article-title: Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis
  publication-title: Biomed. Eng. Online
– volume: 43
  start-page: 116
  year: 2013
  end-page: 125
  ident: bb1785
  article-title: Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
– volume: 35
  start-page: 1630
  year: 2014
  end-page: 1641
  ident: bb1800
  article-title: Unsupervised classification of major depression using functional connectivity MRI
  publication-title: Hum. Brain Mapp.
– volume: 59
  start-page: 1013
  year: 2012
  end-page: 1022
  ident: bb0225
  article-title: Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses
  publication-title: NeuroImage
– volume: 39
  start-page: 848
  year: 2014
  end-page: 855
  ident: bb1555
  article-title: Multivariate classification of blood oxygen level-dependent fMRI data with diagnostic intention: a clinical perspective
  publication-title: Am. J. Neuroradiol.
– volume: 221
  start-page: 139
  year: 2014
  end-page: 150
  ident: bb1275
  article-title: A comparison of three brain atlases for MCI prediction
  publication-title: J. Neurosci. Methods
– volume: 36
  start-page: S132
  year: 2015
  end-page: S140
  ident: bb1235
  article-title: Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 24
  start-page: 1279
  year: 2015
  end-page: 1289
  ident: bb0805
  article-title: Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging
  publication-title: Eur. Child Adolesc. Psychiatry
– volume: 24
  start-page: 775
  year: 2011
  end-page: 783
  ident: bb1725
  article-title: Independent component analysis-based classification of Alzheimer's disease MRI data
  publication-title: J. Alzheimers Dis.
– volume: 36
  start-page: 2118
  year: 2015
  end-page: 2131
  ident: bb0505
  article-title: Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM
  publication-title: Hum. Brain Mapp.
– volume: 46
  start-page: 73
  year: 2009
  end-page: 86
  ident: bb1525
  article-title: An ICA-based method for the identification of optimal fMRI features and components using combined group-discriminative techniques
  publication-title: NeuroImage
– volume: 7
  year: 2012
  ident: bb0575
  article-title: Increased cortical–limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging
  publication-title: PLoS One
– volume: 7
  year: 2012
  ident: bb0275
  article-title: Classification of structural MRI images in Alzheimer's disease from the perspective of ill-posed problems
  publication-title: PLoS One
– volume: 49
  start-page: 44
  year: 2010
  end-page: 56
  ident: bb0515
  article-title: Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach
  publication-title: NeuroImage
– volume: 1
  start-page: 32
  year: 2014
  end-page: 36
  ident: bb0990
  article-title: New approach for automatic classification of Alzheimer's disease, mild cognitive impairment and healthy brain magnetic resonance images
  publication-title: Heal. Technol. Lett.
– volume: 12
  start-page: 1069
  year: 2011
  end-page: 1109
  ident: bb0320
  article-title: Differentially private empirical risk minimization
  publication-title: J. Mach. Learn. Res.
– volume: 191
  start-page: 174
  year: 2011
  end-page: 181
  ident: bb0900
  article-title: Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects
  publication-title: Psychiatry Res. Neuroimaging
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  ident: bb0615
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: NeuroImage
– volume: 12
  start-page: 162
  year: 2008
  end-page: 172
  ident: bb0920
  article-title: A national human neuroimaging collaboratory enabled by the Biomedical Informatics Research Network (BIRN)
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 69
  start-page: 659
  year: 2007
  end-page: 677
  ident: bb1295
  article-title: L1-regularization path algorithm for generalized linear models
  publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.)
– volume: 119
  start-page: 395
  year: 2012
  end-page: 404
  ident: bb0280
  article-title: Classification of schizophrenia using feature-based morphometry
  publication-title: J. Neural Transm.
– volume: 9
  start-page: 153
  year: 2014
  end-page: 163
  ident: bb0710
  article-title: Resting-state functional connectivity abnormalities in first-onset unmedicated depression
  publication-title: Neural. Regen. Res.
– volume: 9
  year: 2014
  ident: bb0885
  article-title: Identifying autism from neural representations of social interactions: neurocognitive markers of autism
  publication-title: PLoS One
– volume: 30
  start-page: 2512
  year: 2009
  end-page: 2529
  ident: bb1165
  article-title: A method to fuse fMRI tasks through spatial correlations: applied to schizophrenia
  publication-title: Hum. Brain Mapp.
– volume: 87
  start-page: 1
  year: 2014
  end-page: 17
  ident: bb0285
  article-title: A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia
  publication-title: NeuroImage
– volume: 68
  start-page: 23
  year: 2015
  end-page: 33
  ident: bb0355
  article-title: Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM
  publication-title: Neural Netw.
– volume: 8
  year: 2013
  ident: bb1110
  article-title: Alterations in regional homogeneity of spontaneous brain activity in late-life subthreshold depression
  publication-title: PLoS One
– volume: 10
  start-page: 841
  year: 2006
  end-page: 849
  ident: bb0220
  article-title: Shaving diffusion tensor images in discriminant analysis: a study into schizophrenia
  publication-title: Med. Image Anal.
– volume: 55
  start-page: 574
  year: 2011
  end-page: 589
  ident: bb0790
  article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
  publication-title: NeuroImage
– volume: 18
  start-page: 808
  year: 2014
  end-page: 818
  ident: bb1595
  article-title: Multiple instance learning for classification of dementia in brain MRI
  publication-title: Med. Image Anal.
– volume: 13
  start-page: 711
  year: 2009
  end-page: 720
  ident: bb0230
  article-title: Feature-based fusion of medical imaging data
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 51
  start-page: 73
  year: 2009
  end-page: 83
  ident: bb1120
  article-title: Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI
  publication-title: Neuroradiology
– volume: 56
  start-page: 2058
  year: 2011
  end-page: 2067
  ident: bb0555
  article-title: Discriminant analysis of functional connectivity patterns on Grassmann manifold
  publication-title: NeuroImage
– volume: 102
  start-page: 207
  year: 2014
  end-page: 219
  ident: bb0045
  article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD
  publication-title: NeuroImage
– volume: 15
  start-page: 274
  year: 2008
  end-page: 284
  ident: bb0080
  article-title: Automated method for identification of patients with Alzheimer's disease based on three-dimensional MR images
  publication-title: Acad. Radiol.
– volume: 57
  start-page: 2850
  year: 2010
  end-page: 2860
  ident: bb0085
  article-title: Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 6
  start-page: S2
  year: 2013
  ident: bb0260
  article-title: Integrating fMRI and SNP data for biomarker identification for schizophrenia with a sparse representation based variable selection method
  publication-title: BMC Med. Genet.
– year: 2016
  ident: bb0240
  article-title: Multimodal fusion of brain imaging data: a key to finding the missing link (s) in complex mental illness
  publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging
– volume: 11
  start-page: 367
  year: 2013
  end-page: 388
  ident: bb0655
  article-title: The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia
  publication-title: Neuroinformatics
– volume: 6
  start-page: 68
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1445
  article-title: Evaluation of pattern recognition and feature extraction methods in ADHD prediction
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00068
– volume: 7
  start-page: 520
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0040
  article-title: Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00520
– volume: 58
  start-page: 526
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0290
  article-title: Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.044
– volume: 70
  start-page: 833
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1605
  article-title: Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2011.07.014
– volume: 18
  start-page: 808
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1595
  article-title: Multiple instance learning for classification of dementia in brain MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.04.006
– volume: 40
  start-page: 773
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb1790
  article-title: Regional white matter integrity differentiates between vascular dementia and Alzheimer disease
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.530832
– volume: 256
  start-page: 168
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1280
  article-title: Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.08.020
– volume: 7
  start-page: 10
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0070
  article-title: Classification of schizophrenia patients based on resting-state functional network connectivity
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00133
– volume: 7
  start-page: 670
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0450
  article-title: Identification of neural connectivity signatures of autism using machine learning
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00670
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.079_bb1855
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 5
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0195
  article-title: fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions
  publication-title: Sci. Rep.
  doi: 10.1038/srep10499
– volume: 6
  start-page: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0485
  article-title: High classification accuracy for schizophrenia with rest and task fMRI data
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2012.00145
– volume: 65
  start-page: 511
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0535
  article-title: Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.09.058
– volume: 6
  start-page: 260
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1830
  article-title: Integrative analysis of multi-dimensional imaging genomics data for Alzheimer's disease prediction
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2014.00260
– volume: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0395
  article-title: Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021896
– volume: 44
  start-page: 599
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1575
  article-title: Baseline shape diffeomorphometry patterns of subcortical and ventricular structures in predicting conversion of mild cognitive impairment to Alzheimer's disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-141605
– volume: 66
  start-page: 46
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1060
  article-title: Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates
  publication-title: Cortex
  doi: 10.1016/j.cortex.2015.02.008
– volume: 57
  start-page: 328
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1695
  article-title: From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2015.08.001
– volume: 51
  start-page: 73
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb1120
  article-title: Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI
  publication-title: Neuroradiology
  doi: 10.1007/s00234-008-0463-x
– volume: 124
  start-page: 127
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0940
  article-title: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.05.018
– year: 2016
  ident: 10.1016/j.neuroimage.2016.02.079_bb0240
  article-title: Multimodal fusion of brain imaging data: a key to finding the missing link (s) in complex mental illness
  publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging
– volume: 9
  start-page: 307
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1435
  article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00307
– volume: 33
  issue: 427
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1050
  article-title: Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features
  publication-title: Neurobiol. Aging
– year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1070
– volume: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1340
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00229
– year: 2003
  ident: 10.1016/j.neuroimage.2016.02.079_bb0090
– volume: 59
  start-page: 2142
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1360
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 55
  start-page: 574
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0790
  article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.10.081
– volume: 56
  start-page: 212
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0375
  article-title: Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.050
– volume: 11
  start-page: 18
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0380
  article-title: Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder
  publication-title: BMC Psychiatry
  doi: 10.1186/1471-244X-11-18
– volume: 2
  start-page: 372
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.079_bb0150
  article-title: The global prevalence of schizophrenia
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0020151
– volume: 10
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1775
  article-title: Multimodal discrimination of Alzheimer's disease based on regional cortical atrophy and hypometabolism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0129250
– volume: 4
  start-page: 187
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1590
  article-title: Using structural neuroimaging to make quantitative predictions of symptom progression in individuals at ultra-high risk for psychosis
  publication-title: Front. Psychiatry
– volume: 8
  start-page: 238
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0325
  article-title: Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2015.04.002
– volume: 7
  start-page: 235
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1520
  article-title: Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA+jICA
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00235
– volume: 82
  start-page: 1552
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1650
  article-title: Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2013.04.009
– volume: 47
  start-page: 1476
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb0645
  article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.036
– volume: 22
  start-page: 177
  year: 2001
  ident: 10.1016/j.neuroimage.2016.02.079_bb1690
  article-title: Hippocampal volume discriminates between normal cognition; questionable and mild dementia in the elderly
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(00)00238-4
– volume: 6
  start-page: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0210
  article-title: ADHD-200 global competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00069
– volume: 160
  start-page: 196
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0170
  article-title: Machine learning fMRI classifier delineates subgroups of schizophrenia patients
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2014.10.033
– volume: 11
  start-page: 50
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1580
  article-title: Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-11-50
– volume: 59
  start-page: 1013
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0225
  article-title: Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.070
– volume: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0370
  article-title: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience
  publication-title: Front. Syst. Neurosci.
– volume: 12
  start-page: 92
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0880
  article-title: Automated classification to predict the progression of Alzheimer's disease using whole-brain volumetry and DTI
  publication-title: Psychiatry Investig.
  doi: 10.4306/pi.2015.12.1.92
– volume: 122
  start-page: 182
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1710
  article-title: Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2015.08.004
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1310
  article-title: Extreme learning machine-based classification of ADHD using brain structural MRI data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0079476
– volume: 79
  start-page: 94
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1810
  article-title: Optimally-discriminative voxel-based morphometry significantly increases the ability to detect group differences in schizophrenia, mild cognitive impairment, and Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.063
– volume: 70
  start-page: 869
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1610
  article-title: Salience network-based classification and prediction of symptom severity in children with autism
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2013.104
– volume: 133
  start-page: 1352
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb1840
  article-title: Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awq075
– volume: 39
  start-page: 1774
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb0440
  article-title: A projection pursuit algorithm to classify individuals using fMRI data: application to schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.10.012
– volume: 97
  start-page: 117
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0300
  article-title: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.009
– volume: 17
  start-page: 475
  year: 1998
  ident: 10.1016/j.neuroimage.2016.02.079_bb0620
  article-title: MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.712137
– volume: 49
  start-page: 786
  year: 1997
  ident: 10.1016/j.neuroimage.2016.02.079_bb0845
  article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.49.3.786
– volume: 259
  start-page: 834
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1150
  article-title: Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis
  publication-title: Radiology
  doi: 10.1148/radiol.11101975
– volume: 233
  start-page: 289
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1455
  article-title: Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2015.07.001
– volume: 84
  start-page: 1261
  year: 1994
  ident: 10.1016/j.neuroimage.2016.02.079_bb0530
  article-title: The US economic and social costs of Alzheimer's disease revisited
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.84.8.1261
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0275
  article-title: Classification of structural MRI images in Alzheimer's disease from the perspective of ill-posed problems
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044877
– volume: 2
  start-page: 207
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb0445
  article-title: A review of challenges in the use of fMRI for disease classification/characterization and a projection pursuit application from a multi-site fMRI schizophrenia study
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-008-9028-1
– volume: 57
  start-page: 918
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0820
  article-title: Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.05.023
– volume: 95
  start-page: 378
  year: 1986
  ident: 10.1016/j.neuroimage.2016.02.079_bb1030
  article-title: Age at first onset for nonbipolar depression
  publication-title: J. Abnorm. Psychol.
  doi: 10.1037/0021-843X.95.4.378
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.neuroimage.2016.02.079_bb0720
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0075
  article-title: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20995
– volume: 63
  start-page: 55
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0815
  article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control
  publication-title: Cortex
  doi: 10.1016/j.cortex.2014.08.011
– volume: 55
  start-page: 856
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1835
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.008
– volume: 134
  start-page: 3742
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0050
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
  doi: 10.1093/brain/awr263
– volume: 47
  start-page: 453
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1450
  article-title: Inter-regional cortical thickness correlations are associated with autistic symptoms: a machine-learning approach
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2012.11.017
– volume: 35
  start-page: 1630
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1800
  article-title: Unsupervised classification of major depression using functional connectivity MRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22278
– volume: 46
  start-page: 125
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0605
  article-title: Cortical thickness predicts the first onset of major depression in adolescence
  publication-title: Int. J. Dev. Neurosci.
  doi: 10.1016/j.ijdevneu.2015.07.007
– volume: 14
  start-page: 59
  year: 2002
  ident: 10.1016/j.neuroimage.2016.02.079_bb0190
  article-title: Volumetric MRI measurements can differentiate Alzheimer's disease, mild cognitive impairment, and normal aging
  publication-title: Int. Psychogeriatr.
  doi: 10.1017/S1041610202008281
– volume: 55
  start-page: 1497
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0660
  article-title: Prognostic prediction of therapeutic response in depression using high-field MR imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.079
– volume: 25
  start-page: 552
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1395
  article-title: Predictive models based on support vector machines: whole-brain versus regional analysis of structural MRI in the Alzheimer's disease
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12163
– volume: 112
  start-page: 232
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0310
  article-title: Gaussian process classification of Alzheimer's disease and mild cognitive impairment from resting-state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.037
– volume: 105
  start-page: 536
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1370
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.044
– volume: 8
  start-page: 631
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0690
  article-title: A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2015.06.003
– volume: 30
  start-page: 10612
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb0510
  article-title: Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5413-09.2010
– volume: 9
  start-page: 153
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0710
  article-title: Resting-state functional connectivity abnormalities in first-onset unmedicated depression
  publication-title: Neural. Regen. Res.
  doi: 10.4103/1673-5374.125344
– volume: 22
  start-page: 315
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb0745
  article-title: Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2010-100840
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1185
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1035
  article-title: An efficient approach for differentiating Alzheimer's disease from normal elderly based on multicenter MRI using gray-level invariant features
  publication-title: PLoS One
– volume: 350
  start-page: 1761
  year: 1997
  ident: 10.1016/j.neuroimage.2016.02.079_bb1685
  article-title: The autistic spectrum
  publication-title: Lancet
  doi: 10.1016/S0140-6736(97)09218-0
– volume: 8
  start-page: 64
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0465
  article-title: Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects
  publication-title: Front. Neural. Circuits
  doi: 10.3389/fncir.2014.00064
– volume: 7
  start-page: 359
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1345
  article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2014.12.013
– volume: 7
  start-page: 81
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0365
  article-title: A primer on quantitized data analysis and permutation testing
  publication-title: J. Mix. Methods Res.
  doi: 10.1177/1558689812454457
– volume: 35
  start-page: 3701
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1570
  article-title: Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22431
– volume: 34
  start-page: 3411
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1670
  article-title: Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22156
– volume: 72
  start-page: 426
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb0955
  article-title: Automatic detection of preclinical neurodegeneration presymptomatic Huntington disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000341768.28646.b6
– year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0980
  article-title: Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers
  publication-title: Brain
  doi: 10.1093/brain/awv111
– volume: 31
  start-page: 1339
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb1205
  article-title: Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20934
– volume: 20
  start-page: 61
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1005
  article-title: Online learning for classification of Alzheimer disease based on cortical thickness and hippocampal shape analysis
  publication-title: Heal. Inf. Res
  doi: 10.4258/hir.2014.20.1.61
– volume: 212
  start-page: 89
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0015
  article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2012.11.005
– volume: 39
  start-page: 1666
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb0850
  article-title: A method for functional network connectivity among spatially independent resting-state components in schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.11.001
– volume: 61
  start-page: 457
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0950
  article-title: Diagnostic neuroimaging across diseases
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.002
– volume: 6
  start-page: 284
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1385
  article-title: Novel ThickNet features for the discrimination of amnestic MCI subtypes
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2014.09.005
– volume: 1
  start-page: 32
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0990
  article-title: New approach for automatic classification of Alzheimer's disease, mild cognitive impairment and healthy brain magnetic resonance images
  publication-title: Heal. Technol. Lett.
  doi: 10.1049/htl.2013.0022
– volume: 57
  start-page: 839
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1535
  article-title: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+joint ICA model
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.05.055
– volume: 64
  start-page: 208
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0125
  article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.07.006
– volume: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1765
  article-title: Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals
  publication-title: PLoS One
– volume: 10
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1490
  article-title: Toward probabilistic diagnosis and understanding of depression based on functional MRI data analysis with logistic group LASSO
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0123524
– volume: 63
  start-page: 118
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb0550
  article-title: Unaffected family members and schizophrenia patients share brain structure patterns: a high-dimensional pattern classification study
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2007.03.015
– volume: 50
  start-page: 162
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb1335
  article-title: Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.11.046
– volume: 29
  start-page: 231
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1400
  article-title: Neuroimaging-based methods for autism identification: a possible translational application?
  publication-title: Funct. Neurol.
– volume: 6
  start-page: 78
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0185
  article-title: Network, anatomical, and non-imaging measures for the prediction of ADHD diagnosis in individual subjects
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00078
– volume: 214
  start-page: 306
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1680
  article-title: Identifying major depressive disorder using Hurst exponent of resting-state brain networks
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2013.09.008
– volume: 6
  start-page: 66
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0315
  article-title: ADHD classification by a texture analysis of anatomical brain MRI data
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00066
– volume: 59
  start-page: 3736
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0385
  article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.080
– volume: 26
  start-page: 93
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.079_bb0570
  article-title: COMPARE: classification of morphological patterns using adaptive regional elements
  publication-title: Comp. A J. Comp. Educ.
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1750
  article-title: Convergent and divergent functional connectivity patterns in schizophrenia and depression
  publication-title: PLoS One
– volume: 124
  start-page: 1065
  year: 2016
  ident: 10.1016/j.neuroimage.2016.02.079_bb0520
  article-title: Sharing the wealth: neuroimaging data repositories
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.10.079
– volume: 290
  start-page: 124
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0585
  article-title: Boosting diagnosis accuracy of Alzheimer's disease using high dimensional recognition of longitudinal brain atrophy patterns
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2015.04.010
– volume: 16
  start-page: 860
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1190
  article-title: Neuregulin 3 (NRG3) as a susceptibility gene in a schizophrenia subtype with florid delusions and relatively spared cognition
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2010.70
– volume: 2012
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1530
  article-title: Three-way fMRI–DTI–Methylation data fusion based on MCCA+jICA and its application to schizophrenia
  publication-title: Eng. Med. Biol. Soc.
– volume: 47
  start-page: 939
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0960
  article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-150334
– volume: 49
  start-page: 3110
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb1485
  article-title: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.11.011
– volume: 50
  start-page: 1519
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb1645
  article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.092
– ident: 10.1016/j.neuroimage.2016.02.079_bb0730
– volume: 15
  start-page: 274
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb0080
  article-title: Automated method for identification of patients with Alzheimer's disease based on three-dimensional MR images
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2007.10.020
– volume: 58
  start-page: 469
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0345
  article-title: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.05.083
– volume: 1–12
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.079_bb0495
  article-title: Differential privacy
  publication-title: Autom. Lang. Program.
– volume: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1700
  article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025446
– volume: 2
  start-page: 735
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1745
  article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2013.05.004
– year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1760
  article-title: Graph-guided joint prediction of class label and clinical scores for the Alzheimer's disease
  publication-title: Brain Struct. Funct.
– volume: 50
  start-page: 883
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb0615
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 223
  start-page: 179
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1390
  article-title: Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2014.05.014
– volume: 9
  start-page: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0305
  article-title: Enhanced disease characterization through multi network functional normalization in fMRI
  publication-title: Front. Neurosci.
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0575
  article-title: Increased cortical–limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045972
– volume: 367
  start-page: 1262
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.079_bb0640
  article-title: Mild cognitive impairment
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68542-5
– volume: 84
  start-page: 466
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1080
  article-title: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's disease and mild cognitive impairment identification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.09.015
– volume: 61
  start-page: 606
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1230
  article-title: Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.079
– volume: 59
  start-page: 1209
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0400
  article-title: Automated detection of amnestic mild cognitive impairment in community-dwelling elderly adults: a combined spatial atrophy and white matter alteration approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.013
– volume: 12
  start-page: 1069
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0320
  article-title: Differentially private empirical risk minimization
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 169
  year: 2001
  ident: 10.1016/j.neuroimage.2016.02.079_bb0770
  article-title: Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050
  publication-title: Alzheimer Dis. Assoc. Disord.
  doi: 10.1097/00002093-200110000-00002
– volume: 131
  start-page: 681
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb0965
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 14
  start-page: 21
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1065
  article-title: Brain region's relative proximity as marker for Alzheimer's disease based on structural MRI
  publication-title: BMC Med. Imaging
  doi: 10.1186/1471-2342-14-21
– volume: 69
  start-page: 659
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.079_bb1295
  article-title: L1-regularization path algorithm for generalized linear models
  publication-title: J. R. Stat. Soc. Ser. B (Stat Methodol.)
  doi: 10.1111/j.1467-9868.2007.00607.x
– volume: 51
  start-page: 1405
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb1505
  article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.051
– start-page: 206
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0235
  article-title: Neuroimaging-based automatic classification of schizophrenia
– volume: 57
  start-page: 1215
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.079_bb0155
  article-title: Attention-deficit/hyperactivity disorder: a selective overview
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2004.10.020
– volume: 30
  start-page: 1056
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1305
  article-title: Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction
  publication-title: Int. J. Geriatr. Psychiatry
  doi: 10.1002/gps.4262
– volume: 11
  start-page: 367
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0655
  article-title: The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9184-3
– volume: 13
  start-page: 711
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb0230
  article-title: Feature-based fusion of medical imaging data
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2008.923773
– volume: 221
  start-page: 22
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0330
  article-title: Detecting brain structural changes as biomarker from magnetic resonance images using a local feature based SVM approach
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.09.001
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1820
  article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
  publication-title: PLoS One
– volume: 12
  start-page: 162
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb0920
  article-title: A national human neuroimaging collaboratory enabled by the Biomedical Informatics Research Network (BIRN)
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2008.917893
– volume: 51
  start-page: 8
  year: 1994
  ident: 10.1016/j.neuroimage.2016.02.079_bb0930
  article-title: Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.1994.03950010008002
– volume: 502
  start-page: 225
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0685
  article-title: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson's correlation
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2011.07.049
– volume: 11
  start-page: 521
  year: 1996
  ident: 10.1016/j.neuroimage.2016.02.079_bb1475
  article-title: Prediction of group membership in developmental dyslexia, attention deficit hyperactivity disorder, and normal controls using brain morphometric analysis of magnetic resonance imaging
  publication-title: Arch. Clin. Neuropsychol.
  doi: 10.1093/arclin/11.6.521
– volume: 28
  start-page: 1339
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.079_bb1045
  article-title: Hippocampal shape analysis of Alzheimer disease based on machine learning methods
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A0620
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1200
  article-title: Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029482
– volume: 31
  start-page: 2062
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0800
  article-title: Can a single brain region predict a disorder?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2206047
– volume: 62
  start-page: 1218
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.079_bb0425
  article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.62.11.1218
– volume: 289
  start-page: 3095
  year: 2003
  ident: 10.1016/j.neuroimage.2016.02.079_bb0925
  article-title: The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R)
  publication-title: JAMA
  doi: 10.1001/jama.289.23.3095
– volume: 16
  start-page: 491
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0430
  article-title: Neuroimaging biomarkers to predict treatment response in schizophrenia: the end of 30years of solitude?
  publication-title: Dialogues Clin. Neurosci.
  doi: 10.31887/DCNS.2014.16.4/pdazzan
– volume: 53
  start-page: 569
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0760
  article-title: Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based on pattern classification of temporal processing
  publication-title: J. Am. Acad. Child Adolesc. Psychiatry
  doi: 10.1016/j.jaac.2013.12.024
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1240
  article-title: Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0032441
– volume: 27
  start-page: 47
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.079_bb0245
  article-title: Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20166
– volume: 54
  start-page: 171
  year: 1994
  ident: 10.1016/j.neuroimage.2016.02.079_bb0470
  article-title: Functional magnetic resonance imaging (FMRI) of the human brain
  publication-title: J. Neurosci. Methods
  doi: 10.1016/0165-0270(94)90191-0
– volume: 27
  start-page: 685
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb0840
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 50
  start-page: 589
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb0860
  article-title: Predictive models of autism spectrum disorder based on brain regional cortical thickness
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.047
– volume: 7
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1355
  article-title: Toward open sharing of task-based fMRI data: the OpenfMRI project
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2013.00012
– volume: 36
  start-page: 591
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0810
  article-title: Automatic brain caudate nuclei segmentation and classification in diagnostic of attention-deficit/hyperactivity disorder
  publication-title: Comput. Med. Imaging Graphs.
  doi: 10.1016/j.compmedimag.2012.08.002
– start-page: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb0945
  article-title: Identification of imaging biomarkers in schizophrenia: a coefficient-constrained independent component analysis of the mind multi-site schizophrenia study
  publication-title: Neuroinformatics
– volume: 19
  start-page: 1263
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb1255
  article-title: Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2010-1322
– year: 1960
  ident: 10.1016/j.neuroimage.2016.02.079_bb0600
– volume: 96
  start-page: 245
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0795
  article-title: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.048
– volume: 13
  start-page: 27
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0205
  article-title: Conditional likelihood maximisation: a unifying framework for mutual information feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 1265
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb0255
  article-title: Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20463
– volume: 40
  start-page: 1742
  issue: 7
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0890
  article-title: Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2015.22
– volume: 30
  start-page: 1667
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb1740
  article-title: Patterns of structural complexity in Alzheimer's disease and frontotemporal dementia
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20632
– start-page: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0140
  article-title: Deep learning of representations: looking forward
– volume: 9
  start-page: 532
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1025
  article-title: Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2015.09.017
– volume: 40
  start-page: 68
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb1380
  article-title: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer's type
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.11.041
– volume: 9
  start-page: 789
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1350
  article-title: Computer based classification of MR scans in first time applicant Alzheimer patients
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720512802455359
– start-page: 5432
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1630
  article-title: The impact of data preprocessing in traumatic brain injury detection using functional magnetic resonance imaging
– volume: 31
  start-page: 51
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0120
  article-title: Generative-discriminative basis learning for medical imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2162961
– volume: 54
  start-page: 1812
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1665
  article-title: Enriched white matter connectivity networks for accurate identification of MCI patients
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.10.026
– volume: 87
  start-page: 9868
  year: 1990
  ident: 10.1016/j.neuroimage.2016.02.079_bb1245
  article-title: Brain magnetic resonance imaging with contrast dependent on blood oxygenation
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.87.24.9868
– volume: 3
  start-page: 29
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1600
  article-title: The rise of large-scale imaging studies in psychiatry
  publication-title: Gigascience
  doi: 10.1186/2047-217X-3-29
– volume: 68
  start-page: 110
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0265
  article-title: Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis
  publication-title: Psychiatry Clin. Neurosci.
  doi: 10.1111/pcn.12106
– volume: 6
  start-page: 63
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0415
  article-title: Classification of ADHD children through multimodal magnetic resonance imaging
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00063
– volume: 13
  start-page: 534
  year: 2001
  ident: 10.1016/j.neuroimage.2016.02.079_bb1000
  article-title: Diffusion tensor imaging: concepts and applications
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.1076
– volume: 29
  start-page: 231
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1405
  article-title: Neuroimaging-based methods for autism identification: a possible translational application?
  publication-title: Funct. Neurol.
– volume: 49
  start-page: 44
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb0515
  article-title: Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.08.024
– volume: 46
  start-page: 73
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb1525
  article-title: An ICA-based method for the identification of optimal fMRI features and components using combined group-discriminative techniques
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.026
– volume: 5
  start-page: 11
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.079_bb1130
  article-title: The extensible neuroimaging archive toolkit
  publication-title: Neuroinformatics
  doi: 10.1385/NI:5:1:11
– year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1300
  article-title: Connectivity analysis and feature classification in attention deficit hyperactivity disorder sub-types: a task functional magnetic resonance imaging study
  publication-title: Brain Topogr.
– volume: 56
  start-page: 387
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1015
  article-title: Introduction to machine learning for brain imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.004
– volume: 27
  start-page: 598
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.079_bb0250
  article-title: A method for multitask fMRI data fusion applied to schizophrenia
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20204
– volume: 9
  start-page: 321
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0895
  article-title: Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-010-9094-6
– volume: 59
  start-page: 2196
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0115
  article-title: Altered resting state complexity in schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.002
– volume: 87
  start-page: 297
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.079_bb1290
  article-title: Classification of adolescent psychotic disorders using linear discriminant analysis
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2006.05.007
– year: 2006
  ident: 10.1016/j.neuroimage.2016.02.079_bb0160
– volume: 8
  start-page: 35
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1440
  article-title: Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2014.00035
– start-page: 10
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb1780
  article-title: Spark: cluster computing with working sets
– volume: 97
  start-page: 245
  year: 1997
  ident: 10.1016/j.neuroimage.2016.02.079_bb0175
  article-title: Selection of relevant features and examples in machine learning
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00063-5
– year: 1998
  ident: 10.1016/j.neuroimage.2016.02.079_bb0735
– volume: 47
  start-page: 1383
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1270
  article-title: Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2013.06.010
– volume: 135
  start-page: 28
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1730
  article-title: Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2012.01.001
– volume: 34
  start-page: 235
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.079_bb0915
  article-title: Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.08.018
– volume: 161
  start-page: 896
  year: 2004
  ident: 10.1016/j.neuroimage.2016.02.079_bb0390
  article-title: Abnormalities of thalamic volume and shape in schizophrenia
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.161.5.896
– volume: 102
  start-page: 207
  issue: Pt 1
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0045
  article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.015
– volume: 35
  start-page: 3414
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1660
  article-title: Diagnosis of autism spectrum disorders using regional and interregional morphological features
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22411
– volume: 4
  start-page: 95
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0830
  article-title: Clinical utility of machine-learning approaches in schizophrenia: improving diagnostic confidence for translational neuroimaging
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2013.00095
– volume: 107
  start-page: 4734
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb0165
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0911855107
– volume: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1470
  article-title: Identifying endophenotypes of autism: a multivariate approach
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2014.00060
– volume: 57
  start-page: 2850
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb0085
  article-title: Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2080679
– volume: 35
  start-page: 682
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0410
  article-title: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.142
– volume: 60
  start-page: 1
  issue: suppl 1
  year: 1999
  ident: 10.1016/j.neuroimage.2016.02.079_bb1410
  article-title: The economic impact of schizophrenia
  publication-title: J. Clin. Psychiatry
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0500
  article-title: Robust automated detection of microstructural white matter degeneration in Alzheimer's disease using machine learning classification of multicenter DTI data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0064925
– volume: 126
  start-page: 2132
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0935
  article-title: Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.02.060
– volume: 10
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0970
  article-title: Diagnostic classification of schizophrenia patients on the basis of regional reward-related fMRI signal patterns
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0119089
– volume: 119
  start-page: 395
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0280
  article-title: Classification of schizophrenia using feature-based morphometry
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-011-0693-7
– volume: 77
  start-page: 55
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.079_bb0650
  article-title: Efficient calculation of p-values in linear-statistic permutation significance tests
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/10629360500108053
– volume: 31
  start-page: 2290
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1420
  article-title: The relevance voxel machine (RVoxM): a self-tuning Bayesian model for informative image-based prediction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2216543
– volume: 30
  start-page: 2132
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb1170
  article-title: Collaborative computational anatomy: an MRI morphometry study of the human brain via diffeomorphic metric mapping
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20655
– volume: 2014
  start-page: 862307
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0580
  article-title: An ensemble-of-classifiers based approach for early diagnosis of Alzheimer's disease: classification using structural features of brain images
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2014/862307
– volume: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0145
  article-title: Breast cancer affects both the hippocampus volume and the episodic autobiographical memory retrieval
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025349
– volume: 251
  start-page: 195
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb1145
  article-title: Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment
  publication-title: Radiology
  doi: 10.1148/radiol.2511080924
– volume: 19
  start-page: 659
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0475
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 13
  start-page: 45
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb1325
  article-title: Mild cognitive impairment: an overview
  publication-title: CNS Spectr.
  doi: 10.1017/S1092852900016151
– volume: 59
  start-page: 2045
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1675
  article-title: Identification of MCI individuals using structural and functional connectivity networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.015
– volume: 43
  start-page: 116
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1785
  article-title: Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2012.12.005
– volume: 34
  start-page: 283
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0740
  article-title: Individual classification of mild cognitive impairment subtypes by support vector machine analysis of white matter DTI
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A3223
– volume: 30
  start-page: 2512
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb1165
  article-title: A method to fuse fMRI tasks through spatial correlations: applied to schizophrenia
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20691
– volume: 194
  start-page: 15
  year: 2002
  ident: 10.1016/j.neuroimage.2016.02.079_bb0750
  article-title: Age transformation of combined hippocampus and amygdala volume improves diagnostic accuracy in Alzheimer's disease
  publication-title: J. Neurol. Sci.
  doi: 10.1016/S0022-510X(01)00669-4
– volume: 82
  start-page: 695
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1560
  article-title: Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.03.020
– volume: 61
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0100
  article-title: Prevalence of autism spectrum disorders: autism and developmental disabilities monitoring network, 14 sites, United States, 2008
  publication-title: Morb. Mortal. Wkly. Rep. Surveill. Summ.
– volume: 59
  start-page: 2187
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0420
  article-title: Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.003
– volume: 7
  start-page: 270
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0030
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2011.03.008
– volume: 43
  start-page: 1313
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1010
  article-title: Classification of diffusion tensor images for the early detection of Alzheimer's disease
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.07.004
– volume: 19
  start-page: 460
  year: 2004
  ident: 10.1016/j.neuroimage.2016.02.079_bb0025
  article-title: The use of “overall accuracy” to evaluate the validity of screening or diagnostic tests
  publication-title: J. Gen. Intern. Med.
  doi: 10.1111/j.1525-1497.2004.30091.x
– volume: 82
  start-page: 1205
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0480
  article-title: The cost of brain diseases: a burden or a challenge?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.044
– volume: 6
  start-page: 20
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0780
  article-title: Regions of interest computed by SVM wrapped method for Alzheimer's disease examination from segmented MRI
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2014.00020
– volume: 105
  start-page: 493
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1415
  article-title: Sparse network-based models for patient classification using fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.11.021
– volume: 39
  start-page: 848
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1555
  article-title: Multivariate classification of blood oxygen level-dependent fMRI data with diagnostic intention: a clinical perspective
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A3713
– year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1500
  article-title: The tenth annual MLSP competition: schizophrenia classification challenge the mind research network, 1101 Yale Blvd., Albuquerque, New Mexico 87106
– volume: 45
  start-page: 2668
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0455
  article-title: Fully connected Cascade Artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2379621
– volume: 17
  start-page: 913
  year: 1996
  ident: 10.1016/j.neuroimage.2016.02.079_bb0625
  article-title: Linear measures of atrophy in mild Alzheimer disease
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 35
  start-page: 58
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb0610
  article-title: Tuning in to the voices: a multisite FMRI study of auditory hallucinations
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbn140
– volume: 221
  start-page: 139
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1275
  article-title: A comparison of three brain atlases for MCI prediction
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.10.003
– volume: 3
  start-page: 53
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0705
  article-title: Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2012.00053
– volume: 29
  start-page: 23
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb1020
  article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2006.09.013
– volume: 2
  start-page: 54
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1250
  article-title: Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to Alzheimer's disease
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2011.00054
– volume: 65
  start-page: 167
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0695
  article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.09.065
– volume: 97
  start-page: 273
  year: 1997
  ident: 10.1016/j.neuroimage.2016.02.079_bb0975
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 6
  start-page: S2
  issue: Suppl. 3
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0260
  article-title: Integrating fMRI and SNP data for biomarker identification for schizophrenia with a sparse representation based variable selection method
  publication-title: BMC Med. Genet.
– volume: 42
  start-page: 675
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb0270
  article-title: Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.04.255
– year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1085
  article-title: Inherent structure based multi-view learning with multi-template feature representation for Alzheimer's disease diagnosis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2372011
– volume: 11
  start-page: 815
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.079_bb0835
  article-title: Subtyping schizophrenia: implications for genetic research
  publication-title: Mol. Psychiatry
  doi: 10.1038/sj.mp.4001857
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.neuroimage.2016.02.079_bb0725
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 3
  start-page: 279
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1795
  article-title: Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2013.09.003
– year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1860
  article-title: Label-aligned multi-task feature learning for multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Brain Imaging Behav.
– year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1210
– volume: 56
  start-page: 2058
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0555
  article-title: Discriminant analysis of functional connectivity patterns on Grassmann manifold
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.051
– volume: 18
  start-page: 774
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0700
  article-title: Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2012.84
– volume: 8
  start-page: 1
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.079_bb0565
  article-title: Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1615
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 6
  start-page: 80
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0540
  article-title: Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data
  publication-title: Front. Syst. Neurosci.
– volume: 212
  start-page: 230
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0490
  article-title: Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2012.04.007
– volume: 6
  start-page: 74
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1495
  article-title: Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00074
– volume: 232
  start-page: 237
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0855
  article-title: Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition
  publication-title: Psychiatry Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2015.03.004
– volume: 2013
  start-page: 253670
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1715
  article-title: Discrimination between Alzheimer's disease and mild cognitive impairment using SOM and PSO-SVM
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2013/253670
– volume: 57
  start-page: 119
  year: 1995
  ident: 10.1016/j.neuroimage.2016.02.079_bb0435
  article-title: Discriminant analysis of MRI measures as a method to determine the presence of dementia of the Alzheimer type
  publication-title: Psychiatry Res.
  doi: 10.1016/0165-1781(95)02651-C
– volume: 64
  start-page: 1035
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb1735
  article-title: Multivariate pattern analysis of functional magnetic resonance imaging data reveals deficits in distributed representations in schizophrenia
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2008.07.025
– volume: 55
  start-page: 1109
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0595
  article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.12.066
– volume: 25
  start-page: 866
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0670
  article-title: Gray matter alterations in young children with autism spectrum disorders: comparing morphometry at the voxel and regional level
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12280
– volume: 32
  start-page: 313
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1125
  article-title: Identification of brain regions responsible for Alzheimer's disease using a Self-adaptive Resource Allocation Network
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.02.035
– volume: 58
  start-page: 785
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0005
  article-title: Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.029
– volume: 83
  start-page: 148
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1075
  article-title: Locally linear embedding (LLE) for MRI based Alzheimer's disease classification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.06.033
– volume: 5
  start-page: 9
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb1105
  article-title: Glad you asked: participants' opinions of re-consent for dbGap data submission
  publication-title: J. Empir. Res. Hum. Res. Ethics
  doi: 10.1525/jer.2010.5.3.9
– volume: 48
  start-page: 138
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb0785
  article-title: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.056
– year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0110
– year: 2006
  ident: 10.1016/j.neuroimage.2016.02.079_bb0665
– volume: 64
  start-page: 479
  year: 1985
  ident: 10.1016/j.neuroimage.2016.02.079_bb1160
  article-title: Self-diffusion NMR imaging using stimulated echoes
  publication-title: J. Magn. Reson.
– volume: 87
  start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0285
  article-title: A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.065
– volume: 1
  start-page: 10
  year: 2001
  ident: 10.1016/j.neuroimage.2016.02.079_bb0525
  article-title: Neuropsychiatry at the millennium: the potential for mind/brain integration through emerging interdisciplinary research strategies
  publication-title: Clin. Neurosci. Res.
  doi: 10.1016/S1566-2772(00)00003-7
– volume: 68
  start-page: 91
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1425
  article-title: Subcortical volumes differentiate major depressive disorder, bipolar disorder, and remitted major depressive disorder
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2015.06.002
– volume: 6
  start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1565
  article-title: Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021047
– volume: 139
  start-page: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1625
  article-title: Whole brain resting state functional connectivity abnormalities in schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2012.04.021
– volume: 8
  start-page: 119
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1115
  article-title: Disorder-specific volumetric brain difference in adolescent major depressive disorder and bipolar depression
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-013-9264-x
– volume: 135
  start-page: 1508
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1215
  article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder
  publication-title: Brain
  doi: 10.1093/brain/aws084
– volume: 24
  start-page: 427
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1330
  article-title: Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model
  publication-title: Eur. Child Adolesc. Psychiatry
  doi: 10.1007/s00787-014-0593-0
– volume: 59
  start-page: 895
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1815
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.069
– volume: 24
  start-page: 545
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0715
  article-title: Decreased regional activity of default-mode network in unaffected siblings of schizophrenia patients at rest
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2014.01.004
– volume: 2014
  start-page: 706157
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1480
  article-title: Neuroanatomical classification in a population-based sample of psychotic major depression and bipolar I disorder with 1year of diagnostic stability
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2014/706157
– start-page: 4418
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0065
  article-title: Functional network connectivity during rest and task: comparison of healthy controls and schizophrenic patients
– volume: 62
  start-page: 1805
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0335
  article-title: Domain transfer learning for MCI conversion prediction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2404809
– volume: 35
  start-page: 3083
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0755
  article-title: Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22386
– volume: 128
  start-page: 268
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.079_bb1135
  article-title: Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism
  publication-title: Brain
  doi: 10.1093/brain/awh332
– volume: 78
  start-page: 794
  issue: 11
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1540
  article-title: In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2015.02.017
– volume: 6
  start-page: 59
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0360
  article-title: Insights into multimodal imaging classification of ADHD
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00059
– volume: 36
  start-page: S132
  issue: Suppl. 1
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1235
  article-title: Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.05.037
– volume: 30
  start-page: 446
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0035
  article-title: Partial least squares for discrimination in fMRI data
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2011.11.001
– volume: 12
  start-page: 592
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0130
  article-title: Integration of cognitive tests and resting state fMRI for the individual identification of mild cognitive impairment
  publication-title: Curr. Alzheimer Res.
  doi: 10.2174/156720501206150716120332
– volume: 18
  start-page: 618
  year: 1988
  ident: 10.1016/j.neuroimage.2016.02.079_bb1180
  article-title: New perspectives in autism. Part 2: The differential diagnosis and neurobiology of autism
  publication-title: Curr. Probl. Pediatr.
  doi: 10.1016/0045-9380(88)90017-5
– volume: 15
  start-page: 254
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0825
  article-title: Identifying sub-populations via unsupervised cluster analysis on multi-edge similarity graphs
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1845
  article-title: Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning
  publication-title: PLoS One
– volume: 36
  start-page: 1140
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1260
  article-title: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2012.01.004
– volume: 84
  start-page: 299
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1460
  article-title: Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.053
– volume: 56
  start-page: 766
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0405
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 6
  start-page: 75
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0460
  article-title: Exploiting the brain's network structure in identifying ADHD subjects
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00075
– volume: 34
  start-page: 2815
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0010
  article-title: How early can we predict Alzheimer's disease using computational anatomy?
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2013.06.015
– volume: 32
  start-page: 1043
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1040
  article-title: Discriminative analysis of multivariate features from structural MRI and diffusion tensor images
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2014.05.008
– volume: 4
  start-page: 461
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0060
  article-title: ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2013.12.012
– volume: 41
  start-page: 685
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0545
  article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-131928
– volume: 5
  start-page: 1391
  year: 2004
  ident: 10.1016/j.neuroimage.2016.02.079_bb0765
  article-title: The entire regularization path for the support vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 61
  start-page: 576
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0865
  article-title: Integration of network topological and connectivity properties for neuroimaging classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2284195
– start-page: 78
  year: 2004
  ident: 10.1016/j.neuroimage.2016.02.079_bb1225
  article-title: Feature selection, L 1 vs. L 2 regularization, and rotational invariance
– volume: 168
  start-page: 345
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0340
  article-title: Nodal centrality of functional network in the differentiation of schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2015.08.011
– volume: 48
  start-page: 978
  year: 1997
  ident: 10.1016/j.neuroimage.2016.02.079_bb0905
  article-title: Midline cerebral morphometry distinguishes frontotemporal dementia and Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.48.4.978
– volume: 35
  start-page: 1305
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1090
  article-title: Hierarchical fusion of features and classifier decisions for Alzheimer's disease diagnosis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22254
– volume: 1–10
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0910
  article-title: Disintegration of sensorimotor brain networks in schizophrenia
  publication-title: Schizophr. Bull.
– volume: 40
  start-page: 110
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb1850
  article-title: Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.11.029
– volume: 288
  start-page: 94
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1770
  article-title: State-based functional connectivity changes associate with cognitive decline in amnestic mild cognitive impairment subjects
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2015.04.013
– volume: 66
  start-page: 611
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1285
  article-title: Discrimination of female schizophrenia patients from healthy women using multiple structural brain measures obtained with voxel-based morphometry
  publication-title: Psychiatry Clin. Neurosci.
  doi: 10.1111/j.1440-1819.2012.02397.x
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1110
  article-title: Alterations in regional homogeneity of spontaneous brain activity in late-life subthreshold depression
  publication-title: PLoS One
– volume: 58
  start-page: 793
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1195
  article-title: Patient classification as an outlier detection problem: an application of the One-Class Support Vector Machine
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.06.042
– volume: 10
  start-page: 173
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1705
  article-title: The receiver operational characteristic for binary classification with multiple indices and its application to the neuroimaging study of Alzheimer's disease
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2012.141
– volume: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb0180
  article-title: Mining the mind research network: a novel framework for exploring large scale, heterogeneous translational neuroscience research data sources
  publication-title: Front. Neuroinform.
– volume: 41
  start-page: 277
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb0560
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.02.043
– start-page: 471
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.079_bb0095
  article-title: Principal component analysis for distributed data sets with updating
– volume: 30
  start-page: 393
  year: 2004
  ident: 10.1016/j.neuroimage.2016.02.079_bb1220
  article-title: Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects
  publication-title: Schizophr. Bull.
  doi: 10.1093/oxfordjournals.schbul.a007087
– volume: 7
  start-page: 702
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1510
  article-title: Discriminative analysis of non-linear brain connectivity in schizophrenia: an fMRI study
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00702
– volume: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1465
  article-title: COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2011.00033
– volume: 2015
  start-page: 814104
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1585
  article-title: Feature selection based on machine learning in MRIs for hippocampal segmentation
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/814104
– year: 2000
  ident: 10.1016/j.neuroimage.2016.02.079_bb1055
– volume: 26
  start-page: 462
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.079_bb1640
  article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.887380
– volume: 9
  start-page: 132
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1265
  article-title: Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's disease diagnosis
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2015.00132
– volume: 68
  start-page: 23
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0355
  article-title: Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.04.002
– year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0105
  article-title: Large scale collaboration with autonomy: decentralized data ICA
– volume: 60
  start-page: 59
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0350
  article-title: Does feature selection improve classification accuracy? impact of sample size and feature selection on classification using anatomical magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.066
– volume: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0885
  article-title: Identifying autism from neural representations of social interactions: neurocognitive markers of autism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0113879
– volume: 36
  start-page: S121
  issue: Suppl. 1
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1375
  article-title: Brain connectivity and novel network measures for Alzheimer's disease classification
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.04.037
– year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0870
  article-title: Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2440298
– volume: 117
  start-page: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb1100
  article-title: Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2008.11.021
– volume: 35
  start-page: 5052
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1175
  article-title: Multi-atlas based representations for Alzheimer's disease diagnosis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22531
– volume: 191
  start-page: 174
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb0900
  article-title: Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects
  publication-title: Psychiatry Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2010.09.016
– volume: 36
  start-page: 2118
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0505
  article-title: Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22759
– volume: 124
  start-page: 1084
  year: 2016
  ident: 10.1016/j.neuroimage.2016.02.079_bb0995
  article-title: An open platform for compiling, curating, and disseminating neuroimaging data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.05.049
– volume: 78
  start-page: 270
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0635
  article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.066
– volume: 66
  start-page: 1055
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb1550
  article-title: Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2009.07.019
– volume: 24
  start-page: 3116
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0055
  article-title: Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bht165
– volume: 35
  start-page: 5179
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0875
  article-title: Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22542
– volume: 43
  start-page: 349
  year: 2004
  ident: 10.1016/j.neuroimage.2016.02.079_bb0020
  article-title: Outcome classification of preschool children with autism spectrum disorders using MRI brain measures
  publication-title: J. Am. Acad. Child Adolesc. Psychiatry
  doi: 10.1097/00004583-200403000-00018
– volume: 6
  start-page: 229
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb0680
  article-title: Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: a support vector machine learning approach
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2014.09.009
– volume: 39
  start-page: 1186
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb1620
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.073
– volume: 24
  start-page: 775
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1725
  article-title: Independent component analysis-based classification of Alzheimer's disease MRI data
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2011-101371
– volume: 2013
  start-page: 867924
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1635
  article-title: Machine learning approaches: from theory to application in schizophrenia
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2013/867924
– year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0295
  article-title: Simulation of structural magnetic resonance images for deep learning pre-training
– volume: 3
  start-page: 186
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.079_bb0200
  article-title: Forecasting the global burden of Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2007.04.381
– volume: 12
  start-page: 426
  year: 1998
  ident: 10.1016/j.neuroimage.2016.02.079_bb0775
  article-title: Neurocognitive deficit in schizophrenia: a quantitative review of the evidence
  publication-title: Neuropsychology
  doi: 10.1037/0894-4105.12.3.426
– volume: 4
  start-page: 192
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.079_bb1720
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2010.00192
– volume: 66
  start-page: 119
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1515
  article-title: Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.051
– volume: 12
  start-page: 10
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1755
  article-title: Functional connectivity-based signatures of schizophrenia revealed by multiclass pattern analysis of resting-state fMRI from schizophrenic patients and their healthy siblings
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-12-10
– volume: 10
  start-page: 841
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.079_bb0220
  article-title: Shaving diffusion tensor images in discriminant analysis: a study into schizophrenia
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2006.07.006
– volume: 9
  start-page: 66
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb1825
  article-title: Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2015.00066
– volume: 24
  start-page: 1279
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0805
  article-title: Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging
  publication-title: Eur. Child Adolesc. Psychiatry
  doi: 10.1007/s00787-015-0678-4
– volume: 45
  start-page: S199
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.079_bb1320
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 83
  start-page: 999
  year: 1988
  ident: 10.1016/j.neuroimage.2016.02.079_bb1155
  article-title: Importance sampling for estimating exact probabilities in permutational inference
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1988.10478691
– volume: 220
  start-page: 841
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb1545
  article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0687-3
– start-page: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.079_bb0590
  article-title: Combining classification with fMRI-Derived complex network measures for potential neurodiagnostics
  publication-title: PLoS One
– volume: 2015
  start-page: 865265
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0675
  article-title: Inclusion of neuropsychological scores in atrophy models improves diagnostic classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2015/865265
– volume: 84
  start-page: 320
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1365
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 25
  start-page: 303
  year: 2004
  ident: 10.1016/j.neuroimage.2016.02.079_bb1315
  article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(03)00084-8
– volume: 96
  start-page: 183
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.079_bb1655
  article-title: Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.067
– start-page: 1000
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.079_bb0215
  article-title: The neuroimaging informatics tools and resources clearinghouse (NITRC)
– volume: 30
  start-page: 1441
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.079_bb1805
  article-title: ODVBA: optimally-discriminative voxel-based analysis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2114362
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb1095
  article-title: Changes in community structure of resting state functional connectivity in unipolar depression
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0041282
– volume: 15
  start-page: 298
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0630
  article-title: Distinguishing bipolar and major depressive disorders by brain structural morphometry: a pilot study
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-015-0685-5
– volume: 39
  start-page: 57
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.079_bb1140
  article-title: Combining ERP and structural MRI information in first episode schizophrenia and bipolar disorder
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/155005940803900206
– volume: 7
  start-page: 19
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.079_bb0135
  article-title: Deep learning of representations for unsupervised and transfer learning
  publication-title: Unsupervised Transf. Learn. Challenges Mach. Learn.
– volume: xiv
  start-page: 29876
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.079_bb0985
  article-title: Deep neural networks: a new framework for modelling biological vision and brain information processing
  publication-title: Bioresources
SSID ssj0009148
Score 2.6798825
SecondaryResourceType review_article
Snippet Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 137
SubjectTerms Alzheimer's disease
Attention deficit hyperactivity disorder
Biomarkers
Brain Diseases - classification
Brain Diseases - diagnostic imaging
Brain disorders
Brain research
Classification
Dyslexia
Humans
Machine Learning
Medical imaging
Neural networks
Neuroimaging
NMR
Nuclear magnetic resonance
Prediction
Researchers
Schizophrenia
Studies
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZdC2MvY1u3NW03NOirmWRbkt0-jDJWyqCl0BXyJvTLLCO10zj5_3dny067jZEXg5AO5NNJ90k6fUfIibBO-tK4xEgRktx5lVgjPXxMxVnFbRHw7fDVtby8y79PxTQeuLUxrHJYE7uF2jcOz8g_4yPfEnZTUnxZPCSYNQpvV2MKjWdkr6MuA3tWU7Uh3eV5_xROZEkBDWIkTx_f1fFFzu5h1mKAl-yYOzGg69_u6W_4-WcU5SO3dPGKvIx4kp73BvCa7IT6DXl-FW_M98ntLfimeaDt2uKJC10ssQpHgzYVtZgggvrIwNlSKIwdBrlTerNswBBCS03t6WK2qsx83r4ldxfffny9TGIihcTJjK1gj1gwL8oCA8sAgAXheBBQUCq4rMiRM55zYzx4M6bAaWZValXpJYwTuKvcZe_Ibt3U4YDQ4NMA-2luqgBbs0IWmau8lQXLHauYshOiBv1pF1nGMdnFXA_hZL_0RvMaNa9ZqkHzE8JHyUXPtLGFTDkMkR5eksLap8EdbCF7NspGtNGjiC2ljweL0HHWt3pjoxPyaayGYcJLGFOHZo1tABKpVKTQ5n1vQOPvpgrggmAZKPGJaY0NkAv8aU09-9lxggvM1sHl4f-7dURepAhLGE-4OCa7q-U6fABQtbIfu5nzG2Y4JSs
  priority: 102
  providerName: ProQuest
Title Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191600210X
https://dx.doi.org/10.1016/j.neuroimage.2016.02.079
https://www.ncbi.nlm.nih.gov/pubmed/27012503
https://www.proquest.com/docview/1852983765
https://www.proquest.com/docview/1826672525
https://pubmed.ncbi.nlm.nih.gov/PMC5031516
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFe0PguG5OReA21k9hO4GlUm8rHqmplUt8sx3ZEUEmrfrzyt3OXOBkFHirx4sixT0rOZ99d8rs7Qt6IwkqXGxsZKXyUWqeiwkgHjSk5K3mReYwdvp7I8W36aS7mR2TUxcIgrDKc_e2Z3pzW4c4wcHO4qqrhDCwDUDfgb8jGcZljBHuqUNbf_ryDeeQ8bcPhRBLh7IDmaTFeTc7I6gfsXAR5ySZ7J4K6_q2i_jZB_0RS_qaark7Iw2BT0ov2sR-RI18_Jvevw1_zJ2Q2A_208HSzK_CrC12tcQhXhC5LWmCRCOpCFs4NhU7_wED3jk7XSxAGv6GmdnRVbUuzWGyektury6-jcRSKKURWJmwLfmLGnMgzBJeBEeaF5V5ARylvkyzFvPGcG-NAozEFijMp40LlTsJagcpKbfKMHNfL2r8g1LvYg0_NTenBPctkltjSFTJjqWUlU8WAqI5_2oZM41jwYqE7SNl3fcd5jZzXLNbA-QHhPeWqzbZxAE3eLZHuoknh_NOgEg6gfd_T7kndgdRnnUTosPM3GoPRc_D6pRiQ1_0wLBP-iDG1X-5wDphFKhYxzHneClD_urECk0GwBJi4J1r9BMwHvj9SV9-avOACK3Zw-fK_XuqUPIjRcmE84uKMHG_XO_8K7K5tcd5sLGjVXJ2Texejmy9TvH78PJ7A9cPlZHrzC4TaNjU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkICXic_RMcBI8BhhJ7GdgCaEgKlj64S0TeqbcWxHFHVJ17RC_FP8jbvLVxkg1Je9VIrsq5zz-e538X0Q8lJkVrrU2MBI4YPYOhVkRjr4MTlnOc8Sj7nDo2M5PIs_j8V4g_zqcmEwrLLTibWidqXFb-SvMck3BW9KineziwC7RuHtatdCoxGLQ__zB7hs1d7BR9jfV2G4_-n0wzBouwoEVkZsAQ5TwpxIE4yyAjTiheVewINS3kZJjAXUOTfGgWpnCixIlIeZSp2ERYPujm0E_3uD3IwjwFZwftRYrYr88rhJvRNRkHCetpFDTTxZXZ9ycg5aAgPKZF0pFAPI_m0O_4a7f0Zt_mYG9--SrRa_0veNwN0jG764T26N2hv6B-TkBGzh1NNqmeEXHjqb4xDuPi1zmmFDCuraip8VhYd-wUD3hn6ZlyB4vqKmcHQ2WeRmOq0ekrNrYfEjslmUhX9MqHehB_-dm9yDK5jIJLK5y2TCYstyprIBUR3_tG2rmmNzjanuwte-6xXnNXJes1AD5weE95SzprLHGjRpt0W6y1wFXavB_KxB-7anbdFNg1rWpN7tJEK3WqbSqzMxIC_6YdgmvPQxhS-XOAcgmApFCHO2GwHqXzdUAE8Ei4CJV0Srn4C1x6-OFJNvdQ1ygd1BuNz5_7Kek9vD09GRPjo4PnxC7oQIiRgPuNglm4v50j8FQLfIntWniJKv131sLwHAuWFF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ028IL7pGGAkeIwWO7GTgCYEbNXGWFUxJu3Nc2xHFHVpaVoh_kX-Ku4SJ2WAUF_2EimyL0rO5_uI735HyAuRG2kzbQIthQtiY5Mg19LCRRcsLFieOqwdPhnKw7P4w7k43yA_21oYTKtsdWKtqO3U4D_yXSzyzSCakmK38GkRo_3Bm9m3ADtI4Ulr205D-zYLdq-GG_NFHsfux3cI56q9o31Y-5ecDw4-vz8MfMeBwMgoXEAwlYZWZClmYIGn4oRhTsBNkjgTpTGCqzOmtQW1HyZgXaKC50lmJXwQ6PXYRPDcG2QzASvJe2Tz3cFw9GkFAczipjBPREHKWObzippssxq9cnwJOgTTzWSNI4rpZf82ln87w3_mdP5mJAe3yS3v3dK3jTjeIRuuvEu2Tvz5_T1yegqWcuJotczx_w-dzXEIZYNOC5pjuwpqPR5oReGme2Gge0VH8ymIpauoLi2djReFnkyq--TsWpj8gPTKaekeEeosdxDdM104CBRTmUamsLlMw9iERZjkfZK0_FPGY55j642JapPbvqoV5xVyXoVcAef7hHWUswb3Yw2arF0i1da1giZWYJzWoH3d0Xrfp_Fp1qTeaSVCeR1UqdWO6ZPn3TAsEx4J6dJNlzgHHLSECw5zHjYC1H0uT8B5EWEETLwiWt0ERCa_OlKOv9QI5QJ7hzC5_f_Xeka2YAurj0fD48fkJkd_KWQBEzukt5gv3RPw9hb5U7-NKLm47p37C2HfbAc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+subject+prediction+of+brain+disorders+in+neuroimaging%3A+Promises+and+pitfalls&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Arbabshirani%2C+Mohammad+R.&rft.au=Plis%2C+Sergey&rft.au=Sui%2C+Jing&rft.au=Calhoun%2C+Vince+D.&rft.date=2017-01-15&rft.issn=1053-8119&rft.volume=145&rft.spage=137&rft.epage=165&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.02.079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2016_02_079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon