The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain
In diffusion tensor magnetic resonance imaging (DT-MRI), limitations concerning complex fiber architecture (when an image voxel contains fiber populations with more than one dominant orientation) are well-known. Fractional anisotropy (FA) values are lower in such areas because of a lower directional...
        Saved in:
      
    
          | Published in | NeuroImage (Orlando, Fla.) Vol. 59; no. 3; pp. 2208 - 2216 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        01.02.2012
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-8119 1095-9572 1095-9572  | 
| DOI | 10.1016/j.neuroimage.2011.09.086 | 
Cover
| Abstract | In diffusion tensor magnetic resonance imaging (DT-MRI), limitations concerning complex fiber architecture (when an image voxel contains fiber populations with more than one dominant orientation) are well-known. Fractional anisotropy (FA) values are lower in such areas because of a lower directionality of diffusion on the voxel-scale, which makes the interpretation of FA less straightforward. Moreover, the interpretation of the axial and radial diffusivities is far from trivial when there is more than one dominant fiber orientation within a voxel. In this work, using (i) theoretical considerations, (ii) simulations, and (iii) experimental data, it is demonstrated that the mean diffusivity (or the trace of the diffusion tensor) is lower in complex white matter configurations, compared with tissue where there is a single dominant fiber orientation within the voxel. We show that the magnitude of this reduction depends on various factors, including configurational and microstructural properties (e.g., the relative contributions of different fiber populations) and acquisition settings (e.g., the b-value). These results increase our understanding of the quantitative metrics obtained from DT-MRI and, in particular, the effect of the microstructural architecture on the mean diffusivity. More importantly, they reinforce the growing awareness that differences in DT-MRI metrics need to be interpreted cautiously.
► The mean diffusivity (MD) in diffusion tensor MRI is affected by crossing fibers. ► MD values are lower in complex fiber architecture than in single fiber voxels. ► This is shown using theoretical considerations, simulations and in vivo experiments. ► In vivo, mean diffusivity values decrease when fibers cross at larger angles. | 
    
|---|---|
| AbstractList | In diffusion tensor magnetic resonance imaging (DT-MRI), limitations concerning complex fiber architecture (when an image voxel contains fiber populations with more than one dominant orientation) are well-known. Fractional anisotropy (FA) values are lower in such areas because of a lower directionality of diffusion on the voxel-scale, which makes the interpretation of FA less straightforward. Moreover, the interpretation of the axial and radial diffusivities is far from trivial when there is more than one dominant fiber orientation within a voxel. In this work, using (i) theoretical considerations, (ii) simulations, and (iii) experimental data, it is demonstrated that the mean diffusivity (or the trace of the diffusion tensor) is lower in complex white matter configurations, compared with tissue where there is a single dominant fiber orientation within the voxel. We show that the magnitude of this reduction depends on various factors, including configurational and microstructural properties (e.g., the relative contributions of different fiber populations) and acquisition settings (e.g., the b-value). These results increase our understanding of the quantitative metrics obtained from DT-MRI and, in particular, the effect of the microstructural architecture on the mean diffusivity. More importantly, they reinforce the growing awareness that differences in DT-MRI metrics need to be interpreted cautiously.
► The mean diffusivity (MD) in diffusion tensor MRI is affected by crossing fibers. ► MD values are lower in complex fiber architecture than in single fiber voxels. ► This is shown using theoretical considerations, simulations and in vivo experiments. ► In vivo, mean diffusivity values decrease when fibers cross at larger angles. In diffusion tensor magnetic resonance imaging (DT-MRI), limitations concerning complex fiber architecture (when an image voxel contains fiber populations with more than one dominant orientation) are well-known. Fractional anisotropy (FA) values are lower in such areas because of a lower directionality of diffusion on the voxel-scale, which makes the interpretation of FA less straightforward. Moreover, the interpretation of the axial and radial diffusivities is far from trivial when there is more than one dominant fiber orientation within a voxel. In this work, using (i) theoretical considerations, (ii) simulations, and (iii) experimental data, it is demonstrated that the mean diffusivity (or the trace of the diffusion tensor) is lower in complex white matter configurations, compared with tissue where there is a single dominant fiber orientation within the voxel. We show that the magnitude of this reduction depends on various factors, including configurational and microstructural properties (e.g., the relative contributions of different fiber populations) and acquisition settings (e.g., the b-value). These results increase our understanding of the quantitative metrics obtained from DT-MRI and, in particular, the effect of the microstructural architecture on the mean diffusivity. More importantly, they reinforce the growing awareness that differences in DT-MRI metrics need to be interpreted cautiously. In diffusion tensor magnetic resonance imaging (DT-MRI), limitations concerning complex fiber architecture (when an image voxel contains fiber populations with more than one dominant orientation) are well-known. Fractional anisotropy (FA) values are lower in such areas because of a lower directionality of diffusion on the voxel-scale, which makes the interpretation of FA less straightforward. Moreover, the interpretation of the axial and radial diffusivities is far from trivial when there is more than one dominant fiber orientation within a voxel. In this work, using (i) theoretical considerations, (ii) simulations, and (iii) experimental data, it is demonstrated that the mean diffusivity (or the trace of the diffusion tensor) is lower in complex white matter configurations, compared with tissue where there is a single dominant fiber orientation within the voxel. We show that the magnitude of this reduction depends on various factors, including configurational and microstructural properties (e.g., the relative contributions of different fiber populations) and acquisition settings (e.g., the b-value). These results increase our understanding of the quantitative metrics obtained from DT-MRI and, in particular, the effect of the microstructural architecture on the mean diffusivity. More importantly, they reinforce the growing awareness that differences in DT-MRI metrics need to be interpreted cautiously.In diffusion tensor magnetic resonance imaging (DT-MRI), limitations concerning complex fiber architecture (when an image voxel contains fiber populations with more than one dominant orientation) are well-known. Fractional anisotropy (FA) values are lower in such areas because of a lower directionality of diffusion on the voxel-scale, which makes the interpretation of FA less straightforward. Moreover, the interpretation of the axial and radial diffusivities is far from trivial when there is more than one dominant fiber orientation within a voxel. In this work, using (i) theoretical considerations, (ii) simulations, and (iii) experimental data, it is demonstrated that the mean diffusivity (or the trace of the diffusion tensor) is lower in complex white matter configurations, compared with tissue where there is a single dominant fiber orientation within the voxel. We show that the magnitude of this reduction depends on various factors, including configurational and microstructural properties (e.g., the relative contributions of different fiber populations) and acquisition settings (e.g., the b-value). These results increase our understanding of the quantitative metrics obtained from DT-MRI and, in particular, the effect of the microstructural architecture on the mean diffusivity. More importantly, they reinforce the growing awareness that differences in DT-MRI metrics need to be interpreted cautiously. In diffusion tensor magnetic resonance imaging (DT-MRI), limitations concerning complex fiber architecture (when an image voxel contains fiber populations with more than one dominant orientation) are well-known. Fractional anisotropy (FA) values are lower in such areas because of a lower directionality of diffusion on the voxel-scale, which makes the interpretation of FA less straightforward. Moreover, the interpretation of the axial and radial diffusivities is far from trivial when there is more than one dominant fiber orientation within a voxel. In this work, using (i) theoretical considerations, (ii) simulations, and (iii) experimental data, it is demonstrated that the mean diffusivity (or the trace of the diffusion tensor) is lower in complex white matter configurations, compared with tissue where there is a single dominant fiber orientation within the voxel. We show that the magnitude of this reduction depends on various factors, including configurational and microstructural properties (e.g., the relative contributions of different fiber populations) and acquisition settings (e.g., theb-value). These results increase our understanding of the quantitative metrics obtained from DT-MRI and, in particular, the effect of the microstructural architecture on the mean diffusivity. More importantly, they reinforce the growing awareness that differences in DT-MRI metrics need to be interpreted cautiously.  | 
    
| Author | Viergever, Max A. Leemans, Alexander Jeurissen, Ben Vos, Sjoerd B. Jones, Derek K.  | 
    
| AuthorAffiliation | 2 CUBRIC, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom 1 Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands 4 IBBT-VisionLab, University of Antwerp, Belgium 3 Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom  | 
    
| AuthorAffiliation_xml | – name: 2 CUBRIC, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom – name: 3 Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom – name: 1 Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands – name: 4 IBBT-VisionLab, University of Antwerp, Belgium  | 
    
| Author_xml | – sequence: 1 givenname: Sjoerd B. surname: Vos fullname: Vos, Sjoerd B. email: sjoerd@isi.uu.nl organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 2 givenname: Derek K. surname: Jones fullname: Jones, Derek K. organization: CUBRIC, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK – sequence: 3 givenname: Ben surname: Jeurissen fullname: Jeurissen, Ben organization: IBBT-VisionLab, University of Antwerp, Belgium – sequence: 4 givenname: Max A. surname: Viergever fullname: Viergever, Max A. organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 5 givenname: Alexander surname: Leemans fullname: Leemans, Alexander organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22005591$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqVkltvEzEQhVeoiF7gL6CVeOBpg2edtdcvCFpxqVSEhMqz5XhnG4ddO_iSkn-PV2kJ5Ck82SOf82l8Zs6LE-ssFkUJZAYE2JvVzGLyzozqDmc1AZgRMSMte1KcARFNJRpen0z3hlYtgDgtzkNYEUIEzNtnxWldE9I0As6KdLvE0th-SGg1lq4vtRvXA_4q75cmYjmqGNGXyuup1DH5LLJlzK4RlS070_cpmI2J24x5LCcF2uB8-eXb9QSd9Ms0ZsPCK2OfF097NQR88XBeFN8_fri9-lzdfP10ffX-ptKsFrGilHDSca04cE6VgnreaaWBdwhzIRTFha7ZguqeQYsInWIKGEPWK8FZw-hFIXbcZNdqe6-GQa59Ts1vJRA5RSlXch-lnKKURMgcZfa-3XnXaTFip9FGr_Z-p4z898WapbxzG8kZ0DkVGfD6AeDdz4QhytEEjcOgLLoUpICGciGAZ-WrA-XKJW9zMhIaRlhT102bVS__buhPJ4_D3HesvQvBYy-1iSrmaeT-zHDMl9sDwH-kdbmzYh7nxqCXQZtppTrj89rIzpljIO8OIHow1mg1_MDtcYjfpqv90Q | 
    
| CitedBy_id | crossref_primary_10_1007_s00234_014_1327_1 crossref_primary_10_3389_fnins_2019_00023 crossref_primary_10_1007_s11065_015_9291_z crossref_primary_10_1016_j_psychres_2020_113019 crossref_primary_10_1016_j_neuroimage_2021_118706 crossref_primary_10_1371_journal_pone_0081453 crossref_primary_10_1007_s00330_012_2572_5 crossref_primary_10_1016_j_nicl_2022_103001 crossref_primary_10_1002_nbm_3405 crossref_primary_10_1017_S1366728920000152 crossref_primary_10_1016_j_nicl_2013_11_007 crossref_primary_10_1002_hbm_23920 crossref_primary_10_1016_j_nicl_2015_11_007 crossref_primary_10_1016_j_neuroimage_2016_08_047 crossref_primary_10_1016_j_neuroimage_2015_08_044 crossref_primary_10_1177_0883073819841717 crossref_primary_10_1016_j_neuroimage_2016_08_033 crossref_primary_10_1016_j_jns_2019_116438 crossref_primary_10_1038_s41598_019_40666_8 crossref_primary_10_1007_s11682_012_9220_1 crossref_primary_10_1007_s00247_012_2572_2 crossref_primary_10_1016_j_camwa_2021_06_013 crossref_primary_10_1016_j_neuroimage_2013_07_067 crossref_primary_10_1007_s10237_013_0476_1 crossref_primary_10_1016_j_pscychresns_2019_04_004 crossref_primary_10_2337_dc12_0814 crossref_primary_10_2337_db12_1644 crossref_primary_10_3389_fneur_2020_00314 crossref_primary_10_1212_WNL_0b013e31828c2ee5 crossref_primary_10_1016_j_neuroimage_2014_04_013 crossref_primary_10_1016_j_neurobiolaging_2015_02_001 crossref_primary_10_1093_cercor_bhad279 crossref_primary_10_2217_fnl_13_37 crossref_primary_10_1016_j_neuroimage_2019_06_020 crossref_primary_10_1109_TMI_2013_2289381 crossref_primary_10_1016_j_brainres_2017_07_002 crossref_primary_10_2463_mrms_bc_2015_0148 crossref_primary_10_1002_hbm_26785 crossref_primary_10_1038_s41380_023_02390_8 crossref_primary_10_3389_fnsys_2021_692152 crossref_primary_10_1038_s41531_021_00155_0 crossref_primary_10_1002_jmri_25519 crossref_primary_10_1038_s41598_024_79511_y crossref_primary_10_1016_j_neuroimage_2018_05_055 crossref_primary_10_1016_j_neuroimage_2020_116869 crossref_primary_10_1111_jsr_13710 crossref_primary_10_1016_j_nicl_2021_102886 crossref_primary_10_1177_2058460117703816 crossref_primary_10_1007_s00429_019_02016_2 crossref_primary_10_1016_j_nicl_2015_07_006 crossref_primary_10_1016_j_bandc_2013_05_005 crossref_primary_10_1016_j_neurad_2018_07_004 crossref_primary_10_1016_j_visres_2014_12_021 crossref_primary_10_1371_journal_pone_0170703 crossref_primary_10_1002_mrm_24602 crossref_primary_10_1093_braincomms_fcac141 crossref_primary_10_1016_j_nicl_2012_09_011 crossref_primary_10_1111_dmcn_15516 crossref_primary_10_1111_ejn_12717 crossref_primary_10_3389_fnins_2022_833209 crossref_primary_10_1186_2040_2392_6_4 crossref_primary_10_1136_jnnp_2018_318830 crossref_primary_10_1089_neu_2012_2486 crossref_primary_10_1371_journal_pone_0276721 crossref_primary_10_1016_j_nicl_2017_10_010 crossref_primary_10_3174_ajnr_A4903 crossref_primary_10_1038_s41598_024_60340_y crossref_primary_10_1186_1471_244X_14_99 crossref_primary_10_1016_j_neuroimage_2014_09_057 crossref_primary_10_1038_npp_2013_294 crossref_primary_10_1002_aur_1290 crossref_primary_10_1016_j_neuroimage_2014_07_061 crossref_primary_10_3174_ajnr_A5687 crossref_primary_10_3389_fneur_2019_00445 crossref_primary_10_1016_j_ymgme_2020_12_001 crossref_primary_10_1089_neu_2022_0206 crossref_primary_10_1371_journal_pone_0137905 crossref_primary_10_1371_journal_pone_0135449 crossref_primary_10_1038_s41386_024_01894_3 crossref_primary_10_1002_aur_1332 crossref_primary_10_1007_s00330_018_5506_z crossref_primary_10_1007_s11682_019_00230_4 crossref_primary_10_1016_j_dcn_2015_10_004 crossref_primary_10_3174_ajnr_A7860 crossref_primary_10_3389_fnhum_2014_01066 crossref_primary_10_1038_s41598_020_73717_6 crossref_primary_10_1097_RLI_0000000000001015 crossref_primary_10_3390_brainsci13050798 crossref_primary_10_1002_hbm_23297 crossref_primary_10_1002_hbm_23694 crossref_primary_10_1016_j_neulet_2023_137574 crossref_primary_10_1111_ejn_13655 crossref_primary_10_1016_j_nicl_2014_12_008 crossref_primary_10_1111_jon_13165 crossref_primary_10_1371_journal_pone_0066022 crossref_primary_10_1007_s11682_023_00809_y crossref_primary_10_1007_s00429_013_0654_z crossref_primary_10_1007_s13311_018_00697_x crossref_primary_10_1007_s00429_024_02796_2 crossref_primary_10_1111_adb_13149 crossref_primary_10_1016_j_heares_2016_06_011 crossref_primary_10_1016_j_psyneuen_2014_11_007 crossref_primary_10_1089_neu_2014_3809 crossref_primary_10_1016_j_neuroimage_2015_06_068 crossref_primary_10_1016_j_neuroimage_2014_09_039 crossref_primary_10_1111_cns_14616 crossref_primary_10_1007_s00234_018_1985_5 crossref_primary_10_1016_j_jpeds_2015_09_069 crossref_primary_10_1371_journal_pone_0116330 crossref_primary_10_1002_hbm_26393 crossref_primary_10_1089_brain_2023_0068 crossref_primary_10_1097_PCC_0b013e3182455778 crossref_primary_10_1371_journal_pone_0203271 crossref_primary_10_3389_fnagi_2015_00010 crossref_primary_10_3389_fneur_2019_00784 crossref_primary_10_1002_hbm_24522 crossref_primary_10_1016_j_nicl_2013_04_006 crossref_primary_10_1016_j_nicl_2012_09_004 crossref_primary_10_1016_j_neuroimage_2012_06_001 crossref_primary_10_1016_j_cpet_2013_04_002 crossref_primary_10_1186_s10194_024_01899_9 crossref_primary_10_1007_s00429_014_0912_8 crossref_primary_10_1177_0271678X18809547 crossref_primary_10_1186_s12883_018_1108_2 crossref_primary_10_1038_s41598_019_40070_2 crossref_primary_10_1007_s00429_015_1001_3 crossref_primary_10_1016_j_artmed_2024_102897 crossref_primary_10_1016_j_schres_2014_09_007 crossref_primary_10_1186_s40537_019_0223_2 crossref_primary_10_1016_j_nicl_2020_102168 crossref_primary_10_1002_brb3_2746 crossref_primary_10_1093_cercor_bhs383 crossref_primary_10_2337_dc12_0493 crossref_primary_10_1155_2017_9807512 crossref_primary_10_3174_ajnr_A4301 crossref_primary_10_1016_j_nicl_2014_09_018 crossref_primary_10_15212_RADSCI_2024_0002 crossref_primary_10_1109_TMI_2016_2555244 crossref_primary_10_1002_hbm_23227 crossref_primary_10_1016_j_neuroscience_2013_09_004 crossref_primary_10_1016_j_neuroimage_2013_02_078 crossref_primary_10_1038_s41598_024_55412_y crossref_primary_10_1002_hbm_22099 crossref_primary_10_1007_s00429_015_1078_8 crossref_primary_10_1007_s00234_012_1129_2 crossref_primary_10_1016_j_neuroimage_2021_118739 crossref_primary_10_1038_s41598_021_86505_7 crossref_primary_10_1016_j_media_2015_10_004 crossref_primary_10_1038_s41598_018_19938_2 crossref_primary_10_1016_j_neuroimage_2015_10_085 crossref_primary_10_1007_s00429_013_0590_y crossref_primary_10_1016_j_ynirp_2023_100170 crossref_primary_10_3389_fonc_2020_622358 crossref_primary_10_1016_j_neuroimage_2020_117195  | 
    
| Cites_doi | 10.1148/radiology.201.3.8939209 10.1109/TMI.2009.2035616 10.1002/mrm.21890 10.1016/j.neuroimage.2011.01.048 10.1016/S0896-6273(03)00758-X 10.1002/mrm.20033 10.1016/j.mri.2006.07.009 10.1093/cercor/bhm003 10.1016/j.neuroimage.2011.01.032 10.1016/j.neuroimage.2008.03.036 10.1002/mrm.10052 10.1002/mrm.20741 10.1016/S1361-8415(02)00053-1 10.1002/mrm.22924 10.1016/S0006-3495(94)80775-1 10.1002/mrm.20279 10.1063/1.1695690 10.1016/j.neuroimage.2010.12.008 10.1016/j.neuroimage.2007.12.053 10.1016/j.neuroimage.2005.02.018 10.1002/jmri.1076 10.1109/TMI.2008.2004424 10.1002/mrm.10040 10.1097/RMR.0b013e31821e56ac 10.1006/nimg.2001.0765 10.1161/STROKEAHA.108.530832 10.1002/mrm.20484 10.1016/j.neuroimage.2007.02.016 10.1002/mrm.10331 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1016/j.neuroimage.2006.09.018 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q 10.1002/mrm.10268 10.1002/mrm.1125 10.1002/nbm.1543 10.1002/mrm.20283 10.1109/TMI.2003.815867 10.1137/0111030 10.1002/mrm.1105 10.1002/mrm.21965 10.1002/mrm.10209 10.1002/hbm.21032 10.1002/mrm.20418  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2011 Copyright © 2011. Published by Elsevier Inc. Copyright Elsevier Limited Feb 1, 2012  | 
    
| Copyright_xml | – notice: 2011 – notice: Copyright © 2011. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Feb 1, 2012  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1016/j.neuroimage.2011.09.086 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Psychology Collection (Proquest) Biological science database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Architecture  | 
    
| EISSN | 1095-9572 | 
    
| EndPage | 2216 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7613439 PMC7613439 3425544901 22005591 10_1016_j_neuroimage_2011_09_086 S1053811911011621  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 PUEGO R2- SEW WUQ XPP ZMT ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c629t-33070d7ca71773aa124dcac17de1499a3ebc26b3cf618ee1da6a166e6fa976563 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1053-8119 1095-9572  | 
    
| IngestDate | Sun Oct 26 04:06:45 EDT 2025 Tue Sep 30 16:36:55 EDT 2025 Wed Oct 01 08:23:32 EDT 2025 Tue Oct 07 06:45:57 EDT 2025 Thu Apr 03 07:24:36 EDT 2025 Wed Oct 01 02:58:07 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Fri Feb 23 02:20:32 EST 2024 Tue Oct 14 19:33:02 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Crossing fibers Trace Diffusion tensor MRI Mean diffusivity Complex fiber architecture  | 
    
| Language | English | 
    
| License | Copyright © 2011. Published by Elsevier Inc. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c629t-33070d7ca71773aa124dcac17de1499a3ebc26b3cf618ee1da6a166e6fa976563 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 http://www.isi.uu.nl/People/?sjoerd  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7613439 | 
    
| PMID | 22005591 | 
    
| PQID | 1560652258 | 
    
| PQPubID | 2031077 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2011_09_086 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7613439 proquest_miscellaneous_915379917 proquest_journals_1560652258 pubmed_primary_22005591 crossref_citationtrail_10_1016_j_neuroimage_2011_09_086 crossref_primary_10_1016_j_neuroimage_2011_09_086 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_09_086 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_09_086  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-02-01 | 
    
| PublicationDateYYYYMMDD | 2012-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Amsterdam  | 
    
| PublicationTitle | NeuroImage (Orlando, Fla.) | 
    
| PublicationTitleAlternate | Neuroimage | 
    
| PublicationYear | 2012 | 
    
| Publisher | Elsevier Inc Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited  | 
    
| References | Ennis, Kindlmann (bb0060) 2006; 55 Rathi, Malcolm, Michailovich, Goldstein, Seidman, McCarley, Westin, Shenton (bb0180) 2010 Klein, Staring, Murphy, Viergever, Pluim (bb0120) 2010; 29 Fillard, Descoteaux, Goh, Gouttard, Jeurissen, Malcolm, Ramirez-Manzanares, Reisert, Sakaie, Tensaouti, Yo, Mangin, Poupon (bb0065) 2011; 56 Wheeler-Kingshott, Cercignani (bb0230) 2009; 61 Basser, Pajevic, Pierpaoli, Duda, Aldroubi (bb0035) 2000; 44 Jones (bb0090) 2004; 51 Tuch, Reese, Wiegell, Wedeen (bb0210) 2003; 40 Ashburner, Friston (bb0015) 2005; 26 Leemans, Jeurissen, Sijbers, Jones (bb0150) 2009 Descoteaux, Deriche, Knosche, Anwander (bb0045) 2009; 28 Eluvathingal, Hasan, Kramer, Fletcher, Ewing-Cobbs (bb0055) 2007; 17 Jones (bb0085) 2003; 49 Jones, Travis, Eden, Pierpaoli, Basser (bb0115) 2005; 53 Koay (bb0125) 2010 Pierpaoli, Jezzard, Basser, Barnett, Di Chiro (bb0165) 1996; 201 Wedeen, Wang, Schmahmann, Benner, Tseng, Dai, Pandya, Hagmann, D'Arceuil, de Crespigny (bb0220) 2008; 41 Jones, Horsfield, Simmons (bb0110) 1999; 42 Tournier, Mori, Leemans (bb0195) June 2011; 65 Stejskal, Tanner (bb0185) 1965; 42 Lebel, Walker, Leemans, Phillips, Beaulieu (bb0135) 2008; 40 Marquardt (bb0155) 1963; 11 Le Bihan, Mangin, Poupon, Clark, Pappata, Molko, Chabriat (bb0130) 2001; 13 Jones (bb0095) 2010; 21 Westin, Maier, Mamata, Nabavi, Jolesz, Kikinis (bb0225) 2002; 6 Frank (bb0070) 2001; 45 Leemans, Jones (bb0140) 2009; 61 Jeurissen, Leemans, Tournier, Jones, Sijbers (bb0075) 2010 Alexander, Barker, Arridge (bb0010) 2002; 48 Tuch (bb0200) 2004; 52 Zarei, Damoiseaux, Morgese, Beckmann, Smith, Matthews, Scheltens, Rombouts, Barkhof (bb0235) 2009; 40 Jeurissen, Leemans, Jones, Tournier, Sijbers (bb0080) 2011; 32 Basser (bb0025) 2002; 47 Vos, Viergever, Jones, Leemans (bb0215) 2011; 55 Jones, Cercignani (bb0105) 2010; 23 Pluim, Maintz, Viergever (bb0175) 2003; 22 Douaud, Jbabdi, Behrens, Menke, Gass, Monsch, Rao, Whitcher, Kindlmann, Matthews, Smith (bb0050) 2011; 55 Alexander, Hasan, Lazar, Tsuruda, Parker (bb0005) 2001; 45 Tuch, Reese, Wiegell, Makris, Belliveau, Wedeen (bb0205) 2002; 48 Leemans, Sijbers, Verhoye, van der Linden, van Dyck (bb0145) 2005; 53 Assaf, Ben-Bashat, Chapman, Peled, Biton, Kafri, Segev, Hendler, Korczyn, Graif, Cohen (bb0020) 2002; 47 Basser, Mattiello, LeBihan (bb0030) 1994; 66 Tournier, Calamante, Connelly (bb0190) 2007; 35 Behrens, Johansen-Berg, Jbabdi, Rushworth, Woolrich (bb0040) 2007; 34 Jones, Basser (bb0100) 2004; 52 Peled, Friman, Jolesz, Westin (bb0160) 2006; 24 Pierpaoli, Barnett, Pajevic, Chen, Penix, Virta, Basser (bb0170) 2001; 13 Alexander (10.1016/j.neuroimage.2011.09.086_bb0005) 2001; 45 Behrens (10.1016/j.neuroimage.2011.09.086_bb0040) 2007; 34 Jones (10.1016/j.neuroimage.2011.09.086_bb0105) 2010; 23 Westin (10.1016/j.neuroimage.2011.09.086_bb0225) 2002; 6 Koay (10.1016/j.neuroimage.2011.09.086_bb0125) 2010 Tournier (10.1016/j.neuroimage.2011.09.086_bb0195) 2011; 65 Leemans (10.1016/j.neuroimage.2011.09.086_bb0150) 2009 Tuch (10.1016/j.neuroimage.2011.09.086_bb0205) 2002; 48 Tuch (10.1016/j.neuroimage.2011.09.086_bb0200) 2004; 52 Basser (10.1016/j.neuroimage.2011.09.086_bb0030) 1994; 66 Assaf (10.1016/j.neuroimage.2011.09.086_bb0020) 2002; 47 Descoteaux (10.1016/j.neuroimage.2011.09.086_bb0045) 2009; 28 Leemans (10.1016/j.neuroimage.2011.09.086_bb0145) 2005; 53 Pierpaoli (10.1016/j.neuroimage.2011.09.086_bb0170) 2001; 13 Frank (10.1016/j.neuroimage.2011.09.086_bb0070) 2001; 45 Pierpaoli (10.1016/j.neuroimage.2011.09.086_bb0165) 1996; 201 Ennis (10.1016/j.neuroimage.2011.09.086_bb0060) 2006; 55 Le Bihan (10.1016/j.neuroimage.2011.09.086_bb0130) 2001; 13 Basser (10.1016/j.neuroimage.2011.09.086_bb0035) 2000; 44 Vos (10.1016/j.neuroimage.2011.09.086_bb0215) 2011; 55 Fillard (10.1016/j.neuroimage.2011.09.086_bb0065) 2011; 56 Rathi (10.1016/j.neuroimage.2011.09.086_bb0180) 2010 Jeurissen (10.1016/j.neuroimage.2011.09.086_bb0075) 2010 Pluim (10.1016/j.neuroimage.2011.09.086_bb0175) 2003; 22 Jones (10.1016/j.neuroimage.2011.09.086_bb0085) 2003; 49 Douaud (10.1016/j.neuroimage.2011.09.086_bb0050) 2011; 55 Jeurissen (10.1016/j.neuroimage.2011.09.086_bb0080) 2011; 32 Stejskal (10.1016/j.neuroimage.2011.09.086_bb0185) 1965; 42 Tournier (10.1016/j.neuroimage.2011.09.086_bb0190) 2007; 35 Wedeen (10.1016/j.neuroimage.2011.09.086_bb0220) 2008; 41 Alexander (10.1016/j.neuroimage.2011.09.086_bb0010) 2002; 48 Eluvathingal (10.1016/j.neuroimage.2011.09.086_bb0055) 2007; 17 Jones (10.1016/j.neuroimage.2011.09.086_bb0115) 2005; 53 Tuch (10.1016/j.neuroimage.2011.09.086_bb0210) 2003; 40 Lebel (10.1016/j.neuroimage.2011.09.086_bb0135) 2008; 40 Basser (10.1016/j.neuroimage.2011.09.086_bb0025) 2002; 47 Peled (10.1016/j.neuroimage.2011.09.086_bb0160) 2006; 24 Marquardt (10.1016/j.neuroimage.2011.09.086_bb0155) 1963; 11 Jones (10.1016/j.neuroimage.2011.09.086_bb0100) 2004; 52 Klein (10.1016/j.neuroimage.2011.09.086_bb0120) 2010; 29 Jones (10.1016/j.neuroimage.2011.09.086_bb0090) 2004; 51 Jones (10.1016/j.neuroimage.2011.09.086_bb0110) 1999; 42 Jones (10.1016/j.neuroimage.2011.09.086_bb0095) 2010; 21 Leemans (10.1016/j.neuroimage.2011.09.086_bb0140) 2009; 61 Zarei (10.1016/j.neuroimage.2011.09.086_bb0235) 2009; 40 Ashburner (10.1016/j.neuroimage.2011.09.086_bb0015) 2005; 26 Wheeler-Kingshott (10.1016/j.neuroimage.2011.09.086_bb0230) 2009; 61  | 
    
| References_xml | – volume: 22 start-page: 986 year: 2003 end-page: 1004 ident: bb0175 article-title: Mutual-information-based registration of medical images: a survey publication-title: IEEE Trans. Med. Imaging – volume: 52 start-page: 1358 year: 2004 end-page: 1372 ident: bb0200 article-title: Q-ball imaging publication-title: Magn. Reson. Med. – volume: 45 start-page: 770 year: 2001 end-page: 780 ident: bb0005 article-title: Analysis of partial volume effects in diffusion-tensor MRI publication-title: Magn. Reson. Med. – volume: 28 start-page: 269 year: 2009 end-page: 286 ident: bb0045 article-title: Deterministic and probabilistic tractography based on complex fibre orientation distributions publication-title: IEEE Trans. Med. Imaging – volume: 21 start-page: 87 year: 2010 end-page: 99 ident: bb0095 article-title: Precision and accuracy in diffusion tensor magnetic resonance imaging publication-title: Top. Magn. Reson. Imaging – start-page: 657-665 year: 2010 ident: bb0180 article-title: Biomarkers for identifying first-episode schizophrenia patients using diffusion weighted imaging publication-title: Proceedings of the MICCAI, 2010, Beijing, China – volume: 40 start-page: 773 year: 2009 end-page: 779 ident: bb0235 article-title: Regional white matter integrity differentiates between vascular dementia and Alzheimer disease publication-title: Stroke – volume: 53 start-page: 1462 year: 2005 end-page: 1467 ident: bb0115 article-title: PASTA: pointwise assessment of streamline tractography attributes publication-title: Magn. Reson. Med. – volume: 55 start-page: 880 year: 2011 end-page: 890 ident: bb0050 article-title: DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease publication-title: Neuroimage – volume: 13 start-page: 1174 year: 2001 end-page: 1185 ident: bb0170 article-title: Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture publication-title: Neuroimage – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: bb0190 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage – volume: 40 start-page: 1044 year: 2008 end-page: 1055 ident: bb0135 article-title: Microstructural maturation of the human brain from childhood to adulthood publication-title: Neuroimage – start-page: 3536 year: 2009 ident: bb0150 article-title: ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data publication-title: Proceedings of the 17th Annual Meeting of International Society for Magnetic Resonance in Medicine, Hawaii, USA – volume: 48 start-page: 577 year: 2002 end-page: 582 ident: bb0205 article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity publication-title: Magn. Reson. Med. – volume: 6 start-page: 93 year: 2002 end-page: 108 ident: bb0225 article-title: Processing and visualization for diffusion tensor MRI publication-title: Med. Image Anal. – volume: 40 start-page: 885 year: 2003 end-page: 895 ident: bb0210 article-title: Diffusion MRI of complex neural architecture publication-title: Neuron – volume: 34 start-page: 144 year: 2007 end-page: 155 ident: bb0040 article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? publication-title: Neuroimage – volume: 53 start-page: 944 year: 2005 end-page: 953 ident: bb0145 article-title: Mathematical framework for simulating diffusion tensor MR neural fiber bundles publication-title: Magn. Reson. Med. – volume: 66 start-page: 259 year: 1994 end-page: 267 ident: bb0030 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. – volume: 23 start-page: 803 year: 2010 end-page: 820 ident: bb0105 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed. – volume: 45 start-page: 935 year: 2001 end-page: 939 ident: bb0070 article-title: Anisotropy in high angular resolution diffusion-weighted MRI publication-title: Magn. Reson. Med. – volume: 49 start-page: 7 year: 2003 end-page: 12 ident: bb0085 article-title: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI publication-title: Magn. Reson. Med. – volume: 48 start-page: 331 year: 2002 end-page: 340 ident: bb0010 article-title: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data publication-title: Magn. Reson. Med. – year: 2010 ident: bb0125 article-title: Chapter 16: least squares approaches to diffusion tensor estimation publication-title: Diffusion MRI: Theory, Methods and Applications – volume: 17 start-page: 2760 year: 2007 end-page: 2768 ident: bb0055 article-title: Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents publication-title: Cereb. Cortex – volume: 44 start-page: 625 year: 2000 end-page: 632 ident: bb0035 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. – volume: 47 start-page: 115 year: 2002 end-page: 126 ident: bb0020 article-title: High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis publication-title: Magn. Reson. Med. – volume: 11 start-page: 431 year: 1963 end-page: 441 ident: bb0155 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: J. Soc. Ind. Appl. Math. – start-page: 573 year: 2010 ident: bb0075 article-title: Estimating the number of fiber orientations in diffusion MRI voxels: a constrained spherical deconvolution study publication-title: Proceedings of the 18th Annual Meeting of International Society for Magnetic Resonance in Medicine, Stockholm, Sweden – volume: 65 start-page: 1532 year: June 2011 end-page: 1556 ident: bb0195 article-title: Diffusion tensor imaging and beyond publication-title: Magn. Reson. Med. – volume: 42 start-page: 515 year: 1999 end-page: 525 ident: bb0110 article-title: Optimal strategies for measuring diffusion in anisotropic systems by Magnetic Resonance Imaging publication-title: Magn. Reson. Med. – volume: 51 start-page: 807 year: 2004 end-page: 815 ident: bb0090 article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study publication-title: Magn. Reson. Med. – volume: 61 start-page: 1255 year: 2009 end-page: 1260 ident: bb0230 article-title: About “axial” and “radial” diffusivities publication-title: Magn. Reson. Med. – volume: 55 start-page: 1566 year: 2011 end-page: 1576 ident: bb0215 article-title: Partial volume effect as a hidden covariate in DTI analyses publication-title: Neuroimage – volume: 55 start-page: 136 year: 2006 end-page: 146 ident: bb0060 article-title: Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images publication-title: Magn. Reson. Med. – volume: 24 start-page: 1263 year: 2006 end-page: 1270 ident: bb0160 article-title: Geometrically constrained two-tensor model for crossing tracts in DWI publication-title: Magn. Reson. Imaging – volume: 29 start-page: 196 year: 2010 end-page: 205 ident: bb0120 article-title: elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans. Med. Imaging – volume: 56 start-page: 220 year: 2011 end-page: 234 ident: bb0065 article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom publication-title: Neuroimage – volume: 32 start-page: 461 year: 2011 end-page: 479 ident: bb0080 article-title: Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution publication-title: Hum. Brain Mapp. – volume: 52 start-page: 979 year: 2004 end-page: 993 ident: bb0100 article-title: Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data publication-title: Magn. Reson. Med. – volume: 61 start-page: 1336 year: 2009 end-page: 1349 ident: bb0140 article-title: The B-matrix must be rotated when correcting for subject motion in DTI data publication-title: Magn. Reson. Med. – volume: 13 start-page: 534 year: 2001 end-page: 546 ident: bb0130 article-title: Diffusion tensor imaging: concepts and applications publication-title: J. Magn. Reson. Imaging – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bb0015 article-title: Unified segmentation publication-title: Neuroimage – volume: 47 start-page: 392 year: 2002 end-page: 397 ident: bb0025 article-title: Relationships between diffusion tensor and q-space MRI publication-title: Magn. Reson. Med. – volume: 201 start-page: 637 year: 1996 end-page: 648 ident: bb0165 article-title: Diffusion tensor MR imaging of the human brain publication-title: Radiology – volume: 41 start-page: 1267 year: 2008 end-page: 1277 ident: bb0220 article-title: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers publication-title: Neuroimage – volume: 42 start-page: 288 year: 1965 end-page: 292 ident: bb0185 article-title: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient publication-title: J. Chem. Phys. – volume: 201 start-page: 637 issue: 3 year: 1996 ident: 10.1016/j.neuroimage.2011.09.086_bb0165 article-title: Diffusion tensor MR imaging of the human brain publication-title: Radiology doi: 10.1148/radiology.201.3.8939209 – volume: 29 start-page: 196 year: 2010 ident: 10.1016/j.neuroimage.2011.09.086_bb0120 article-title: elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2035616 – volume: 61 start-page: 1336 issue: 6 year: 2009 ident: 10.1016/j.neuroimage.2011.09.086_bb0140 article-title: The B-matrix must be rotated when correcting for subject motion in DTI data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21890 – volume: 55 start-page: 1566 year: 2011 ident: 10.1016/j.neuroimage.2011.09.086_bb0215 article-title: Partial volume effect as a hidden covariate in DTI analyses publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.048 – start-page: 573 year: 2010 ident: 10.1016/j.neuroimage.2011.09.086_bb0075 article-title: Estimating the number of fiber orientations in diffusion MRI voxels: a constrained spherical deconvolution study – volume: 40 start-page: 885 issue: 5 year: 2003 ident: 10.1016/j.neuroimage.2011.09.086_bb0210 article-title: Diffusion MRI of complex neural architecture publication-title: Neuron doi: 10.1016/S0896-6273(03)00758-X – volume: 51 start-page: 807 issue: 4 year: 2004 ident: 10.1016/j.neuroimage.2011.09.086_bb0090 article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20033 – volume: 24 start-page: 1263 issue: 9 year: 2006 ident: 10.1016/j.neuroimage.2011.09.086_bb0160 article-title: Geometrically constrained two-tensor model for crossing tracts in DWI publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2006.07.009 – volume: 17 start-page: 2760 issue: 12 year: 2007 ident: 10.1016/j.neuroimage.2011.09.086_bb0055 article-title: Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm003 – volume: 56 start-page: 220 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2011.09.086_bb0065 article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.032 – volume: 41 start-page: 1267 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2011.09.086_bb0220 article-title: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.036 – volume: 47 start-page: 392 issue: 2 year: 2002 ident: 10.1016/j.neuroimage.2011.09.086_bb0025 article-title: Relationships between diffusion tensor and q-space MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10052 – volume: 55 start-page: 136 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2011.09.086_bb0060 article-title: Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20741 – volume: 6 start-page: 93 issue: 2 year: 2002 ident: 10.1016/j.neuroimage.2011.09.086_bb0225 article-title: Processing and visualization for diffusion tensor MRI publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(02)00053-1 – volume: 65 start-page: 1532 issue: 6 year: 2011 ident: 10.1016/j.neuroimage.2011.09.086_bb0195 article-title: Diffusion tensor imaging and beyond publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22924 – volume: 66 start-page: 259 issue: 1 year: 1994 ident: 10.1016/j.neuroimage.2011.09.086_bb0030 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80775-1 – volume: 52 start-page: 1358 issue: 6 year: 2004 ident: 10.1016/j.neuroimage.2011.09.086_bb0200 article-title: Q-ball imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20279 – volume: 42 start-page: 288 issue: 1 year: 1965 ident: 10.1016/j.neuroimage.2011.09.086_bb0185 article-title: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient publication-title: J. Chem. Phys. doi: 10.1063/1.1695690 – volume: 55 start-page: 880 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2011.09.086_bb0050 article-title: DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.12.008 – volume: 40 start-page: 1044 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2011.09.086_bb0135 article-title: Microstructural maturation of the human brain from childhood to adulthood publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.053 – volume: 26 start-page: 839 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2011.09.086_bb0015 article-title: Unified segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 13 start-page: 534 issue: 4 year: 2001 ident: 10.1016/j.neuroimage.2011.09.086_bb0130 article-title: Diffusion tensor imaging: concepts and applications publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1076 – volume: 28 start-page: 269 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2011.09.086_bb0045 article-title: Deterministic and probabilistic tractography based on complex fibre orientation distributions publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2008.2004424 – volume: 47 start-page: 115 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2011.09.086_bb0020 article-title: High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10040 – volume: 21 start-page: 87 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2011.09.086_bb0095 article-title: Precision and accuracy in diffusion tensor magnetic resonance imaging publication-title: Top. Magn. Reson. Imaging doi: 10.1097/RMR.0b013e31821e56ac – volume: 13 start-page: 1174 issue: 6 year: 2001 ident: 10.1016/j.neuroimage.2011.09.086_bb0170 article-title: Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture publication-title: Neuroimage doi: 10.1006/nimg.2001.0765 – volume: 40 start-page: 773 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2011.09.086_bb0235 article-title: Regional white matter integrity differentiates between vascular dementia and Alzheimer disease publication-title: Stroke doi: 10.1161/STROKEAHA.108.530832 – volume: 53 start-page: 1462 issue: 6 year: 2005 ident: 10.1016/j.neuroimage.2011.09.086_bb0115 article-title: PASTA: pointwise assessment of streamline tractography attributes publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20484 – volume: 35 start-page: 1459 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2011.09.086_bb0190 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 49 start-page: 7 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2011.09.086_bb0085 article-title: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10331 – volume: 44 start-page: 625 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2011.09.086_bb0035 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – start-page: 3536 year: 2009 ident: 10.1016/j.neuroimage.2011.09.086_bb0150 article-title: ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data – volume: 34 start-page: 144 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2011.09.086_bb0040 article-title: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.018 – volume: 42 start-page: 515 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2011.09.086_bb0110 article-title: Optimal strategies for measuring diffusion in anisotropic systems by Magnetic Resonance Imaging publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q – volume: 48 start-page: 577 issue: 4 year: 2002 ident: 10.1016/j.neuroimage.2011.09.086_bb0205 article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10268 – volume: 45 start-page: 935 issue: 6 year: 2001 ident: 10.1016/j.neuroimage.2011.09.086_bb0070 article-title: Anisotropy in high angular resolution diffusion-weighted MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1125 – volume: 23 start-page: 803 issue: 7 year: 2010 ident: 10.1016/j.neuroimage.2011.09.086_bb0105 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed. doi: 10.1002/nbm.1543 – volume: 52 start-page: 979 issue: 5 year: 2004 ident: 10.1016/j.neuroimage.2011.09.086_bb0100 article-title: Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20283 – year: 2010 ident: 10.1016/j.neuroimage.2011.09.086_bb0125 article-title: Chapter 16: least squares approaches to diffusion tensor estimation – start-page: 657-665 year: 2010 ident: 10.1016/j.neuroimage.2011.09.086_bb0180 article-title: Biomarkers for identifying first-episode schizophrenia patients using diffusion weighted imaging – volume: 22 start-page: 986 issue: 8 year: 2003 ident: 10.1016/j.neuroimage.2011.09.086_bb0175 article-title: Mutual-information-based registration of medical images: a survey publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.815867 – volume: 11 start-page: 431 year: 1963 ident: 10.1016/j.neuroimage.2011.09.086_bb0155 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111030 – volume: 45 start-page: 770 issue: 5 year: 2001 ident: 10.1016/j.neuroimage.2011.09.086_bb0005 article-title: Analysis of partial volume effects in diffusion-tensor MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1105 – volume: 61 start-page: 1255 issue: 5 year: 2009 ident: 10.1016/j.neuroimage.2011.09.086_bb0230 article-title: About “axial” and “radial” diffusivities publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21965 – volume: 48 start-page: 331 issue: 2 year: 2002 ident: 10.1016/j.neuroimage.2011.09.086_bb0010 article-title: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10209 – volume: 32 start-page: 461 year: 2011 ident: 10.1016/j.neuroimage.2011.09.086_bb0080 article-title: Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21032 – volume: 53 start-page: 944 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2011.09.086_bb0145 article-title: Mathematical framework for simulating diffusion tensor MR neural fiber bundles publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20418  | 
    
| SSID | ssj0009148 | 
    
| Score | 2.4688363 | 
    
| Snippet | In diffusion tensor magnetic resonance imaging (DT-MRI), limitations concerning complex fiber architecture (when an image voxel contains fiber populations with... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2208 | 
    
| SubjectTerms | Adult Algorithms Anisotropy Architecture Brain - anatomy & histology Brain Mapping Complex fiber architecture Computer Simulation Crossing fibers Data Interpretation, Statistical Diffusion Diffusion Tensor Imaging - methods Diffusion tensor MRI Female Humans Image Processing, Computer-Assisted - methods Linear Models Male Mean diffusivity Models, Statistical Nerve Fibers - physiology Population Pyramidal Tracts - anatomy & histology Trace Young Adult  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED66FLYxKFv3y2s39LBXb5F_SDFjjLa0dIOEUVbom5BlmWYkdtbEdPvvd2dLTkrHyKOxzti6k_TJd_o-gPc2yaXBdSMksrIwKdI4JAqQUJckcVUambZceuOJOL9Mvl2lVzsw8WdhqKzSz4ntRF3Uhv6Rf6QTvwLBQjr6svgVkmoUZVe9hIZ20grF55Zi7AHsRsSMNYDd49PJ94s1DS9PusNx-E4jzjNX29NVfLUMktM5jmNH7Zl9GNIZ638vWPcB6f26ykdNtdB_bvVstrFonT2FPYc22VEXHs9gx1b78ORoI3mwDw_HLr3-HBoMGjb1siWsLllbcW5_s1syYPOWjJNtJh9YXTHEkGxudcVIbaVZtnIU-Bh_SS1ws1zfsPHFV3ootW-1AVlOAhUv4PLs9MfJeeh0GUIjomwVxjRPFNJo3ArKWGt0dWG04bKwuN_KdGxzE4k8NqXgI2t5oYXmQlhRagQ_qYhfwqCqK_saWM5NzMsk5WWmEz7UuB8fDSXuwWLiIhNxANJ3vjKOtJy0M2bKV6f9VGu3KXKbGmYK3RYA7y0XHXHHFjaZ96_yB1NxKlW4umxh-6m3deClAyVbWh_6cFJuElmqdcgHwPrbOPwpp6MrWzdLleGKhf3FZQCvuuDrvzaiH4ZpxrEP74Rl34CYxe_eqabXLcO4RJCHSDWAqA_grTvxzf8_5QAeY-OoK3w_hMHqprFvEdet8ndusP4FoxxPVw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQRc-IYGCvKBa9I4jp2NOFWIqiBthSpWKifLcRyxZZOsuhu18OsZO3FoKYeFY2SPI9sTz0zm-Q3AW5MWmUa7EVqysjAtOQstBUioKlviqtIZd1x6sxNxPE8_nfGzHaD-LowD7etiETXLOmoW3xy2clXrA48TO8C4m6EVvQO7guOwE9idn3w-_OqymvimKXXFPGhsaxDyzKN3ekyX44hc1PilDuSdeRTbW9R_N0m3Xc7byMl7XbNSPy7VcnnNLB09hFM_oR6N8j3qNkWkf_7B9fhPM34EDwYnlRz2TY9hxzRP4O5sSMM_hQ6Viyx8eRPSVsQh080VubRZCVI70k5yPUlB2oagr0lqoxpiq7J0a1e2Aofxj7YHBtXtBZmdfrSD2v6uhiApbCGLZzA_-vDl_XE41G8ItUjyTcjseVJmWmHImDGlUCVKrTTNSoNxWa6YKXQiCqYrQafG0FIJRYUwolLoJHHBnsOkaRuzB6SgmtEq5bTKVUpjhXH7NM4wVmOWs0ywADK_hVIP5Oa2xsZSehTbufy9-dJuvoxziZsfAB0lVz3BxxYyudcS6S-w4pEr0QptIftulB2cnN552VJ63yulHA6btbSX4QX60XwaABmb8ZiwuR_VmLZbyxwtG64XzQJ40avwONvE_ljkOcU1vKHcYwfLQH6zBdXUMZEPmhlAMn4GWy_iy_8RegX38SnpYfP7MNlcdOY1eoWb4s1wDvwC8qtkew priority: 102 providerName: Unpaywall  | 
    
| Title | The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811911011621 https://dx.doi.org/10.1016/j.neuroimage.2011.09.086 https://www.ncbi.nlm.nih.gov/pubmed/22005591 https://www.proquest.com/docview/1560652258 https://www.proquest.com/docview/915379917 https://pubmed.ncbi.nlm.nih.gov/PMC7613439 https://www.ncbi.nlm.nih.gov/pmc/articles/7613439  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 59 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemIQEviG8CY_IDr1nrfNiNeCrVpg5oVRUqlSfLcRwtqE2qtdHghb-dO8fJVo2HSrzUSmNHzfl8H7273xHywUSp0KA3fAQr86MsDn2EAPFVji2uci1ii6U3mfLxIvq8jJdHZNTWwmBapZP9jUy30tp903PU7G2KovcNLANQN-BvMAwm2GLyKBLYxeDsz22aR8KiphwOfgXOdtk8TY6XxYws1nByHZhnctbHqup_q6j7Juj9TMpHdblRv2_UanVHTV08JU-cfUmHzSs8I0emfE4eTlwE_QWpgS9o0XYmoVVObVK5-UVvMKBA1xZvk96NL9CqpGAm0rVRJcWGKvXWdpyAx7SXOAP84eqaTuaX-FCcb9v_0RR7ULwki4vz76Ox71ov-JoHyc4PURRkQivw9kSoFOxmppVmIjPgUiUqNKkOeBrqnLOBMSxTXDHODc8V2DcxD1-R47IqzRtCU6ZDlkcxyxMVsb4Cl3vQF-BmhQg3xkOPiJbaUjtccmyPsZJtAtpPebtPEvdJ9hMJ--QR1q3cNNgcB6xJ2g2Vbe0pSEsJCuSAtR-7tXs8euDqk5Z_pJMTW4l17BxM4HjgEdrdhhOOYRtVmqreygSUEtCLCY-8brite9sA_xOMEwY03OPDbgKCh-_fKYsrCyIuwI4DY9QjQcexBxPx7X8R4h15DFdBk_p-Qo5317V5D5bdLj21Rxc-xVKckgfD0fzrDMfLL-MpjJ_Op7M5jIvpbPjjL8slVnw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVqIICUF5GQrsAY6GrB_rWKhCBVoltIlQ1Uq9bdfrtQhK7NDECv1z_DZm7LWTqgjl0mNkzyreGc_DO_N9AG9NkEQa44ZLYGVukIa-SxAgrsqI4irTUVhh6Q2GoncWfDsPzzfgTzMLQ22VjU-sHHVaaPpG_oEmfgUmC2H30_SXS6xRdLraUGgoS62Q7lUQY3aw48hcLbCEm-31v6K-33ne4cHpl55rWQZcLbx47vpk9WmkFRY2ka8U_vFUK82j1GD1ECvfJNoTia8zwbvG8FQJxYUwIlMYykPh47p3YCvwgxiLv63PB8PvJ0vYXx7Uw3i4B13OY9tLVHeYVYiVown6DQslGr_v0Ez3vwPkzQT4Zh_ndplP1dVCjccrQfLwITyw2S3br83xEWyYfAfu768cVuzA3YE9zn8MJRopGzU0KazIWNXhbn6zBQmwSQX-yVYPO1iRM8xZ2cSonBG7Szmr6C9wmeYn3YHFeXHJBid9WpTur7gIWUKEGE_g7FY09BQ28yI3z4ElXPs8C0KexSrgHYX1f7cTYc3nE_aZ8B2Ims2X2oKkE1fHWDbdcD_lUm2S1CY7sUS1OcBbyWkNFLKGTNzoVzaDsOi6JUazNWQ_trI2WaqToDWldxtzktZpzeTyFXOAtZfR3dAZkspNUc5kjBES94tHDjyrja99Wo8-UIYxxz28ZpbtDYRkfv1KPvpRIZpHmFRiZuyA1xrw2pv44v-P8ga2e6eDY3ncHx69hHso6NVN97uwOb8szSvMKefJa_viMri4bV_xF0BOjMs | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQ2EhGB8LDDAD_AYVseJ3QghNDGqldEJISb1zTiOIzq1SVlblf1r_HXc5audhlBf9ljFZ9W-y33k7n4H8NqFibJoN3wCK_PDNBI-QYD4JqMRV5lVUYmlNziVx2fh52E03II_TS8MlVU2OrFU1Glh6Rv5AXX8SnQWou5BVpdFfD3qfZj-8mmCFGVam3EalYicuMslhm-z9_0j5PWbIOh9-v7x2K8nDPhWBvHcFyTxqbIGgxoljME_nVpjuUodRg6xES6xgUyEzSTvOsdTIw2X0snMoBmPpMB9b8FtJURM5YRqqFaAvzys2vDw9F3O47qKqKotK7EqRxPUGDWIaPy2Q93c_zaN113f6xWcdxb51FwuzXi8Zh57D-B-7deyw0oQH8KWy3fh3uFammIXdgZ1Iv8RLFA82agZkMKKjJW17e43WxIBm5Swn2w9zcGKnKG3yibO5Izmuixm5eAL3Kb5SSswLC8u2OBbnzal9eUUQpbQKIzHcHYj_HkC23mRuz1gCbeCZ2HEs9iEvGMw8u92FEZ7glDPpPBANZevbQ2PTlM6xrqpgzvXK7ZpYpvuxBrZ5gFvKacVRMgGNHHDX920wKLS1mjHNqB919LWblLl_mxIvd-Ik67V1UyvXi4PWPsYFQ1lj0zuisVMx2gb8b648uBpJXztaQP6NBnFHO_wili2CwjD_OqTfPSzxDJX6E6iT-xB0Arwxpf47P9HeQU7qCH0l_7pyXO4i3RBVW2_D9vzi4V7gc7kPHlZvrUMfty0mvgLdQaKZQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrQRc-IYGCvKBa9I4jp2NOFWIqiBthSpWKifLcRyxZZOsuhu18OsZO3FoKYeFY2SPI9sTz0zm-Q3AW5MWmUa7EVqysjAtOQstBUioKlviqtIZd1x6sxNxPE8_nfGzHaD-LowD7etiETXLOmoW3xy2clXrA48TO8C4m6EVvQO7guOwE9idn3w-_OqymvimKXXFPGhsaxDyzKN3ekyX44hc1PilDuSdeRTbW9R_N0m3Xc7byMl7XbNSPy7VcnnNLB09hFM_oR6N8j3qNkWkf_7B9fhPM34EDwYnlRz2TY9hxzRP4O5sSMM_hQ6Viyx8eRPSVsQh080VubRZCVI70k5yPUlB2oagr0lqoxpiq7J0a1e2Aofxj7YHBtXtBZmdfrSD2v6uhiApbCGLZzA_-vDl_XE41G8ItUjyTcjseVJmWmHImDGlUCVKrTTNSoNxWa6YKXQiCqYrQafG0FIJRYUwolLoJHHBnsOkaRuzB6SgmtEq5bTKVUpjhXH7NM4wVmOWs0ywADK_hVIP5Oa2xsZSehTbufy9-dJuvoxziZsfAB0lVz3BxxYyudcS6S-w4pEr0QptIftulB2cnN552VJ63yulHA6btbSX4QX60XwaABmb8ZiwuR_VmLZbyxwtG64XzQJ40avwONvE_ljkOcU1vKHcYwfLQH6zBdXUMZEPmhlAMn4GWy_iy_8RegX38SnpYfP7MNlcdOY1eoWb4s1wDvwC8qtkew | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+complex+white+matter+architecture+on+the+mean+diffusivity+in+diffusion+tensor+MRI+of+the+human+brain&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Vos%2C+Sjoerd+B.&rft.au=Jones%2C+Derek+K.&rft.au=Jeurissen%2C+Ben&rft.au=Viergever%2C+Max+A.&rft.date=2012-02-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=59&rft.issue=3&rft.spage=2208&rft.epage=2216&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.09.086&rft.externalDocID=S1053811911011621 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |