The minimum spanning tree: An unbiased method for brain network analysis

The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 104; pp. 177 - 188
Main Authors Tewarie, P., van Dellen, E., Hillebrand, A., Stam, C.J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2015
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2014.10.015

Cover

Abstract The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the brain. It has recently been suggested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for unweighted networks), which may occur concomitantly with alterations in network topology under empirical conditions. If analysis of MSTs avoids these methodological limitations, understanding the relationship between MST characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here, we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-free networks that were gradually rewired to random networks. Surprisingly, although most connections are discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction were very strongly related to changes in the characteristic path length when the network changed from a regular to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable for the comparison of brain networks, as it avoids methodological biases. Even though the MST does not utilize all the connections in the network, it still provides a, mathematically defined and unbiased, sub-network with characteristics that can provide similar information about network topology as conventional graph measures. •Conventional network analyses are accompanied with methodological limitations.•The minimum spanning tree is an acyclic sub-network that connects all nodes in the original network.•The minimum spanning tree avoids several methodological biases.•Minimum spanning tree metrics can be interpreted along the lines of conventional network analyses.
AbstractList The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the brain. It has recently been suggested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for unweighted networks), which may occur concomitantly with alterations in network topology under empirical conditions. If analysis of MSTs avoids these methodological limitations, understanding the relationship between MST characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here, we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-free networks that were gradually rewired to random networks. Surprisingly, although most connections are discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction were very strongly related to changes in the characteristic path length when the network changed from a regular to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable for the comparison of brain networks, as it avoids methodological biases. Even though the MST does not utilize all the connections in the network, it still provides a, mathematically defined and unbiased, sub-network with characteristics that can provide similar information about network topology as conventional graph measures. •Conventional network analyses are accompanied with methodological limitations.•The minimum spanning tree is an acyclic sub-network that connects all nodes in the original network.•The minimum spanning tree avoids several methodological biases.•Minimum spanning tree metrics can be interpreted along the lines of conventional network analyses.
The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the brain. It has recently been suggested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for unweighted networks), which may occur concomitantly with alterations in network topology under empirical conditions. If analysis of MSTs avoids these methodological limitations, understanding the relationship between MST characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here, we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-free networks that were gradually rewired to random networks. Surprisingly, although most connections are discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction were very strongly related to changes in the characteristic path length when the network changed from a regular to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable for the comparison of brain networks, as it avoids methodological biases. Even though the MST does not utilize all the connections in the network, it still provides a, mathematically defined and unbiased, sub-network with characteristics that can provide similar information about network topology as conventional graph measures.
The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the brain. It has recently been suggested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for unweighted networks), which may occur concomitantly with alterations in network topology under empirical conditions. If analysis of MSTs avoids these methodological limitations, understanding the relationship between MST characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here, we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-free networks that were gradually rewired to random networks. Surprisingly, although most connections are discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction were very strongly related to changes in the characteristic path length when the network changed from a regular to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable for the comparison of brain networks, as it avoids methodological biases. Even though the MST does not utilize all the connections in the network, it still provides a, mathematically defined and unbiased, sub-network with characteristics that can provide similar information about network topology as conventional graph measures.The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the brain. It has recently been suggested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for unweighted networks), which may occur concomitantly with alterations in network topology under empirical conditions. If analysis of MSTs avoids these methodological limitations, understanding the relationship between MST characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here, we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-free networks that were gradually rewired to random networks. Surprisingly, although most connections are discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction were very strongly related to changes in the characteristic path length when the network changed from a regular to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable for the comparison of brain networks, as it avoids methodological biases. Even though the MST does not utilize all the connections in the network, it still provides a, mathematically defined and unbiased, sub-network with characteristics that can provide similar information about network topology as conventional graph measures.
Author Hillebrand, A.
Tewarie, P.
Stam, C.J.
van Dellen, E.
Author_xml – sequence: 1
  givenname: P.
  surname: Tewarie
  fullname: Tewarie, P.
  email: p.tewarie@vumc.nl
  organization: Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
– sequence: 2
  givenname: E.
  surname: van Dellen
  fullname: van Dellen, E.
  organization: Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
– sequence: 3
  givenname: A.
  surname: Hillebrand
  fullname: Hillebrand, A.
  organization: Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
– sequence: 4
  givenname: C.J.
  surname: Stam
  fullname: Stam, C.J.
  organization: Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25451472$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v3CAQhlGVqvnqX6iQeunF2wHjD3qomkZJEylSL8kZYTwkbGzYgt1q_32xNm2kPe0JBM88GubllBz54JEQymDFgNWf1yuPcwxu1I-44sBEPl4Bq96QEwayKmTV8KNlX5VFy5g8JqcprQFAMtG-I8e8EhUTDT8hN_dPSEfn3TiPNG20984_0ikifqEXns6-czphT0ecnkJPbYi0i9p56nH6E-Iz1V4P2-TSOXlr9ZDw_ct6Rh6ur-4vb4q7nz9uLy_uClPzdiok9sbITsvclrCisbzN7dedZKVpwPRd7tE21sq6LAFM02loSst7ZmsNgtflGfm0825i-DVjmtToksFh0B7DnBSrywo41EIegmajFC3L6Mc9dB3mmJ-2UALapgReZerDCzV3I_ZqE3MCcav-jTMD7Q4wMaQU0f5HGKglObVWr8mpJbnlJieXS7_ulRo36ckFP-V5D4cIvu8EmKf_22FUyTj0BnsX0UyqD-4Qybc9iRny5zB6eMbtYYq_-hbPcQ
CitedBy_id crossref_primary_10_18325_jkmr_2022_32_1_107
crossref_primary_10_1089_brain_2019_0705
crossref_primary_10_1007_s43657_021_00027_w
crossref_primary_10_1088_2631_8695_ab7869
crossref_primary_10_1089_neu_2020_6999
crossref_primary_10_3389_fnagi_2021_680200
crossref_primary_10_1016_j_neuroimage_2021_117737
crossref_primary_10_1016_j_clinph_2020_03_031
crossref_primary_10_1088_1742_6596_1727_1_012009
crossref_primary_10_1162_netn_a_00284
crossref_primary_10_1111_psyp_13194
crossref_primary_10_1038_s41598_023_44621_6
crossref_primary_10_1016_j_clinph_2021_04_008
crossref_primary_10_1016_j_pnpbp_2019_109796
crossref_primary_10_1016_j_jad_2022_11_029
crossref_primary_10_1016_j_heliyon_2024_e40212
crossref_primary_10_1016_j_compag_2021_106276
crossref_primary_10_3389_fnagi_2023_1039496
crossref_primary_10_1080_07391102_2022_2108496
crossref_primary_10_1162_neco_a_01327
crossref_primary_10_1371_journal_pone_0273830
crossref_primary_10_1007_s11571_022_09907_x
crossref_primary_10_1016_j_physrep_2023_12_002
crossref_primary_10_1007_s11682_023_00770_w
crossref_primary_10_1016_j_neuroimage_2017_02_005
crossref_primary_10_1016_j_nicl_2018_08_001
crossref_primary_10_1016_j_imed_2024_02_001
crossref_primary_10_1016_j_cogsys_2024_101238
crossref_primary_10_1016_j_jocs_2024_102416
crossref_primary_10_1038_srep29780
crossref_primary_10_3390_brainsci12030378
crossref_primary_10_1093_braincomms_fcae283
crossref_primary_10_1109_TMI_2017_2774364
crossref_primary_10_1177_0271678X17713901
crossref_primary_10_1016_j_clinph_2022_03_014
crossref_primary_10_1038_s41598_019_46111_0
crossref_primary_10_1016_j_brainres_2020_146743
crossref_primary_10_1002_brb3_2027
crossref_primary_10_5351_KJAS_2023_36_5_361
crossref_primary_10_3758_s13428_018_1032_9
crossref_primary_10_3389_fnins_2022_889105
crossref_primary_10_1177_15500594221085552
crossref_primary_10_1002_hbm_23827
crossref_primary_10_1186_s12937_019_0475_x
crossref_primary_10_1016_j_neuroimage_2019_06_055
crossref_primary_10_1080_23737484_2019_1634500
crossref_primary_10_1093_cercor_bhad178
crossref_primary_10_1007_s10548_024_01052_4
crossref_primary_10_1016_j_neucom_2022_11_095
crossref_primary_10_1016_j_eswa_2017_12_028
crossref_primary_10_1016_j_clinph_2020_09_009
crossref_primary_10_1016_j_clinph_2023_07_004
crossref_primary_10_3389_fnins_2019_00211
crossref_primary_10_1007_s13278_024_01247_4
crossref_primary_10_1089_brain_2015_0359
crossref_primary_10_1371_journal_pone_0230099
crossref_primary_10_1016_j_bspc_2021_103349
crossref_primary_10_1016_j_neuroimage_2020_117431
crossref_primary_10_1002_mds_26309
crossref_primary_10_3233_JAD_220527
crossref_primary_10_3389_fpsyt_2019_00300
crossref_primary_10_1016_j_artmed_2019_03_007
crossref_primary_10_2139_ssrn_4133239
crossref_primary_10_1016_j_neuroimage_2017_10_003
crossref_primary_10_1038_s41598_020_65303_7
crossref_primary_10_3390_sym12111842
crossref_primary_10_1007_s11571_018_9495_z
crossref_primary_10_3389_fninf_2021_744355
crossref_primary_10_1002_jnr_24896
crossref_primary_10_1109_ACCESS_2018_2872765
crossref_primary_10_1016_j_clinph_2017_09_004
crossref_primary_10_3389_fnins_2020_00355
crossref_primary_10_1002_jnr_24898
crossref_primary_10_1016_j_neuroimage_2017_06_071
crossref_primary_10_1038_s41598_021_99167_2
crossref_primary_10_1016_j_nicl_2018_06_024
crossref_primary_10_3389_fnins_2022_782474
crossref_primary_10_1016_j_bspc_2016_08_013
crossref_primary_10_17706_IJCCE_2016_5_6_398_408
crossref_primary_10_1016_j_yebeh_2018_11_011
crossref_primary_10_37349_ent_2023_00061
crossref_primary_10_1016_j_clinph_2017_02_022
crossref_primary_10_1016_j_neuroimage_2017_11_016
crossref_primary_10_1016_j_clinph_2020_05_014
crossref_primary_10_1142_S0129065717500320
crossref_primary_10_3389_fneur_2022_855842
crossref_primary_10_1186_s13195_018_0431_6
crossref_primary_10_3389_fnins_2021_652920
crossref_primary_10_3390_brainsci13010138
crossref_primary_10_1109_JSEN_2024_3397884
crossref_primary_10_1007_s10989_021_10280_2
crossref_primary_10_3389_fnhum_2018_00341
crossref_primary_10_1038_s41537_020_00111_6
crossref_primary_10_1016_j_neurobiolaging_2021_10_016
crossref_primary_10_1177_1352458520977160
crossref_primary_10_3389_fnint_2018_00016
crossref_primary_10_1007_s10439_018_2022_x
crossref_primary_10_1038_s41539_022_00151_w
crossref_primary_10_1016_j_jneumeth_2016_11_003
crossref_primary_10_1038_s41598_024_61316_8
crossref_primary_10_1016_j_physa_2020_125605
crossref_primary_10_1111_epi_13622
crossref_primary_10_1038_s41537_022_00329_6
crossref_primary_10_1016_j_nicl_2018_06_001
crossref_primary_10_1016_j_neuroimage_2018_10_073
crossref_primary_10_1002_hbm_25403
crossref_primary_10_1007_s10072_019_3725_y
crossref_primary_10_3389_fnagi_2018_00400
crossref_primary_10_3390_electronics9020203
crossref_primary_10_3389_fninf_2019_00079
crossref_primary_10_1016_j_neuropsychologia_2015_01_021
crossref_primary_10_1002_hbm_26295
crossref_primary_10_1155_2017_4820935
crossref_primary_10_3389_fpsyg_2024_1458339
crossref_primary_10_1016_j_cogsys_2018_08_018
crossref_primary_10_3389_fnins_2018_00306
crossref_primary_10_1038_s41598_018_30869_w
crossref_primary_10_1016_j_clinph_2016_04_013
crossref_primary_10_1038_s41598_025_88777_9
crossref_primary_10_1109_ACCESS_2020_3018995
crossref_primary_10_1038_s41582_021_00529_1
crossref_primary_10_1016_j_nicl_2019_102083
crossref_primary_10_1097_j_pain_0000000000002010
crossref_primary_10_1097_ALN_0000000000000750
crossref_primary_10_1136_bmjopen_2024_092165
crossref_primary_10_1016_j_clinph_2016_03_015
crossref_primary_10_1038_s41598_021_93925_y
crossref_primary_10_1111_exsy_13016
crossref_primary_10_1002_brb3_2523
crossref_primary_10_1016_j_clinph_2020_01_023
crossref_primary_10_3389_fped_2022_909069
crossref_primary_10_1155_2016_3462309
crossref_primary_10_1111_ejn_16442
crossref_primary_10_3233_JAD_215573
crossref_primary_10_3389_fnhum_2017_00189
crossref_primary_10_1002_hbm_23645
crossref_primary_10_1016_j_ijpsycho_2018_07_476
crossref_primary_10_1111_sjop_12835
crossref_primary_10_1089_brain_2016_0483
crossref_primary_10_1016_j_neurobiolaging_2020_07_029
crossref_primary_10_1038_s41598_024_77944_z
crossref_primary_10_1109_TNSRE_2020_3007589
crossref_primary_10_1111_pcn_13791
crossref_primary_10_1016_j_clinph_2017_05_012
crossref_primary_10_4103_1673_5374_295334
crossref_primary_10_3390_ijms17060862
crossref_primary_10_1016_j_neuroscience_2020_12_019
crossref_primary_10_1016_j_neuroimage_2023_120081
crossref_primary_10_1088_1741_2560_13_3_036015
crossref_primary_10_3233_JAD_215682
crossref_primary_10_3389_fnagi_2022_1061254
crossref_primary_10_1155_2018_4638903
crossref_primary_10_3389_fnagi_2017_00107
crossref_primary_10_1016_j_neuroimage_2022_119142
crossref_primary_10_3389_fnhum_2022_730745
crossref_primary_10_1089_brain_2016_0469
crossref_primary_10_3389_fnins_2020_613990
crossref_primary_10_1002_advs_202400061
crossref_primary_10_1007_s11060_018_2987_1
crossref_primary_10_1002_brb3_1218
crossref_primary_10_1016_j_bja_2022_07_054
crossref_primary_10_1038_s41598_017_16440_z
crossref_primary_10_1038_srep38653
crossref_primary_10_1109_TCDS_2023_3283406
crossref_primary_10_1016_j_neurobiolaging_2023_08_003
crossref_primary_10_1038_s41598_024_67120_8
crossref_primary_10_1089_brain_2019_0686
crossref_primary_10_1002_hbm_25726
crossref_primary_10_1016_j_neuroscience_2016_02_017
crossref_primary_10_1002_hbm_26257
crossref_primary_10_1142_S0129065719500229
crossref_primary_10_1016_j_neuroscience_2019_11_001
crossref_primary_10_3389_fnins_2023_1176825
crossref_primary_10_1016_j_clinph_2016_03_025
crossref_primary_10_1109_JBHI_2018_2868918
crossref_primary_10_3389_fpsyg_2021_767839
crossref_primary_10_1038_s41380_021_01421_6
crossref_primary_10_1093_texcom_tgac024
crossref_primary_10_3389_fneur_2022_910054
crossref_primary_10_1016_j_trf_2024_08_031
crossref_primary_10_1016_j_inffus_2024_102613
crossref_primary_10_1089_brain_2020_0798
crossref_primary_10_1016_j_earlhumdev_2020_105096
crossref_primary_10_1162_netn_a_00090
crossref_primary_10_1038_s41598_024_66044_7
crossref_primary_10_1016_j_pscychresns_2018_05_001
crossref_primary_10_1002_hbm_24989
crossref_primary_10_1002_hbm_24020
crossref_primary_10_1002_hbm_24383
crossref_primary_10_3390_brainsci12121629
crossref_primary_10_3389_fninf_2017_00028
crossref_primary_10_1371_journal_pcbi_1005305
crossref_primary_10_1038_s41598_017_09896_6
crossref_primary_10_1016_j_nicl_2020_102347
crossref_primary_10_1162_netn_a_00245
crossref_primary_10_3389_fncom_2018_00060
crossref_primary_10_1007_s10548_020_00799_w
crossref_primary_10_1007_s00429_022_02584_w
crossref_primary_10_1080_10255842_2019_1634695
crossref_primary_10_1371_journal_pone_0281385
crossref_primary_10_1089_brain_2020_0741
crossref_primary_10_3390_jcm10102182
crossref_primary_10_1089_brain_2020_0985
crossref_primary_10_1016_j_heares_2018_12_006
crossref_primary_10_1002_hbm_25589
crossref_primary_10_1016_j_clinph_2016_02_017
crossref_primary_10_1016_j_neurobiolaging_2022_02_009
crossref_primary_10_1002_spy2_315
crossref_primary_10_1002_hbm_24014
crossref_primary_10_3390_e23050500
crossref_primary_10_1016_j_neuroimage_2019_03_036
crossref_primary_10_1016_j_neurobiolaging_2016_03_018
crossref_primary_10_1016_j_clinph_2023_03_002
crossref_primary_10_3389_fncom_2022_1024205
crossref_primary_10_1016_j_clinph_2016_06_023
crossref_primary_10_1093_schbul_sbv178
crossref_primary_10_1016_j_nicl_2019_101809
crossref_primary_10_3390_brainsci11111396
crossref_primary_10_1089_brain_2021_0168
crossref_primary_10_1002_brb3_2188
crossref_primary_10_1007_s10072_021_05437_2
crossref_primary_10_1089_brain_2016_0426
crossref_primary_10_1371_journal_pone_0140530
crossref_primary_10_1162_netn_a_00103
crossref_primary_10_1088_1741_2552_ab4024
crossref_primary_10_3389_fncom_2018_00031
crossref_primary_10_1002_net_21949
crossref_primary_10_1063_5_0018826
crossref_primary_10_1155_2018_5340717
crossref_primary_10_1089_brain_2017_0512
crossref_primary_10_1177_1550059418807372
crossref_primary_10_1142_S0129183116500522
crossref_primary_10_1088_1741_2552_abc760
crossref_primary_10_1016_j_physa_2018_11_059
crossref_primary_10_1093_brain_aww194
crossref_primary_10_3389_fnins_2018_00701
crossref_primary_10_3390_bs14010072
crossref_primary_10_1016_j_neuropsychologia_2020_107343
crossref_primary_10_3233_JAD_180603
crossref_primary_10_3389_fpsyg_2017_01605
crossref_primary_10_1016_j_neubiorev_2025_106017
Cites_doi 10.1089/brain.2012.0106
10.1371/journal.pone.0013701
10.1142/S0218127407018361
10.3389/neuro.11.037.2009
10.1007/s10439-011-0258-9
10.1523/JNEUROSCI.3539-11.2011
10.1016/j.neuroimage.2013.10.022
10.1093/bioinformatics/btp109
10.1002/hbm.10106
10.1111/epi.12350
10.1038/nrn2575
10.1002/hbm.21030
10.1371/journal.pbio.0060159
10.1073/pnas.1111738109
10.1103/PhysRevE.64.026118
10.1126/science.1065103
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2014.04.038
10.1038/nrn3214
10.1088/1742-5468/2011/11/P11018
10.1126/science.286.5439.509
10.1137/0205051
10.1016/j.neurobiolaging.2013.02.020
10.1523/JNEUROSCI.1443-09.2009
10.1103/PhysRevE.85.066118
10.1016/j.ijpsycho.2014.04.001
10.1103/PhysRevE.70.046126
10.1093/brain/awt316
10.1371/journal.pone.0069318
10.1103/PhysRevLett.86.5076
10.1103/PhysRevE.81.021130
10.1016/S1364-6613(98)01259-5
10.1103/PhysRevLett.96.148702
10.1371/journal.pgen.1000212
10.1073/pnas.1203593109
10.1126/science.1238411
10.1002/j.1538-7305.1957.tb01515.x
10.1093/cercor/bhn102
10.1016/j.clinph.2012.01.011
10.1006/nimg.2001.0978
10.1038/nrn3801
10.1142/S021963521350026X
10.1016/j.neuroimage.2013.10.010
10.1016/j.neulet.2008.09.080
10.1097/ALN.0b013e3181f229b5
10.1103/PhysRevB.34.3528
10.1103/PhysRevE.73.041920
10.1016/j.neuroimage.2013.04.087
10.1109/MAHC.1985.10011
10.1385/NI:2:2:145
10.1038/30918
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 1, 2015
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 1, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2014.10.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
MEDLINE
ProQuest One Psychology
Engineering Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 188
ExternalDocumentID 3539699601
25451472
10_1016_j_neuroimage_2014_10_015
S1053811914008398
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ACLOT
~HD
7QO
ID FETCH-LOGICAL-c628t-9edcc9ba98114f47f280146b913c70cdb009f7ff963300c7ba073f2d1f6a04263
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Sun Sep 28 09:06:25 EDT 2025
Sun Sep 28 14:20:01 EDT 2025
Wed Aug 13 06:22:16 EDT 2025
Thu Apr 03 07:00:40 EDT 2025
Tue Jul 01 02:14:55 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Fri Feb 23 02:24:27 EST 2024
Tue Aug 26 16:31:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Connectivity
Complex brain networks
Functional and structural networks
Graph theory
Minimum spanning tree
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c628t-9edcc9ba98114f47f280146b913c70cdb009f7ff963300c7ba073f2d1f6a04263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25451472
PQID 1640873025
PQPubID 2031077
PageCount 12
ParticipantIDs proquest_miscellaneous_1635020649
proquest_miscellaneous_1634269481
proquest_journals_1640873025
pubmed_primary_25451472
crossref_primary_10_1016_j_neuroimage_2014_10_015
crossref_citationtrail_10_1016_j_neuroimage_2014_10_015
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_10_015
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_10_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
2015-01-00
2015-Jan-01
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Bullmore, Sporns (bb0040) 2012; 13
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bb0220) 2002; 15
Cheriton, Tarjan (bb0045) 1976; 5
Newman (bb0160) 2010
Maslov, Sneppen (bb0135) 2002; 296
van Wijk, Stam, Daffertshofer (bb0245) 2010; 5
Stam (bb9010) 2014; 15
Dussert, Rasigni, Rasigni, Palmari, Llebaria (bb0070) 1986; 34
Moret, Shapiro (bb0150) 1993
King, Tidor (bb0110) 2009; 25
Graham, Hell (bb0090) 1985; 7
Boersma, Smit, de Bie, Van Baal, Boomsma, de Geus, Delemarre-van de Waal, Stam (bb0025) 2011; 32
Lee, Oh, Kim, Noh, Choi, Mashour (bb0125) 2010; 113
Newman, Strogatz, Watts (bb0155) 2001; 64
Gong, He, Concha, Lebel, Gross, Evans, Beaulieu (bb0085) 2009; 19
Wu, Bhat, Close, Lonardi (bb0260) 2008; 4
Ciftci (bb0050) 2011; 39
Fornito, Zalesky, Bullmore (bb0080) 2010; 4
Boersma, Smit, Boomsma, Geus, Delemarre-van de Waal, Stam (bb0020) 2012; 3
Dobrin, Duxbury (bb0065) 2001; 86
Jackson, Read (bb0100) 2010; 81
Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bb0095) 2008; 6
Stam, Breakspear, van Cappellen van Walsum, van Dijk (bb0185) 2003; 19
Olde Dubbelink, Hillebrand, Stoffers, Deijen, Twisk, Stam, Berendse (bb0165) 2014; 137
Bagrow (bb0005) 2012; 85
van den Heuvel, Stam, Kahn, Hulshoff Pol (bb0240) 2009; 29
Bullmore, Sporns (bb0035) 2009; 10
Meunier, Lambiotte, Fornito, Ersche, Bullmore (bb0140) 2009; 3
Tewarie, Schoonheim, Schouten, Polman, Balk, Uitdehaag, Geurts, Hillebrand, Barkhof, Stam (bb9020) 2014
Michailidis (bb0145) 2005
Stam, Tewarie, Van Dellen, van Straaten, Hillebrand, Van Mieqhem (bb9015) 2014; 92
Vertes, Alexander-Bloch, Gogtay, Giedd, Rapoport, Bullmore (bb0250) 2012; 109
Tewarie, Hillebrand, Schoonheim, van Dijk, Geurts, Barkhof, Polman, Stam (bb0195) 2013; 88
Tewarie, Hillebrand, van Dellen, Schoonheim, Barkhof, Polman, Beaulieu, Gong, van Dijk, Stam (bb0200) 2014; 97
Tijms, Wink, de Haan, van der Flier, Stam, Scheltens, Barkhof (bb0210) 2013; 34
Kruskal (bb0115) 1956; 48–50
Rubinov, Sporns (bb0180) 2010; 52
Park, Friston (bb9000) 2013; 342
Ortega, Sola, Pastor (bb0170) 2008; 447
Li, Wang, De Haan, Stam, Van Mieghem (bb0130) 2011; 2011
Demuru, Fara, Fraschini (bb0055) 2013; 12
Diessen, Diederen, Braun, Jansen, Stam (bb0060) 2013; 54
van den Heuvel, Kahn, Goni, Sporns (bb0230) 2012; 109
Barrat, Barthelemy, Vespignani (bb0015) 2008
van den Heuvel, Sporns (bb0235) 2011; 31
Barabasi, Albert (bb0010) 1999; 286
Braunstein, Wu, Chen, Buldyrev, Kalisky, Sreenivasan, Cohen, Lopez, Havlin, Eugene Stanley (bb0030) 2013; 17
Fornito, Zalesky, Breakspear (bb0075) 2013; 80C
Prim (bb0175) 1957; 36
Watts, Strogatz (bb0255) 1998; 393
van Dellen, Douw, Hillebrand, de Witt Hamer, Baayen, Heimans, Reijneveld, Stam (bb0225) 2014; 86
Lee, Kim, Jung (bb0120) 2006; 73
Stam, van Straaten (bb0190) 2012; 123
Sporns, Zwi (bb9005) 2004; 2
Tononi, Edelman, Sporns (bb0215) 1998; 2
Tewarie, Schoonheim, Stam, van der Meer, van Dijk, Barkhof, Polman, Hillebrand (bb0205) 2013; 8
Kim, Noh, Jeong (bb0105) 2004; 70
Wu, Braunstein, Havlin, Stanley (bb0265) 2006; 96
Meunier (10.1016/j.neuroimage.2014.10.015_bb0140) 2009; 3
Li (10.1016/j.neuroimage.2014.10.015_bb0130) 2011; 2011
Wu (10.1016/j.neuroimage.2014.10.015_bb0260) 2008; 4
Diessen (10.1016/j.neuroimage.2014.10.015_bb0060) 2013; 54
Cheriton (10.1016/j.neuroimage.2014.10.015_bb0045) 1976; 5
Boersma (10.1016/j.neuroimage.2014.10.015_bb0020) 2012; 3
Stam (10.1016/j.neuroimage.2014.10.015_bb9015) 2014; 92
Fornito (10.1016/j.neuroimage.2014.10.015_bb0080) 2010; 4
Lee (10.1016/j.neuroimage.2014.10.015_bb0120) 2006; 73
Bagrow (10.1016/j.neuroimage.2014.10.015_bb0005) 2012; 85
Newman (10.1016/j.neuroimage.2014.10.015_bb0160) 2010
Demuru (10.1016/j.neuroimage.2014.10.015_bb0055) 2013; 12
van den Heuvel (10.1016/j.neuroimage.2014.10.015_bb0240) 2009; 29
Gong (10.1016/j.neuroimage.2014.10.015_bb0085) 2009; 19
Rubinov (10.1016/j.neuroimage.2014.10.015_bb0180) 2010; 52
Watts (10.1016/j.neuroimage.2014.10.015_bb0255) 1998; 393
Boersma (10.1016/j.neuroimage.2014.10.015_bb0025) 2011; 32
Dobrin (10.1016/j.neuroimage.2014.10.015_bb0065) 2001; 86
Michailidis (10.1016/j.neuroimage.2014.10.015_bb0145) 2005
Braunstein (10.1016/j.neuroimage.2014.10.015_bb0030) 2013; 17
Bullmore (10.1016/j.neuroimage.2014.10.015_bb0035) 2009; 10
Tewarie (10.1016/j.neuroimage.2014.10.015_bb0205) 2013; 8
Hagmann (10.1016/j.neuroimage.2014.10.015_bb0095) 2008; 6
Lee (10.1016/j.neuroimage.2014.10.015_bb0125) 2010; 113
Prim (10.1016/j.neuroimage.2014.10.015_bb0175) 1957; 36
King (10.1016/j.neuroimage.2014.10.015_bb0110) 2009; 25
Olde Dubbelink (10.1016/j.neuroimage.2014.10.015_bb0165) 2014; 137
Kim (10.1016/j.neuroimage.2014.10.015_bb0105) 2004; 70
Tewarie (10.1016/j.neuroimage.2014.10.015_bb0195) 2013; 88
Maslov (10.1016/j.neuroimage.2014.10.015_bb0135) 2002; 296
Moret (10.1016/j.neuroimage.2014.10.015_bb0150) 1993
Newman (10.1016/j.neuroimage.2014.10.015_bb0155) 2001; 64
Barrat (10.1016/j.neuroimage.2014.10.015_bb0015) 2008
Sporns (10.1016/j.neuroimage.2014.10.015_bb9005) 2004; 2
Wu (10.1016/j.neuroimage.2014.10.015_bb0265) 2006; 96
Dussert (10.1016/j.neuroimage.2014.10.015_bb0070) 1986; 34
Graham (10.1016/j.neuroimage.2014.10.015_bb0090) 1985; 7
Ciftci (10.1016/j.neuroimage.2014.10.015_bb0050) 2011; 39
Jackson (10.1016/j.neuroimage.2014.10.015_bb0100) 2010; 81
Tononi (10.1016/j.neuroimage.2014.10.015_bb0215) 1998; 2
Barabasi (10.1016/j.neuroimage.2014.10.015_bb0010) 1999; 286
van Dellen (10.1016/j.neuroimage.2014.10.015_bb0225) 2014; 86
Kruskal (10.1016/j.neuroimage.2014.10.015_bb0115) 1956; 48–50
Tzourio-Mazoyer (10.1016/j.neuroimage.2014.10.015_bb0220) 2002; 15
van den Heuvel (10.1016/j.neuroimage.2014.10.015_bb0230) 2012; 109
Bullmore (10.1016/j.neuroimage.2014.10.015_bb0040) 2012; 13
Stam (10.1016/j.neuroimage.2014.10.015_bb0190) 2012; 123
Park (10.1016/j.neuroimage.2014.10.015_bb9000) 2013; 342
Stam (10.1016/j.neuroimage.2014.10.015_bb0185) 2003; 19
Tewarie (10.1016/j.neuroimage.2014.10.015_bb0200) 2014; 97
van den Heuvel (10.1016/j.neuroimage.2014.10.015_bb0235) 2011; 31
Tijms (10.1016/j.neuroimage.2014.10.015_bb0210) 2013; 34
Tewarie (10.1016/j.neuroimage.2014.10.015_bb9020) 2014
Ortega (10.1016/j.neuroimage.2014.10.015_bb0170) 2008; 447
van Wijk (10.1016/j.neuroimage.2014.10.015_bb0245) 2010; 5
Vertes (10.1016/j.neuroimage.2014.10.015_bb0250) 2012; 109
Fornito (10.1016/j.neuroimage.2014.10.015_bb0075) 2013; 80C
Stam (10.1016/j.neuroimage.2014.10.015_bb9010) 2014; 15
References_xml – volume: 4
  start-page: 22
  year: 2010
  ident: bb0080
  article-title: Network scaling effects in graph analytic studies of human resting-state FMRI data
  publication-title: Front. Syst. Neurosci.
– volume: 13
  start-page: 336
  year: 2012
  end-page: 349
  ident: bb0040
  article-title: The economy of brain network organization
  publication-title: Nat. Rev. Neurosci.
– volume: 2
  start-page: 474
  year: 1998
  end-page: 484
  ident: bb0215
  article-title: Complexity and coherency: integrating information in the brain
  publication-title: Trends Cogn. Sci.
– volume: 70
  start-page: 046126
  year: 2004
  ident: bb0105
  article-title: Scale-free trees: the skeletons of complex networks
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
– volume: 19
  start-page: 63
  year: 2003
  end-page: 78
  ident: bb0185
  article-title: Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects
  publication-title: Hum. Brain Mapp.
– volume: 86
  start-page: 354
  year: 2014
  end-page: 363
  ident: bb0225
  article-title: Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis
  publication-title: Neuroimage
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bb0220
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 113
  start-page: 1081
  year: 2010
  ident: bb0125
  article-title: Brain networks maintain a scale-free organization across consciousness, anesthesia, and recovery: evidence for adaptive reconfiguration
  publication-title: Anesthesiology
– volume: 48–50
  year: 1956
  ident: bb0115
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc.
– volume: 96
  start-page: 148702
  year: 2006
  ident: bb0265
  article-title: Transport in weighted networks: partition into superhighways and roads
  publication-title: Phys. Rev. Lett.
– volume: 137
  start-page: 197
  year: 2014
  end-page: 207
  ident: bb0165
  article-title: Disrupted brain network topology in Parkinson's disease: a longitudinal magnetoencephalography study
  publication-title: Brain
– volume: 4
  start-page: e1000212
  year: 2008
  ident: bb0260
  article-title: Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph
  publication-title: PLoS Genet.
– volume: 86
  start-page: 5076
  year: 2001
  end-page: 5079
  ident: bb0065
  article-title: Minimum spanning trees on random networks
  publication-title: Phys. Rev. Lett.
– volume: 109
  start-page: 5868
  year: 2012
  end-page: 5873
  ident: bb0250
  article-title: Simple models of human brain functional networks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 25
  start-page: 1165
  year: 2009
  end-page: 1172
  ident: bb0110
  article-title: MIST: maximum information spanning trees for dimension reduction of biological data sets
  publication-title: Bioinformatics
– volume: 80C
  start-page: 426
  year: 2013
  end-page: 444
  ident: bb0075
  article-title: Graph analysis of the human connectome: promise, progress, and pitfalls
  publication-title: Neuroimage
– volume: 15
  start-page: 683
  year: 2014
  end-page: 695
  ident: bb9010
  article-title: Modern network science of neurological disorders
  publication-title: Nat. Rev. Neurosci.
– volume: 34
  start-page: 3528
  year: 1986
  end-page: 3531
  ident: bb0070
  article-title: Minimal spanning tree: a new approach for studying order and disorder
  publication-title: Phys. Rev. B Condens. Matter
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bb0180
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
– volume: 123
  start-page: 1067
  year: 2012
  end-page: 1087
  ident: bb0190
  article-title: The organization of physiological brain networks
  publication-title: Clin. Neurophysiol.
– start-page: 323
  year: 2010
  end-page: 329
  ident: bb0160
  article-title: The Configuration Model. Networks: An Introduction
– volume: 36
  start-page: 1389
  year: 1957
  end-page: 1401
  ident: bb0175
  article-title: Shortest connection networks and some generalizations
  publication-title: Bell Syst. Tech. J.
– volume: 34
  start-page: 2023
  year: 2013
  end-page: 2036
  ident: bb0210
  article-title: Alzheimer's disease: connecting findings from graph theoretical studies of brain networks
  publication-title: Neurobiol. Aging
– volume: 64
  start-page: 026118
  year: 2001
  ident: bb0155
  article-title: Random graphs with arbitrary degree distributions and their applications
  publication-title: Phys. Rev. E.
– volume: 17
  start-page: 2215
  year: 2013
  end-page: 2284
  ident: bb0030
  article-title: Optimal path and minimum spanning trees in random weighted networks
  publication-title: Int. J. Bifurcation Chaos
– volume: 54
  start-page: 1855
  year: 2013
  end-page: 1865
  ident: bb0060
  article-title: Functional and structural brain networks in epilepsy: what have we learned?
  publication-title: Epilepsia
– volume: 296
  start-page: 910
  year: 2002
  end-page: 913
  ident: bb0135
  article-title: Specificity and stability in topology of protein networks
  publication-title: Science
– volume: 342
  start-page: 1238411
  year: 2013
  ident: bb9000
  article-title: Structural and functional brain networks: from connections to cognition
  publication-title: Science.
– volume: 85
  start-page: 066118
  year: 2012
  ident: bb0005
  article-title: Communities and bottlenecks: trees and treelike networks have high modularity
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
– volume: 10
  start-page: 186
  year: 2009
  end-page: 198
  ident: bb0035
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
– volume: 2
  start-page: 145
  year: 2004
  end-page: 162
  ident: bb9005
  article-title: The small world of the cerebral cortex
  publication-title: Neuroinform.
– volume: 88
  start-page: 308
  year: 2013
  end-page: 318
  ident: bb0195
  article-title: Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: an MEG source-space study
  publication-title: Neuroimage
– volume: 5
  start-page: e13701
  year: 2010
  ident: bb0245
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PLoS ONE
– volume: 447
  start-page: 129
  year: 2008
  end-page: 133
  ident: bb0170
  article-title: Complex network analysis of human ECoG data
  publication-title: Neurosci. Lett.
– volume: 29
  start-page: 7619
  year: 2009
  end-page: 7624
  ident: bb0240
  article-title: Efficiency of functional brain networks and intellectual performance
  publication-title: J. Neurosci.
– volume: 39
  start-page: 1493
  year: 2011
  end-page: 1504
  ident: bb0050
  article-title: Minimum spanning tree reflects the alterations of the default mode network during Alzheimer's disease
  publication-title: Ann. Biomed. Eng.
– volume: 6
  start-page: e159
  year: 2008
  ident: bb0095
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
– volume: 8
  start-page: e69318
  year: 2013
  ident: bb0205
  article-title: Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis
  publication-title: PLoS ONE
– year: 2014
  ident: bb9020
  article-title: Functional brain networks: linking thalamic atrophy to clinical disability in multiple sclerosis, a multimodal fMRI and MEG Study
  publication-title: Hum. Brain Mapp.
– volume: 97
  start-page: 296
  year: 2014
  end-page: 307
  ident: bb0200
  article-title: Structural degree predicts functional network connectivity: a multimodal resting-state fMRI and MEG study
  publication-title: Neuroimage
– volume: 3
  start-page: 37
  year: 2009
  ident: bb0140
  article-title: Hierarchical modularity in human brain functional networks
  publication-title: Front. Neuroinform.
– start-page: 24
  year: 2008
  end-page: 49
  ident: bb0015
  article-title: Networks and complexity
  publication-title: Dynamical processes on complex networks
– volume: 81
  start-page: 021130
  year: 2010
  ident: bb0100
  article-title: Theory of minimum spanning trees. I. Mean-field theory and strongly disordered spin-glass model
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
– volume: 393
  start-page: 440
  year: 1998
  end-page: 442
  ident: bb0255
  article-title: Collective dynamics of 'small-world' networks
  publication-title: Nature
– volume: 286
  start-page: 509
  year: 1999
  end-page: 512
  ident: bb0010
  article-title: Emergence of scaling in random networks
  publication-title: Science
– start-page: 99
  year: 1993
  end-page: 117
  ident: bb0150
  article-title: An empirical assessment of algorithms for constructing a minimum spanning tree
  publication-title: Computational support for, discrete mathematics
– volume: 3
  start-page: 50
  year: 2012
  end-page: 60
  ident: bb0020
  article-title: Growing trees in child brains: graph theoretical analysis of EEG derived minimum spanning tree in 5 and 7
  publication-title: Brain Connect.
– volume: 31
  start-page: 15775
  year: 2011
  end-page: 15786
  ident: bb0235
  article-title: Rich-club organization of the human connectome
  publication-title: J. Neurosci.
– volume: 2011
  start-page: 11018
  year: 2011
  ident: bb0130
  article-title: The correlation of metrics in complex networks with applications in functional brain networks
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 32
  start-page: 413
  year: 2011
  end-page: 425
  ident: bb0025
  article-title: Network analysis of resting state EEG in the developing young brain: structure comes with maturation
  publication-title: Hum. Brain Mapp.
– volume: 19
  start-page: 524
  year: 2009
  end-page: 536
  ident: bb0085
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
  publication-title: Cereb. Cortex
– volume: 73
  start-page: 041920
  year: 2006
  ident: bb0120
  article-title: Classification of epilepsy types through global network analysis of scalp electroencephalograms
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
– volume: 92
  start-page: 129
  year: 2014
  end-page: 138
  ident: bb9015
  article-title: The trees and the forest: characterization of complex brain networks with minimum spanning trees
  publication-title: Int. J. Psychophysiol.
– volume: 12
  start-page: 441
  year: 2013
  end-page: 447
  ident: bb0055
  article-title: Brain network analysis of EEG functional connectivity during imagery hand movements
  publication-title: J. Integr. Neurosci.
– year: 2005
  ident: bb0145
  article-title: Minimum spanning tree
  publication-title: Encyclopedia of Statistics in Behavioral Science
– volume: 109
  start-page: 11372
  year: 2012
  end-page: 11377
  ident: bb0230
  article-title: High-cost, high-capacity backbone for global brain communication
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: 724
  year: 1976
  end-page: 742
  ident: bb0045
  article-title: Finding minimum spanning trees
  publication-title: SIAM J. Comput.
– volume: 7
  start-page: 43
  year: 1985
  end-page: 57
  ident: bb0090
  article-title: On the history of the minimum spanning tree problem
  publication-title: Ann. Hist. Comput.
– volume: 3
  start-page: 50
  year: 2012
  ident: 10.1016/j.neuroimage.2014.10.015_bb0020
  article-title: Growing trees in child brains: graph theoretical analysis of EEG derived minimum spanning tree in 5 and 7year old children reflects brain maturation
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0106
– volume: 5
  start-page: e13701
  year: 2010
  ident: 10.1016/j.neuroimage.2014.10.015_bb0245
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0013701
– volume: 17
  start-page: 2215
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.015_bb0030
  article-title: Optimal path and minimum spanning trees in random weighted networks
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127407018361
– volume: 3
  start-page: 37
  year: 2009
  ident: 10.1016/j.neuroimage.2014.10.015_bb0140
  article-title: Hierarchical modularity in human brain functional networks
  publication-title: Front. Neuroinform.
  doi: 10.3389/neuro.11.037.2009
– volume: 39
  start-page: 1493
  year: 2011
  ident: 10.1016/j.neuroimage.2014.10.015_bb0050
  article-title: Minimum spanning tree reflects the alterations of the default mode network during Alzheimer's disease
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-011-0258-9
– volume: 31
  start-page: 15775
  year: 2011
  ident: 10.1016/j.neuroimage.2014.10.015_bb0235
  article-title: Rich-club organization of the human connectome
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3539-11.2011
– volume: 88
  start-page: 308
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.015_bb0195
  article-title: Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: an MEG source-space study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.022
– year: 2005
  ident: 10.1016/j.neuroimage.2014.10.015_bb0145
  article-title: Minimum spanning tree
– volume: 25
  start-page: 1165
  year: 2009
  ident: 10.1016/j.neuroimage.2014.10.015_bb0110
  article-title: MIST: maximum information spanning trees for dimension reduction of biological data sets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp109
– volume: 19
  start-page: 63
  year: 2003
  ident: 10.1016/j.neuroimage.2014.10.015_bb0185
  article-title: Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10106
– volume: 54
  start-page: 1855
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.015_bb0060
  article-title: Functional and structural brain networks in epilepsy: what have we learned?
  publication-title: Epilepsia
  doi: 10.1111/epi.12350
– volume: 10
  start-page: 186
  year: 2009
  ident: 10.1016/j.neuroimage.2014.10.015_bb0035
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 32
  start-page: 413
  year: 2011
  ident: 10.1016/j.neuroimage.2014.10.015_bb0025
  article-title: Network analysis of resting state EEG in the developing young brain: structure comes with maturation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21030
– volume: 6
  start-page: e159
  year: 2008
  ident: 10.1016/j.neuroimage.2014.10.015_bb0095
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060159
– volume: 109
  start-page: 5868
  year: 2012
  ident: 10.1016/j.neuroimage.2014.10.015_bb0250
  article-title: Simple models of human brain functional networks
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1111738109
– volume: 64
  start-page: 026118
  year: 2001
  ident: 10.1016/j.neuroimage.2014.10.015_bb0155
  article-title: Random graphs with arbitrary degree distributions and their applications
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.64.026118
– volume: 296
  start-page: 910
  year: 2002
  ident: 10.1016/j.neuroimage.2014.10.015_bb0135
  article-title: Specificity and stability in topology of protein networks
  publication-title: Science
  doi: 10.1126/science.1065103
– volume: 52
  start-page: 1059
  year: 2010
  ident: 10.1016/j.neuroimage.2014.10.015_bb0180
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 97
  start-page: 296
  year: 2014
  ident: 10.1016/j.neuroimage.2014.10.015_bb0200
  article-title: Structural degree predicts functional network connectivity: a multimodal resting-state fMRI and MEG study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.04.038
– volume: 13
  start-page: 336
  year: 2012
  ident: 10.1016/j.neuroimage.2014.10.015_bb0040
  article-title: The economy of brain network organization
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3214
– volume: 2011
  start-page: 11018
  year: 2011
  ident: 10.1016/j.neuroimage.2014.10.015_bb0130
  article-title: The correlation of metrics in complex networks with applications in functional brain networks
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2011/11/P11018
– volume: 4
  start-page: 22
  year: 2010
  ident: 10.1016/j.neuroimage.2014.10.015_bb0080
  article-title: Network scaling effects in graph analytic studies of human resting-state FMRI data
  publication-title: Front. Syst. Neurosci.
– volume: 286
  start-page: 509
  year: 1999
  ident: 10.1016/j.neuroimage.2014.10.015_bb0010
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 5
  start-page: 724
  year: 1976
  ident: 10.1016/j.neuroimage.2014.10.015_bb0045
  article-title: Finding minimum spanning trees
  publication-title: SIAM J. Comput.
  doi: 10.1137/0205051
– volume: 34
  start-page: 2023
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.015_bb0210
  article-title: Alzheimer's disease: connecting findings from graph theoretical studies of brain networks
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2013.02.020
– volume: 29
  start-page: 7619
  year: 2009
  ident: 10.1016/j.neuroimage.2014.10.015_bb0240
  article-title: Efficiency of functional brain networks and intellectual performance
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1443-09.2009
– volume: 85
  start-page: 066118
  year: 2012
  ident: 10.1016/j.neuroimage.2014.10.015_bb0005
  article-title: Communities and bottlenecks: trees and treelike networks have high modularity
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.85.066118
– volume: 92
  start-page: 129
  year: 2014
  ident: 10.1016/j.neuroimage.2014.10.015_bb9015
  article-title: The trees and the forest: characterization of complex brain networks with minimum spanning trees
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2014.04.001
– volume: 70
  start-page: 046126
  year: 2004
  ident: 10.1016/j.neuroimage.2014.10.015_bb0105
  article-title: Scale-free trees: the skeletons of complex networks
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.70.046126
– volume: 137
  start-page: 197
  year: 2014
  ident: 10.1016/j.neuroimage.2014.10.015_bb0165
  article-title: Disrupted brain network topology in Parkinson's disease: a longitudinal magnetoencephalography study
  publication-title: Brain
  doi: 10.1093/brain/awt316
– volume: 8
  start-page: e69318
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.015_bb0205
  article-title: Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0069318
– volume: 86
  start-page: 5076
  year: 2001
  ident: 10.1016/j.neuroimage.2014.10.015_bb0065
  article-title: Minimum spanning trees on random networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.5076
– volume: 81
  start-page: 021130
  year: 2010
  ident: 10.1016/j.neuroimage.2014.10.015_bb0100
  article-title: Theory of minimum spanning trees. I. Mean-field theory and strongly disordered spin-glass model
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.81.021130
– volume: 2
  start-page: 474
  year: 1998
  ident: 10.1016/j.neuroimage.2014.10.015_bb0215
  article-title: Complexity and coherency: integrating information in the brain
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(98)01259-5
– volume: 96
  start-page: 148702
  year: 2006
  ident: 10.1016/j.neuroimage.2014.10.015_bb0265
  article-title: Transport in weighted networks: partition into superhighways and roads
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.148702
– volume: 4
  start-page: e1000212
  year: 2008
  ident: 10.1016/j.neuroimage.2014.10.015_bb0260
  article-title: Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000212
– volume: 109
  start-page: 11372
  year: 2012
  ident: 10.1016/j.neuroimage.2014.10.015_bb0230
  article-title: High-cost, high-capacity backbone for global brain communication
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1203593109
– start-page: 24
  year: 2008
  ident: 10.1016/j.neuroimage.2014.10.015_bb0015
  article-title: Networks and complexity
– volume: 342
  start-page: 1238411
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.015_bb9000
  article-title: Structural and functional brain networks: from connections to cognition
  publication-title: Science.
  doi: 10.1126/science.1238411
– start-page: 99
  year: 1993
  ident: 10.1016/j.neuroimage.2014.10.015_bb0150
  article-title: An empirical assessment of algorithms for constructing a minimum spanning tree
– volume: 36
  start-page: 1389
  year: 1957
  ident: 10.1016/j.neuroimage.2014.10.015_bb0175
  article-title: Shortest connection networks and some generalizations
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1957.tb01515.x
– volume: 19
  start-page: 524
  year: 2009
  ident: 10.1016/j.neuroimage.2014.10.015_bb0085
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn102
– volume: 123
  start-page: 1067
  year: 2012
  ident: 10.1016/j.neuroimage.2014.10.015_bb0190
  article-title: The organization of physiological brain networks
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2012.01.011
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neuroimage.2014.10.015_bb0220
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 15
  start-page: 683
  year: 2014
  ident: 10.1016/j.neuroimage.2014.10.015_bb9010
  article-title: Modern network science of neurological disorders
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3801
– volume: 12
  start-page: 441
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.015_bb0055
  article-title: Brain network analysis of EEG functional connectivity during imagery hand movements
  publication-title: J. Integr. Neurosci.
  doi: 10.1142/S021963521350026X
– volume: 86
  start-page: 354
  year: 2014
  ident: 10.1016/j.neuroimage.2014.10.015_bb0225
  article-title: Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.010
– start-page: 323
  year: 2010
  ident: 10.1016/j.neuroimage.2014.10.015_bb0160
– year: 2014
  ident: 10.1016/j.neuroimage.2014.10.015_bb9020
  article-title: Functional brain networks: linking thalamic atrophy to clinical disability in multiple sclerosis, a multimodal fMRI and MEG Study
  publication-title: Hum. Brain Mapp.
– volume: 447
  start-page: 129
  year: 2008
  ident: 10.1016/j.neuroimage.2014.10.015_bb0170
  article-title: Complex network analysis of human ECoG data
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2008.09.080
– volume: 113
  start-page: 1081
  year: 2010
  ident: 10.1016/j.neuroimage.2014.10.015_bb0125
  article-title: Brain networks maintain a scale-free organization across consciousness, anesthesia, and recovery: evidence for adaptive reconfiguration
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e3181f229b5
– volume: 34
  start-page: 3528
  year: 1986
  ident: 10.1016/j.neuroimage.2014.10.015_bb0070
  article-title: Minimal spanning tree: a new approach for studying order and disorder
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.34.3528
– volume: 73
  start-page: 041920
  year: 2006
  ident: 10.1016/j.neuroimage.2014.10.015_bb0120
  article-title: Classification of epilepsy types through global network analysis of scalp electroencephalograms
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.73.041920
– volume: 80C
  start-page: 426
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.015_bb0075
  article-title: Graph analysis of the human connectome: promise, progress, and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.087
– volume: 7
  start-page: 43
  year: 1985
  ident: 10.1016/j.neuroimage.2014.10.015_bb0090
  article-title: On the history of the minimum spanning tree problem
  publication-title: Ann. Hist. Comput.
  doi: 10.1109/MAHC.1985.10011
– volume: 48–50
  year: 1956
  ident: 10.1016/j.neuroimage.2014.10.015_bb0115
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc.
– volume: 2
  start-page: 145
  year: 2004
  ident: 10.1016/j.neuroimage.2014.10.015_bb9005
  article-title: The small world of the cerebral cortex
  publication-title: Neuroinform.
  doi: 10.1385/NI:2:2:145
– volume: 393
  start-page: 440
  year: 1998
  ident: 10.1016/j.neuroimage.2014.10.015_bb0255
  article-title: Collective dynamics of 'small-world' networks
  publication-title: Nature
  doi: 10.1038/30918
SSID ssj0009148
Score 2.586717
Snippet The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 177
SubjectTerms Algorithms
Alzheimer's disease
Brain - physiology
Brain Mapping - methods
Complex brain networks
Computer Simulation
Connectivity
Functional and structural networks
Graph theory
Humans
Medical imaging
Medical research
Minimum spanning tree
Nerve Net - physiology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9-gPgifju_iOBrtWnSJtEHEVGGMJ8c7K2kaQMT103d_n_vmnR70bG3QnKQ3uUuvySX-xFyzUVibMFcxJWoIqF0HBnu4KsyiKZFWRl8O9x7y7p98TpIB-HA7SekVbYxsQnU5djiGfktwPpYwXRM0ofJV4SsUXi7Gig01skmAySC1A1yIBdFd5nwT-FSHinoEDJ5fH5XUy9yOAKvxQQvcYM5XkiO-_fy9B_8bJahl12yE_AjffQG3yNrVb1PtnrhhvyAdMHuFOuFjGYjCtGiYSSiePV8Rx9rOquLIaxbJfXM0RQgKy2QJYLWPh-cmlCl5JD0X57fn7pRYEuIbJaoaaSr0lpdGA1_KpyQLmkKwxSacStjW4J_aSedA4_jcWxlYcC7XVIylxncSPEjslGP6-qEUIQpTilmnHPCGackgDSdmSRxjINYh8hWSbkNpcSR0eIzb3PGPvKFenNUL7aAejuEzSUnvpzGCjK6tUPePheFAJdDzF9B9n4uGyCFhworSp-3Zs-Da__ki4nYIVfzZnBKvGkxdTWeYR_ePBFWbGmfFLB6JnSHHPspNVcJ7NoByMrkdPkAzsg2jDb1J0LnZGP6PasuACNNi8vGEX4BJkIPrg
  priority: 102
  providerName: ProQuest
Title The minimum spanning tree: An unbiased method for brain network analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914008398
https://dx.doi.org/10.1016/j.neuroimage.2014.10.015
https://www.ncbi.nlm.nih.gov/pubmed/25451472
https://www.proquest.com/docview/1640873025
https://www.proquest.com/docview/1634269481
https://www.proquest.com/docview/1635020649
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZaxsxEB4SB0pfStr0cJMYFfq68erwSkqfXJPgHjEhacBvi_YQuNSb0Nqv_e2ZWWkdAm0x9GUv7YB2pJn5tJoD4L1UwpUF94k0qk6UsWnipMer2hGaVlXtKHb4YpZNb9Tn-Wi-A5MuFobcKqPuDzq91dbxyTByc3i3WAyvERmguaH8ZIQjrNmFPYHW3vRgb_zpy3T2kHuXqxARN5IJEUSHnuDm1aaNXCxReMnPS52QqxfVyP2zlfobCm2t0fk-PIswko1DT5_DTt28gCcXcaP8AKY4_IzShizXS4ZKoy1MxGgH-pSNG7ZuigWar4qFAtIMkSsrqFgEa4JbOHMxWclLuDk_-zaZJrFoQlJmwqwSW1dlaQtn8UuVV9qLNj9MYbksdVpWKGbWa-9R8GSalrpwKOReVNxnjtZT8hX0mtumfgOM0Io3hjvvvfLOG41YzWZOCM8lkvVBd0zKy5hRnApb_Mg717Hv-QN7c2IvtSB7-8A3lHchq8YWNLYbh7yLGkU9l6Pq34L2w4b20ezakvqoG_Y8SvivHJeZqUH1KLD53aYZZZM2XFxT367pHdlGChv-z3dGCNkzZfvwOkypDUtw8Y54Vou3_9X9Q3iKd6Pw3-gIequf6_oYkdSqGMDuyW-ORz3XA5SaydXXy0GUHjx_PJtdXt0DNMshiw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgJeEL8pDDASPAYS20ls0IQGbOrYWiG0SXvLHMeWhmg6WCvEP8ffxl3stC8w9WVvkZyzrPP5_Nm-uw_gpZDc2DrziVDSJVLpNDHC45czhKZl4wzlDo8nxehYfj7JTzbgT58LQ2GVvU_sHHUzs3RH_gZhfarQHHn-_vxHQqxR9LraU2iYSK3QbHclxmJix4H7_QuPcBfb-59wvl9xvrd79HGURJaBxBZczRPtGmt1bbTCo4GXpeddQZVaZ8KWqW3QLrUvvUdLFWlqy9rgqvC8yXxh6AAisN9rsCnpAmUAmx92J1--rsr-ZjIk4-Uiwf51jCUKEWZdxcqzKfoNCjGTrynKjOh5_71B_g8Adxvh3m24FREs2wkmdwc2XHsXro_jG_09GKHlMapYMl1MGfqrjhOJ0eP3W7bTskVbn-HO2bDAXc0QNLOaeCpYGyLSmYl1Uu7D8ZVo8gEM2lnrHgEjoOSVyoz3XnrjVYkwUReGc58JFBtC2SupsrGYOXFqfK_6qLVv1Uq9FamXWlC9Q8iWkuehoMcaMrqfh6pPWEUXW-Gus4bsu6VsBDUBrKwpvdVPexWdy0W1WgpDeLFsRrdAbz2mdbMF_SO6JGWVXfpPjqeFQuohPAwmtVQJR2SdyZI_vnwAz-HG6Gh8WB3uTw6ewE0ceR7up7ZgMP-5cE8Rsc3rZ3FZMDi96pX4F8y6Uog
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVcEN8sFDASHEMT24ltEEIVZbWltOJApb0Zx4mlIjZb6K4Qf41fx0zs7F6g2ktvkZyxovHM-DmemQfwQkjufF2ETGjZZlKbPHMi4FPrCE3LpnVUO3x8Uk1O5cdpOd2CP0MtDKVVDjGxD9TN3NM_8j2E9blGc-TlXkhpEZ8Pxu_Of2TEIEU3rQOdRjSRo_b3Lzy-Xbw9PMC1fsn5-MOX95MsMQxkvuJ6kZm28d7Uzmg8FgSpAu-bqdSmEF7lvkGbNEGFgFYq8tyr2qFHBN4UoXJ0-BA47zW4roSURBuhpmrd8LeQsQyvFBnOblIWUcwt63tVns0wYlBymXxF-WVEzPvvrfF_0LffAse34GbCrmw_Gttt2Gq7O7BznG7n78IEbY5Rr5LZcsYwUvVsSIyuvV-z_Y4tu_oM98yGRdZqhnCZ1cRQwbqYi85c6pByD06vRI_3Ybubd-1DYASRgtaFCyHI4IJWCBBN5TgPhUCxEahBSdanNubEpvHdDvlq3-xavZbUSyOo3hEUK8nz2MpjAxkzrIMdSlUxuFrcbzaQfbOSTXAmwpQNpXeHZbcprFzYtROM4PlqGAMC3fK4rp0v6R3Rlyfr4tJ3SjwnVNKM4EE0qZVKOGLqQir-6PIPeAY76H_20-HJ0WO4gR9exh9Tu7C9-LlsnyBUW9RPe59g8PWqnfAvicJQJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+minimum+spanning+tree%3A+an+unbiased+method+for+brain+network+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Tewarie%2C+P&rft.au=van+Dellen%2C+E&rft.au=Hillebrand%2C+A&rft.au=Stam%2C+C+J&rft.date=2015-01-01&rft.eissn=1095-9572&rft.volume=104&rft.spage=177&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.10.015&rft_id=info%3Apmid%2F25451472&rft.externalDocID=25451472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon