The minimum spanning tree: An unbiased method for brain network analysis
The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 104; pp. 177 - 188 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2014.10.015 |
Cover
Abstract | The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the brain. It has recently been suggested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for unweighted networks), which may occur concomitantly with alterations in network topology under empirical conditions. If analysis of MSTs avoids these methodological limitations, understanding the relationship between MST characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here, we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-free networks that were gradually rewired to random networks. Surprisingly, although most connections are discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction were very strongly related to changes in the characteristic path length when the network changed from a regular to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable for the comparison of brain networks, as it avoids methodological biases. Even though the MST does not utilize all the connections in the network, it still provides a, mathematically defined and unbiased, sub-network with characteristics that can provide similar information about network topology as conventional graph measures.
•Conventional network analyses are accompanied with methodological limitations.•The minimum spanning tree is an acyclic sub-network that connects all nodes in the original network.•The minimum spanning tree avoids several methodological biases.•Minimum spanning tree metrics can be interpreted along the lines of conventional network analyses. |
---|---|
AbstractList | The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the brain. It has recently been suggested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for unweighted networks), which may occur concomitantly with alterations in network topology under empirical conditions. If analysis of MSTs avoids these methodological limitations, understanding the relationship between MST characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here, we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-free networks that were gradually rewired to random networks. Surprisingly, although most connections are discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction were very strongly related to changes in the characteristic path length when the network changed from a regular to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable for the comparison of brain networks, as it avoids methodological biases. Even though the MST does not utilize all the connections in the network, it still provides a, mathematically defined and unbiased, sub-network with characteristics that can provide similar information about network topology as conventional graph measures.
•Conventional network analyses are accompanied with methodological limitations.•The minimum spanning tree is an acyclic sub-network that connects all nodes in the original network.•The minimum spanning tree avoids several methodological biases.•Minimum spanning tree metrics can be interpreted along the lines of conventional network analyses. The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the brain. It has recently been suggested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for unweighted networks), which may occur concomitantly with alterations in network topology under empirical conditions. If analysis of MSTs avoids these methodological limitations, understanding the relationship between MST characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here, we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-free networks that were gradually rewired to random networks. Surprisingly, although most connections are discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction were very strongly related to changes in the characteristic path length when the network changed from a regular to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable for the comparison of brain networks, as it avoids methodological biases. Even though the MST does not utilize all the connections in the network, it still provides a, mathematically defined and unbiased, sub-network with characteristics that can provide similar information about network topology as conventional graph measures. The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the brain. It has recently been suggested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for unweighted networks), which may occur concomitantly with alterations in network topology under empirical conditions. If analysis of MSTs avoids these methodological limitations, understanding the relationship between MST characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here, we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-free networks that were gradually rewired to random networks. Surprisingly, although most connections are discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction were very strongly related to changes in the characteristic path length when the network changed from a regular to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable for the comparison of brain networks, as it avoids methodological biases. Even though the MST does not utilize all the connections in the network, it still provides a, mathematically defined and unbiased, sub-network with characteristics that can provide similar information about network topology as conventional graph measures.The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the brain. It has recently been suggested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for unweighted networks), which may occur concomitantly with alterations in network topology under empirical conditions. If analysis of MSTs avoids these methodological limitations, understanding the relationship between MST characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here, we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-free networks that were gradually rewired to random networks. Surprisingly, although most connections are discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction were very strongly related to changes in the characteristic path length when the network changed from a regular to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable for the comparison of brain networks, as it avoids methodological biases. Even though the MST does not utilize all the connections in the network, it still provides a, mathematically defined and unbiased, sub-network with characteristics that can provide similar information about network topology as conventional graph measures. |
Author | Hillebrand, A. Tewarie, P. Stam, C.J. van Dellen, E. |
Author_xml | – sequence: 1 givenname: P. surname: Tewarie fullname: Tewarie, P. email: p.tewarie@vumc.nl organization: Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands – sequence: 2 givenname: E. surname: van Dellen fullname: van Dellen, E. organization: Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands – sequence: 3 givenname: A. surname: Hillebrand fullname: Hillebrand, A. organization: Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands – sequence: 4 givenname: C.J. surname: Stam fullname: Stam, C.J. organization: Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25451472$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v3CAQhlGVqvnqX6iQeunF2wHjD3qomkZJEylSL8kZYTwkbGzYgt1q_32xNm2kPe0JBM88GubllBz54JEQymDFgNWf1yuPcwxu1I-44sBEPl4Bq96QEwayKmTV8KNlX5VFy5g8JqcprQFAMtG-I8e8EhUTDT8hN_dPSEfn3TiPNG20984_0ikifqEXns6-czphT0ecnkJPbYi0i9p56nH6E-Iz1V4P2-TSOXlr9ZDw_ct6Rh6ur-4vb4q7nz9uLy_uClPzdiok9sbITsvclrCisbzN7dedZKVpwPRd7tE21sq6LAFM02loSst7ZmsNgtflGfm0825i-DVjmtToksFh0B7DnBSrywo41EIegmajFC3L6Mc9dB3mmJ-2UALapgReZerDCzV3I_ZqE3MCcav-jTMD7Q4wMaQU0f5HGKglObVWr8mpJbnlJieXS7_ulRo36ckFP-V5D4cIvu8EmKf_22FUyTj0BnsX0UyqD-4Qybc9iRny5zB6eMbtYYq_-hbPcQ |
CitedBy_id | crossref_primary_10_18325_jkmr_2022_32_1_107 crossref_primary_10_1089_brain_2019_0705 crossref_primary_10_1007_s43657_021_00027_w crossref_primary_10_1088_2631_8695_ab7869 crossref_primary_10_1089_neu_2020_6999 crossref_primary_10_3389_fnagi_2021_680200 crossref_primary_10_1016_j_neuroimage_2021_117737 crossref_primary_10_1016_j_clinph_2020_03_031 crossref_primary_10_1088_1742_6596_1727_1_012009 crossref_primary_10_1162_netn_a_00284 crossref_primary_10_1111_psyp_13194 crossref_primary_10_1038_s41598_023_44621_6 crossref_primary_10_1016_j_clinph_2021_04_008 crossref_primary_10_1016_j_pnpbp_2019_109796 crossref_primary_10_1016_j_jad_2022_11_029 crossref_primary_10_1016_j_heliyon_2024_e40212 crossref_primary_10_1016_j_compag_2021_106276 crossref_primary_10_3389_fnagi_2023_1039496 crossref_primary_10_1080_07391102_2022_2108496 crossref_primary_10_1162_neco_a_01327 crossref_primary_10_1371_journal_pone_0273830 crossref_primary_10_1007_s11571_022_09907_x crossref_primary_10_1016_j_physrep_2023_12_002 crossref_primary_10_1007_s11682_023_00770_w crossref_primary_10_1016_j_neuroimage_2017_02_005 crossref_primary_10_1016_j_nicl_2018_08_001 crossref_primary_10_1016_j_imed_2024_02_001 crossref_primary_10_1016_j_cogsys_2024_101238 crossref_primary_10_1016_j_jocs_2024_102416 crossref_primary_10_1038_srep29780 crossref_primary_10_3390_brainsci12030378 crossref_primary_10_1093_braincomms_fcae283 crossref_primary_10_1109_TMI_2017_2774364 crossref_primary_10_1177_0271678X17713901 crossref_primary_10_1016_j_clinph_2022_03_014 crossref_primary_10_1038_s41598_019_46111_0 crossref_primary_10_1016_j_brainres_2020_146743 crossref_primary_10_1002_brb3_2027 crossref_primary_10_5351_KJAS_2023_36_5_361 crossref_primary_10_3758_s13428_018_1032_9 crossref_primary_10_3389_fnins_2022_889105 crossref_primary_10_1177_15500594221085552 crossref_primary_10_1002_hbm_23827 crossref_primary_10_1186_s12937_019_0475_x crossref_primary_10_1016_j_neuroimage_2019_06_055 crossref_primary_10_1080_23737484_2019_1634500 crossref_primary_10_1093_cercor_bhad178 crossref_primary_10_1007_s10548_024_01052_4 crossref_primary_10_1016_j_neucom_2022_11_095 crossref_primary_10_1016_j_eswa_2017_12_028 crossref_primary_10_1016_j_clinph_2020_09_009 crossref_primary_10_1016_j_clinph_2023_07_004 crossref_primary_10_3389_fnins_2019_00211 crossref_primary_10_1007_s13278_024_01247_4 crossref_primary_10_1089_brain_2015_0359 crossref_primary_10_1371_journal_pone_0230099 crossref_primary_10_1016_j_bspc_2021_103349 crossref_primary_10_1016_j_neuroimage_2020_117431 crossref_primary_10_1002_mds_26309 crossref_primary_10_3233_JAD_220527 crossref_primary_10_3389_fpsyt_2019_00300 crossref_primary_10_1016_j_artmed_2019_03_007 crossref_primary_10_2139_ssrn_4133239 crossref_primary_10_1016_j_neuroimage_2017_10_003 crossref_primary_10_1038_s41598_020_65303_7 crossref_primary_10_3390_sym12111842 crossref_primary_10_1007_s11571_018_9495_z crossref_primary_10_3389_fninf_2021_744355 crossref_primary_10_1002_jnr_24896 crossref_primary_10_1109_ACCESS_2018_2872765 crossref_primary_10_1016_j_clinph_2017_09_004 crossref_primary_10_3389_fnins_2020_00355 crossref_primary_10_1002_jnr_24898 crossref_primary_10_1016_j_neuroimage_2017_06_071 crossref_primary_10_1038_s41598_021_99167_2 crossref_primary_10_1016_j_nicl_2018_06_024 crossref_primary_10_3389_fnins_2022_782474 crossref_primary_10_1016_j_bspc_2016_08_013 crossref_primary_10_17706_IJCCE_2016_5_6_398_408 crossref_primary_10_1016_j_yebeh_2018_11_011 crossref_primary_10_37349_ent_2023_00061 crossref_primary_10_1016_j_clinph_2017_02_022 crossref_primary_10_1016_j_neuroimage_2017_11_016 crossref_primary_10_1016_j_clinph_2020_05_014 crossref_primary_10_1142_S0129065717500320 crossref_primary_10_3389_fneur_2022_855842 crossref_primary_10_1186_s13195_018_0431_6 crossref_primary_10_3389_fnins_2021_652920 crossref_primary_10_3390_brainsci13010138 crossref_primary_10_1109_JSEN_2024_3397884 crossref_primary_10_1007_s10989_021_10280_2 crossref_primary_10_3389_fnhum_2018_00341 crossref_primary_10_1038_s41537_020_00111_6 crossref_primary_10_1016_j_neurobiolaging_2021_10_016 crossref_primary_10_1177_1352458520977160 crossref_primary_10_3389_fnint_2018_00016 crossref_primary_10_1007_s10439_018_2022_x crossref_primary_10_1038_s41539_022_00151_w crossref_primary_10_1016_j_jneumeth_2016_11_003 crossref_primary_10_1038_s41598_024_61316_8 crossref_primary_10_1016_j_physa_2020_125605 crossref_primary_10_1111_epi_13622 crossref_primary_10_1038_s41537_022_00329_6 crossref_primary_10_1016_j_nicl_2018_06_001 crossref_primary_10_1016_j_neuroimage_2018_10_073 crossref_primary_10_1002_hbm_25403 crossref_primary_10_1007_s10072_019_3725_y crossref_primary_10_3389_fnagi_2018_00400 crossref_primary_10_3390_electronics9020203 crossref_primary_10_3389_fninf_2019_00079 crossref_primary_10_1016_j_neuropsychologia_2015_01_021 crossref_primary_10_1002_hbm_26295 crossref_primary_10_1155_2017_4820935 crossref_primary_10_3389_fpsyg_2024_1458339 crossref_primary_10_1016_j_cogsys_2018_08_018 crossref_primary_10_3389_fnins_2018_00306 crossref_primary_10_1038_s41598_018_30869_w crossref_primary_10_1016_j_clinph_2016_04_013 crossref_primary_10_1038_s41598_025_88777_9 crossref_primary_10_1109_ACCESS_2020_3018995 crossref_primary_10_1038_s41582_021_00529_1 crossref_primary_10_1016_j_nicl_2019_102083 crossref_primary_10_1097_j_pain_0000000000002010 crossref_primary_10_1097_ALN_0000000000000750 crossref_primary_10_1136_bmjopen_2024_092165 crossref_primary_10_1016_j_clinph_2016_03_015 crossref_primary_10_1038_s41598_021_93925_y crossref_primary_10_1111_exsy_13016 crossref_primary_10_1002_brb3_2523 crossref_primary_10_1016_j_clinph_2020_01_023 crossref_primary_10_3389_fped_2022_909069 crossref_primary_10_1155_2016_3462309 crossref_primary_10_1111_ejn_16442 crossref_primary_10_3233_JAD_215573 crossref_primary_10_3389_fnhum_2017_00189 crossref_primary_10_1002_hbm_23645 crossref_primary_10_1016_j_ijpsycho_2018_07_476 crossref_primary_10_1111_sjop_12835 crossref_primary_10_1089_brain_2016_0483 crossref_primary_10_1016_j_neurobiolaging_2020_07_029 crossref_primary_10_1038_s41598_024_77944_z crossref_primary_10_1109_TNSRE_2020_3007589 crossref_primary_10_1111_pcn_13791 crossref_primary_10_1016_j_clinph_2017_05_012 crossref_primary_10_4103_1673_5374_295334 crossref_primary_10_3390_ijms17060862 crossref_primary_10_1016_j_neuroscience_2020_12_019 crossref_primary_10_1016_j_neuroimage_2023_120081 crossref_primary_10_1088_1741_2560_13_3_036015 crossref_primary_10_3233_JAD_215682 crossref_primary_10_3389_fnagi_2022_1061254 crossref_primary_10_1155_2018_4638903 crossref_primary_10_3389_fnagi_2017_00107 crossref_primary_10_1016_j_neuroimage_2022_119142 crossref_primary_10_3389_fnhum_2022_730745 crossref_primary_10_1089_brain_2016_0469 crossref_primary_10_3389_fnins_2020_613990 crossref_primary_10_1002_advs_202400061 crossref_primary_10_1007_s11060_018_2987_1 crossref_primary_10_1002_brb3_1218 crossref_primary_10_1016_j_bja_2022_07_054 crossref_primary_10_1038_s41598_017_16440_z crossref_primary_10_1038_srep38653 crossref_primary_10_1109_TCDS_2023_3283406 crossref_primary_10_1016_j_neurobiolaging_2023_08_003 crossref_primary_10_1038_s41598_024_67120_8 crossref_primary_10_1089_brain_2019_0686 crossref_primary_10_1002_hbm_25726 crossref_primary_10_1016_j_neuroscience_2016_02_017 crossref_primary_10_1002_hbm_26257 crossref_primary_10_1142_S0129065719500229 crossref_primary_10_1016_j_neuroscience_2019_11_001 crossref_primary_10_3389_fnins_2023_1176825 crossref_primary_10_1016_j_clinph_2016_03_025 crossref_primary_10_1109_JBHI_2018_2868918 crossref_primary_10_3389_fpsyg_2021_767839 crossref_primary_10_1038_s41380_021_01421_6 crossref_primary_10_1093_texcom_tgac024 crossref_primary_10_3389_fneur_2022_910054 crossref_primary_10_1016_j_trf_2024_08_031 crossref_primary_10_1016_j_inffus_2024_102613 crossref_primary_10_1089_brain_2020_0798 crossref_primary_10_1016_j_earlhumdev_2020_105096 crossref_primary_10_1162_netn_a_00090 crossref_primary_10_1038_s41598_024_66044_7 crossref_primary_10_1016_j_pscychresns_2018_05_001 crossref_primary_10_1002_hbm_24989 crossref_primary_10_1002_hbm_24020 crossref_primary_10_1002_hbm_24383 crossref_primary_10_3390_brainsci12121629 crossref_primary_10_3389_fninf_2017_00028 crossref_primary_10_1371_journal_pcbi_1005305 crossref_primary_10_1038_s41598_017_09896_6 crossref_primary_10_1016_j_nicl_2020_102347 crossref_primary_10_1162_netn_a_00245 crossref_primary_10_3389_fncom_2018_00060 crossref_primary_10_1007_s10548_020_00799_w crossref_primary_10_1007_s00429_022_02584_w crossref_primary_10_1080_10255842_2019_1634695 crossref_primary_10_1371_journal_pone_0281385 crossref_primary_10_1089_brain_2020_0741 crossref_primary_10_3390_jcm10102182 crossref_primary_10_1089_brain_2020_0985 crossref_primary_10_1016_j_heares_2018_12_006 crossref_primary_10_1002_hbm_25589 crossref_primary_10_1016_j_clinph_2016_02_017 crossref_primary_10_1016_j_neurobiolaging_2022_02_009 crossref_primary_10_1002_spy2_315 crossref_primary_10_1002_hbm_24014 crossref_primary_10_3390_e23050500 crossref_primary_10_1016_j_neuroimage_2019_03_036 crossref_primary_10_1016_j_neurobiolaging_2016_03_018 crossref_primary_10_1016_j_clinph_2023_03_002 crossref_primary_10_3389_fncom_2022_1024205 crossref_primary_10_1016_j_clinph_2016_06_023 crossref_primary_10_1093_schbul_sbv178 crossref_primary_10_1016_j_nicl_2019_101809 crossref_primary_10_3390_brainsci11111396 crossref_primary_10_1089_brain_2021_0168 crossref_primary_10_1002_brb3_2188 crossref_primary_10_1007_s10072_021_05437_2 crossref_primary_10_1089_brain_2016_0426 crossref_primary_10_1371_journal_pone_0140530 crossref_primary_10_1162_netn_a_00103 crossref_primary_10_1088_1741_2552_ab4024 crossref_primary_10_3389_fncom_2018_00031 crossref_primary_10_1002_net_21949 crossref_primary_10_1063_5_0018826 crossref_primary_10_1155_2018_5340717 crossref_primary_10_1089_brain_2017_0512 crossref_primary_10_1177_1550059418807372 crossref_primary_10_1142_S0129183116500522 crossref_primary_10_1088_1741_2552_abc760 crossref_primary_10_1016_j_physa_2018_11_059 crossref_primary_10_1093_brain_aww194 crossref_primary_10_3389_fnins_2018_00701 crossref_primary_10_3390_bs14010072 crossref_primary_10_1016_j_neuropsychologia_2020_107343 crossref_primary_10_3233_JAD_180603 crossref_primary_10_3389_fpsyg_2017_01605 crossref_primary_10_1016_j_neubiorev_2025_106017 |
Cites_doi | 10.1089/brain.2012.0106 10.1371/journal.pone.0013701 10.1142/S0218127407018361 10.3389/neuro.11.037.2009 10.1007/s10439-011-0258-9 10.1523/JNEUROSCI.3539-11.2011 10.1016/j.neuroimage.2013.10.022 10.1093/bioinformatics/btp109 10.1002/hbm.10106 10.1111/epi.12350 10.1038/nrn2575 10.1002/hbm.21030 10.1371/journal.pbio.0060159 10.1073/pnas.1111738109 10.1103/PhysRevE.64.026118 10.1126/science.1065103 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2014.04.038 10.1038/nrn3214 10.1088/1742-5468/2011/11/P11018 10.1126/science.286.5439.509 10.1137/0205051 10.1016/j.neurobiolaging.2013.02.020 10.1523/JNEUROSCI.1443-09.2009 10.1103/PhysRevE.85.066118 10.1016/j.ijpsycho.2014.04.001 10.1103/PhysRevE.70.046126 10.1093/brain/awt316 10.1371/journal.pone.0069318 10.1103/PhysRevLett.86.5076 10.1103/PhysRevE.81.021130 10.1016/S1364-6613(98)01259-5 10.1103/PhysRevLett.96.148702 10.1371/journal.pgen.1000212 10.1073/pnas.1203593109 10.1126/science.1238411 10.1002/j.1538-7305.1957.tb01515.x 10.1093/cercor/bhn102 10.1016/j.clinph.2012.01.011 10.1006/nimg.2001.0978 10.1038/nrn3801 10.1142/S021963521350026X 10.1016/j.neuroimage.2013.10.010 10.1016/j.neulet.2008.09.080 10.1097/ALN.0b013e3181f229b5 10.1103/PhysRevB.34.3528 10.1103/PhysRevE.73.041920 10.1016/j.neuroimage.2013.04.087 10.1109/MAHC.1985.10011 10.1385/NI:2:2:145 10.1038/30918 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 1, 2015 |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 1, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2014.10.015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE ProQuest One Psychology Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 188 |
ExternalDocumentID | 3539699601 25451472 10_1016_j_neuroimage_2014_10_015 S1053811914008398 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ACLOT ~HD 7QO |
ID | FETCH-LOGICAL-c628t-9edcc9ba98114f47f280146b913c70cdb009f7ff963300c7ba073f2d1f6a04263 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Sun Sep 28 09:06:25 EDT 2025 Sun Sep 28 14:20:01 EDT 2025 Wed Aug 13 06:22:16 EDT 2025 Thu Apr 03 07:00:40 EDT 2025 Tue Jul 01 02:14:55 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Fri Feb 23 02:24:27 EST 2024 Tue Aug 26 16:31:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Connectivity Complex brain networks Functional and structural networks Graph theory Minimum spanning tree |
Language | English |
License | Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c628t-9edcc9ba98114f47f280146b913c70cdb009f7ff963300c7ba073f2d1f6a04263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25451472 |
PQID | 1640873025 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1635020649 proquest_miscellaneous_1634269481 proquest_journals_1640873025 pubmed_primary_25451472 crossref_primary_10_1016_j_neuroimage_2014_10_015 crossref_citationtrail_10_1016_j_neuroimage_2014_10_015 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_10_015 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_10_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 2015-01-00 2015-Jan-01 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Bullmore, Sporns (bb0040) 2012; 13 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bb0220) 2002; 15 Cheriton, Tarjan (bb0045) 1976; 5 Newman (bb0160) 2010 Maslov, Sneppen (bb0135) 2002; 296 van Wijk, Stam, Daffertshofer (bb0245) 2010; 5 Stam (bb9010) 2014; 15 Dussert, Rasigni, Rasigni, Palmari, Llebaria (bb0070) 1986; 34 Moret, Shapiro (bb0150) 1993 King, Tidor (bb0110) 2009; 25 Graham, Hell (bb0090) 1985; 7 Boersma, Smit, de Bie, Van Baal, Boomsma, de Geus, Delemarre-van de Waal, Stam (bb0025) 2011; 32 Lee, Oh, Kim, Noh, Choi, Mashour (bb0125) 2010; 113 Newman, Strogatz, Watts (bb0155) 2001; 64 Gong, He, Concha, Lebel, Gross, Evans, Beaulieu (bb0085) 2009; 19 Wu, Bhat, Close, Lonardi (bb0260) 2008; 4 Ciftci (bb0050) 2011; 39 Fornito, Zalesky, Bullmore (bb0080) 2010; 4 Boersma, Smit, Boomsma, Geus, Delemarre-van de Waal, Stam (bb0020) 2012; 3 Dobrin, Duxbury (bb0065) 2001; 86 Jackson, Read (bb0100) 2010; 81 Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bb0095) 2008; 6 Stam, Breakspear, van Cappellen van Walsum, van Dijk (bb0185) 2003; 19 Olde Dubbelink, Hillebrand, Stoffers, Deijen, Twisk, Stam, Berendse (bb0165) 2014; 137 Bagrow (bb0005) 2012; 85 van den Heuvel, Stam, Kahn, Hulshoff Pol (bb0240) 2009; 29 Bullmore, Sporns (bb0035) 2009; 10 Meunier, Lambiotte, Fornito, Ersche, Bullmore (bb0140) 2009; 3 Tewarie, Schoonheim, Schouten, Polman, Balk, Uitdehaag, Geurts, Hillebrand, Barkhof, Stam (bb9020) 2014 Michailidis (bb0145) 2005 Stam, Tewarie, Van Dellen, van Straaten, Hillebrand, Van Mieqhem (bb9015) 2014; 92 Vertes, Alexander-Bloch, Gogtay, Giedd, Rapoport, Bullmore (bb0250) 2012; 109 Tewarie, Hillebrand, Schoonheim, van Dijk, Geurts, Barkhof, Polman, Stam (bb0195) 2013; 88 Tewarie, Hillebrand, van Dellen, Schoonheim, Barkhof, Polman, Beaulieu, Gong, van Dijk, Stam (bb0200) 2014; 97 Tijms, Wink, de Haan, van der Flier, Stam, Scheltens, Barkhof (bb0210) 2013; 34 Kruskal (bb0115) 1956; 48–50 Rubinov, Sporns (bb0180) 2010; 52 Park, Friston (bb9000) 2013; 342 Ortega, Sola, Pastor (bb0170) 2008; 447 Li, Wang, De Haan, Stam, Van Mieghem (bb0130) 2011; 2011 Demuru, Fara, Fraschini (bb0055) 2013; 12 Diessen, Diederen, Braun, Jansen, Stam (bb0060) 2013; 54 van den Heuvel, Kahn, Goni, Sporns (bb0230) 2012; 109 Barrat, Barthelemy, Vespignani (bb0015) 2008 van den Heuvel, Sporns (bb0235) 2011; 31 Barabasi, Albert (bb0010) 1999; 286 Braunstein, Wu, Chen, Buldyrev, Kalisky, Sreenivasan, Cohen, Lopez, Havlin, Eugene Stanley (bb0030) 2013; 17 Fornito, Zalesky, Breakspear (bb0075) 2013; 80C Prim (bb0175) 1957; 36 Watts, Strogatz (bb0255) 1998; 393 van Dellen, Douw, Hillebrand, de Witt Hamer, Baayen, Heimans, Reijneveld, Stam (bb0225) 2014; 86 Lee, Kim, Jung (bb0120) 2006; 73 Stam, van Straaten (bb0190) 2012; 123 Sporns, Zwi (bb9005) 2004; 2 Tononi, Edelman, Sporns (bb0215) 1998; 2 Tewarie, Schoonheim, Stam, van der Meer, van Dijk, Barkhof, Polman, Hillebrand (bb0205) 2013; 8 Kim, Noh, Jeong (bb0105) 2004; 70 Wu, Braunstein, Havlin, Stanley (bb0265) 2006; 96 Meunier (10.1016/j.neuroimage.2014.10.015_bb0140) 2009; 3 Li (10.1016/j.neuroimage.2014.10.015_bb0130) 2011; 2011 Wu (10.1016/j.neuroimage.2014.10.015_bb0260) 2008; 4 Diessen (10.1016/j.neuroimage.2014.10.015_bb0060) 2013; 54 Cheriton (10.1016/j.neuroimage.2014.10.015_bb0045) 1976; 5 Boersma (10.1016/j.neuroimage.2014.10.015_bb0020) 2012; 3 Stam (10.1016/j.neuroimage.2014.10.015_bb9015) 2014; 92 Fornito (10.1016/j.neuroimage.2014.10.015_bb0080) 2010; 4 Lee (10.1016/j.neuroimage.2014.10.015_bb0120) 2006; 73 Bagrow (10.1016/j.neuroimage.2014.10.015_bb0005) 2012; 85 Newman (10.1016/j.neuroimage.2014.10.015_bb0160) 2010 Demuru (10.1016/j.neuroimage.2014.10.015_bb0055) 2013; 12 van den Heuvel (10.1016/j.neuroimage.2014.10.015_bb0240) 2009; 29 Gong (10.1016/j.neuroimage.2014.10.015_bb0085) 2009; 19 Rubinov (10.1016/j.neuroimage.2014.10.015_bb0180) 2010; 52 Watts (10.1016/j.neuroimage.2014.10.015_bb0255) 1998; 393 Boersma (10.1016/j.neuroimage.2014.10.015_bb0025) 2011; 32 Dobrin (10.1016/j.neuroimage.2014.10.015_bb0065) 2001; 86 Michailidis (10.1016/j.neuroimage.2014.10.015_bb0145) 2005 Braunstein (10.1016/j.neuroimage.2014.10.015_bb0030) 2013; 17 Bullmore (10.1016/j.neuroimage.2014.10.015_bb0035) 2009; 10 Tewarie (10.1016/j.neuroimage.2014.10.015_bb0205) 2013; 8 Hagmann (10.1016/j.neuroimage.2014.10.015_bb0095) 2008; 6 Lee (10.1016/j.neuroimage.2014.10.015_bb0125) 2010; 113 Prim (10.1016/j.neuroimage.2014.10.015_bb0175) 1957; 36 King (10.1016/j.neuroimage.2014.10.015_bb0110) 2009; 25 Olde Dubbelink (10.1016/j.neuroimage.2014.10.015_bb0165) 2014; 137 Kim (10.1016/j.neuroimage.2014.10.015_bb0105) 2004; 70 Tewarie (10.1016/j.neuroimage.2014.10.015_bb0195) 2013; 88 Maslov (10.1016/j.neuroimage.2014.10.015_bb0135) 2002; 296 Moret (10.1016/j.neuroimage.2014.10.015_bb0150) 1993 Newman (10.1016/j.neuroimage.2014.10.015_bb0155) 2001; 64 Barrat (10.1016/j.neuroimage.2014.10.015_bb0015) 2008 Sporns (10.1016/j.neuroimage.2014.10.015_bb9005) 2004; 2 Wu (10.1016/j.neuroimage.2014.10.015_bb0265) 2006; 96 Dussert (10.1016/j.neuroimage.2014.10.015_bb0070) 1986; 34 Graham (10.1016/j.neuroimage.2014.10.015_bb0090) 1985; 7 Ciftci (10.1016/j.neuroimage.2014.10.015_bb0050) 2011; 39 Jackson (10.1016/j.neuroimage.2014.10.015_bb0100) 2010; 81 Tononi (10.1016/j.neuroimage.2014.10.015_bb0215) 1998; 2 Barabasi (10.1016/j.neuroimage.2014.10.015_bb0010) 1999; 286 van Dellen (10.1016/j.neuroimage.2014.10.015_bb0225) 2014; 86 Kruskal (10.1016/j.neuroimage.2014.10.015_bb0115) 1956; 48–50 Tzourio-Mazoyer (10.1016/j.neuroimage.2014.10.015_bb0220) 2002; 15 van den Heuvel (10.1016/j.neuroimage.2014.10.015_bb0230) 2012; 109 Bullmore (10.1016/j.neuroimage.2014.10.015_bb0040) 2012; 13 Stam (10.1016/j.neuroimage.2014.10.015_bb0190) 2012; 123 Park (10.1016/j.neuroimage.2014.10.015_bb9000) 2013; 342 Stam (10.1016/j.neuroimage.2014.10.015_bb0185) 2003; 19 Tewarie (10.1016/j.neuroimage.2014.10.015_bb0200) 2014; 97 van den Heuvel (10.1016/j.neuroimage.2014.10.015_bb0235) 2011; 31 Tijms (10.1016/j.neuroimage.2014.10.015_bb0210) 2013; 34 Tewarie (10.1016/j.neuroimage.2014.10.015_bb9020) 2014 Ortega (10.1016/j.neuroimage.2014.10.015_bb0170) 2008; 447 van Wijk (10.1016/j.neuroimage.2014.10.015_bb0245) 2010; 5 Vertes (10.1016/j.neuroimage.2014.10.015_bb0250) 2012; 109 Fornito (10.1016/j.neuroimage.2014.10.015_bb0075) 2013; 80C Stam (10.1016/j.neuroimage.2014.10.015_bb9010) 2014; 15 |
References_xml | – volume: 4 start-page: 22 year: 2010 ident: bb0080 article-title: Network scaling effects in graph analytic studies of human resting-state FMRI data publication-title: Front. Syst. Neurosci. – volume: 13 start-page: 336 year: 2012 end-page: 349 ident: bb0040 article-title: The economy of brain network organization publication-title: Nat. Rev. Neurosci. – volume: 2 start-page: 474 year: 1998 end-page: 484 ident: bb0215 article-title: Complexity and coherency: integrating information in the brain publication-title: Trends Cogn. Sci. – volume: 70 start-page: 046126 year: 2004 ident: bb0105 article-title: Scale-free trees: the skeletons of complex networks publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. – volume: 19 start-page: 63 year: 2003 end-page: 78 ident: bb0185 article-title: Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects publication-title: Hum. Brain Mapp. – volume: 86 start-page: 354 year: 2014 end-page: 363 ident: bb0225 article-title: Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis publication-title: Neuroimage – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bb0220 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 113 start-page: 1081 year: 2010 ident: bb0125 article-title: Brain networks maintain a scale-free organization across consciousness, anesthesia, and recovery: evidence for adaptive reconfiguration publication-title: Anesthesiology – volume: 48–50 year: 1956 ident: bb0115 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proc. Am. Math. Soc. – volume: 96 start-page: 148702 year: 2006 ident: bb0265 article-title: Transport in weighted networks: partition into superhighways and roads publication-title: Phys. Rev. Lett. – volume: 137 start-page: 197 year: 2014 end-page: 207 ident: bb0165 article-title: Disrupted brain network topology in Parkinson's disease: a longitudinal magnetoencephalography study publication-title: Brain – volume: 4 start-page: e1000212 year: 2008 ident: bb0260 article-title: Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph publication-title: PLoS Genet. – volume: 86 start-page: 5076 year: 2001 end-page: 5079 ident: bb0065 article-title: Minimum spanning trees on random networks publication-title: Phys. Rev. Lett. – volume: 109 start-page: 5868 year: 2012 end-page: 5873 ident: bb0250 article-title: Simple models of human brain functional networks publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 25 start-page: 1165 year: 2009 end-page: 1172 ident: bb0110 article-title: MIST: maximum information spanning trees for dimension reduction of biological data sets publication-title: Bioinformatics – volume: 80C start-page: 426 year: 2013 end-page: 444 ident: bb0075 article-title: Graph analysis of the human connectome: promise, progress, and pitfalls publication-title: Neuroimage – volume: 15 start-page: 683 year: 2014 end-page: 695 ident: bb9010 article-title: Modern network science of neurological disorders publication-title: Nat. Rev. Neurosci. – volume: 34 start-page: 3528 year: 1986 end-page: 3531 ident: bb0070 article-title: Minimal spanning tree: a new approach for studying order and disorder publication-title: Phys. Rev. B Condens. Matter – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bb0180 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage – volume: 123 start-page: 1067 year: 2012 end-page: 1087 ident: bb0190 article-title: The organization of physiological brain networks publication-title: Clin. Neurophysiol. – start-page: 323 year: 2010 end-page: 329 ident: bb0160 article-title: The Configuration Model. Networks: An Introduction – volume: 36 start-page: 1389 year: 1957 end-page: 1401 ident: bb0175 article-title: Shortest connection networks and some generalizations publication-title: Bell Syst. Tech. J. – volume: 34 start-page: 2023 year: 2013 end-page: 2036 ident: bb0210 article-title: Alzheimer's disease: connecting findings from graph theoretical studies of brain networks publication-title: Neurobiol. Aging – volume: 64 start-page: 026118 year: 2001 ident: bb0155 article-title: Random graphs with arbitrary degree distributions and their applications publication-title: Phys. Rev. E. – volume: 17 start-page: 2215 year: 2013 end-page: 2284 ident: bb0030 article-title: Optimal path and minimum spanning trees in random weighted networks publication-title: Int. J. Bifurcation Chaos – volume: 54 start-page: 1855 year: 2013 end-page: 1865 ident: bb0060 article-title: Functional and structural brain networks in epilepsy: what have we learned? publication-title: Epilepsia – volume: 296 start-page: 910 year: 2002 end-page: 913 ident: bb0135 article-title: Specificity and stability in topology of protein networks publication-title: Science – volume: 342 start-page: 1238411 year: 2013 ident: bb9000 article-title: Structural and functional brain networks: from connections to cognition publication-title: Science. – volume: 85 start-page: 066118 year: 2012 ident: bb0005 article-title: Communities and bottlenecks: trees and treelike networks have high modularity publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. – volume: 10 start-page: 186 year: 2009 end-page: 198 ident: bb0035 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. – volume: 2 start-page: 145 year: 2004 end-page: 162 ident: bb9005 article-title: The small world of the cerebral cortex publication-title: Neuroinform. – volume: 88 start-page: 308 year: 2013 end-page: 318 ident: bb0195 article-title: Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: an MEG source-space study publication-title: Neuroimage – volume: 5 start-page: e13701 year: 2010 ident: bb0245 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PLoS ONE – volume: 447 start-page: 129 year: 2008 end-page: 133 ident: bb0170 article-title: Complex network analysis of human ECoG data publication-title: Neurosci. Lett. – volume: 29 start-page: 7619 year: 2009 end-page: 7624 ident: bb0240 article-title: Efficiency of functional brain networks and intellectual performance publication-title: J. Neurosci. – volume: 39 start-page: 1493 year: 2011 end-page: 1504 ident: bb0050 article-title: Minimum spanning tree reflects the alterations of the default mode network during Alzheimer's disease publication-title: Ann. Biomed. Eng. – volume: 6 start-page: e159 year: 2008 ident: bb0095 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. – volume: 8 start-page: e69318 year: 2013 ident: bb0205 article-title: Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis publication-title: PLoS ONE – year: 2014 ident: bb9020 article-title: Functional brain networks: linking thalamic atrophy to clinical disability in multiple sclerosis, a multimodal fMRI and MEG Study publication-title: Hum. Brain Mapp. – volume: 97 start-page: 296 year: 2014 end-page: 307 ident: bb0200 article-title: Structural degree predicts functional network connectivity: a multimodal resting-state fMRI and MEG study publication-title: Neuroimage – volume: 3 start-page: 37 year: 2009 ident: bb0140 article-title: Hierarchical modularity in human brain functional networks publication-title: Front. Neuroinform. – start-page: 24 year: 2008 end-page: 49 ident: bb0015 article-title: Networks and complexity publication-title: Dynamical processes on complex networks – volume: 81 start-page: 021130 year: 2010 ident: bb0100 article-title: Theory of minimum spanning trees. I. Mean-field theory and strongly disordered spin-glass model publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. – volume: 393 start-page: 440 year: 1998 end-page: 442 ident: bb0255 article-title: Collective dynamics of 'small-world' networks publication-title: Nature – volume: 286 start-page: 509 year: 1999 end-page: 512 ident: bb0010 article-title: Emergence of scaling in random networks publication-title: Science – start-page: 99 year: 1993 end-page: 117 ident: bb0150 article-title: An empirical assessment of algorithms for constructing a minimum spanning tree publication-title: Computational support for, discrete mathematics – volume: 3 start-page: 50 year: 2012 end-page: 60 ident: bb0020 article-title: Growing trees in child brains: graph theoretical analysis of EEG derived minimum spanning tree in 5 and 7 publication-title: Brain Connect. – volume: 31 start-page: 15775 year: 2011 end-page: 15786 ident: bb0235 article-title: Rich-club organization of the human connectome publication-title: J. Neurosci. – volume: 2011 start-page: 11018 year: 2011 ident: bb0130 article-title: The correlation of metrics in complex networks with applications in functional brain networks publication-title: J. Stat. Mech. Theory Exp. – volume: 32 start-page: 413 year: 2011 end-page: 425 ident: bb0025 article-title: Network analysis of resting state EEG in the developing young brain: structure comes with maturation publication-title: Hum. Brain Mapp. – volume: 19 start-page: 524 year: 2009 end-page: 536 ident: bb0085 article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography publication-title: Cereb. Cortex – volume: 73 start-page: 041920 year: 2006 ident: bb0120 article-title: Classification of epilepsy types through global network analysis of scalp electroencephalograms publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. – volume: 92 start-page: 129 year: 2014 end-page: 138 ident: bb9015 article-title: The trees and the forest: characterization of complex brain networks with minimum spanning trees publication-title: Int. J. Psychophysiol. – volume: 12 start-page: 441 year: 2013 end-page: 447 ident: bb0055 article-title: Brain network analysis of EEG functional connectivity during imagery hand movements publication-title: J. Integr. Neurosci. – year: 2005 ident: bb0145 article-title: Minimum spanning tree publication-title: Encyclopedia of Statistics in Behavioral Science – volume: 109 start-page: 11372 year: 2012 end-page: 11377 ident: bb0230 article-title: High-cost, high-capacity backbone for global brain communication publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: 724 year: 1976 end-page: 742 ident: bb0045 article-title: Finding minimum spanning trees publication-title: SIAM J. Comput. – volume: 7 start-page: 43 year: 1985 end-page: 57 ident: bb0090 article-title: On the history of the minimum spanning tree problem publication-title: Ann. Hist. Comput. – volume: 3 start-page: 50 year: 2012 ident: 10.1016/j.neuroimage.2014.10.015_bb0020 article-title: Growing trees in child brains: graph theoretical analysis of EEG derived minimum spanning tree in 5 and 7year old children reflects brain maturation publication-title: Brain Connect. doi: 10.1089/brain.2012.0106 – volume: 5 start-page: e13701 year: 2010 ident: 10.1016/j.neuroimage.2014.10.015_bb0245 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PLoS ONE doi: 10.1371/journal.pone.0013701 – volume: 17 start-page: 2215 year: 2013 ident: 10.1016/j.neuroimage.2014.10.015_bb0030 article-title: Optimal path and minimum spanning trees in random weighted networks publication-title: Int. J. Bifurcation Chaos doi: 10.1142/S0218127407018361 – volume: 3 start-page: 37 year: 2009 ident: 10.1016/j.neuroimage.2014.10.015_bb0140 article-title: Hierarchical modularity in human brain functional networks publication-title: Front. Neuroinform. doi: 10.3389/neuro.11.037.2009 – volume: 39 start-page: 1493 year: 2011 ident: 10.1016/j.neuroimage.2014.10.015_bb0050 article-title: Minimum spanning tree reflects the alterations of the default mode network during Alzheimer's disease publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-011-0258-9 – volume: 31 start-page: 15775 year: 2011 ident: 10.1016/j.neuroimage.2014.10.015_bb0235 article-title: Rich-club organization of the human connectome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3539-11.2011 – volume: 88 start-page: 308 year: 2013 ident: 10.1016/j.neuroimage.2014.10.015_bb0195 article-title: Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: an MEG source-space study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.022 – year: 2005 ident: 10.1016/j.neuroimage.2014.10.015_bb0145 article-title: Minimum spanning tree – volume: 25 start-page: 1165 year: 2009 ident: 10.1016/j.neuroimage.2014.10.015_bb0110 article-title: MIST: maximum information spanning trees for dimension reduction of biological data sets publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp109 – volume: 19 start-page: 63 year: 2003 ident: 10.1016/j.neuroimage.2014.10.015_bb0185 article-title: Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10106 – volume: 54 start-page: 1855 year: 2013 ident: 10.1016/j.neuroimage.2014.10.015_bb0060 article-title: Functional and structural brain networks in epilepsy: what have we learned? publication-title: Epilepsia doi: 10.1111/epi.12350 – volume: 10 start-page: 186 year: 2009 ident: 10.1016/j.neuroimage.2014.10.015_bb0035 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 32 start-page: 413 year: 2011 ident: 10.1016/j.neuroimage.2014.10.015_bb0025 article-title: Network analysis of resting state EEG in the developing young brain: structure comes with maturation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21030 – volume: 6 start-page: e159 year: 2008 ident: 10.1016/j.neuroimage.2014.10.015_bb0095 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060159 – volume: 109 start-page: 5868 year: 2012 ident: 10.1016/j.neuroimage.2014.10.015_bb0250 article-title: Simple models of human brain functional networks publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1111738109 – volume: 64 start-page: 026118 year: 2001 ident: 10.1016/j.neuroimage.2014.10.015_bb0155 article-title: Random graphs with arbitrary degree distributions and their applications publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.64.026118 – volume: 296 start-page: 910 year: 2002 ident: 10.1016/j.neuroimage.2014.10.015_bb0135 article-title: Specificity and stability in topology of protein networks publication-title: Science doi: 10.1126/science.1065103 – volume: 52 start-page: 1059 year: 2010 ident: 10.1016/j.neuroimage.2014.10.015_bb0180 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 97 start-page: 296 year: 2014 ident: 10.1016/j.neuroimage.2014.10.015_bb0200 article-title: Structural degree predicts functional network connectivity: a multimodal resting-state fMRI and MEG study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.038 – volume: 13 start-page: 336 year: 2012 ident: 10.1016/j.neuroimage.2014.10.015_bb0040 article-title: The economy of brain network organization publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3214 – volume: 2011 start-page: 11018 year: 2011 ident: 10.1016/j.neuroimage.2014.10.015_bb0130 article-title: The correlation of metrics in complex networks with applications in functional brain networks publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2011/11/P11018 – volume: 4 start-page: 22 year: 2010 ident: 10.1016/j.neuroimage.2014.10.015_bb0080 article-title: Network scaling effects in graph analytic studies of human resting-state FMRI data publication-title: Front. Syst. Neurosci. – volume: 286 start-page: 509 year: 1999 ident: 10.1016/j.neuroimage.2014.10.015_bb0010 article-title: Emergence of scaling in random networks publication-title: Science doi: 10.1126/science.286.5439.509 – volume: 5 start-page: 724 year: 1976 ident: 10.1016/j.neuroimage.2014.10.015_bb0045 article-title: Finding minimum spanning trees publication-title: SIAM J. Comput. doi: 10.1137/0205051 – volume: 34 start-page: 2023 year: 2013 ident: 10.1016/j.neuroimage.2014.10.015_bb0210 article-title: Alzheimer's disease: connecting findings from graph theoretical studies of brain networks publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.02.020 – volume: 29 start-page: 7619 year: 2009 ident: 10.1016/j.neuroimage.2014.10.015_bb0240 article-title: Efficiency of functional brain networks and intellectual performance publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1443-09.2009 – volume: 85 start-page: 066118 year: 2012 ident: 10.1016/j.neuroimage.2014.10.015_bb0005 article-title: Communities and bottlenecks: trees and treelike networks have high modularity publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.85.066118 – volume: 92 start-page: 129 year: 2014 ident: 10.1016/j.neuroimage.2014.10.015_bb9015 article-title: The trees and the forest: characterization of complex brain networks with minimum spanning trees publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2014.04.001 – volume: 70 start-page: 046126 year: 2004 ident: 10.1016/j.neuroimage.2014.10.015_bb0105 article-title: Scale-free trees: the skeletons of complex networks publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.70.046126 – volume: 137 start-page: 197 year: 2014 ident: 10.1016/j.neuroimage.2014.10.015_bb0165 article-title: Disrupted brain network topology in Parkinson's disease: a longitudinal magnetoencephalography study publication-title: Brain doi: 10.1093/brain/awt316 – volume: 8 start-page: e69318 year: 2013 ident: 10.1016/j.neuroimage.2014.10.015_bb0205 article-title: Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis publication-title: PLoS ONE doi: 10.1371/journal.pone.0069318 – volume: 86 start-page: 5076 year: 2001 ident: 10.1016/j.neuroimage.2014.10.015_bb0065 article-title: Minimum spanning trees on random networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.5076 – volume: 81 start-page: 021130 year: 2010 ident: 10.1016/j.neuroimage.2014.10.015_bb0100 article-title: Theory of minimum spanning trees. I. Mean-field theory and strongly disordered spin-glass model publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.81.021130 – volume: 2 start-page: 474 year: 1998 ident: 10.1016/j.neuroimage.2014.10.015_bb0215 article-title: Complexity and coherency: integrating information in the brain publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(98)01259-5 – volume: 96 start-page: 148702 year: 2006 ident: 10.1016/j.neuroimage.2014.10.015_bb0265 article-title: Transport in weighted networks: partition into superhighways and roads publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.148702 – volume: 4 start-page: e1000212 year: 2008 ident: 10.1016/j.neuroimage.2014.10.015_bb0260 article-title: Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000212 – volume: 109 start-page: 11372 year: 2012 ident: 10.1016/j.neuroimage.2014.10.015_bb0230 article-title: High-cost, high-capacity backbone for global brain communication publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1203593109 – start-page: 24 year: 2008 ident: 10.1016/j.neuroimage.2014.10.015_bb0015 article-title: Networks and complexity – volume: 342 start-page: 1238411 year: 2013 ident: 10.1016/j.neuroimage.2014.10.015_bb9000 article-title: Structural and functional brain networks: from connections to cognition publication-title: Science. doi: 10.1126/science.1238411 – start-page: 99 year: 1993 ident: 10.1016/j.neuroimage.2014.10.015_bb0150 article-title: An empirical assessment of algorithms for constructing a minimum spanning tree – volume: 36 start-page: 1389 year: 1957 ident: 10.1016/j.neuroimage.2014.10.015_bb0175 article-title: Shortest connection networks and some generalizations publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1957.tb01515.x – volume: 19 start-page: 524 year: 2009 ident: 10.1016/j.neuroimage.2014.10.015_bb0085 article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn102 – volume: 123 start-page: 1067 year: 2012 ident: 10.1016/j.neuroimage.2014.10.015_bb0190 article-title: The organization of physiological brain networks publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2012.01.011 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neuroimage.2014.10.015_bb0220 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 15 start-page: 683 year: 2014 ident: 10.1016/j.neuroimage.2014.10.015_bb9010 article-title: Modern network science of neurological disorders publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3801 – volume: 12 start-page: 441 year: 2013 ident: 10.1016/j.neuroimage.2014.10.015_bb0055 article-title: Brain network analysis of EEG functional connectivity during imagery hand movements publication-title: J. Integr. Neurosci. doi: 10.1142/S021963521350026X – volume: 86 start-page: 354 year: 2014 ident: 10.1016/j.neuroimage.2014.10.015_bb0225 article-title: Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.010 – start-page: 323 year: 2010 ident: 10.1016/j.neuroimage.2014.10.015_bb0160 – year: 2014 ident: 10.1016/j.neuroimage.2014.10.015_bb9020 article-title: Functional brain networks: linking thalamic atrophy to clinical disability in multiple sclerosis, a multimodal fMRI and MEG Study publication-title: Hum. Brain Mapp. – volume: 447 start-page: 129 year: 2008 ident: 10.1016/j.neuroimage.2014.10.015_bb0170 article-title: Complex network analysis of human ECoG data publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2008.09.080 – volume: 113 start-page: 1081 year: 2010 ident: 10.1016/j.neuroimage.2014.10.015_bb0125 article-title: Brain networks maintain a scale-free organization across consciousness, anesthesia, and recovery: evidence for adaptive reconfiguration publication-title: Anesthesiology doi: 10.1097/ALN.0b013e3181f229b5 – volume: 34 start-page: 3528 year: 1986 ident: 10.1016/j.neuroimage.2014.10.015_bb0070 article-title: Minimal spanning tree: a new approach for studying order and disorder publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.34.3528 – volume: 73 start-page: 041920 year: 2006 ident: 10.1016/j.neuroimage.2014.10.015_bb0120 article-title: Classification of epilepsy types through global network analysis of scalp electroencephalograms publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.73.041920 – volume: 80C start-page: 426 year: 2013 ident: 10.1016/j.neuroimage.2014.10.015_bb0075 article-title: Graph analysis of the human connectome: promise, progress, and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.087 – volume: 7 start-page: 43 year: 1985 ident: 10.1016/j.neuroimage.2014.10.015_bb0090 article-title: On the history of the minimum spanning tree problem publication-title: Ann. Hist. Comput. doi: 10.1109/MAHC.1985.10011 – volume: 48–50 year: 1956 ident: 10.1016/j.neuroimage.2014.10.015_bb0115 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proc. Am. Math. Soc. – volume: 2 start-page: 145 year: 2004 ident: 10.1016/j.neuroimage.2014.10.015_bb9005 article-title: The small world of the cerebral cortex publication-title: Neuroinform. doi: 10.1385/NI:2:2:145 – volume: 393 start-page: 440 year: 1998 ident: 10.1016/j.neuroimage.2014.10.015_bb0255 article-title: Collective dynamics of 'small-world' networks publication-title: Nature doi: 10.1038/30918 |
SSID | ssj0009148 |
Score | 2.586717 |
Snippet | The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 177 |
SubjectTerms | Algorithms Alzheimer's disease Brain - physiology Brain Mapping - methods Complex brain networks Computer Simulation Connectivity Functional and structural networks Graph theory Humans Medical imaging Medical research Minimum spanning tree Nerve Net - physiology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9-gPgifju_iOBrtWnSJtEHEVGGMJ8c7K2kaQMT103d_n_vmnR70bG3QnKQ3uUuvySX-xFyzUVibMFcxJWoIqF0HBnu4KsyiKZFWRl8O9x7y7p98TpIB-HA7SekVbYxsQnU5djiGfktwPpYwXRM0ofJV4SsUXi7Gig01skmAySC1A1yIBdFd5nwT-FSHinoEDJ5fH5XUy9yOAKvxQQvcYM5XkiO-_fy9B_8bJahl12yE_AjffQG3yNrVb1PtnrhhvyAdMHuFOuFjGYjCtGiYSSiePV8Rx9rOquLIaxbJfXM0RQgKy2QJYLWPh-cmlCl5JD0X57fn7pRYEuIbJaoaaSr0lpdGA1_KpyQLmkKwxSacStjW4J_aSedA4_jcWxlYcC7XVIylxncSPEjslGP6-qEUIQpTilmnHPCGackgDSdmSRxjINYh8hWSbkNpcSR0eIzb3PGPvKFenNUL7aAejuEzSUnvpzGCjK6tUPePheFAJdDzF9B9n4uGyCFhworSp-3Zs-Da__ki4nYIVfzZnBKvGkxdTWeYR_ePBFWbGmfFLB6JnSHHPspNVcJ7NoByMrkdPkAzsg2jDb1J0LnZGP6PasuACNNi8vGEX4BJkIPrg priority: 102 providerName: ProQuest |
Title | The minimum spanning tree: An unbiased method for brain network analysis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914008398 https://dx.doi.org/10.1016/j.neuroimage.2014.10.015 https://www.ncbi.nlm.nih.gov/pubmed/25451472 https://www.proquest.com/docview/1640873025 https://www.proquest.com/docview/1634269481 https://www.proquest.com/docview/1635020649 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZaxsxEB4SB0pfStr0cJMYFfq68erwSkqfXJPgHjEhacBvi_YQuNSb0Nqv_e2ZWWkdAm0x9GUv7YB2pJn5tJoD4L1UwpUF94k0qk6UsWnipMer2hGaVlXtKHb4YpZNb9Tn-Wi-A5MuFobcKqPuDzq91dbxyTByc3i3WAyvERmguaH8ZIQjrNmFPYHW3vRgb_zpy3T2kHuXqxARN5IJEUSHnuDm1aaNXCxReMnPS52QqxfVyP2zlfobCm2t0fk-PIswko1DT5_DTt28gCcXcaP8AKY4_IzShizXS4ZKoy1MxGgH-pSNG7ZuigWar4qFAtIMkSsrqFgEa4JbOHMxWclLuDk_-zaZJrFoQlJmwqwSW1dlaQtn8UuVV9qLNj9MYbksdVpWKGbWa-9R8GSalrpwKOReVNxnjtZT8hX0mtumfgOM0Io3hjvvvfLOG41YzWZOCM8lkvVBd0zKy5hRnApb_Mg717Hv-QN7c2IvtSB7-8A3lHchq8YWNLYbh7yLGkU9l6Pq34L2w4b20ezakvqoG_Y8SvivHJeZqUH1KLD53aYZZZM2XFxT367pHdlGChv-z3dGCNkzZfvwOkypDUtw8Y54Vou3_9X9Q3iKd6Pw3-gIequf6_oYkdSqGMDuyW-ORz3XA5SaydXXy0GUHjx_PJtdXt0DNMshiw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgJeEL8pDDASPAYS20ls0IQGbOrYWiG0SXvLHMeWhmg6WCvEP8ffxl3stC8w9WVvkZyzrPP5_Nm-uw_gpZDc2DrziVDSJVLpNDHC45czhKZl4wzlDo8nxehYfj7JTzbgT58LQ2GVvU_sHHUzs3RH_gZhfarQHHn-_vxHQqxR9LraU2iYSK3QbHclxmJix4H7_QuPcBfb-59wvl9xvrd79HGURJaBxBZczRPtGmt1bbTCo4GXpeddQZVaZ8KWqW3QLrUvvUdLFWlqy9rgqvC8yXxh6AAisN9rsCnpAmUAmx92J1--rsr-ZjIk4-Uiwf51jCUKEWZdxcqzKfoNCjGTrynKjOh5_71B_g8Adxvh3m24FREs2wkmdwc2XHsXro_jG_09GKHlMapYMl1MGfqrjhOJ0eP3W7bTskVbn-HO2bDAXc0QNLOaeCpYGyLSmYl1Uu7D8ZVo8gEM2lnrHgEjoOSVyoz3XnrjVYkwUReGc58JFBtC2SupsrGYOXFqfK_6qLVv1Uq9FamXWlC9Q8iWkuehoMcaMrqfh6pPWEUXW-Gus4bsu6VsBDUBrKwpvdVPexWdy0W1WgpDeLFsRrdAbz2mdbMF_SO6JGWVXfpPjqeFQuohPAwmtVQJR2SdyZI_vnwAz-HG6Gh8WB3uTw6ewE0ceR7up7ZgMP-5cE8Rsc3rZ3FZMDi96pX4F8y6Uog |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVcEN8sFDASHEMT24ltEEIVZbWltOJApb0Zx4mlIjZb6K4Qf41fx0zs7F6g2ktvkZyxovHM-DmemQfwQkjufF2ETGjZZlKbPHMi4FPrCE3LpnVUO3x8Uk1O5cdpOd2CP0MtDKVVDjGxD9TN3NM_8j2E9blGc-TlXkhpEZ8Pxu_Of2TEIEU3rQOdRjSRo_b3Lzy-Xbw9PMC1fsn5-MOX95MsMQxkvuJ6kZm28d7Uzmg8FgSpAu-bqdSmEF7lvkGbNEGFgFYq8tyr2qFHBN4UoXJ0-BA47zW4roSURBuhpmrd8LeQsQyvFBnOblIWUcwt63tVns0wYlBymXxF-WVEzPvvrfF_0LffAse34GbCrmw_Gttt2Gq7O7BznG7n78IEbY5Rr5LZcsYwUvVsSIyuvV-z_Y4tu_oM98yGRdZqhnCZ1cRQwbqYi85c6pByD06vRI_3Ybubd-1DYASRgtaFCyHI4IJWCBBN5TgPhUCxEahBSdanNubEpvHdDvlq3-xavZbUSyOo3hEUK8nz2MpjAxkzrIMdSlUxuFrcbzaQfbOSTXAmwpQNpXeHZbcprFzYtROM4PlqGAMC3fK4rp0v6R3Rlyfr4tJ3SjwnVNKM4EE0qZVKOGLqQir-6PIPeAY76H_20-HJ0WO4gR9exh9Tu7C9-LlsnyBUW9RPe59g8PWqnfAvicJQJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+minimum+spanning+tree%3A+an+unbiased+method+for+brain+network+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Tewarie%2C+P&rft.au=van+Dellen%2C+E&rft.au=Hillebrand%2C+A&rft.au=Stam%2C+C+J&rft.date=2015-01-01&rft.eissn=1095-9572&rft.volume=104&rft.spage=177&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.10.015&rft_id=info%3Apmid%2F25451472&rft.externalDocID=25451472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |