False positives in neuroimaging genetics using voxel-based morphometry data

Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to th...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 54; no. 2; pp. 992 - 1000
Main Authors Silver, Matt, Montana, Giovanni, Nichols, Thomas E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.01.2011
Elsevier Limited
Academic Press
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2010.08.049

Cover

Abstract Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased statistical power. In “imaging genetics”, such tests are used to identify regions of the brain that are associated with genetic variation. However, concerns have been raised about the adequate control of rejection rates in studies of this type. A previous study tested the effect of a set of ‘null’ SNPs on brain structure and function, and found that false positive rates were well-controlled. However, no similar analysis of false positive rates in an imaging genetic study using cluster size inference has yet been undertaken. We measured false positive rates in an investigation of the effect of 700 pre-selected null SNPs on grey matter volume using voxel-based morphometry (VBM). As VBM data exhibit spatially-varying smoothness, we used both non-stationary and stationary cluster size tests in our analysis. Image and genotype data on 181 subjects with mild cognitive impairment were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). At a nominal significance level of 5%, false positive rates were found to be well-controlled (3.9–5.6%), using a relatively high cluster-forming threshold, αc=0.001, on images smoothed with a 12mm Gaussian kernel. Tests were however anticonservative at lower cluster-forming thresholds (αc=0.01, 0.05), and for images smoothed using a 6mm Gaussian kernel. Here false positive rates ranged from 9.8 to 67.6%. In a further analysis, false positive rates using simulated data were observed to be well-controlled across a wide range of conditions. While motivated by imaging genetics, our findings apply to any VBM study, and suggest that parametric cluster size inference should only be used with high cluster-forming thresholds and smoothness. We would advocate the use of nonparametric methods in other cases. ►RFT nonstationary cluster size test on VBM is found to be invalid based on empirical null studies. ►Invalid inferences (inflated false positive risk) were found with 3 voxel smoothing. ►With 6 voxel smoothing, invalid inferences were found with 6 voxel smoothing and alpha=0.01 cluster-forming threshold. ►RFT nonstationary test only found to be valid with 6 voxel smoothing with alpha=0.001 cluster-forming threshold. ►Equivalent Gaussian data simulations produced valid inferences, suggesting VBM data violates RFT assumptions and motivates the use of nonparametric permutation methods.
AbstractList Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased statistical power. In “imaging genetics”, such tests are used to identify regions of the brain that are associated with genetic variation. However, concerns have been raised about the adequate control of rejection rates in studies of this type. A previous study tested the effect of a set of ‘null’ SNPs on brain structure and function, and found that false positive rates were well-controlled. However, no similar analysis of false positive rates in an imaging genetic study using cluster size inference has yet been undertaken. We measured false positive rates in an investigation of the effect of 700 pre-selected null SNPs on grey matter volume using voxel-based morphometry (VBM). As VBM data exhibit spatially-varying smoothness, we used both non-stationary and stationary cluster size tests in our analysis. Image and genotype data on 181 subjects with mild cognitive impairment were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). At a nominal significance level of 5%, false positive rates were found to be well-controlled (3.9–5.6%), using a relatively high cluster-forming threshold, αc=0.001, on images smoothed with a 12mm Gaussian kernel. Tests were however anticonservative at lower cluster-forming thresholds (αc=0.01, 0.05), and for images smoothed using a 6mm Gaussian kernel. Here false positive rates ranged from 9.8 to 67.6%. In a further analysis, false positive rates using simulated data were observed to be well-controlled across a wide range of conditions. While motivated by imaging genetics, our findings apply to any VBM study, and suggest that parametric cluster size inference should only be used with high cluster-forming thresholds and smoothness. We would advocate the use of nonparametric methods in other cases. ►RFT nonstationary cluster size test on VBM is found to be invalid based on empirical null studies. ►Invalid inferences (inflated false positive risk) were found with 3 voxel smoothing. ►With 6 voxel smoothing, invalid inferences were found with 6 voxel smoothing and alpha=0.01 cluster-forming threshold. ►RFT nonstationary test only found to be valid with 6 voxel smoothing with alpha=0.001 cluster-forming threshold. ►Equivalent Gaussian data simulations produced valid inferences, suggesting VBM data violates RFT assumptions and motivates the use of nonparametric permutation methods.
Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased statistical power. In "imaging genetics", such tests are used to identify regions of the brain that are associated with genetic variation. However, concerns have been raised about the adequate control of rejection rates in studies of this type. A previous study tested the effect of a set of 'null' SNPs on brain structure and function, and found that false positive rates were well-controlled. However, no similar analysis of false positive rates in an imaging genetic study using cluster size inference has yet been undertaken. We measured false positive rates in an investigation of the effect of 700 pre-selected null SNPs on grey matter volume using voxel-based morphometry (VBM). As VBM data exhibit spatially-varying smoothness, we used both non-stationary and stationary cluster size tests in our analysis. Image and genotype data on 181 subjects with mild cognitive impairment were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). At a nominal significance level of 5%, false positive rates were found to be well-controlled (3.9-5.6%), using a relatively high cluster-forming threshold, alpha sub(c) = 0.001, on images smoothed with a 12 mm Gaussian kernel. Tests were however anticonservative at lower cluster-forming thresholds ( alpha sub(c) = 0.01, 0.05), and for images smoothed using a 6 mm Gaussian kernel. Here false positive rates ranged from 9.8 to 67.6%. In a further analysis, false positive rates using simulated data were observed to be well-controlled across a wide range of conditions. While motivated by imaging genetics, our findings apply to any VBM study, and suggest that parametric cluster size inference should only be used with high cluster-forming thresholds and smoothness. We would advocate the use of nonparametric methods in other cases.
Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased statistical power. In "imaging genetics", such tests are used to identify regions of the brain that are associated with genetic variation. However, concerns have been raised about the adequate control of rejection rates in studies of this type. A previous study tested the effect of a set of 'null' SNPs on brain structure and function, and found that false positive rates were well-controlled. However, no similar analysis of false positive rates in an imaging genetic study using cluster size inference has yet been undertaken. We measured false positive rates in an investigation of the effect of 700 pre-selected null SNPs on grey matter volume using voxel-based morphometry (VBM). As VBM data exhibit spatially-varying smoothness, we used both non-stationary and stationary cluster size tests in our analysis. Image and genotype data on 181 subjects with mild cognitive impairment were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). At a nominal significance level of 5%, false positive rates were found to be well-controlled (3.9-5.6%), using a relatively high cluster-forming threshold, α(c)=0.001, on images smoothed with a 12 mm Gaussian kernel. Tests were however anticonservative at lower cluster-forming thresholds (α(c)=0.01, 0.05), and for images smoothed using a 6mm Gaussian kernel. Here false positive rates ranged from 9.8 to 67.6%. In a further analysis, false positive rates using simulated data were observed to be well-controlled across a wide range of conditions. While motivated by imaging genetics, our findings apply to any VBM study, and suggest that parametric cluster size inference should only be used with high cluster-forming thresholds and smoothness. We would advocate the use of nonparametric methods in other cases.Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased statistical power. In "imaging genetics", such tests are used to identify regions of the brain that are associated with genetic variation. However, concerns have been raised about the adequate control of rejection rates in studies of this type. A previous study tested the effect of a set of 'null' SNPs on brain structure and function, and found that false positive rates were well-controlled. However, no similar analysis of false positive rates in an imaging genetic study using cluster size inference has yet been undertaken. We measured false positive rates in an investigation of the effect of 700 pre-selected null SNPs on grey matter volume using voxel-based morphometry (VBM). As VBM data exhibit spatially-varying smoothness, we used both non-stationary and stationary cluster size tests in our analysis. Image and genotype data on 181 subjects with mild cognitive impairment were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). At a nominal significance level of 5%, false positive rates were found to be well-controlled (3.9-5.6%), using a relatively high cluster-forming threshold, α(c)=0.001, on images smoothed with a 12 mm Gaussian kernel. Tests were however anticonservative at lower cluster-forming thresholds (α(c)=0.01, 0.05), and for images smoothed using a 6mm Gaussian kernel. Here false positive rates ranged from 9.8 to 67.6%. In a further analysis, false positive rates using simulated data were observed to be well-controlled across a wide range of conditions. While motivated by imaging genetics, our findings apply to any VBM study, and suggest that parametric cluster size inference should only be used with high cluster-forming thresholds and smoothness. We would advocate the use of nonparametric methods in other cases.
Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased statistical power. In "imaging genetics", such tests are used to identify regions of the brain that are associated with genetic variation. However, concerns have been raised about the adequate control of rejection rates in studies of this type. A previous study tested the effect of a set of 'null' SNPs on brain structure and function, and found that false positive rates were well-controlled. However, no similar analysis of false positive rates in an imaging genetic study using cluster size inference has yet been undertaken. We measured false positive rates in an investigation of the effect of 700 pre-selected null SNPs on grey matter volume using voxel-based morphometry (VBM). As VBM data exhibit spatially-varying smoothness, we used both non-stationary and stationary cluster size tests in our analysis. Image and genotype data on 181 subjects with mild cognitive impairment were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). At a nominal significance level of 5%, false positive rates were found to be well-controlled (3.9-5.6%), using a relatively high cluster-forming threshold, α(c)=0.001, on images smoothed with a 12 mm Gaussian kernel. Tests were however anticonservative at lower cluster-forming thresholds (α(c)=0.01, 0.05), and for images smoothed using a 6mm Gaussian kernel. Here false positive rates ranged from 9.8 to 67.6%. In a further analysis, false positive rates using simulated data were observed to be well-controlled across a wide range of conditions. While motivated by imaging genetics, our findings apply to any VBM study, and suggest that parametric cluster size inference should only be used with high cluster-forming thresholds and smoothness. We would advocate the use of nonparametric methods in other cases.
Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased statistical power. In “imaging genetics”, such tests are used to identify regions of the brain that are associated with genetic variation. However, concerns have been raised about the adequate control of rejection rates in studies of this type. A previous study tested the effect of a set of ‘null’ SNPs on brain structure and function, and found that false positive rates were well-controlled. However, no similar analysis of false positive rates in an imaging genetic study using cluster size inference has yet been undertaken.We measured false positive rates in an investigation of the effect of 700 pre-selected null SNPs on grey matter volume using voxel-based morphometry (VBM). As VBM data exhibit spatially-varying smoothness, we used both non-stationary and stationary cluster size tests in our analysis. Image and genotype data on 181 subjects with mild cognitive impairment were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). At a nominal significance level of 5%, false positive rates were found to be well-controlled (3.9–5.6%), using a relatively high cluster-forming threshold, αc=0.001, on images smoothed with a 12mm Gaussian kernel. Tests were however anticonservative at lower cluster-forming thresholds (αc=0.01, 0.05), and for images smoothed using a 6mm Gaussian kernel. Here false positive rates ranged from 9.8 to 67.6%. In a further analysis, false positive rates using simulated data were observed to be well-controlled across a wide range of conditions.While motivated by imaging genetics, our findings apply to any VBM study, and suggest that parametric cluster size inference should only be used with high cluster-forming thresholds and smoothness. We would advocate the use of nonparametric methods in other cases.
Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased statistical power. In “imaging genetics”, such tests are used to identify regions of the brain that are associated with genetic variation. However, concerns have been raised about the adequate control of rejection rates in studies of this type. A previous study tested the effect of a set of ‘null’ SNPs on brain structure and function, and found that false positive rates were well-controlled. However, no similar analysis of false positive rates in an imaging genetic study using cluster size inference has yet been undertaken. We measured false positive rates in an investigation of the effect of 700 pre-selected null SNPs on grey matter volume using voxel-based morphometry (VBM). As VBM data exhibit spatially-varying smoothness, we used both non-stationary and stationary cluster size tests in our analysis. Image and genotype data on 181 subjects with mild cognitive impairment were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). At a nominal significance level of 5%, false positive rates were found to be well-controlled (3.9–5.6%), using a relatively high cluster-forming threshold, α c  = 0.001, on images smoothed with a 12 mm Gaussian kernel. Tests were however anticonservative at lower cluster-forming thresholds ( α c  = 0.01, 0.05), and for images smoothed using a 6 mm Gaussian kernel. Here false positive rates ranged from 9.8 to 67.6%. In a further analysis, false positive rates using simulated data were observed to be well-controlled across a wide range of conditions. While motivated by imaging genetics, our findings apply to any VBM study, and suggest that parametric cluster size inference should only be used with high cluster-forming thresholds and smoothness. We would advocate the use of nonparametric methods in other cases. ►RFT nonstationary cluster size test on VBM is found to be invalid based on empirical null studies. ►Invalid inferences (inflated false positive risk) were found with 3 voxel smoothing. ►With 6 voxel smoothing, invalid inferences were found with 6 voxel smoothing and alpha=0.01 cluster-forming threshold. ►RFT nonstationary test only found to be valid with 6 voxel smoothing with alpha=0.001 cluster-forming threshold. ►Equivalent Gaussian data simulations produced valid inferences, suggesting VBM data violates RFT assumptions and motivates the use of nonparametric permutation methods.
Author Montana, Giovanni
Silver, Matt
Nichols, Thomas E.
AuthorAffiliation b Department of Statistics & Warwick Manufacturing Group, University of Warwick, UK
a Statistics Section, Department of Mathematics, Imperial College London, UK
AuthorAffiliation_xml – name: a Statistics Section, Department of Mathematics, Imperial College London, UK
– name: b Department of Statistics & Warwick Manufacturing Group, University of Warwick, UK
Author_xml – sequence: 1
  givenname: Matt
  surname: Silver
  fullname: Silver, Matt
  organization: Statistics Section, Department of Mathematics, Imperial College London, UK
– sequence: 2
  givenname: Giovanni
  surname: Montana
  fullname: Montana, Giovanni
  organization: Statistics Section, Department of Mathematics, Imperial College London, UK
– sequence: 3
  givenname: Thomas E.
  surname: Nichols
  fullname: Nichols, Thomas E.
  email: t.e.nichols@warwick.ac.uk
  organization: Department of Statistics & Warwick Manufacturing Group, University of Warwick, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20849959$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAURiNURB_wF1AkFrDJcB3Hjr1BlIoCohIbWFuOczP1kLEH2xkx_x5HU6bQBczKr-Mj-97vvDhx3mFRlAQWBAh_vVo4nIK3a73ERQ15G8QCGvmoOCMgWSVZW5_Mc0YrQYg8Lc5jXAGAJI14UpzWIBopmTwrPl_rMWK58dEmu8VYWlce3NYtyyU6TNbEcorzcut_4lh1OmJfrn3Y3Po1prAre5300-LxMNue3Y0Xxbfr91-vPlY3Xz58urq8qQyvRao4GwwT2nRENKKT0AgKAgeghuiO8pZrImkrARrS9pRAX9O2oSIzAINgSC-KN3vvZurW2Bt0KehRbUJ-c9gpr636-8TZW7X0W0WBU0p5Fry8EwT_Y8KY1NpGg-OoHfopKsFoI1re0P-TRPCGiRoy-eqfJOEtqQVnZEZfPEBXfgoul0wRlvtScxBtpp7_-cvD9373LgNiD5jgYww4HBACao6JWqn7mKg5JgqEyjG5r-DhqrFJJ-vnetnxGMG7vQBzn7cWg4rGojPY24Amqd7bYyRvH0jMaJ01evyOu-MUvwCIPfVd
CitedBy_id crossref_primary_10_1016_j_neuropsychologia_2013_12_006
crossref_primary_10_3390_nu12010127
crossref_primary_10_1002_hbm_25153
crossref_primary_10_1016_j_mri_2018_01_004
crossref_primary_10_1016_j_neuroimage_2013_01_058
crossref_primary_10_3389_fnhum_2015_00681
crossref_primary_10_1371_journal_pone_0023175
crossref_primary_10_1111_biom_13114
crossref_primary_10_3389_fnhum_2020_492990
crossref_primary_10_1016_j_neuroimage_2012_03_069
crossref_primary_10_1016_j_parkreldis_2023_105457
crossref_primary_10_3389_fninf_2014_00072
crossref_primary_10_1002_hbm_23369
crossref_primary_10_1093_scan_nsu033
crossref_primary_10_1016_j_jalz_2014_10_012
crossref_primary_10_1016_j_bbr_2019_112145
crossref_primary_10_1016_j_neuroimage_2012_04_014
crossref_primary_10_1038_s41598_022_11724_5
crossref_primary_10_1371_journal_pone_0122914
crossref_primary_10_1016_j_tics_2022_12_011
crossref_primary_10_1371_journal_pone_0194422
crossref_primary_10_1007_s11682_013_9262_z
crossref_primary_10_1007_s00429_013_0677_5
crossref_primary_10_3389_fpsyt_2024_1491042
crossref_primary_10_1016_j_neuroimage_2015_02_002
crossref_primary_10_1016_j_biopsych_2012_05_022
crossref_primary_10_1007_s00787_023_02231_7
crossref_primary_10_1016_j_neuroimage_2012_08_037
crossref_primary_10_1093_scan_nsu144
crossref_primary_10_1002_hbm_23638
crossref_primary_10_1093_cercor_bhw020
crossref_primary_10_1093_cercor_bhw141
crossref_primary_10_1016_j_neuroimage_2013_04_004
crossref_primary_10_1007_s11682_017_9690_2
crossref_primary_10_1016_j_neuroimage_2019_03_008
crossref_primary_10_3389_fnhum_2015_00103
crossref_primary_10_1038_s42003_021_02435_0
crossref_primary_10_1016_j_neuroimage_2011_09_064
crossref_primary_10_1016_j_neuroimage_2015_05_094
crossref_primary_10_1371_journal_pone_0122666
crossref_primary_10_1093_cercor_bhs061
crossref_primary_10_1016_j_jalz_2014_11_001
crossref_primary_10_1016_j_neuroimage_2012_07_012
crossref_primary_10_1016_j_nicl_2019_101989
crossref_primary_10_1146_annurev_linguist_030514_124819
crossref_primary_10_3389_fpsyg_2017_00443
crossref_primary_10_1111_biom_13460
crossref_primary_10_1093_schbul_sbv180
crossref_primary_10_1177_0271678X20974961
crossref_primary_10_1016_j_cortex_2022_09_014
crossref_primary_10_1002_hbm_24078
crossref_primary_10_1093_biostatistics_kxx051
crossref_primary_10_1111_ejn_13801
crossref_primary_10_1038_srep31231
crossref_primary_10_1002_jnr_23901
crossref_primary_10_1007_s00429_019_01969_8
crossref_primary_10_1016_j_eplepsyres_2012_11_008
crossref_primary_10_1002_hbm_24905
crossref_primary_10_1016_j_neuroimage_2017_12_072
crossref_primary_10_1016_j_neuroscience_2017_08_004
crossref_primary_10_1093_cercor_bhw008
crossref_primary_10_1007_s11682_017_9713_z
crossref_primary_10_1016_j_dcn_2015_06_001
crossref_primary_10_1016_j_cobeha_2018_12_009
crossref_primary_10_1016_j_neuroimage_2014_11_060
crossref_primary_10_1016_j_neubiorev_2015_02_008
crossref_primary_10_1093_cercor_bhy189
crossref_primary_10_2463_mrms_rev_2021_0096
crossref_primary_10_1016_j_neuroimage_2019_116158
crossref_primary_10_3389_fnins_2015_00018
crossref_primary_10_1002_hbm_23453
crossref_primary_10_3389_fninf_2014_00029
crossref_primary_10_1007_s11682_020_00338_y
crossref_primary_10_1002_hbm_22638
crossref_primary_10_1016_j_bbr_2017_11_004
crossref_primary_10_1093_cercor_bhaa119
crossref_primary_10_1007_s00221_019_05517_y
crossref_primary_10_1017_S1366728916001206
crossref_primary_10_1002_erv_2346
crossref_primary_10_1073_pnas_1602809113
crossref_primary_10_1016_j_neuroimage_2013_12_058
crossref_primary_10_1038_s41598_017_10104_8
crossref_primary_10_1016_j_neuropsychologia_2015_11_012
crossref_primary_10_1016_j_neuroimage_2011_10_063
crossref_primary_10_1007_s00429_014_0857_y
crossref_primary_10_1007_s11682_015_9396_2
crossref_primary_10_1016_j_smrv_2015_03_001
crossref_primary_10_1016_j_neuroimage_2014_11_004
crossref_primary_10_1093_cercor_bhaa127
crossref_primary_10_1002_wics_1457
crossref_primary_10_1016_j_neulet_2017_05_066
crossref_primary_10_3389_fnins_2021_708387
crossref_primary_10_1002_hbm_25374
crossref_primary_10_1016_j_jneumeth_2018_06_017
crossref_primary_10_1016_j_pscychresns_2015_01_008
crossref_primary_10_1016_j_neuroimage_2013_01_034
crossref_primary_10_1016_j_pscychresns_2016_01_006
crossref_primary_10_3389_fpsyg_2019_00155
crossref_primary_10_3389_fneur_2016_00147
crossref_primary_10_1080_01621459_2018_1448826
crossref_primary_10_1523_JNEUROSCI_0598_14_2015
crossref_primary_10_1007_s00429_012_0444_z
crossref_primary_10_3758_s13415_013_0165_7
crossref_primary_10_1016_j_cortex_2019_12_022
crossref_primary_10_1073_pnas_1602413113
crossref_primary_10_1016_j_neuroimage_2017_02_079
crossref_primary_10_1371_journal_pone_0101372
crossref_primary_10_1038_s41597_022_01338_x
crossref_primary_10_1002_gepi_21854
crossref_primary_10_1002_hbm_22890
crossref_primary_10_1016_j_jalz_2013_05_1769
crossref_primary_10_1111_jon_12461
crossref_primary_10_1016_j_jalz_2011_09_172
crossref_primary_10_1093_cercor_bhw331
crossref_primary_10_1016_j_neuroimage_2011_05_055
crossref_primary_10_1038_s42003_021_01974_w
crossref_primary_10_1016_j_neuropsychologia_2017_04_004
crossref_primary_10_1556_2006_2020_00066
crossref_primary_10_1093_scan_nsu041
crossref_primary_10_1016_j_pscychresns_2016_05_004
crossref_primary_10_1155_2016_5940634
crossref_primary_10_3389_fneur_2024_1267349
Cites_doi 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
10.1002/(SICI)1097-0193(1996)4:1<74::AID-HBM5>3.0.CO;2-M
10.1002/hbm.20401
10.1016/j.neuroimage.2003.08.003
10.1038/mp.2008.127
10.1016/j.neuroimage.2010.01.056
10.1016/j.neuroimage.2009.09.006
10.1016/j.neuroimage.2010.01.042
10.1016/j.neuroimage.2006.11.037
10.1016/j.biopsych.2005.11.005
10.1006/nimg.2002.1153
10.1016/j.neuroimage.2008.10.003
10.1016/j.neuroimage.2009.11.041
10.1214/009053607000000406
10.1006/nimg.1996.0074
10.1016/j.neulet.2008.11.035
10.1006/nimg.1996.0248
10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F
10.1073/pnas.0901866106
10.1016/j.neuroimage.2007.07.007
10.1038/nrn1993
10.1191/0962280203sm341ra
10.1016/j.neuroimage.2005.04.045
10.1006/nimg.2000.0582
10.1016/j.neuroimage.2008.11.006
10.1016/j.neuroimage.2008.05.021
10.1016/j.neuroimage.2009.11.034
10.1002/hbm.460020402
10.1016/j.neuroimage.2004.01.041
10.1080/10673220600642945
10.1016/j.neuroimage.2007.11.058
10.1016/j.neuroimage.2008.10.057
10.1093/schbul/sbn155
10.1016/j.neuroimage.2009.01.009
10.1002/jmri.21049
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Copyright © 2010 Elsevier Inc. All rights reserved.
2010. Elsevier Inc.
2011 Elsevier Inc. 2010 Elsevier Inc.
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: Copyright © 2010 Elsevier Inc. All rights reserved.
– notice: 2010. Elsevier Inc.
– notice: 2011 Elsevier Inc. 2010 Elsevier Inc.
CorporateAuthor the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7U5
L7M
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2010.08.049
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
Genetics Abstracts
MEDLINE - Academic
MEDLINE
ProQuest One Psychology

Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 1095-9572
EndPage 1000
ExternalDocumentID PMC3063336
3388728261
20849959
10_1016_j_neuroimage_2010_08_049
S1053811910011316
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: G0900908
– fundername: NIA NIH HHS
  grantid: U24 AG021886
– fundername: NIA NIH HHS
  grantid: U19 AG010483
– fundername: NIA NIH HHS
  grantid: P30 AG010129
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NIA NIH HHS
  grantid: K01 AG030514
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7U5
L7M
7X8
ACLOT
~HD
7QO
5PM
ID FETCH-LOGICAL-c628t-65fc58acb1848b9048308ef03c1ab3676a1937900417d310d23743808e00f85e3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 14:32:22 EDT 2025
Sat Sep 27 18:00:09 EDT 2025
Sun Sep 28 07:29:15 EDT 2025
Fri Sep 05 06:16:44 EDT 2025
Wed Aug 13 06:14:21 EDT 2025
Mon Jul 21 06:01:19 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Tue Jul 01 02:14:39 EDT 2025
Fri Feb 23 02:39:29 EST 2024
Tue Aug 26 16:36:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by/3.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2010 Elsevier Inc. All rights reserved.
Open Access under CC BY 3.0 license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c628t-65fc58acb1848b9048308ef03c1ab3676a1937900417d310d23743808e00f85e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete list of ADNI investigators is available at http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811910011316
PMID 20849959
PQID 1549926087
PQPubID 2031077
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3063336
proquest_miscellaneous_853487643
proquest_miscellaneous_818645820
proquest_miscellaneous_1671286510
proquest_journals_1549926087
pubmed_primary_20849959
crossref_primary_10_1016_j_neuroimage_2010_08_049
crossref_citationtrail_10_1016_j_neuroimage_2010_08_049
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2010_08_049
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2010_08_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-15
PublicationDateYYYYMMDD 2011-01-15
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2011
Publisher Elsevier Inc
Elsevier Limited
Academic Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Academic Press
References Friston, Holmes, Poline, Price, Frith (bb0050) 1996; 4
Nichols, Hayasaka (bb0105) 2003; 12
Worsley, Marrett, Neelin, Vandal, Friston, Evans (bb0175) 1996; 4
Hayasaka, Phan, Liberzon, Worsley, Nichols (bb0075) 2004; 22
Bergouignan, Chupin, Czechowska, Kinkingnéhun, Lemogne, Bastard, Lepage, Garnero, Colliot, Fossati (bb0015) 2009; 45
Frackowiak, Friston, Frith, Dolan, Price, Zeki, Ashburner, Penny (bb0040) 2003
Ueda, Fujiwara, Miyata, Hirao, Saze, Kawada, Fujimoto, Tanaka, Sawamoto, Fukuyama, Murai (bb0160) 2010; 49
Viviani, Beschoner, Ehrhard, Schmitz, Thöne (bb0165) 2007; 35
Folley, Astur, Jagannathan, Calhoun, Pearlson (bb0035) 2010; 49
Glahn, Thompson, Blangero (bb0055) 2007; 28
Roffman, Weiss, Goff, Rauch, Weinberger (bb0130) 2006; 14
Hariri, Drabant, Weinberger (bb0065) 2006; 59
Hayasaka, Nichols (bb0070) 2003; 20
Ashburner, Friston (bb0010) 2000; 11
Joyner, J., C. R., Bloss, Bakken, Rimol, Melle, Agartz, Djurovic, Topol, Schork, Andreassen, Dale (bb0085) 2009; 106
Meyer-Lindenberg, Nicodemus, Egan, Callicott, Mattay, Weinberger (bb0095) 2008; 40
Pievani, Rasser, Galluzzi, Benussi, Ghidoni, Sabattoli, Bonetti, Binetti, Thompson, Frisoni (bb0110) 2009; 45
Poline, Worsley, Evans, Friston (bb0115) 1997; 5
Moorhead, Job, Spencer, Whalley, Johnstone, Lawrie (bb0100) 2005; 28
Filippini, Rao, Wetten, Gibson, Borrie, Guzman, Kertesz, Loy-English, Williams, Nichols, Whitcher, Matthews (bb0030) 2009; 44
Worsley (bb0170) 2002; 15
Ashburner (bb0005) 2007; 38
Meyer-Lindenberg, Weinberger (bb0090) 2006; 7
Salmond, Ashburner, Vargha-Khadem, A (bb0140) 2002; 1030
Calhoun, Liu, AdalI (bb0020) 2009; 45
Chumbley, Friston (bb0025) 2009; 44
Rosen, Alcantar, Rothlind, Sturm, Kramer, Weiner, Miller (bb0135) 2010; 49
Schwartz, Mitchell, Lahna, Luber, Huckans, Mitchell, Hoffman (bb0145) 2010; 50
Worsley, Marrett, Neelin, Evans (bb0180) 1996; 4
Worsley, Andermann, Koulis, MacDonald, Evans (bb0185) 1999; 8
Hardoon, Ettinger, Mourão-Miranda, Antonova, Collier, Kumari, Williams, Brammer (bb0060) 2009; 450
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner, Study (bb0080) 2008; 27
Potkin, Turner, Guffanti, Lakatos, Fallon, Nguyen, Mathalon, Ford, Lauriello, Macciardi, FBIRN (bb0125) 2009; 35
Potkin, Turner, Fallon, Lakatos, Keator, Guffanti, Macciardi (bb0120) 2009; 14
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bb0045) 1995; 2
Taylor, Worsley (bb0155) 2008; 36
Shen, Kim, Risacher, Nho, Swaminathan, West, Foroud, Pankratz, Moore, Sloan, Huentelman, Craig, DeChairo, Potkin, Jack, Weiner, Saykin (bb0150) 2010; 53
Viviani (10.1016/j.neuroimage.2010.08.049_bb0165) 2007; 35
Ashburner (10.1016/j.neuroimage.2010.08.049_bb0005) 2007; 38
Poline (10.1016/j.neuroimage.2010.08.049_bb0115) 1997; 5
Moorhead (10.1016/j.neuroimage.2010.08.049_bb0100) 2005; 28
Pievani (10.1016/j.neuroimage.2010.08.049_bb0110) 2009; 45
Potkin (10.1016/j.neuroimage.2010.08.049_bb0125) 2009; 35
Glahn (10.1016/j.neuroimage.2010.08.049_bb0055) 2007; 28
Bergouignan (10.1016/j.neuroimage.2010.08.049_bb0015) 2009; 45
Hardoon (10.1016/j.neuroimage.2010.08.049_bb0060) 2009; 450
Hariri (10.1016/j.neuroimage.2010.08.049_bb0065) 2006; 59
Joyner (10.1016/j.neuroimage.2010.08.049_bb0085) 2009; 106
Taylor (10.1016/j.neuroimage.2010.08.049_bb0155) 2008; 36
Schwartz (10.1016/j.neuroimage.2010.08.049_bb0145) 2010; 50
Chumbley (10.1016/j.neuroimage.2010.08.049_bb0025) 2009; 44
Folley (10.1016/j.neuroimage.2010.08.049_bb0035) 2010; 49
Nichols (10.1016/j.neuroimage.2010.08.049_bb0105) 2003; 12
Ashburner (10.1016/j.neuroimage.2010.08.049_bb0010) 2000; 11
Filippini (10.1016/j.neuroimage.2010.08.049_bb0030) 2009; 44
Worsley (10.1016/j.neuroimage.2010.08.049_bb0170) 2002; 15
Ueda (10.1016/j.neuroimage.2010.08.049_bb0160) 2010; 49
Calhoun (10.1016/j.neuroimage.2010.08.049_bb0020) 2009; 45
Worsley (10.1016/j.neuroimage.2010.08.049_bb0180) 1996; 4
Rosen (10.1016/j.neuroimage.2010.08.049_bb0135) 2010; 49
Potkin (10.1016/j.neuroimage.2010.08.049_bb0120) 2009; 14
Roffman (10.1016/j.neuroimage.2010.08.049_bb0130) 2006; 14
Hayasaka (10.1016/j.neuroimage.2010.08.049_bb0075) 2004; 22
Frackowiak (10.1016/j.neuroimage.2010.08.049_bb0040) 2003
Salmond (10.1016/j.neuroimage.2010.08.049_bb0140) 2002; 1030
Hayasaka (10.1016/j.neuroimage.2010.08.049_bb0070) 2003; 20
Friston (10.1016/j.neuroimage.2010.08.049_bb0050) 1996; 4
Worsley (10.1016/j.neuroimage.2010.08.049_bb0185) 1999; 8
Friston (10.1016/j.neuroimage.2010.08.049_bb0045) 1995; 2
Meyer-Lindenberg (10.1016/j.neuroimage.2010.08.049_bb0090) 2006; 7
Meyer-Lindenberg (10.1016/j.neuroimage.2010.08.049_bb0095) 2008; 40
Shen (10.1016/j.neuroimage.2010.08.049_bb0150) 2010; 53
Jack (10.1016/j.neuroimage.2010.08.049_bb0080) 2008; 27
Worsley (10.1016/j.neuroimage.2010.08.049_bb0175) 1996; 4
References_xml – volume: 50
  start-page: 1392
  year: 2010
  end-page: 1401
  ident: bb0145
  article-title: Global and local morphometric differences in recently abstinent methamphetamine-dependent individuals
  publication-title: Neuroimage
– volume: 106
  start-page: 15483
  year: 2009
  end-page: 15488
  ident: bb0085
  article-title: A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations
  publication-title: Proc. Natl. Acad. Sci.
– volume: 7
  start-page: 818
  year: 2006
  end-page: 827
  ident: bb0090
  article-title: Intermediate phenotypes and genetic mechanisms of psychiatric disorders
  publication-title: Nat. Rev. Neurosci.
– volume: 15
  start-page: S346
  year: 2002
  ident: bb0170
  article-title: Non-stationary FWHM and its effect on statistical inference of fMRI data
  publication-title: Neuroimage
– volume: 36
  start-page: 1
  year: 2008
  end-page: 27
  ident: bb0155
  article-title: Random fields of multivariate test statistics, with applications to shape analysis
  publication-title: Ann. Statist.
– volume: 8
  start-page: 98
  year: 1999
  end-page: 101
  ident: bb0185
  article-title: Detecting changes in nonisotropic images
  publication-title: Hum. Brain Mapp.
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: bb0005
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– volume: 11
  start-page: 805
  year: 2000
  end-page: 821
  ident: bb0010
  article-title: Voxel-based morphometry — the methods
  publication-title: Neuroimage
– volume: 14
  start-page: 416
  year: 2009
  end-page: 428
  ident: bb0120
  article-title: Gene discovery through imaging genetics: identification of two novel genes associated with schizophrenia
  publication-title: Mol. Psychiatry
– volume: 35
  start-page: 121
  year: 2007
  end-page: 130
  ident: bb0165
  article-title: Non-normality and transformations of random fields, with an application to voxel-based morphometry
  publication-title: Neuroimage
– volume: 1030
  start-page: 1027
  year: 2002
  end-page: 1030
  ident: bb0140
  article-title: Distributional assumptions in voxel-based morphometry
  publication-title: Neuroimage
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bb0080
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– volume: 4
  start-page: 223
  year: 1996
  end-page: 235
  ident: bb0050
  article-title: Detecting activations in pet and fMRI: levels of inference and power
  publication-title: Neuroimage
– year: 2003
  ident: bb0040
  article-title: Human Brain Function
– volume: 450
  start-page: 281
  year: 2009
  end-page: 286
  ident: bb0060
  article-title: Correlation-based multivariate analysis of genetic influence on brain volume
  publication-title: Neurosci. Lett.
– volume: 59
  start-page: 888
  year: 2006
  end-page: 897
  ident: bb0065
  article-title: Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing
  publication-title: Biol. Psychiatry
– volume: 35
  start-page: 96
  year: 2009
  end-page: 108
  ident: bb0125
  article-title: A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype
  publication-title: Schizophr. Bull.
– volume: 49
  start-page: 3358
  year: 2010
  end-page: 3364
  ident: bb0135
  article-title: Neuroanatomical correlates of cognitive self-appraisal in neurodegenerative disease
  publication-title: Neuroimage
– volume: 45
  start-page: 29
  year: 2009
  end-page: 37
  ident: bb0015
  article-title: Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression?
  publication-title: Neuroimage
– volume: 45
  start-page: 1090
  year: 2009
  end-page: 1098
  ident: bb0110
  article-title: Mapping the effect of APOE [epsilon]4 on gray matter loss in Alzheimer's disease in vivo
  publication-title: Neuroimage
– volume: 53
  start-page: 1051
  year: 2010
  end-page: 1063
  ident: bb0150
  article-title: Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort
  publication-title: Neuroimage
– volume: 14
  start-page: 78
  year: 2006
  end-page: 91
  ident: bb0130
  article-title: Neuroimaging-genetic paradigms: a new approach to investigate the pathophysiology and treatment of cognitive deficits in schizophrenia
  publication-title: Harv. Rev. Psychiatry
– volume: 4
  start-page: 74
  year: 1996
  end-page: 90
  ident: bb0180
  article-title: Searching scale space for activation in PET images
  publication-title: Hum. Brain Mapp.
– volume: 44
  start-page: 724
  year: 2009
  end-page: 728
  ident: bb0030
  article-title: Anatomically-distinct genetic associations of apoe [var epsilon]4 allele load with regional cortical atrophy in alzheimer's disease
  publication-title: Neuroimage
– volume: 40
  start-page: 655
  year: 2008
  end-page: 661
  ident: bb0095
  article-title: False positives in imaging genetics
  publication-title: Neuroimage
– volume: 12
  start-page: 419
  year: 2003
  end-page: 446
  ident: bb0105
  article-title: Controlling the familywise error rate in functional neuroimaging: a comparative review
  publication-title: Stat. Meth. Med. Res.
– volume: 22
  start-page: 676
  year: 2004
  end-page: 687
  ident: bb0075
  article-title: Nonstationary cluster-size inference with random field and permutation methods
  publication-title: Neuroimage
– volume: 49
  start-page: 2503
  year: 2010
  end-page: 2508
  ident: bb0160
  article-title: Investigating association of brain volumes with intracranial capacity in schizophrenia
  publication-title: Neuroimage
– volume: 45
  start-page: S163
  year: 2009
  end-page: S172
  ident: bb0020
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: Neuroimage
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  ident: bb0045
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– volume: 28
  start-page: 488
  year: 2007
  end-page: 501
  ident: bb0055
  article-title: Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function
  publication-title: Hum. Brain Mapp.
– volume: 20
  start-page: 2343
  year: 2003
  end-page: 2356
  ident: bb0070
  article-title: Validating cluster size inference: random field and permutation methods
  publication-title: Neuroimage
– volume: 4
  start-page: 58
  year: 1996
  end-page: 73
  ident: bb0175
  article-title: A unified statistical approach for determining significant voxels in images of cerebral activation
  publication-title: Hum. Brain Mapp.
– volume: 49
  start-page: 3373
  year: 2010
  end-page: 3384
  ident: bb0035
  article-title: Anomalous neural circuit function in schizophrenia during a virtual morris water task
  publication-title: Neuroimage
– volume: 5
  start-page: 83
  year: 1997
  end-page: 96
  ident: bb0115
  article-title: Combining spatial extent and peak intensity to test for activations in functional imaging
  publication-title: Neuroimage
– volume: 28
  start-page: 544
  year: 2005
  end-page: 552
  ident: bb0100
  article-title: Empirical comparison of maximal voxel and non-isotropic adjusted cluster extent results in a voxel-based morphometry study of comorbid learning disability with schizophrenia
  publication-title: Neuroimage
– volume: 44
  start-page: 62
  year: 2009
  end-page: 70
  ident: bb0025
  article-title: False discovery rate revisited: FDR and topological inference using Gaussian random fields
  publication-title: Neuroimage
– volume: 4
  start-page: 58
  year: 1996
  ident: 10.1016/j.neuroimage.2010.08.049_bb0175
  article-title: A unified statistical approach for determining significant voxels in images of cerebral activation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
– volume: 4
  start-page: 74
  issue: 1
  year: 1996
  ident: 10.1016/j.neuroimage.2010.08.049_bb0180
  article-title: Searching scale space for activation in PET images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1996)4:1<74::AID-HBM5>3.0.CO;2-M
– volume: 28
  start-page: 488
  year: 2007
  ident: 10.1016/j.neuroimage.2010.08.049_bb0055
  article-title: Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20401
– volume: 20
  start-page: 2343
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2010.08.049_bb0070
  article-title: Validating cluster size inference: random field and permutation methods
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.08.003
– volume: 14
  start-page: 416
  year: 2009
  ident: 10.1016/j.neuroimage.2010.08.049_bb0120
  article-title: Gene discovery through imaging genetics: identification of two novel genes associated with schizophrenia
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2008.127
– volume: 50
  start-page: 1392
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2010.08.049_bb0145
  article-title: Global and local morphometric differences in recently abstinent methamphetamine-dependent individuals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.056
– volume: 49
  start-page: 2503
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2010.08.049_bb0160
  article-title: Investigating association of brain volumes with intracranial capacity in schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.006
– volume: 53
  start-page: 1051
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2010.08.049_bb0150
  article-title: Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.042
– volume: 35
  start-page: 121
  year: 2007
  ident: 10.1016/j.neuroimage.2010.08.049_bb0165
  article-title: Non-normality and transformations of random fields, with an application to voxel-based morphometry
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.037
– volume: 59
  start-page: 888
  year: 2006
  ident: 10.1016/j.neuroimage.2010.08.049_bb0065
  article-title: Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2005.11.005
– volume: 1030
  start-page: 1027
  year: 2002
  ident: 10.1016/j.neuroimage.2010.08.049_bb0140
  article-title: Distributional assumptions in voxel-based morphometry
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1153
– volume: 44
  start-page: 724
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2010.08.049_bb0030
  article-title: Anatomically-distinct genetic associations of apoe [var epsilon]4 allele load with regional cortical atrophy in alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.003
– volume: 49
  start-page: 3358
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2010.08.049_bb0135
  article-title: Neuroanatomical correlates of cognitive self-appraisal in neurodegenerative disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.041
– volume: 36
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2010.08.049_bb0155
  article-title: Random fields of multivariate test statistics, with applications to shape analysis
  publication-title: Ann. Statist.
  doi: 10.1214/009053607000000406
– volume: 4
  start-page: 223
  year: 1996
  ident: 10.1016/j.neuroimage.2010.08.049_bb0050
  article-title: Detecting activations in pet and fMRI: levels of inference and power
  publication-title: Neuroimage
  doi: 10.1006/nimg.1996.0074
– volume: 450
  start-page: 281
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2010.08.049_bb0060
  article-title: Correlation-based multivariate analysis of genetic influence on brain volume
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2008.11.035
– volume: 5
  start-page: 83
  issue: 2
  year: 1997
  ident: 10.1016/j.neuroimage.2010.08.049_bb0115
  article-title: Combining spatial extent and peak intensity to test for activations in functional imaging
  publication-title: Neuroimage
  doi: 10.1006/nimg.1996.0248
– volume: 8
  start-page: 98
  issue: 2–3
  year: 1999
  ident: 10.1016/j.neuroimage.2010.08.049_bb0185
  article-title: Detecting changes in nonisotropic images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:2/3<98::AID-HBM5>3.0.CO;2-F
– volume: 106
  start-page: 15483
  issue: 36
  year: 2009
  ident: 10.1016/j.neuroimage.2010.08.049_bb0085
  article-title: A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0901866106
– volume: 38
  start-page: 95
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2010.08.049_bb0005
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– volume: 7
  start-page: 818
  year: 2006
  ident: 10.1016/j.neuroimage.2010.08.049_bb0090
  article-title: Intermediate phenotypes and genetic mechanisms of psychiatric disorders
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1993
– volume: 12
  start-page: 419
  year: 2003
  ident: 10.1016/j.neuroimage.2010.08.049_bb0105
  article-title: Controlling the familywise error rate in functional neuroimaging: a comparative review
  publication-title: Stat. Meth. Med. Res.
  doi: 10.1191/0962280203sm341ra
– year: 2003
  ident: 10.1016/j.neuroimage.2010.08.049_bb0040
– volume: 28
  start-page: 544
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2010.08.049_bb0100
  article-title: Empirical comparison of maximal voxel and non-isotropic adjusted cluster extent results in a voxel-based morphometry study of comorbid learning disability with schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.04.045
– volume: 11
  start-page: 805
  year: 2000
  ident: 10.1016/j.neuroimage.2010.08.049_bb0010
  article-title: Voxel-based morphometry — the methods
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0582
– volume: 45
  start-page: 29
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2010.08.049_bb0015
  article-title: Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.11.006
– volume: 15
  start-page: S346
  year: 2002
  ident: 10.1016/j.neuroimage.2010.08.049_bb0170
  article-title: Non-stationary FWHM and its effect on statistical inference of fMRI data
  publication-title: Neuroimage
– volume: 44
  start-page: 62
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2010.08.049_bb0025
  article-title: False discovery rate revisited: FDR and topological inference using Gaussian random fields
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.021
– volume: 49
  start-page: 3373
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2010.08.049_bb0035
  article-title: Anomalous neural circuit function in schizophrenia during a virtual morris water task
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.034
– volume: 2
  start-page: 189
  year: 1995
  ident: 10.1016/j.neuroimage.2010.08.049_bb0045
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
– volume: 22
  start-page: 676
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2010.08.049_bb0075
  article-title: Nonstationary cluster-size inference with random field and permutation methods
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.01.041
– volume: 14
  start-page: 78
  year: 2006
  ident: 10.1016/j.neuroimage.2010.08.049_bb0130
  article-title: Neuroimaging-genetic paradigms: a new approach to investigate the pathophysiology and treatment of cognitive deficits in schizophrenia
  publication-title: Harv. Rev. Psychiatry
  doi: 10.1080/10673220600642945
– volume: 40
  start-page: 655
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2010.08.049_bb0095
  article-title: False positives in imaging genetics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.058
– volume: 45
  start-page: S163
  issue: 1, Supplement 1
  year: 2009
  ident: 10.1016/j.neuroimage.2010.08.049_bb0020
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.057
– volume: 35
  start-page: 96
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2010.08.049_bb0125
  article-title: A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbn155
– volume: 45
  start-page: 1090
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2010.08.049_bb0110
  article-title: Mapping the effect of APOE [epsilon]4 on gray matter loss in Alzheimer's disease in vivo
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.009
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2010.08.049_bb0080
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
SSID ssj0009148
Score 2.4019423
Snippet Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 992
SubjectTerms Alzheimer's disease
Brain
Brain - pathology
Brain - physiopathology
Clusters
Cognition Disorders - genetics
Cognition Disorders - pathology
Cognitive ability
False Positive Reactions
Functional anatomy
Gaussian
Genetic diversity
Genetics
Genotype
Genotypes
Humans
Image processing
Imaging
Inference
Magnetic Resonance Imaging
Medical imaging
Morphometry
Neurodegenerative diseases
Neuroimaging
Neurosciences
Polymorphism, Single Nucleotide
Schizophrenia
Single-nucleotide polymorphism
Smoothness
Statistical methods
Statistics
Structure-function relationships
Studies
Substantia grisea
Thresholds
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrYS4IN6kFGQkrmbtOIkdcaoqVgtVe4FKvVmJ40BQN6m624r-e2Y2Tsry0kpcY08UjWc8M_E3nwHeFNo5o6TiTlSGJ7GPeZm4jMcqwwQ1r2svqcH5-CSbnyYfz9KzHTgcemEIVhn2_n5PX-_W4ck0aHN60TTTT5gZYLjBeoPSGiWzO7AbY7Q3E9g9-HA0P7nl3pVJ3xGXKk4CAdDTw7zWtJHNAp034LzMW0HEmn-OUr9nob-CKX-KTrMHcD-kleyg__KHsOPbR3D3OBycP4ajGZqZZz1E69ovWdOy8ZswejG0I2pnXDICwn9h1913f84pxFVs0eFadAu_urxhBCh9Aqez958P5zzco8BdFpsVz9LapaZwJVZzpsyJRF4YXwvlZFESY1uBWZzOiXpLV5juVbHSRERvvBC1Sb16CpO2a_1zYHGpCqG9Lsq6ImJ6g-VKKXyRG4FvqZII9KA36wLJON11cW4HNNk3e6txSxq3dA1mkkcgR8mLnmhjC5l8WBo7NJLi1mcxGmwh-26U3TC4LaX3B0uwwemXltjucqwPjY7g9TiM7kpnMEXruyuck2lJzcBSRMD-ModIBuk4819TUoWVJmaTETzrzW9UWixMQiRyuBQbhjlOIELxzZG2-bomFkfvVEple_-lmhdwr__vLrlM92GyurzyLzFxW5WvgmP-AB5cRBE
  priority: 102
  providerName: Elsevier
Title False positives in neuroimaging genetics using voxel-based morphometry data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811910011316
https://dx.doi.org/10.1016/j.neuroimage.2010.08.049
https://www.ncbi.nlm.nih.gov/pubmed/20849959
https://www.proquest.com/docview/1549926087
https://www.proquest.com/docview/1671286510
https://www.proquest.com/docview/818645820
https://www.proquest.com/docview/853487643
https://pubmed.ncbi.nlm.nih.gov/PMC3063336
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-xTUJ7QTC-AqMyEq8edpzEjnhAY1pVGKumiUl9ixLHgaI1GWs3wQt_O3eNkzI-pj7lIb6oPd_5frbvfgfwKtfWGiUVt6I0PApdyIvIJjxUCQLUtKqcpALn43EyOos-TOKJP3Cb-7TKbk1cLtRlY-mM_DVRiaUIvo1-e_GNU9coul31LTQ2YEsiEqHWDXqiV6S7MmpL4WLFDQ7wmTxtfteSL3I6Q6_1CV5mTxCj5r_D09_w888syt_C0vA-3PN4ku23BvAA7rh6B-4e-xvzHdgmNNmSMT-EoyEam2Ntota1m7NpzfofiDGMoTVRUeOcUTr8Z3bdfHfnnAJdyWYNzkgzc4vLH4zSSh_B2fDw08GI-24K3CahWfAkrmxsclvgns4UKVHJC-MqoazMC-Jty1GDOiUCLl0i6CtDpYmO3jghKhM79Rg266Z2T4GFhcqFdjovqpLo6Q1uWgrh8tQI_EoZBaA7JWbWU41Tx4vzrMsp-5qt1J-R-jNqhhmlAche8qKl21hDJu3mKevKSXEBzDAmrCH7ppf1kKOFEmtK73ZmkXnXn2crQw3gZf8anZZuYvLaNVc4JtGSSoKlCID9ZwxRDdKl5m1DYoX7TcSUATxpbbFXWihMRFRyOBU3rLQfQLTiN9_U0y9LenH0UaVU8uz2P_ccttvjdcllvAubi8sr9wLx2aIYwMbeTzlYuuIAtvYPTj-e0PP90WiMz3eH45PTX_YFQXM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIcFeEIyPFQYYCR4NdpzEjhBCCKg6uu5pk_pmEseBojXZ1m6wf4q_kbvmo4yPqS97ji9qz-e7n3N3vwN4nmrnjJKKO5EbHgY-4FnoYh6oGAFqUhReUoPzaC8eHISfxtF4DX62vTBUVtn6xIWjzitH38hfEZVYguDb6LdHx5ymRlF2tR2hUZvF0J9_xyvb7M3OB9zfF0HQ_7j_fsCbqQLcxYGZ8zgqXGRSl-HdxmQJUaoL4wuhnEwz4i9LEdPohIiodI7gJw-UJlp244UoTOQVvvcaXA8pxYjnR4_1kuRXhnXrXaS4kTJpKofqerIFP-Vkil6iKSgzLwUxeP47HP4Nd_-s2vwtDPZvw60Gv7J3tcHdgTVfbsKNUZOh34QNQq81-fNdGPbRuD2rC8PO_IxNStb9QIyZDK2XmihnjMrvv7Cz6oc_5BRYczat0AKqqZ-fnDMqY70HB1ei5_uwXlal3wIWZCoV2us0K3Kiwzd4ScqETxMj8C152APdKtG6htqcJmwc2raG7Ztdqt-S-i0N3wyTHshO8qim91hBJmn3ybbtq-hwLcagFWRfd7INxKmhy4rS261Z2MbVzOzyYPTgWfcYnQRlftLSV6e4JtaSWpCl6AH7zxqiNqQk6mVLIoX3W8SwPXhQ22KntECYkKjrcCsuWGm3gGjMLz4pJ18XdOboE5RS8cPL_9xTuDnYH-3a3Z294SPYqD_tSy6jbVifn5z6x4gN59mTxYFk8PmqPcAvJJp1vw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlW9ICgfDRQwEhxN7TiJHSGEEGXVsrTiQKW9hcRxYFE3Kd1toX-NX8fMOslSPqq99BxPtGuPZ57jN28AnubaWqOk4laUhkehC3kR2YSHKkGAmlaVk1TgvH-Q7B5G70bxaAV-drUwRKvsYuI8UJeNpW_k2yQlliL4Nnq7amkRH3YGr46_ceogRTetXTsN7yJDd_4dj2_Tl3s7uNbPwnDw9uObXd52GOA2Cc2MJ3FlY5PbAs85pkhJXl0YVwllZV6QllmO-EanJEqlSwRCZag0SbQbJ0RlYqfwvdfgulZRRG0j9EgvBH9l5MvwYsWNlGnLIvLcsrlW5XiCEaMll5nngtQ8_50a_4a-fzI4f0uJg5two8Wy7LV3vluw4uoNWNtvb-s3YJ2QrBeCvg3DATq6Y54kduambFyz_gdi_mToyVRQOWVExf_Mzpof7ohTki3ZpEFvaCZudnLOiNJ6Bw6vZJ7vwmrd1G4TWFioXGin86IqSRrf4IGpEC5PjcC3lFEAupvEzLYy59Rt4yjr-Gxfs8X0ZzT9GTXijNIAZG957KU-lrBJu3XKulJWDL4Z5qMlbF_0ti3c8TBmSeutzi2yNuxMs8UmCeBJ_xgDBt0C5bVrTnFMoiWVI0sRAPvPGJI5pAvVy4bECs-6iGcDuOd9sZ-0UJiIZOxwKS54aT-AJM0vPqnHX-bS5hgflFLJ_cv_3GNYw72fvd87GD6Adf-VX3IZb8Hq7OTUPUSYOCsezfcjg09XHQB-AaJhefI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=False+positives+in+neuroimaging+genetics+using+voxel-based+morphometry+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Silver%2C+Matt&rft.au=Montana%2C+Giovanni&rft.au=Nichols%2C+Thomas+E.&rft.date=2011-01-15&rft.pub=Academic+Press&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=54&rft.issue=2&rft.spage=992&rft.epage=1000&rft_id=info:doi/10.1016%2Fj.neuroimage.2010.08.049&rft_id=info%3Apmid%2F20849959&rft.externalDocID=PMC3063336
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon