微博演化网络的负信息分类方法
TP393.092; 针对Sina微博博文的转发关系,建立起用户转发博文之间的演化网络,从而利用SMO SVM(sequential minimal optimization support vector machine)分类算法对博文进行分类,筛选出恶意博文、垃圾广告、垃圾营销信息,使用户能够精确地屏蔽不想要的博文和博主.第一步基于微博转发关系的演化网络和SVM分类算法对整个Sina微博进行分类;第二步利用复杂网络等技术对经常发送恶意广告的博主进行标注,从而在网络中对他们进行屏蔽;最后找出垃圾信息的来源以及分辨出博主是不是恶意转发者,在宏观上能更好地遏制垃圾信息的传播.与用户从UCI数据集中...
Saved in:
| Published in | 计算机科学与探索 Vol. 11; no. 1; pp. 91 - 98 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
武汉大学计算机学院软件工程国家重点实验室,武汉,430072%三峡大学计算机与信息技术学院,湖北宜昌,443002
2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1673-9418 |
| DOI | 10.3778/j.issn.1673-9418.1509090 |
Cover
| Abstract | TP393.092; 针对Sina微博博文的转发关系,建立起用户转发博文之间的演化网络,从而利用SMO SVM(sequential minimal optimization support vector machine)分类算法对博文进行分类,筛选出恶意博文、垃圾广告、垃圾营销信息,使用户能够精确地屏蔽不想要的博文和博主.第一步基于微博转发关系的演化网络和SVM分类算法对整个Sina微博进行分类;第二步利用复杂网络等技术对经常发送恶意广告的博主进行标注,从而在网络中对他们进行屏蔽;最后找出垃圾信息的来源以及分辨出博主是不是恶意转发者,在宏观上能更好地遏制垃圾信息的传播.与用户从UCI数据集中实际反馈情况进行比较,实验结果表明,机器学习分类的实验结果吻合度达到89%. |
|---|---|
| AbstractList | TP393.092; 针对Sina微博博文的转发关系,建立起用户转发博文之间的演化网络,从而利用SMO SVM(sequential minimal optimization support vector machine)分类算法对博文进行分类,筛选出恶意博文、垃圾广告、垃圾营销信息,使用户能够精确地屏蔽不想要的博文和博主.第一步基于微博转发关系的演化网络和SVM分类算法对整个Sina微博进行分类;第二步利用复杂网络等技术对经常发送恶意广告的博主进行标注,从而在网络中对他们进行屏蔽;最后找出垃圾信息的来源以及分辨出博主是不是恶意转发者,在宏观上能更好地遏制垃圾信息的传播.与用户从UCI数据集中实际反馈情况进行比较,实验结果表明,机器学习分类的实验结果吻合度达到89%. |
| Abstract_FL | Aiming at the relationship of the Sina micro blogging,this paper establishes the evolving network by user's transmit blog,which classifies blog by SMO SVM (sequential minimal optimization support vector machine) algorithm,and implements the classification of malicious posts,spam,trash marketing information.The method enables users to accurately block the unwanted posts and blogger.The first step,classifying the entire Sina micro blogs based on the evolving network of transmit relationship and SVM classification algorithm;The second step,annotating the bloggers of often sending malicious advertisements by using the complex network technology;When the malicious bloggers sending message,blocking them in the network;Finally,finding out the source of spam,and discerning the blogger malicious or not,on the macro to better curb the spread of spam.The results of this paper are compared with user feedback actual situation from the UCI data set,the experimental results of machine learning classification reaches 89%. |
| Author | 黄贻望 赵一 李昭 何克清 |
| AuthorAffiliation | 武汉大学计算机学院软件工程国家重点实验室,武汉,430072%三峡大学计算机与信息技术学院,湖北宜昌,443002 |
| AuthorAffiliation_xml | – name: 武汉大学计算机学院软件工程国家重点实验室,武汉,430072%三峡大学计算机与信息技术学院,湖北宜昌,443002 |
| Author_FL | HUANG Yiwang HE Keqing ZHAO Yi LI Zhao |
| Author_FL_xml | – sequence: 1 fullname: ZHAO Yi – sequence: 2 fullname: HE Keqing – sequence: 3 fullname: LI Zhao – sequence: 4 fullname: HUANG Yiwang |
| Author_xml | – sequence: 1 fullname: 赵一 – sequence: 2 fullname: 何克清 – sequence: 3 fullname: 李昭 – sequence: 4 fullname: 黄贻望 |
| BookMark | eNo9jbtKA0EYRqeIYIx5B1uFXeef2bmVErxBwCZ9mJ3ZkawyAUdRS0HEQgtBUwRB8gIR0Ubi5WXcXR_DBUVO8cEpvrOAGn7oM4SWAMdUCLmax4MQfAxc0EglIGNgWNU0UPPfzaN2CIMUsyQhILhsopXiY1pcj8u32-JqVL3fVLP7anz-_fLw9Tkpzx6Ly4vqaVaOXsvnu0U05_R-yNp_20K9jfVeZyvq7mxud9a6keFERsYqzhXG0hJhGNMCOBFaGUUIZi6R2BoNqdNYZJCB49xSRrjVzAEHQlPaQsu_t8faO-13-_nw6MDXwX4e8r2T08NAMAgMdYL-AJFgVo8 |
| ClassificationCodes | TP393.092 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3778/j.issn.1673-9418.1509090 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | Micro Blog Evolutionary Network to Classification Method of Negative Information |
| EndPage | 98 |
| ExternalDocumentID | jsjkxyts201701008 |
| GrantInformation_xml | – fundername: The National Basic Research Program of China under Grant No.2014CB340401(国家重点基础研究发展计划 funderid: (973计划)) |
| GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS M~E PSX TCJ |
| ID | FETCH-LOGICAL-c628-cd9669008d27c55a71627a9c92205f480dca1bfa07e1e1f66d3526da5f16123b3 |
| ISSN | 1673-9418 |
| IngestDate | Thu May 29 04:00:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | evolutionary network UCI data set negative information sequential minimal optimization (SMO) 序列最小优化(SMO) 负信息 support vector machine (SVM) 演化网络 UCI数据集 支持向量机(SVM) |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c628-cd9669008d27c55a71627a9c92205f480dca1bfa07e1e1f66d3526da5f16123b3 |
| PageCount | 8 |
| ParticipantIDs | wanfang_journals_jsjkxyts201701008 |
| PublicationCentury | 2000 |
| PublicationDate | 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | 计算机科学与探索 |
| PublicationTitle_FL | Journal of Frontiers of Computer Science & Technology |
| PublicationYear | 2017 |
| Publisher | 武汉大学计算机学院软件工程国家重点实验室,武汉,430072%三峡大学计算机与信息技术学院,湖北宜昌,443002 |
| Publisher_xml | – name: 武汉大学计算机学院软件工程国家重点实验室,武汉,430072%三峡大学计算机与信息技术学院,湖北宜昌,443002 |
| SSID | ssib054421768 ssib002040941 ssib002423894 ssib051375751 ssib023646573 ssib036438069 ssib002040926 |
| Score | 2.085908 |
| Snippet | TP393.092; 针对Sina微博博文的转发关系,建立起用户转发博文之间的演化网络,从而利用SMO SVM(sequential minimal optimization support vector machine)分类算法对博文进... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 91 |
| Title | 微博演化网络的负信息分类方法 |
| URI | https://d.wanfangdata.com.cn/periodical/jsjkxyts201701008 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1673-9418 databaseCode: M~E dateStart: 20070101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib054421768 providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxRBFG5CvHgRRcWdINZF6NjVXeuxu6eH4MGLEXILPb0oEUYwE9AcBEHEgx4EzSEI4h9QRC8Slz_jzPgzfO9VT8-YREmEoXldb6n31Stq6anF866YXNZKldyvS1X5gofKz6Oq9K0MCql5T5QFrba4oZZuiesrcmVu_ubMqqWNQW-x2Nx3X8n_RBXSIK64S_YQkW2NQgLQEF94QoTheaAYs0yyJGNxhoTpMBuzTLEkZVZQChCKZZolwOJEJMymSICkARnDEsFsl2WCJV0Wc1Q3nMVdUjfMOHWOisACa4mlLCLmLq2cjGvRFLgRUy5AWE3yKUtiStHkgGRxh8WKsgPjGWUHWiHlIoCYxJ9ck_hrZIMpRxAeSS7CjzxDETkVgaw7jX0LjnWmHItQWugNLCinZPbzh9vnSVUV-Y3TCgvCWIIhENIUzz_AtzKWWUtQDfofu0JPWKIoiqAoSd0QIgkeoRiqZyRjmdEYY5AxIYWBWDZDVhxjsF0K-Bam-7gdpiLCE9xZ2BYqGYFYxvyQoNr47a03QMS4fMYJu5q0qwScewDBqkk11RM4aRMzSASH0eOZ79Jc6ci3oulKJx0r39OAuF7S3c_WjLfcJeS7e_JIa0M9OZpfbM0vwvzFBu6C2V3npK-tr9198HCwjpUk4HQAwJEQP9Lhet5H2XRMCt2WnZ1T47v4Y3M3DOLbTgovWFByOsaH18gEqp0DSB5p_O-yfRcCZvluC-7Ea7eCECFd-xsg2jPYr_P-7Znh7fJx71gzL12IXSNzwpvbvHPSuzr8_n74Ynv09dXw-db428vxzpvx9pNfn9_-_PFu9PjD8NnT8ced0daX0afXp7zlbracLvnN5Sp-oULjF6VVykIplaEupMzxIDmd28LixvtamKAsct6r80BXvOLYnONFGiW07BwPbOpFp735_r1-dcZbqIK8qqtaA9cIkOiVkldV1AthdqHz0Jz1LjfQVpu2c311T7DOHUTovHcUafcF9II3P7i_UV2EOcGgd4li_BvBY7j7 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%BE%AE%E5%8D%9A%E6%BC%94%E5%8C%96%E7%BD%91%E7%BB%9C%E7%9A%84%E8%B4%9F%E4%BF%A1%E6%81%AF%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E8%B5%B5%E4%B8%80&rft.au=%E4%BD%95%E5%85%8B%E6%B8%85&rft.au=%E6%9D%8E%E6%98%AD&rft.au=%E9%BB%84%E8%B4%BB%E6%9C%9B&rft.date=2017&rft.pub=%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%AD%A6%E6%B1%89%2C430072%25%E4%B8%89%E5%B3%A1%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%8E%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97%E5%AE%9C%E6%98%8C%2C443002&rft.issn=1673-9418&rft.volume=11&rft.issue=1&rft.spage=91&rft.epage=98&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1509090&rft.externalDocID=jsjkxyts201701008 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg |