Selection of density standard and X–ray tube settings for computed digital absorptiometry in horses using the k–means clustering algorithm

Background In veterinary medicine, conventional radiography is the first–choice method for most diagnostic imaging applications in both small animal and equine practice. One direction in its development is the integration of bone density evaluation and artificial intelligence–assisted clinical decis...

Full description

Saved in:
Bibliographic Details
Published inBMC veterinary research Vol. 21; no. 1; p. 165
Main Authors Turek, Bernard, Pawlikowski, Marek, Jankowski, Krzysztof, Borowska, Marta, Skierbiszewska, Katarzyna, Jasiński, Tomasz, Domino, Małgorzata
Format Journal Article
LanguageEnglish
Published London BioMed Central 13.03.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1746-6148
1746-6148
DOI10.1186/s12917-025-04591-5

Cover

Abstract Background In veterinary medicine, conventional radiography is the first–choice method for most diagnostic imaging applications in both small animal and equine practice. One direction in its development is the integration of bone density evaluation and artificial intelligence–assisted clinical decision–making, which is expected to enhance and streamline veterinarians’ daily practices. One such decision–support method is k–means clustering, a machine learning and data mining technique that can be used clinically to classify radiographic signs into healthy or affected clusters. The study aims to investigate whether the k–means clustering algorithm can differentiate cortical and trabecular bone in both healthy and affected horse limbs. Therefore, identifying the optimal computed digital absorptiometry parameters was necessary. Methods and results Five metal–made density standards, made of pure aluminum, aluminum alloy (duralumin), cuprum alloy, iron–nickel alloy, and iron–silicon alloy, and ten X–ray tube settings were evaluated for the radiographic imaging of equine distal limbs, including six healthy limbs and six with radiographic signs of osteoarthritis. Density standards were imaged using ten combinations of X–ray tube settings, ranging from 50 to 90 kV and 1.2 to 4.0 mAs. The relative density in Hounsfield units was firstly returned for both bone types and density standards, then compared, and finally used for clustering. In both healthy and osteoarthritis–affected limbs, the relative density of the long pastern bone (the proximal phalanx) differed between bone types, allowing the k–means clustering algorithm to successful differentiate cortical and trabecular bone. Conclusion Density standard made of duralumin, along with the 60 kV, 4.0 mAs X–ray tube settings, yielded the highest clustering metric values and was therefore considered optimal for further research. We believe that the identified optimal computed digital absorptiometry parameters may be recommended for further researches on the relative quantification of conventional radiographs and for distal limb examination in equine veterinary practice.
AbstractList In veterinary medicine, conventional radiography is the first-choice method for most diagnostic imaging applications in both small animal and equine practice. One direction in its development is the integration of bone density evaluation and artificial intelligence-assisted clinical decision-making, which is expected to enhance and streamline veterinarians' daily practices. One such decision-support method is k-means clustering, a machine learning and data mining technique that can be used clinically to classify radiographic signs into healthy or affected clusters. The study aims to investigate whether the k-means clustering algorithm can differentiate cortical and trabecular bone in both healthy and affected horse limbs. Therefore, identifying the optimal computed digital absorptiometry parameters was necessary. Five metal-made density standards, made of pure aluminum, aluminum alloy (duralumin), cuprum alloy, iron-nickel alloy, and iron-silicon alloy, and ten X-ray tube settings were evaluated for the radiographic imaging of equine distal limbs, including six healthy limbs and six with radiographic signs of osteoarthritis. Density standards were imaged using ten combinations of X-ray tube settings, ranging from 50 to 90 kV and 1.2 to 4.0 mAs. The relative density in Hounsfield units was firstly returned for both bone types and density standards, then compared, and finally used for clustering. In both healthy and osteoarthritis-affected limbs, the relative density of the long pastern bone (the proximal phalanx) differed between bone types, allowing the k-means clustering algorithm to successful differentiate cortical and trabecular bone. Density standard made of duralumin, along with the 60 kV, 4.0 mAs X-ray tube settings, yielded the highest clustering metric values and was therefore considered optimal for further research. We believe that the identified optimal computed digital absorptiometry parameters may be recommended for further researches on the relative quantification of conventional radiographs and for distal limb examination in equine veterinary practice.
Background In veterinary medicine, conventional radiography is the first–choice method for most diagnostic imaging applications in both small animal and equine practice. One direction in its development is the integration of bone density evaluation and artificial intelligence–assisted clinical decision–making, which is expected to enhance and streamline veterinarians’ daily practices. One such decision–support method is k–means clustering, a machine learning and data mining technique that can be used clinically to classify radiographic signs into healthy or affected clusters. The study aims to investigate whether the k–means clustering algorithm can differentiate cortical and trabecular bone in both healthy and affected horse limbs. Therefore, identifying the optimal computed digital absorptiometry parameters was necessary. Methods and results Five metal–made density standards, made of pure aluminum, aluminum alloy (duralumin), cuprum alloy, iron–nickel alloy, and iron–silicon alloy, and ten X–ray tube settings were evaluated for the radiographic imaging of equine distal limbs, including six healthy limbs and six with radiographic signs of osteoarthritis. Density standards were imaged using ten combinations of X–ray tube settings, ranging from 50 to 90 kV and 1.2 to 4.0 mAs. The relative density in Hounsfield units was firstly returned for both bone types and density standards, then compared, and finally used for clustering. In both healthy and osteoarthritis–affected limbs, the relative density of the long pastern bone (the proximal phalanx) differed between bone types, allowing the k–means clustering algorithm to successful differentiate cortical and trabecular bone. Conclusion Density standard made of duralumin, along with the 60 kV, 4.0 mAs X–ray tube settings, yielded the highest clustering metric values and was therefore considered optimal for further research. We believe that the identified optimal computed digital absorptiometry parameters may be recommended for further researches on the relative quantification of conventional radiographs and for distal limb examination in equine veterinary practice.
BackgroundIn veterinary medicine, conventional radiography is the first–choice method for most diagnostic imaging applications in both small animal and equine practice. One direction in its development is the integration of bone density evaluation and artificial intelligence–assisted clinical decision–making, which is expected to enhance and streamline veterinarians’ daily practices. One such decision–support method is k–means clustering, a machine learning and data mining technique that can be used clinically to classify radiographic signs into healthy or affected clusters. The study aims to investigate whether the k–means clustering algorithm can differentiate cortical and trabecular bone in both healthy and affected horse limbs. Therefore, identifying the optimal computed digital absorptiometry parameters was necessary.Methods and resultsFive metal–made density standards, made of pure aluminum, aluminum alloy (duralumin), cuprum alloy, iron–nickel alloy, and iron–silicon alloy, and ten X–ray tube settings were evaluated for the radiographic imaging of equine distal limbs, including six healthy limbs and six with radiographic signs of osteoarthritis. Density standards were imaged using ten combinations of X–ray tube settings, ranging from 50 to 90 kV and 1.2 to 4.0 mAs. The relative density in Hounsfield units was firstly returned for both bone types and density standards, then compared, and finally used for clustering. In both healthy and osteoarthritis–affected limbs, the relative density of the long pastern bone (the proximal phalanx) differed between bone types, allowing the k–means clustering algorithm to successful differentiate cortical and trabecular bone.ConclusionDensity standard made of duralumin, along with the 60 kV, 4.0 mAs X–ray tube settings, yielded the highest clustering metric values and was therefore considered optimal for further research. We believe that the identified optimal computed digital absorptiometry parameters may be recommended for further researches on the relative quantification of conventional radiographs and for distal limb examination in equine veterinary practice.
Abstract Background In veterinary medicine, conventional radiography is the first–choice method for most diagnostic imaging applications in both small animal and equine practice. One direction in its development is the integration of bone density evaluation and artificial intelligence–assisted clinical decision–making, which is expected to enhance and streamline veterinarians’ daily practices. One such decision–support method is k–means clustering, a machine learning and data mining technique that can be used clinically to classify radiographic signs into healthy or affected clusters. The study aims to investigate whether the k–means clustering algorithm can differentiate cortical and trabecular bone in both healthy and affected horse limbs. Therefore, identifying the optimal computed digital absorptiometry parameters was necessary. Methods and results Five metal–made density standards, made of pure aluminum, aluminum alloy (duralumin), cuprum alloy, iron–nickel alloy, and iron–silicon alloy, and ten X–ray tube settings were evaluated for the radiographic imaging of equine distal limbs, including six healthy limbs and six with radiographic signs of osteoarthritis. Density standards were imaged using ten combinations of X–ray tube settings, ranging from 50 to 90 kV and 1.2 to 4.0 mAs. The relative density in Hounsfield units was firstly returned for both bone types and density standards, then compared, and finally used for clustering. In both healthy and osteoarthritis–affected limbs, the relative density of the long pastern bone (the proximal phalanx) differed between bone types, allowing the k–means clustering algorithm to successful differentiate cortical and trabecular bone. Conclusion Density standard made of duralumin, along with the 60 kV, 4.0 mAs X–ray tube settings, yielded the highest clustering metric values and was therefore considered optimal for further research. We believe that the identified optimal computed digital absorptiometry parameters may be recommended for further researches on the relative quantification of conventional radiographs and for distal limb examination in equine veterinary practice.
BACKGROUND: In veterinary medicine, conventional radiography is the first–choice method for most diagnostic imaging applications in both small animal and equine practice. One direction in its development is the integration of bone density evaluation and artificial intelligence–assisted clinical decision–making, which is expected to enhance and streamline veterinarians’ daily practices. One such decision–support method is k–means clustering, a machine learning and data mining technique that can be used clinically to classify radiographic signs into healthy or affected clusters. The study aims to investigate whether the k–means clustering algorithm can differentiate cortical and trabecular bone in both healthy and affected horse limbs. Therefore, identifying the optimal computed digital absorptiometry parameters was necessary. METHODS AND RESULTS: Five metal–made density standards, made of pure aluminum, aluminum alloy (duralumin), cuprum alloy, iron–nickel alloy, and iron–silicon alloy, and ten X–ray tube settings were evaluated for the radiographic imaging of equine distal limbs, including six healthy limbs and six with radiographic signs of osteoarthritis. Density standards were imaged using ten combinations of X–ray tube settings, ranging from 50 to 90 kV and 1.2 to 4.0 mAs. The relative density in Hounsfield units was firstly returned for both bone types and density standards, then compared, and finally used for clustering. In both healthy and osteoarthritis–affected limbs, the relative density of the long pastern bone (the proximal phalanx) differed between bone types, allowing the k–means clustering algorithm to successful differentiate cortical and trabecular bone. CONCLUSION: Density standard made of duralumin, along with the 60 kV, 4.0 mAs X–ray tube settings, yielded the highest clustering metric values and was therefore considered optimal for further research. We believe that the identified optimal computed digital absorptiometry parameters may be recommended for further researches on the relative quantification of conventional radiographs and for distal limb examination in equine veterinary practice.
Background In veterinary medicine, conventional radiography is the first-choice method for most diagnostic imaging applications in both small animal and equine practice. One direction in its development is the integration of bone density evaluation and artificial intelligence-assisted clinical decision-making, which is expected to enhance and streamline veterinarians' daily practices. One such decision-support method is k-means clustering, a machine learning and data mining technique that can be used clinically to classify radiographic signs into healthy or affected clusters. The study aims to investigate whether the k-means clustering algorithm can differentiate cortical and trabecular bone in both healthy and affected horse limbs. Therefore, identifying the optimal computed digital absorptiometry parameters was necessary. Methods and results Five metal-made density standards, made of pure aluminum, aluminum alloy (duralumin), cuprum alloy, iron-nickel alloy, and iron-silicon alloy, and ten X-ray tube settings were evaluated for the radiographic imaging of equine distal limbs, including six healthy limbs and six with radiographic signs of osteoarthritis. Density standards were imaged using ten combinations of X-ray tube settings, ranging from 50 to 90 kV and 1.2 to 4.0 mAs. The relative density in Hounsfield units was firstly returned for both bone types and density standards, then compared, and finally used for clustering. In both healthy and osteoarthritis-affected limbs, the relative density of the long pastern bone (the proximal phalanx) differed between bone types, allowing the k-means clustering algorithm to successful differentiate cortical and trabecular bone. Conclusion Density standard made of duralumin, along with the 60 kV, 4.0 mAs X-ray tube settings, yielded the highest clustering metric values and was therefore considered optimal for further research. We believe that the identified optimal computed digital absorptiometry parameters may be recommended for further researches on the relative quantification of conventional radiographs and for distal limb examination in equine veterinary practice. Keywords: Computed digital absorptiometry, Bone mineral density, Radiological signs, Distal limbs, Horse
In veterinary medicine, conventional radiography is the first-choice method for most diagnostic imaging applications in both small animal and equine practice. One direction in its development is the integration of bone density evaluation and artificial intelligence-assisted clinical decision-making, which is expected to enhance and streamline veterinarians' daily practices. One such decision-support method is k-means clustering, a machine learning and data mining technique that can be used clinically to classify radiographic signs into healthy or affected clusters. The study aims to investigate whether the k-means clustering algorithm can differentiate cortical and trabecular bone in both healthy and affected horse limbs. Therefore, identifying the optimal computed digital absorptiometry parameters was necessary.BACKGROUNDIn veterinary medicine, conventional radiography is the first-choice method for most diagnostic imaging applications in both small animal and equine practice. One direction in its development is the integration of bone density evaluation and artificial intelligence-assisted clinical decision-making, which is expected to enhance and streamline veterinarians' daily practices. One such decision-support method is k-means clustering, a machine learning and data mining technique that can be used clinically to classify radiographic signs into healthy or affected clusters. The study aims to investigate whether the k-means clustering algorithm can differentiate cortical and trabecular bone in both healthy and affected horse limbs. Therefore, identifying the optimal computed digital absorptiometry parameters was necessary.Five metal-made density standards, made of pure aluminum, aluminum alloy (duralumin), cuprum alloy, iron-nickel alloy, and iron-silicon alloy, and ten X-ray tube settings were evaluated for the radiographic imaging of equine distal limbs, including six healthy limbs and six with radiographic signs of osteoarthritis. Density standards were imaged using ten combinations of X-ray tube settings, ranging from 50 to 90 kV and 1.2 to 4.0 mAs. The relative density in Hounsfield units was firstly returned for both bone types and density standards, then compared, and finally used for clustering. In both healthy and osteoarthritis-affected limbs, the relative density of the long pastern bone (the proximal phalanx) differed between bone types, allowing the k-means clustering algorithm to successful differentiate cortical and trabecular bone.METHODS AND RESULTSFive metal-made density standards, made of pure aluminum, aluminum alloy (duralumin), cuprum alloy, iron-nickel alloy, and iron-silicon alloy, and ten X-ray tube settings were evaluated for the radiographic imaging of equine distal limbs, including six healthy limbs and six with radiographic signs of osteoarthritis. Density standards were imaged using ten combinations of X-ray tube settings, ranging from 50 to 90 kV and 1.2 to 4.0 mAs. The relative density in Hounsfield units was firstly returned for both bone types and density standards, then compared, and finally used for clustering. In both healthy and osteoarthritis-affected limbs, the relative density of the long pastern bone (the proximal phalanx) differed between bone types, allowing the k-means clustering algorithm to successful differentiate cortical and trabecular bone.Density standard made of duralumin, along with the 60 kV, 4.0 mAs X-ray tube settings, yielded the highest clustering metric values and was therefore considered optimal for further research. We believe that the identified optimal computed digital absorptiometry parameters may be recommended for further researches on the relative quantification of conventional radiographs and for distal limb examination in equine veterinary practice.CONCLUSIONDensity standard made of duralumin, along with the 60 kV, 4.0 mAs X-ray tube settings, yielded the highest clustering metric values and was therefore considered optimal for further research. We believe that the identified optimal computed digital absorptiometry parameters may be recommended for further researches on the relative quantification of conventional radiographs and for distal limb examination in equine veterinary practice.
In veterinary medicine, conventional radiography is the first-choice method for most diagnostic imaging applications in both small animal and equine practice. One direction in its development is the integration of bone density evaluation and artificial intelligence-assisted clinical decision-making, which is expected to enhance and streamline veterinarians' daily practices. One such decision-support method is k-means clustering, a machine learning and data mining technique that can be used clinically to classify radiographic signs into healthy or affected clusters. The study aims to investigate whether the k-means clustering algorithm can differentiate cortical and trabecular bone in both healthy and affected horse limbs. Therefore, identifying the optimal computed digital absorptiometry parameters was necessary. Five metal-made density standards, made of pure aluminum, aluminum alloy (duralumin), cuprum alloy, iron-nickel alloy, and iron-silicon alloy, and ten X-ray tube settings were evaluated for the radiographic imaging of equine distal limbs, including six healthy limbs and six with radiographic signs of osteoarthritis. Density standards were imaged using ten combinations of X-ray tube settings, ranging from 50 to 90 kV and 1.2 to 4.0 mAs. The relative density in Hounsfield units was firstly returned for both bone types and density standards, then compared, and finally used for clustering. In both healthy and osteoarthritis-affected limbs, the relative density of the long pastern bone (the proximal phalanx) differed between bone types, allowing the k-means clustering algorithm to successful differentiate cortical and trabecular bone. Density standard made of duralumin, along with the 60 kV, 4.0 mAs X-ray tube settings, yielded the highest clustering metric values and was therefore considered optimal for further research. We believe that the identified optimal computed digital absorptiometry parameters may be recommended for further researches on the relative quantification of conventional radiographs and for distal limb examination in equine veterinary practice.
ArticleNumber 165
Audience Academic
Author Pawlikowski, Marek
Jankowski, Krzysztof
Borowska, Marta
Jasiński, Tomasz
Domino, Małgorzata
Turek, Bernard
Skierbiszewska, Katarzyna
Author_xml – sequence: 1
  givenname: Bernard
  surname: Turek
  fullname: Turek, Bernard
  organization: Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS – SGGW)
– sequence: 2
  givenname: Marek
  surname: Pawlikowski
  fullname: Pawlikowski, Marek
  organization: Institute of Mechanics and Printing, Warsaw University of Technology
– sequence: 3
  givenname: Krzysztof
  surname: Jankowski
  fullname: Jankowski, Krzysztof
  organization: Institute of Mechanics and Printing, Warsaw University of Technology
– sequence: 4
  givenname: Marta
  surname: Borowska
  fullname: Borowska, Marta
  organization: Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Białystok University of Technology
– sequence: 5
  givenname: Katarzyna
  surname: Skierbiszewska
  fullname: Skierbiszewska, Katarzyna
  organization: Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS – SGGW)
– sequence: 6
  givenname: Tomasz
  surname: Jasiński
  fullname: Jasiński, Tomasz
  organization: Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS – SGGW)
– sequence: 7
  givenname: Małgorzata
  surname: Domino
  fullname: Domino, Małgorzata
  email: malgorzata_domino@sggw.edu.pl
  organization: Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS – SGGW)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40082938$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhiNURC_wAiyQJTZsUnxJfFmhquJSqRILQGJnOY494yGxB9sBzY4nYMMb8iQ4naHtIAS1F47s__-Uc_5zXB344E1VPUbwFCFOnyeEBWI1xG0Nm1agur1XHSHW0Jqihh_c-j6sjlNaQdg0gtEH1WEDIceC8KPq-zszGJ1d8CBY0BufXN6AlJXvVexBOcDHn99-RLUBeeoMSCZn5xcJ2BCBDuN6yqYHvVu4rAaguhTiutBGk-MGOA-WISaTwJSKCeSlAZ8KbTTKJ6CHKWUT5wc1LEJ0eTk-rO5bNSTzaHeeVB9evXx__qa-fPv64vzsstYUs1xTbDmBsOW6Ib2wVAvKUNdDa1mHm15ohKAui-BWaNJBbG1HrCE9xZBbhslJdbHl9kGt5Dq6UcWNDMrJq4sQF1LF7PRgJIcEtaxh0LS6oVQr01nKocKKcyHIzCJb1uTXavNVDcM1EEE5JyW3ScmSlLxKSrbF9WLrWk_daHptfI5q2PuV_RfvlnIRvhSggG3DaCE82xFi-DyZlOXokjbDoLwJU5IEw1IuFXeTQsw4p-3_pYgx1BKO5sKf_iFdhSn6ktsMRC1tSCtuVAtVuum8DaUcPUPlWQlRcIjFzDr9i6rs3oxOl7m3rtzvGZ7c7t91436PdhHgrUDHkFI09m6p7LJM63kwTbwp6R-uX2kDHNg
Cites_doi 10.1016/j.ejro.2021.100382
10.3390/bdcc3020027
10.1016/0034-5288(92)90054-6
10.4103/jos.JOS_17_19
10.1007/s00521-013-1437-4
10.1111/evj.12965
10.1016/j.jevs.2013.04.016
10.1088/0031-9155/47/3/401
10.1111/eve.13851
10.14260/jemds/2021/431
10.1118/1.594709
10.1294/jes.26.81
10.3390/ani12030381
10.1118/1.3301610
10.1016/j.tvjl.2005.12.014
10.1093/qjmed/hcn022
10.1111/evj.12808
10.1111/evj.14123
10.1016/j.jdent.2018.07.015
10.2460/ajvr.73.3.381
10.3389/fmed.2020.590139
10.1111/j.1748-5827.2009.00729.x
10.1111/j.1740-8261.1993.tb02028.x
10.3340/jkns.2022.0174
10.3390/electronics12071710
10.1097/RLU.0000000000003668
10.1136/vr.165.10.281
10.1016/j.radphyschem.2017.02.054
10.1111/vru.12855
10.1111/j.1740-8261.2012.01975.x
10.7759/cureus.13261
10.1007/s00330-005-2897-4
10.3390/app12105217
10.1186/s12917-023-03675-4
10.2214/AJR.12.9116
10.1111/vru.12978
10.1294/jes.18.99
10.1080/00480169.2005.36488
10.1111/evj.12370
10.1294/jes.17.105
10.2746/042516401776249552
10.1148/rg.2020190173
10.1016/S0737-0806(00)80321-4
10.12968/ukve.2021.5.6.254
10.1016/j.crad.2017.11.008
10.3390/s23218940
10.1111/eve.12275
10.1111/evj.13973
10.3923/javaa.2010.1048.1054
10.1053/tvjl.2000.0541
10.21037/qims-22-457
10.3390/ani14101417
10.2460/javma.21.10.0471
10.3390/ani13152427
10.1016/j.eswa.2022.116968
10.3390/s24113538
10.1007/s00198-019-04910-1
10.3390/ani13223466
10.3390/app14135498
10.1177/00220345211005338
10.1111/ocr.12642
10.1111/evj.13299
10.2527/2001.7951142x
10.2478/ama-2024-0051
10.1111/evj.12719
10.1016/j.ejro.2022.100467
10.3390/ani14172615
10.32604/iasc.2021.019067
10.1111/ahe.13016
10.2460/ajvr.2001.62.752
10.4314/ovj.v9i1.11
10.1111/j.2042-3306.2010.00251.x
10.3390/s24175774
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7U9
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12917-025-04591-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database

AGRICOLA

MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Veterinary Medicine
Zoology
EISSN 1746-6148
EndPage 165
ExternalDocumentID oai_doaj_org_article_803157470e5c466caebf680a2a889932
10.1186/s12917-025-04591-5
PMC11905476
A830980292
40082938
10_1186_s12917_025_04591_5
Genre Journal Article
GeographicLocations Poland
GeographicLocations_xml – name: Poland
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECGQY
EMB
EMK
EMOBN
ESX
EYRJQ
F5P
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAG
IAO
IHR
INH
INR
ITC
ITG
ITH
KQ8
M1P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
UKHRP
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7U9
7XB
8FK
AZQEC
DWQXO
H94
K9.
M48
PKEHL
PQEST
PQUKI
7X8
7S9
L.6
5PM
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c627t-62f830058c43d9f6c9671bd0ff7b24d9c110cccc3259c3b02ffb3fe3d6208f723
IEDL.DBID DOA
ISSN 1746-6148
IngestDate Fri Oct 03 12:52:45 EDT 2025
Sun Oct 26 04:09:30 EDT 2025
Tue Sep 30 17:05:15 EDT 2025
Fri Sep 05 16:04:56 EDT 2025
Fri Sep 05 17:16:26 EDT 2025
Thu Oct 02 06:00:40 EDT 2025
Sat Oct 11 05:50:44 EDT 2025
Mon Oct 20 22:44:12 EDT 2025
Mon Oct 20 16:54:54 EDT 2025
Thu May 15 23:18:11 EDT 2025
Wed Oct 01 06:42:15 EDT 2025
Sat Sep 06 07:25:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Radiological signs
Bone mineral density
Computed digital absorptiometry
Distal limbs
Horse
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c627t-62f830058c43d9f6c9671bd0ff7b24d9c110cccc3259c3b02ffb3fe3d6208f723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/803157470e5c466caebf680a2a889932
PMID 40082938
PQID 3201564359
PQPubID 24069
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_803157470e5c466caebf680a2a889932
unpaywall_primary_10_1186_s12917_025_04591_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11905476
proquest_miscellaneous_3206206976
proquest_miscellaneous_3200278865
proquest_miscellaneous_3177153812
proquest_journals_3201564359
gale_infotracmisc_A830980292
gale_infotracacademiconefile_A830980292
pubmed_primary_40082938
crossref_primary_10_1186_s12917_025_04591_5
springer_journals_10_1186_s12917_025_04591_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-13
PublicationDateYYYYMMDD 2025-03-13
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC veterinary research
PublicationTitleAbbrev BMC Vet Res
PublicationTitleAlternate BMC Vet Res
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References B Gosangi (4591_CR27) 2020; 40
M Borowska (4591_CR61) 2024; 18
A Valentinitsch (4591_CR68) 2019; 30
A Nagy (4591_CR28) 2023; 13
FM Ulivieri (4591_CR54) 2021; 7
GN Hounsfield (4591_CR59) 1980; 7
4591_CR33
HM Moftah (4591_CR66) 2014; 24
4591_CR74
4591_CR73
4591_CR72
4591_CR71
4591_CR70
SD Gutierrez-Nibeyro (4591_CR23) 2020; 61
EN Cresswell (4591_CR45) 2019; 51
RA Bell (4591_CR48) 2001; 79
MD Rajão (4591_CR43) 2019; 9
S Belhassen (4591_CR64) 2010; 37
A Hall (4591_CR29) 2021; 5
MS Suh (4591_CR14) 2018; 73
N Kozłowska (4591_CR20) 2022; 12
EC Firth (4591_CR42) 2005; 53
TAA Junior (4591_CR60) 2017; 140
4591_CR24
M Gillot (4591_CR1) 2023; 26
A Nagy (4591_CR31) 2024; 14
K Kamran (4591_CR44) 2010; 9
AJ Bowen (4591_CR50) 2013; 33
RC Murray (4591_CR25) 2009; 165
H Kasban (4591_CR8) 2015; 4
N Baudisch (4591_CR34) 2024; 53
L Meomartino (4591_CR9) 2021; 8
K Yamada (4591_CR41) 2015; 26
A Greco (4591_CR10) 2023; 10
R Drees (4591_CR17) 2009; 50
B Turek (4591_CR40) 2024; 14
C Zhang (4591_CR5) 2023; 13
R Urban (4591_CR13) 2023; 12
K Zukotynski (4591_CR65) 2021; 46
A El Maghraoui (4591_CR52) 2008; 101
K Waite (4591_CR55) 2000; 20
NK Singh (4591_CR12) 2022; 199
T Shipley (4591_CR58) 2019; 8
C Van Zadelhoff (4591_CR35) 2021; 62
C Tessier (4591_CR21) 2013; 54
G Manso-Díaz (4591_CR22) 2015; 27
J Palanivel (4591_CR7) 2021; 10
A Norvall (4591_CR16) 2021; 53
J Cho (4591_CR69) 2023; 66
S Ohlerth (4591_CR36) 2007; 173
SR McClure (4591_CR51) 2001; 62
K Górski (4591_CR39) 2023; 19
M Kobayashi (4591_CR56) 2006; 17
MM Sloet van Oldruitenborgh–Oosterbaan (4591_CR82) 2010; 42
JP Morgan (4591_CR78) 2010
W Ranner (4591_CR79) 1999; 27
RL Tucker (4591_CR19) 2001; 17
RN McCarthy (4591_CR47) 1992; 52
M Kobayashi (4591_CR57) 2007; 18
M Borowska (4591_CR63) 2024; 24
OM Lepage (4591_CR46) 2001; 161
J Bonecka (4591_CR38) 2024; 14
M Alawi (4591_CR80) 2021; 13
S Leschka (4591_CR11) 2005; 15
CJ Ley (4591_CR81) 2016; 48
C Vaccaro (4591_CR49) 2012; 73
JH Lee (4591_CR6) 2018; 77
BB Nelson (4591_CR26) 2018; 50
J Bonecka (4591_CR76) 2023; 13
TM Ghazal (4591_CR62) 2021; 30
H Wang (4591_CR4) 2021; 100
TP Schaer (4591_CR75) 2001; 33
SH Brounts (4591_CR30) 2022; 260
M Spriet (4591_CR15) 2018; 50
M Karkkainen (4591_CR18) 1993; 34
M Borowska (4591_CR2) 2023; 23
MS Alam (4591_CR67) 2019; 3
MM Santos (4591_CR32) 2023; 35
P Homolka (4591_CR77) 2002; 47
TR Johnson (4591_CR53) 2012; 199
M Bencevic (4591_CR3) 2022; 12
J Bonecka (4591_CR37) 2024; 24
References_xml – volume: 8
  start-page: 100382
  year: 2021
  ident: 4591_CR9
  publication-title: Eur J Radiol Open
  doi: 10.1016/j.ejro.2021.100382
– volume: 3
  start-page: 27
  year: 2019
  ident: 4591_CR67
  publication-title: Big Data Cogn Comput
  doi: 10.3390/bdcc3020027
– volume: 52
  start-page: 28
  year: 1992
  ident: 4591_CR47
  publication-title: Res Vet Sci
  doi: 10.1016/0034-5288(92)90054-6
– volume: 8
  start-page: 15
  year: 2019
  ident: 4591_CR58
  publication-title: J Orthod Sci
  doi: 10.4103/jos.JOS_17_19
– volume: 24
  start-page: 1917
  year: 2014
  ident: 4591_CR66
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1437-4
– volume: 51
  start-page: 123
  year: 2019
  ident: 4591_CR45
  publication-title: Equine Vet J
  doi: 10.1111/evj.12965
– ident: 4591_CR72
– volume: 33
  start-page: 1131
  year: 2013
  ident: 4591_CR50
  publication-title: J Equine Vet Sci
  doi: 10.1016/j.jevs.2013.04.016
– volume: 47
  start-page: N47
  year: 2002
  ident: 4591_CR77
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/47/3/401
– volume: 35
  start-page: e731
  year: 2023
  ident: 4591_CR32
  publication-title: Equine Vet Edu
  doi: 10.1111/eve.13851
– volume: 10
  start-page: 2108
  year: 2021
  ident: 4591_CR7
  publication-title: J Evol Med Dent Sci
  doi: 10.14260/jemds/2021/431
– volume: 7
  start-page: 283
  year: 1980
  ident: 4591_CR59
  publication-title: Med Phys
  doi: 10.1118/1.594709
– volume: 26
  start-page: 81
  year: 2015
  ident: 4591_CR41
  publication-title: J Equine Sci
  doi: 10.1294/jes.26.81
– volume: 12
  start-page: 381
  year: 2022
  ident: 4591_CR20
  publication-title: Animals
  doi: 10.3390/ani12030381
– volume: 37
  start-page: 1309
  year: 2010
  ident: 4591_CR64
  publication-title: Med Phys
  doi: 10.1118/1.3301610
– volume: 173
  start-page: 254
  year: 2007
  ident: 4591_CR36
  publication-title: Vet J
  doi: 10.1016/j.tvjl.2005.12.014
– volume: 101
  start-page: 605
  year: 2008
  ident: 4591_CR52
  publication-title: QJM
  doi: 10.1093/qjmed/hcn022
– volume: 50
  start-page: 564
  year: 2018
  ident: 4591_CR26
  publication-title: Equine Vet J
  doi: 10.1111/evj.12808
– ident: 4591_CR33
  doi: 10.1111/evj.14123
– volume: 77
  start-page: 106
  year: 2018
  ident: 4591_CR6
  publication-title: J Dent
  doi: 10.1016/j.jdent.2018.07.015
– ident: 4591_CR71
– volume: 73
  start-page: 381
  year: 2012
  ident: 4591_CR49
  publication-title: Am J Vet Res
  doi: 10.2460/ajvr.73.3.381
– volume: 7
  start-page: 590139
  year: 2021
  ident: 4591_CR54
  publication-title: Front Med
  doi: 10.3389/fmed.2020.590139
– volume: 50
  start-page: 334
  year: 2009
  ident: 4591_CR17
  publication-title: J Small Anim Pract
  doi: 10.1111/j.1748-5827.2009.00729.x
– volume: 34
  start-page: 399
  year: 1993
  ident: 4591_CR18
  publication-title: Vet Radiol Ultrasound
  doi: 10.1111/j.1740-8261.1993.tb02028.x
– volume: 66
  start-page: 44
  year: 2023
  ident: 4591_CR69
  publication-title: J Korean Neurosurg Soc
  doi: 10.3340/jkns.2022.0174
– volume: 12
  start-page: 1710
  year: 2023
  ident: 4591_CR13
  publication-title: Electronics
  doi: 10.3390/electronics12071710
– volume: 46
  start-page: 616
  year: 2021
  ident: 4591_CR65
  publication-title: Clin Nucl Med
  doi: 10.1097/RLU.0000000000003668
– volume: 27
  start-page: 122
  year: 1999
  ident: 4591_CR79
  publication-title: Tierarztl Prax Ausg G Grosstiere Nutztiere
– volume: 165
  start-page: 281
  year: 2009
  ident: 4591_CR25
  publication-title: Vet Rec
  doi: 10.1136/vr.165.10.281
– volume: 140
  start-page: 349
  year: 2017
  ident: 4591_CR60
  publication-title: Radiat Phys Chem
  doi: 10.1016/j.radphyschem.2017.02.054
– volume: 61
  start-page: 336
  year: 2020
  ident: 4591_CR23
  publication-title: Vet Radiol Ultrasound
  doi: 10.1111/vru.12855
– volume: 54
  start-page: 54
  year: 2013
  ident: 4591_CR21
  publication-title: Vet Radiol Ultrasound
  doi: 10.1111/j.1740-8261.2012.01975.x
– volume: 13
  start-page: e13261
  year: 2021
  ident: 4591_CR80
  publication-title: Cureus
  doi: 10.7759/cureus.13261
– volume: 15
  start-page: 2435
  year: 2005
  ident: 4591_CR11
  publication-title: Europ Radiol
  doi: 10.1007/s00330-005-2897-4
– volume: 12
  start-page: 5217
  year: 2022
  ident: 4591_CR3
  publication-title: Appl Sci
  doi: 10.3390/app12105217
– volume: 19
  start-page: 1
  year: 2023
  ident: 4591_CR39
  publication-title: BMC Vet Res
  doi: 10.1186/s12917-023-03675-4
– volume: 199
  start-page: S3
  year: 2012
  ident: 4591_CR53
  publication-title: AJR
  doi: 10.2214/AJR.12.9116
– volume: 62
  start-page: 413
  year: 2021
  ident: 4591_CR35
  publication-title: Vet Rad Ultrasound
  doi: 10.1111/vru.12978
– volume: 18
  start-page: 99
  year: 2007
  ident: 4591_CR57
  publication-title: J Equine Sci
  doi: 10.1294/jes.18.99
– ident: 4591_CR70
– volume: 53
  start-page: 113
  year: 2005
  ident: 4591_CR42
  publication-title: N Z Vet J
  doi: 10.1080/00480169.2005.36488
– volume: 48
  start-page: 57
  year: 2016
  ident: 4591_CR81
  publication-title: Equine Vet J
  doi: 10.1111/evj.12370
– volume: 17
  start-page: 105
  year: 2006
  ident: 4591_CR56
  publication-title: J Equine Sci
  doi: 10.1294/jes.17.105
– ident: 4591_CR74
– volume: 17
  start-page: 131
  year: 2001
  ident: 4591_CR19
  publication-title: Vet Clin N Am Equine Pract
  doi: 10.1111/j.1740-8261.1993.tb02028.x
– volume: 33
  start-page: 360
  year: 2001
  ident: 4591_CR75
  publication-title: Equine Vet J
  doi: 10.2746/042516401776249552
– volume: 40
  start-page: 859
  year: 2020
  ident: 4591_CR27
  publication-title: Radiographics
  doi: 10.1148/rg.2020190173
– volume: 20
  start-page: 49
  year: 2000
  ident: 4591_CR55
  publication-title: J Equine Vet Sci
  doi: 10.1016/S0737-0806(00)80321-4
– volume: 5
  start-page: 254
  year: 2021
  ident: 4591_CR29
  publication-title: UK–Vet Equine
  doi: 10.12968/ukve.2021.5.6.254
– volume: 73
  start-page: 1
  year: 2018
  ident: 4591_CR14
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2017.11.008
– volume: 23
  start-page: 8940
  year: 2023
  ident: 4591_CR2
  publication-title: Sensors
  doi: 10.3390/s23218940
– volume: 27
  start-page: 136
  year: 2015
  ident: 4591_CR22
  publication-title: Equine Vet Educ
  doi: 10.1111/eve.12275
– ident: 4591_CR24
  doi: 10.1111/evj.13973
– volume: 9
  start-page: 1048
  year: 2010
  ident: 4591_CR44
  publication-title: JAVA
  doi: 10.3923/javaa.2010.1048.1054
– volume: 161
  start-page: 10
  year: 2001
  ident: 4591_CR46
  publication-title: Vet J
  doi: 10.1053/tvjl.2000.0541
– volume: 13
  start-page: 935
  year: 2023
  ident: 4591_CR5
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims-22-457
– volume: 14
  start-page: 1417
  year: 2024
  ident: 4591_CR31
  publication-title: Animals
  doi: 10.3390/ani14101417
– volume: 260
  start-page: 1361
  year: 2022
  ident: 4591_CR30
  publication-title: J Am Vet Med Assoc
  doi: 10.2460/javma.21.10.0471
– volume: 13
  start-page: 2427
  year: 2023
  ident: 4591_CR76
  publication-title: Animals
  doi: 10.3390/ani13152427
– ident: 4591_CR73
– volume: 199
  start-page: 116968
  year: 2022
  ident: 4591_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116968
– volume: 24
  start-page: 3538
  year: 2024
  ident: 4591_CR63
  publication-title: Sensors
  doi: 10.3390/s24113538
– volume: 30
  start-page: 1275
  year: 2019
  ident: 4591_CR68
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-019-04910-1
– volume: 13
  start-page: 3466
  year: 2023
  ident: 4591_CR28
  publication-title: Animals
  doi: 10.3390/ani13223466
– volume: 14
  start-page: 5498
  year: 2024
  ident: 4591_CR40
  publication-title: Appl Sci
  doi: 10.3390/app14135498
– volume: 100
  start-page: 943
  year: 2021
  ident: 4591_CR4
  publication-title: J Dent Res
  doi: 10.1177/00220345211005338
– volume: 26
  start-page: 560
  year: 2023
  ident: 4591_CR1
  publication-title: Orthod Craniofacial Res
  doi: 10.1111/ocr.12642
– volume: 53
  start-page: 451
  year: 2021
  ident: 4591_CR16
  publication-title: Equine Vet J
  doi: 10.1111/evj.13299
– volume: 79
  start-page: 1142
  year: 2001
  ident: 4591_CR48
  publication-title: J Anim Sci
  doi: 10.2527/2001.7951142x
– volume: 18
  start-page: 483
  year: 2024
  ident: 4591_CR61
  publication-title: Acta Mech Autom
  doi: 10.2478/ama-2024-0051
– volume-title: Atlas of radiology of the traumatized dog and cat: the case–based approach
  year: 2010
  ident: 4591_CR78
– volume: 50
  start-page: 125
  year: 2018
  ident: 4591_CR15
  publication-title: Equine Vet J
  doi: 10.1111/evj.12719
– volume: 10
  start-page: 100467
  year: 2023
  ident: 4591_CR10
  publication-title: Eur J Radiol Open
  doi: 10.1016/j.ejro.2022.100467
– volume: 4
  start-page: 37
  year: 2015
  ident: 4591_CR8
  publication-title: Int J Intell Syst
– volume: 14
  start-page: 2615
  year: 2024
  ident: 4591_CR38
  publication-title: Animals
  doi: 10.3390/ani14172615
– volume: 30
  start-page: 735
  year: 2021
  ident: 4591_CR62
  publication-title: Intell Autom Soft Comput
  doi: 10.32604/iasc.2021.019067
– volume: 53
  start-page: e13016
  year: 2024
  ident: 4591_CR34
  publication-title: Anat Histol Embryol
  doi: 10.1111/ahe.13016
– volume: 62
  start-page: 752
  year: 2001
  ident: 4591_CR51
  publication-title: Am J Vet Res
  doi: 10.2460/ajvr.2001.62.752
– volume: 9
  start-page: 58
  year: 2019
  ident: 4591_CR43
  publication-title: Open Vet J
  doi: 10.4314/ovj.v9i1.11
– volume: 42
  start-page: 28
  year: 2010
  ident: 4591_CR82
  publication-title: Equine Vet J
  doi: 10.1111/j.2042-3306.2010.00251.x
– volume: 24
  start-page: 5774
  year: 2024
  ident: 4591_CR37
  publication-title: Sensors
  doi: 10.3390/s24175774
SSID ssj0044976
Score 2.3790185
Snippet Background In veterinary medicine, conventional radiography is the first–choice method for most diagnostic imaging applications in both small animal and equine...
In veterinary medicine, conventional radiography is the first-choice method for most diagnostic imaging applications in both small animal and equine practice....
Background In veterinary medicine, conventional radiography is the first-choice method for most diagnostic imaging applications in both small animal and equine...
BackgroundIn veterinary medicine, conventional radiography is the first–choice method for most diagnostic imaging applications in both small animal and equine...
BACKGROUND: In veterinary medicine, conventional radiography is the first–choice method for most diagnostic imaging applications in both small animal and...
Abstract Background In veterinary medicine, conventional radiography is the first–choice method for most diagnostic imaging applications in both small animal...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 165
SubjectTerms Absorptiometry
Absorptiometry, Photon - methods
Absorptiometry, Photon - veterinary
Algorithms
Aluminum
aluminum alloys
Animals
Artificial intelligence
Bone densitometry
Bone Density
Bone mineral density
Bones
Cancellous bone
Cluster Analysis
Clustering
Clustering Algorithms
Computed digital absorptiometry
copper
Cortical bone
Data mining
Decision making
Distal limbs
General anesthesia
Horse
Horse Diseases - diagnostic imaging
Horses
Long bone
Machine learning
Magnetic resonance imaging
Medical examination
Medical imaging
Medical practices
Medicine
Medicine & Public Health
Methods
Osteoarthritis
Radiography
Radiological signs
Software
Tomography
Transgenics
Ultrasonic imaging
veterinary clinics
Veterinary medicine
Veterinary Medicine/Veterinary Science
X-radiation
Zoology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1Nb9Mw1BrbATggGF-FgYyExIFFS23HcQ4IbWjThLQKAUO7Rf5sJ7pktKlQb_wCLvxDfgnvuUm3glTRS6T6JXHet-33QchLrYWyRRCJzn2eCIytUUaLhHmtrHD9Ig-4NXAykMen4v1ZdrZBBl0uDIZVdjoxKmpXW9wj3-MMk37BuBdvL78l2DUKT1e7Fhq6ba3g3sQSYzfIFsPKWJtk6-Bw8OFjp5uFAOvbpc4ouTcFawdaGlu6gmsD88xWzFOs4v-vrr5mrP4OpFyept4mN2fVpZ5_1-PxNYN1dJfcaT1Nur9gjXtkw1fbZPsLhr_EHFx60h6r3yc_P8VuOEAiWgfqMKa9mdNul4HChZ79_vFroue0mRlPpz5GS08peLzULvpCOOrOh9iBhGozrSeoiS58A685r-ioxkgRijH2QwoeJ_0KT7vwYCWpHc-mcUZDqsdDQHgzunhATo8OP787TtpGDYmVLG8SyYLCsvdAXe6KIG0h875xaQi5YcIVFnwMCz8Oay3LTcpCMDx47iRLVcgZf0g2q7ryjwnlzLhCCQ5ehhM6y8E9dbmWxhgWsoKpHnnd0ae8XNTjKOM6RslyQc0SqFlGapZZjxwgCZeQWEs7_lFPhmUrmqXCRhewqkp9ZoWUVnsTpEo10woWo5z1yCtkgBIlHqhsdZu4ABPG2lnlPnx7oVJWAOTOCiRIql0d7liobDXFtLzi6x55sRzGOzH6rfL1DGD6eY6Wqc_WwLB4iKxkthYGMC5BBnrk0YJzl6gRMcuaA4LVCk-v4G51pDofxXrkfXAqM4EP3e3Y_-r71hFndyki_0HLJ-ux95TcYlGOedLnO2Szmcz8M_AXG_O8VQJ_APZ-a5k
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFLVgEK8FgvIqDMhISCyYaBLbcZzlMGI0Qho2MKhiY9mO3Va0yahJhbrjC9jwh3wJ127SaQBV0E2l-MZJfHwftu8DoZdKMWFyxyKV2Sxi3rdGaMUiYpUwrEjyzPmtgbP3_PScvRulozZNjo-F2T6_TwQ_rEEfgRz1RVfB-ICe0qvoGigpHg5m-XEndRkDvdoFxfz1vp7iCfn5_5TCW2rodxfJzTnpbXRzWV6o1Vc1m22popO76E5rQ-KjNej30BVbDtCNs_aUfIAGn7yPSwi0xZdXr3-uwhb6ffT9Qyh-A4jgyuHCu7A3K9xtKmD4w6Of334s1Ao3S21xbYNzdI3BwMVmXQaiwMV07AuOYKXrauEFz9w28MBpiSeVdwzB3qV-jMHAxF-gt7kFpYjNbFmHdxtjNRtXi2kzmT9A5ydvPx6fRm1dhshwkjURJ074LPcAJi1yx03Os0QXsXOZJqzIDZgUBn4UllaG6pg4p6mztOAkFi4j9CHaK6vSPkaYEl3kglEwKgqm0gys0SJTXGtNXJoTMUSvO9DkxTr9hgzLFsHlGmIJEMsAsUyH6I3HdUPpU2eHCzCjZMuJUvi6FrCIim1qGOdGWe24iBVRAtaelAzRKz8rpGdwgN6oNk4BXtinypJH8O25iEkOlPs9SmBM02_u5pVsBUMtKfGx62Cj5kP0YtPs7_TObqWtlkCTZJlXRAnZQUPCmbHg6U4aGHEOjDFEj9bTeTM0LARVUxhg0ZvovbHrt5TTSUg_noANmTLf6UHHE5fftwucgw3f_AOWT_6v96foFgnMTqOE7qO9ZrG0z8BcbPTzICd-AVuGZEM
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagewAeuIxbYSAjIfHAsiW24ziPBTFNSJuQoGg8RbZjt9XaZGoSofLEL-CFf8gv4dhJSztQNfpSqT5J4-Nz-RyfC0IvpWRCp5YFMjFJwFxsjVCSBcRIoVkepYl1rwZOTvnxkL0_i8-6MjkuF2b9_D4S_LACfwR21DVdBfABd4qvox0eA-7uoZ3h6YfBlzbjkQeuouUyK-afF254Hl-g_28zvOaHLsdIrg5Kb6EbTXEhF1_ldLrmi47utE2NKl_C0IWgnB80tTrQ3y4VeLzaNO-i2x0kxYNWhu6ha6bYRbufXZyMT9bFJ935-33046NvmwNriUuLcxf8Xi_w8nUEhi989uv7z7lc4LpRBlfGh1VXGKAx1m0DiRznk5FrVYKlqsq5M1kzU8PfTAo8Ll1ICXbB-CMM0BSfw91mBtwp1tOm8k80wnI6KueTejx7gIZH7z69PQ66jg6B5iSpA06scPXxQQxonlquU55EKg-tTRRheaoBjGj4UNiUaapCYq2i1tCck1DYhNCHqFeUhXmMMCUqTwWjAEdyJuMEcGyeSK6UIjZOieij18vVzi7awh2Z3_AInrXczoDbmed2FvfRGycQK0pXdNv_AIuUdTqcCdcRA7ZfoYk141xLoywXoSRSwK6Vkj565cQpc6YBZEbLLsMBHtgV2coGMPdUhCQFyr0NSlBpvTm8FMisMylVRonLegd0m_bRi9Wwu9KFyRWmbIAmShLnwiKyhYb402bB4600wHEOULWPHrV6sGIN8-nYFBgsNjRkg3ebI8Vk7AuXR4A-Y-Zuur9Upj_z27Y4-yuFu8JaPvk_8qfoJvF6R4OI7qFePW_MMwCatXreWZjfych2bA
  priority: 102
  providerName: Unpaywall
Title Selection of density standard and X–ray tube settings for computed digital absorptiometry in horses using the k–means clustering algorithm
URI https://link.springer.com/article/10.1186/s12917-025-04591-5
https://www.ncbi.nlm.nih.gov/pubmed/40082938
https://www.proquest.com/docview/3201564359
https://www.proquest.com/docview/3177153812
https://www.proquest.com/docview/3200278865
https://www.proquest.com/docview/3206206976
https://pubmed.ncbi.nlm.nih.gov/PMC11905476
https://doi.org/10.1186/s12917-025-04591-5
https://doaj.org/article/803157470e5c466caebf680a2a889932
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1746-6148
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044976
  issn: 1746-6148
  databaseCode: RBZ
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1746-6148
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044976
  issn: 1746-6148
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1746-6148
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044976
  issn: 1746-6148
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1746-6148
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044976
  issn: 1746-6148
  databaseCode: ABDBF
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1746-6148
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044976
  issn: 1746-6148
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1746-6148
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044976
  issn: 1746-6148
  databaseCode: M~E
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1746-6148
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044976
  issn: 1746-6148
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1746-6148
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044976
  issn: 1746-6148
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1746-6148
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044976
  issn: 1746-6148
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1746-6148
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044976
  issn: 1746-6148
  databaseCode: AAJSJ
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access
  customDbUrl:
  eissn: 1746-6148
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044976
  issn: 1746-6148
  databaseCode: C6C
  dateStart: 20050112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PjxIxFG90PagHo-s_dCU1MfHgTpZpO23nCGQ3G5Mlm1UMepm0nRaIMGxgiOHmJ_DiN_ST-NoZEDRBD3KAQN8MbX_vX6ev7yH0SikmTepYpIQVEfOxNVIrFhGrpGF5nArnHw1c9Ph5n70dJIOtUl8-JqxKD1xN3In0ZQjA523ZxDDOjbLacdlSRElYKtCgfVsyXS-mKh3MGFjZ9REZyU8WYNVAG_vSreDCQH-SHTMUsvX_qZO3jNLvAZObXdO76PayuFarL2oy2TJMZ_fRvdqjxO1qJA_QDVscosMPPswlnLXFF_X2-UP07V2oegNQ4JnDuY9dL1d4_TQBwwce_Pj6fa5WuFxqixc2REUvMHi22FT1H3Kcj4e-0ghWejGbe40ztSX8zbjAo5mPCME-ln6IwbPEn-FuUwvWEJvJchF6NMRqMpzNx-Vo-gj1z07fd8-juiBDZDgRZcSJkz69PaBI89Rxk3IR67zlnNCE5akBX8LAi8KaylDdIs5p6izNOUDkBKGP0UExK-xThCnReSoZBW8iZyoR4IbmQnGtNXFJSmQDvVnjk11XeTeysF6RPKvQzADNLKCZJQ3U8RBuKH3O7PADcFJWc1L2N05qoNeeATIv2YCyUfUBBeiwz5GVtWHsqWyRFCiPdihBIs1u85qFslojLDJK_KF1cE7TBnq5afZX-ii3ws6WQBML4S1QTPbQkLBZLHmylwZmnIMMNNCTinM3U8PCaWoKEyx3eHpn7nZbivEo5B2PwXlMmL_p8Zr9f41vHzjHGxH5Byyf_Q8sn6M7JEg7jWJ6hA7K-dK-AO-x1E10UwxEE93qnPYur-Bbl3ebQXnA-1XnE7T0e5ftjz8BPO5yxQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFwQFBegQKLBOJArSbr9Xp9qFALrVr6EIIW9bbsM61I7BA7qnLjF3Dh__Bj-CXMbuy0ASni0lwieSeOvTM738zuPBB6ISXlOnM0kqlNI-pja7iSNCJWck1NJ0ud3xo4PGK7J_T9aXK6gH41uTA-rLLRiUFRm0L7PfL1mPikXwD37M3gW-S7RvnT1aaFhqxbK5iNUGKsTuzYt-MLcOHKjb13wO-XhOxsH7_djeouA5FmJK0iRhz3Ndvh0WKTOaYzlnaUaTuXKkJNpgEgNXxicBR0rNrEORU7GxtG2tylvvABQMASjWkGzt_S1vbRh48NFlC4xppUHc7WS0BXQAXfQhZMKZiXZAYOQ9eAf7HhCjj-Hbg5Pb29iZZH-UCOL2SvdwUgd26jW7VlizcnongHLdh8Ba189uE2IecXH9bH-HfRj0-h-w6IBC4cNj6GvhrjZlcDwxc-_f3951COcTVSFpc2RGeXGCxsrCd9KAw2513f8QRLVRZDr_n6toK_Oc_xWeEjU7CP6e9isHDxV7hb3wIqY90bleGJulj2usDg6qx_D51cC8vuo8W8yO1DhGOiTMZpDFaNoTJJwRw2qWRKKeKSjPAWet3wRwwm9T9E8Js4ExNuCuCmCNwUSQtteRZOKX3t7nChGHZFrQoE9401wItr20RTxrS0yjHelkRycH5j0kKvvAAIr2GAy1rWiRLwwL5Wl9iEd894m2RAuTpDCZpBzw43IiRqzVSKy3XUQs-nw_6XPtout8UIaDpp6pGwQ-bQkHBozVkylwZmnMEaaKEHE8mdTg0NWd0xTDCfkemZuZsdyc_PQv3zDhixCfU3XWvE__L95jFnbbpE_oOXj-bP3jO0vHt8eCAO9o72H6MbJKzpOOrEq2ixGo7sE7BVK_W0VggYfbluHfQHiAWotQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgEQscEJRXYQEjIXFgo01tx3GOS6FaHrtCgkUVF8t27LaiTao2FeqNX8CFf8gvYew03RbQCnqpFE-cxOOZ-WzPA6GnSjFhMscildo0Yt63RmjFImKVMCzvZKnzWwPHJ_zolL3pJ_2NKP7g7d4cSdYxDT5LU1EdTHNXi7jgB3OwUqBdfSlWgCTQf3IRXWJg3XwNgy7vNrqYMbC2TajMX-_bMkcha_-funnDOP3uOLk-Pb2GriyKqVp-VePxhoHq3UDXV8gSH9ZT4Sa6YIsW2j1enZ23UOuT93wJ4bf47Orlz2XYWL-Fvn8IJXGAT7h0OPeO7dUSN1sNGP5w_-e3HzO1xNVCWzy3wWV6jgH2YlMXh8hxPhr4MiRY6Xk58-poYit44KjAw9K7i2DvaD_AADvxF-htYsFUYjNezMO7DbAaD8rZqBpObqPT3quP3aNoVa0hMpykVcSJEz73PbCY5pnjJuNpR-exc6kmLM8MAA0DPwoLLkN1TJzT1FmacxILlxJ6B-0UZWHvIUyJzjPBKECNnKkkBYyap4prrYlLMiLa6HnDNDmtk3LIsJgRXNYslsBiGVgskzZ64fm6pvQJtcOFcjaQK_mUwle7gKVVbBPDODfKasdFrIgSsCKlpI2e-VkhvdgD641aRS_AC_sEWvIQvj0TMcmAcm-LEsTVbDc380qu1MVcUuIj2gG5Zm30ZN3s7_QucIUtF0DTSVNvnjrkHBoSTpIFT86lgRHnIBhtdLeezuuhYSHUmsIAi62JvjV22y3FaBiSkncAWSbMd7rfyMTZ953HnP213PwDL-__X--P0e77lz357vXJ2wfoKglyT6MO3UM71WxhHwKerPSjoDJ-AX9Fb3k
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagewAeuIxbYSAjIfHAsiW24ziPBTFNSJuQoGg8RbZjt9XaZGoSofLEL-CFf8gv4dhJSztQNfpSqT5J4-Nz-RyfC0IvpWRCp5YFMjFJwFxsjVCSBcRIoVkepYl1rwZOTvnxkL0_i8-6MjkuF2b9_D4S_LACfwR21DVdBfABd4qvox0eA-7uoZ3h6YfBlzbjkQeuouUyK-afF254Hl-g_28zvOaHLsdIrg5Kb6EbTXEhF1_ldLrmi47utE2NKl_C0IWgnB80tTrQ3y4VeLzaNO-i2x0kxYNWhu6ha6bYRbufXZyMT9bFJ935-33046NvmwNriUuLcxf8Xi_w8nUEhi989uv7z7lc4LpRBlfGh1VXGKAx1m0DiRznk5FrVYKlqsq5M1kzU8PfTAo8Ll1ICXbB-CMM0BSfw91mBtwp1tOm8k80wnI6KueTejx7gIZH7z69PQ66jg6B5iSpA06scPXxQQxonlquU55EKg-tTRRheaoBjGj4UNiUaapCYq2i1tCck1DYhNCHqFeUhXmMMCUqTwWjAEdyJuMEcGyeSK6UIjZOieij18vVzi7awh2Z3_AInrXczoDbmed2FvfRGycQK0pXdNv_AIuUdTqcCdcRA7ZfoYk141xLoywXoSRSwK6Vkj565cQpc6YBZEbLLsMBHtgV2coGMPdUhCQFyr0NSlBpvTm8FMisMylVRonLegd0m_bRi9Wwu9KFyRWmbIAmShLnwiKyhYb402bB4600wHEOULWPHrV6sGIN8-nYFBgsNjRkg3ebI8Vk7AuXR4A-Y-Zuur9Upj_z27Y4-yuFu8JaPvk_8qfoJvF6R4OI7qFePW_MMwCatXreWZjfych2bA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+density+standard+and+X-ray+tube+settings+for+computed+digital+absorptiometry+in+horses+using+the+k-means+clustering+algorithm&rft.jtitle=BMC+veterinary+research&rft.au=Turek%2C+Bernard&rft.au=Pawlikowski%2C+Marek&rft.au=Jankowski%2C+Krzysztof&rft.au=Borowska%2C+Marta&rft.date=2025-03-13&rft.eissn=1746-6148&rft.volume=21&rft.issue=1&rft.spage=165&rft_id=info:doi/10.1186%2Fs12917-025-04591-5&rft_id=info%3Apmid%2F40082938&rft.externalDocID=40082938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-6148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-6148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-6148&client=summon