Application of deep learning models in gastric cancer pathology image analysis: a systematic scoping review

Background Accurate diagnosis and prognosis stratification of gastric cancer (GC) are crucial for effective treatment. However, traditional histopathological image analysis relies on the subjective judgment of pathologists, which is time-consuming and prone to errors. The emergence of deep learning...

Full description

Saved in:
Bibliographic Details
Published inBMC cancer Vol. 25; no. 1; pp. 1257 - 19
Main Authors Xia, Sijun, Xia, Yuanze, Liu, Ting, Luo, Yiming, Pang, Patrick Cheong-Iao
Format Journal Article
LanguageEnglish
Published London BioMed Central 01.08.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2407
1471-2407
DOI10.1186/s12885-025-14662-3

Cover

More Information
Summary:Background Accurate diagnosis and prognosis stratification of gastric cancer (GC) are crucial for effective treatment. However, traditional histopathological image analysis relies on the subjective judgment of pathologists, which is time-consuming and prone to errors. The emergence of deep learning (DL) models provides new ways to automate and improve the analysis of GC pathology images. This systematic review aims to evaluate the current application, challenges, and future directions of DL in GC pathology image analysis. Methods The study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines and searched four databases: PubMed, Scopus, Web of Science, and IEEE Xplore (as of June 19, 2025). Results The initial search identified 520 articles, and 22 studies that met the inclusion criteria were finally included. The results show that DL models have performed excellently in GC detection, histological classification, and prognosis prediction. Some models even reached an accuracy of over 95% in GC detection. Convolutional neural networks (CNN) are the most commonly used DL models. However, current studies still have limitations, such as limited dataset size, lack of external validation, and insufficient data diversity. The applicability to different types and stages of GC is also unclear. Conclusions Future research must build larger, more diverse, and more representative datasets. These should cover a wider range of GC types and stages, and undergo rigorous clinical validation. This will help fully realize the potential of DL in GC pathology image analysis and ultimately improve clinical practice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ISSN:1471-2407
1471-2407
DOI:10.1186/s12885-025-14662-3