A novel Q-learning algorithm based on improved whale optimization algorithm for path planning
Q-learning is a classical reinforcement learning algorithm and one of the most important methods of mobile robot path planning without a prior environmental model. Nevertheless, Q-learning is too simple when initializing Q-table and wastes too much time in the exploration process, causing a slow con...
Saved in:
| Published in | PloS one Vol. 17; no. 12; p. e0279438 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
27.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0279438 |
Cover
| Summary: | Q-learning is a classical reinforcement learning algorithm and one of the most important methods of mobile robot path planning without a prior environmental model. Nevertheless, Q-learning is too simple when initializing Q-table and wastes too much time in the exploration process, causing a slow convergence speed. This paper proposes a new Q-learning algorithm called the Paired Whale Optimization Q-learning Algorithm (PWOQLA) which includes four improvements. Firstly, to accelerate the convergence speed of Q-learning, a whale optimization algorithm is used to initialize the values of a Q-table. Before the exploration process, a Q-table which contains previous experience is learned to improve algorithm efficiency. Secondly, to improve the local exploitation capability of the whale optimization algorithm, a paired whale optimization algorithm is proposed in combination with a pairing strategy to speed up the search for prey. Thirdly, to improve the exploration efficiency of Q-learning and reduce the number of useless explorations, a new selective exploration strategy is introduced which considers the relationship between current position and target position. Fourthly, in order to balance the exploration and exploitation capabilities of Q-learning so that it focuses on exploration in the early stage and on exploitation in the later stage, a nonlinear function is designed which changes the value of
ε
in
ε
-greedy Q-learning dynamically based on the number of iterations. Comparing the performance of PWOQLA with other path planning algorithms, experimental results demonstrate that PWOQLA achieves a higher level of accuracy and a faster convergence speed than existing counterparts in mobile robot path planning. The code will be released at
https://github.com/wanghanyu0526/improveQL.git
. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0279438 |