Comparative plastome analysis of the sister genera Ceratocephala and Myosurus (Ranunculaceae) reveals signals of adaptive evolution to arid and aquatic environments

Background Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive ev...

Full description

Saved in:
Bibliographic Details
Published inBMC plant biology Vol. 24; no. 1; p. 202
Main Authors Long, Jing, He, Wen-Chuang, Peng, Huan-Wen, Erst, Andrey S., Wang, Wei, Xiang, Kun-Li
Format Journal Article
LanguageEnglish
Published London BioMed Central 20.03.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2229
1471-2229
DOI10.1186/s12870-024-04891-2

Cover

Abstract Background Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus , as well as Ficaria verna . By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. Results Owing to the significant contraction of the boundary of IR A /LSC towards the IR A , plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16 , one copy of rpl2 and rpl23 , and one intron of rpoC1 and rpl16 , and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP . A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala , seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. Conclusions The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus . The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus , respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
AbstractList Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats.BACKGROUNDExpansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats.Owing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma.RESULTSOwing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma.The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.CONCLUSIONSThe plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
Background Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. Results Owing to the significant contraction of the boundary of IR.sub.A/LSC towards the IR.sub.A, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. Conclusions The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats. Keywords: Adaptive evolution, Phylogenomics, Plastome, Positive selection, Ranunculaceae, Structural variation
BackgroundExpansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats.ResultsOwing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma.ConclusionsThe plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
Abstract Background Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. Results Owing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. Conclusions The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. Owing to the significant contraction of the boundary of IR.sub.A/LSC towards the IR.sub.A, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. Owing to the significant contraction of the boundary of IR /LSC towards the IR , plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
BACKGROUND: Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. RESULTS: Owing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. CONCLUSIONS: The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
Background Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus , as well as Ficaria verna . By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. Results Owing to the significant contraction of the boundary of IR A /LSC towards the IR A , plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16 , one copy of rpl2 and rpl23 , and one intron of rpoC1 and rpl16 , and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP . A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala , seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. Conclusions The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus . The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus , respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
ArticleNumber 202
Audience Academic
Author Long, Jing
Peng, Huan-Wen
Xiang, Kun-Li
Wang, Wei
He, Wen-Chuang
Erst, Andrey S.
Author_xml – sequence: 1
  givenname: Jing
  surname: Long
  fullname: Long, Jing
  organization: State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China National Botanical Garden
– sequence: 2
  givenname: Wen-Chuang
  surname: He
  fullname: He, Wen-Chuang
  organization: Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences
– sequence: 3
  givenname: Huan-Wen
  surname: Peng
  fullname: Peng, Huan-Wen
  organization: State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China National Botanical Garden
– sequence: 4
  givenname: Andrey S.
  surname: Erst
  fullname: Erst, Andrey S.
  organization: Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences
– sequence: 5
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: wangwei1127@ibcas.ac.cn
  organization: State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China National Botanical Garden
– sequence: 6
  givenname: Kun-Li
  surname: Xiang
  fullname: Xiang, Kun-Li
  email: kunlixiang@ibcas.ac.cn
  organization: State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38509479$$D View this record in MEDLINE/PubMed
BookMark eNqNkttu1DAQhiNURA_wAlwgS9y0F1t8yukKVSsOKxUhFbi2JskkmyqxUztZ2PfhQZndLWUXIUCR7JHzze-Z-X0aHVlnMYqeC34pRJa8CkJmKZ9xqWdcZ7mYyUfRidApBVLmR3vxcXQawi3nIs10_iQ6VlnMc53mJ9H3uesH8DC2K2RDB2F0PTKw0K1DG5ir2bhERuGInjVo0QOb0zK6EocldEBsxT6sXZj8FNj5DdjJllMHJQJeMI8rhC6QQGM3O-lBBcP2Nly5bhpbZ9noGPi22krB3UTFlAztqvXO9mjH8DR6XFM2Prvfz6Ivb998nr-fXX98t5hfXc_KRCbjLC0AZaEVl0pILqpaVUoXKtNS61hIBRzSJJWoeCHyOMvTNKlVUaAuueQgc3UWLXa6lYNbM_i2B782DlqzPXC-MeCpuA5NknBeZErmqeZ0o4a4zOpKl1mSVEohJy2105rsAOuv0HUPgoKbjX9m558h_8zWPyMp6_Uua5iKHquSuvfQHZRy-Me2S9O4FWnmseKZJoXzewXv7iYMo-nbUGLXgUU3BaNErBKZCiH_iVJzStCb4TGhL39Db93kN5YaxVWaJVqpPaoBGlFra0c1lhtRc0VMrjPJN5O5_ANFX4V9W9ITr1s6P0i4OEggZsRvYwNTCGbx6eaQfbE_wIfJ_XzxBMgdUHoXgsf6_2y5NzMQbBv0v9r_S9YP0wghWA
Cites_doi 10.3390/agronomy10091405
10.1093/molbev/msm088
10.1093/bioinformatics/btq224
10.1016/0031-0182(94)90251-8
10.1126/sciadv.aax1697
10.1130/G37165.1
10.1111/j.1365-313X.2011.04541.x
10.3389/fpls.2018.00689
10.3389/fgene.2019.00444
10.1186/s13059-020-02154-5
10.1126/science.aba6853
10.1130/G36317.1
10.1093/bioinformatics/btu033
10.1086/284689
10.1186/1471-2229-7-57
10.7717/peerj.7596
10.1093/bioinformatics/btu181
10.1093/nar/gkz238
10.1186/s12870-020-02415-2
10.1093/dnares/11.4.247
10.1111/j.1365-2699.2008.02071.x
10.1186/s13007-019-0435-7
10.3389/fgene.2021.674783
10.1007/s11430-015-5124-4
10.1038/s41467-021-27054-5
10.1093/sysbio/syy032
10.1186/s12864-022-08964-0
10.2307/2399690
10.1038/s41561-022-00895-5
10.1093/nar/gkl315
10.1038/s41598-018-31938-w
10.1038/srep18919
10.1038/s41467-021-24528-4
10.1016/j.gene.2004.02.048
10.1002/tax.593011
10.1186/s12864-015-1498-0
10.1111/jse.12649
10.1093/oxfordjournals.molbev.a004152
10.1093/aob/mcac128
10.1038/srep27259
10.1093/nar/gkg296
10.1126/science.1116412
10.1016/j.ympev.2021.107229
10.3389/fpls.2022.1014236
10.1111/j.2041-210X.2011.00169.x
10.1371/journal.pcbi.1003537
10.1186/s12870-022-03906-0
10.3389/fpls.2018.01989
10.4161/fly.19695
10.1016/0168-9525(89)90111-X
10.1038/s42003-019-0531-2
10.1016/j.ympev.2019.02.024
10.3390/ijms231710151
10.1007/s11103-011-9762-4
10.1111/jse.12101
10.1126/sciadv.aaz1346
10.1093/molbev/msx248
10.1093/bioinformatics/bty220
10.1371/journal.pone.0060429
10.3389/fpls.2022.1043740
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X2
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7N
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12870-024-04891-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

Agricultural Science Database


MEDLINE
AGRICOLA


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ, Directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
EISSN 1471-2229
EndPage 202
ExternalDocumentID oai_doaj_org_article_6600b83297404304a5c8fd4c866d33e0
10.1186/s12870-024-04891-2
PMC10953084
A786948200
38509479
10_1186_s12870_024_04891_2
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X2
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESTFP
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IGH
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M0K
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
M7N
PKEHL
PQEST
PQUKI
7X8
7S9
L.6
5PM
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c626t-7bae2b430231201df3d34b3842445123a0a7672e30b19589776f3bbe4c020a293
IEDL.DBID M48
ISSN 1471-2229
IngestDate Tue Oct 14 18:49:25 EDT 2025
Sun Oct 26 03:35:37 EDT 2025
Tue Sep 30 17:09:47 EDT 2025
Thu Oct 02 09:52:49 EDT 2025
Fri Sep 05 08:57:24 EDT 2025
Thu Oct 09 21:52:05 EDT 2025
Mon Oct 20 22:57:04 EDT 2025
Mon Oct 20 17:05:39 EDT 2025
Thu Oct 16 16:17:51 EDT 2025
Wed Feb 19 02:11:12 EST 2025
Wed Oct 01 04:30:16 EDT 2025
Sat Sep 06 07:20:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Adaptive evolution
Plastome
Positive selection
Ranunculaceae
Structural variation
Phylogenomics
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c626t-7bae2b430231201df3d34b3842445123a0a7672e30b19589776f3bbe4c020a293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3037864335?pq-origsite=%requestingapplication%&accountid=15518
PMID 38509479
PQID 3037864335
PQPubID 44650
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_6600b83297404304a5c8fd4c866d33e0
unpaywall_primary_10_1186_s12870_024_04891_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10953084
proquest_miscellaneous_3153627112
proquest_miscellaneous_2973101705
proquest_journals_3037864335
gale_infotracmisc_A786948200
gale_infotracacademiconefile_A786948200
gale_incontextgauss_ISR_A786948200
pubmed_primary_38509479
crossref_primary_10_1186_s12870_024_04891_2
springer_journals_10_1186_s12870_024_04891_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-20
PublicationDateYYYYMMDD 2024-03-20
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC plant biology
PublicationTitleAbbrev BMC Plant Biol
PublicationTitleAlternate BMC Plant Biol
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References BR Green (4891_CR2) 2011; 66
K Katoh (4891_CR52) 2010; 26
H Ao (4891_CR45) 2021; 12
KJ Kim (4891_CR28) 2004; 11
G Raman (4891_CR30) 2022; 13
Z Yang (4891_CR61) 2007; 24
T Zhou (4891_CR14) 2019; 10
R Bouckaert (4891_CR56) 2014; 10
M Anisimova (4891_CR62) 2002; 19
A Farnsworth (4891_CR38) 2019; 5
K Emadzade (4891_CR20) 2010; 59
A Holbourn (4891_CR41) 2015; 43
KG Miller (4891_CR47) 2005; 310
JD Palmer (4891_CR3) 1987; 130
W Wang (4891_CR22) 2016; 6
MS Khan (4891_CR36) 2022; 13
C Gao (4891_CR31) 2019; 9
DS Woodruff (4891_CR48) 2009; 36
K Jabbari (4891_CR34) 2004; 333
Q Zhong (4891_CR37) 2019; 7
Y Zhang (4891_CR29) 2016; 7
A Amiryousefi (4891_CR59) 2018; 34
S Greiner (4891_CR51) 2019; 47
R Tong (4891_CR27) 2022; 23
J Sun (4891_CR39) 2015; 43
J Rozas (4891_CR54) 2017; 34
T Westerhold (4891_CR23) 2020; 369
XJ Qu (4891_CR50) 2019; 15
ZS An (4891_CR43) 2006; 26
W Wang (4891_CR21) 2014; 52
MW Pennell (4891_CR63) 2014; 30
J Li (4891_CR44) 2015; 58
HW Peng (4891_CR9) 2022; 22
M Suyama (4891_CR53) 2006; 34
J Anderson (4891_CR15) 2020; 58
MW Gray (4891_CR1) 1989; 5
S Park (4891_CR6) 2018; 8
T Wan (4891_CR33) 2021; 12
G Zecca (4891_CR17) 2022; 130
YX Sun (4891_CR4) 2013; 8
VA Scobeyeva (4891_CR10) 2021; 12
S Wicke (4891_CR8) 2011; 76
J Chen (4891_CR35) 2020; 20
M Tamura (4891_CR19) 1995
KG Miller (4891_CR46) 2020; 6
S Hu (4891_CR12) 2015; 16
P Cingolani (4891_CR60) 2012; 6
JR McNeal (4891_CR5) 2007; 7
S Han (4891_CR25) 2022; 23
LZ Gao (4891_CR11) 2019; 2
G Raman (4891_CR16) 2020; 10
JJ Jin (4891_CR49) 2020; 21
J Cheng (4891_CR7) 2016; 6
BP Flower (4891_CR42) 1994; 108
LJ Revell (4891_CR64) 2012; 3
WB Fan (4891_CR13) 2018; 9
A Stamatakis (4891_CR55) 2014; 30
DH Mai (4891_CR57) 1978; 28
SN Ziman (4891_CR18) 1989; 76
W Zhai (4891_CR24) 2019; 135
B Kim (4891_CR40) 2022; 15
SE Simmonds (4891_CR26) 2021; 163
A Rambaut (4891_CR58) 2018; 67
AE Vinogradov (4891_CR32) 2003; 31
References_xml – volume: 10
  start-page: 1405
  year: 2020
  ident: 4891_CR16
  publication-title: Agronomy
  doi: 10.3390/agronomy10091405
– volume: 24
  start-page: 1586
  year: 2007
  ident: 4891_CR61
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm088
– volume: 26
  start-page: 1899
  year: 2010
  ident: 4891_CR52
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq224
– volume: 108
  start-page: 537
  year: 1994
  ident: 4891_CR42
  publication-title: Palaeogeogr Palaeoclimatol Palaeoecol
  doi: 10.1016/0031-0182(94)90251-8
– volume: 5
  start-page: eaax1697
  year: 2019
  ident: 4891_CR38
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aax1697
– volume: 43
  start-page: 1015
  year: 2015
  ident: 4891_CR39
  publication-title: Geology
  doi: 10.1130/G37165.1
– volume: 66
  start-page: 34
  year: 2011
  ident: 4891_CR2
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2011.04541.x
– volume: 9
  start-page: 689
  year: 2018
  ident: 4891_CR13
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00689
– volume: 10
  start-page: 444
  year: 2019
  ident: 4891_CR14
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00444
– volume: 21
  start-page: 241
  year: 2020
  ident: 4891_CR49
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02154-5
– volume: 369
  start-page: 1383
  year: 2020
  ident: 4891_CR23
  publication-title: Science
  doi: 10.1126/science.aba6853
– volume: 43
  start-page: 123
  year: 2015
  ident: 4891_CR41
  publication-title: Geology
  doi: 10.1130/G36317.1
– volume: 30
  start-page: 1312
  year: 2014
  ident: 4891_CR55
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 130
  start-page: S6
  year: 1987
  ident: 4891_CR3
  publication-title: Am Nat
  doi: 10.1086/284689
– volume: 7
  start-page: 57
  year: 2007
  ident: 4891_CR5
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-7-57
– volume: 7
  start-page: e7596
  year: 2019
  ident: 4891_CR37
  publication-title: Peer J.
  doi: 10.7717/peerj.7596
– volume: 30
  start-page: 2216
  year: 2014
  ident: 4891_CR63
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu181
– volume: 47
  start-page: W59
  year: 2019
  ident: 4891_CR51
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz238
– volume: 20
  start-page: 199
  year: 2020
  ident: 4891_CR35
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-020-02415-2
– volume: 11
  start-page: 247
  year: 2004
  ident: 4891_CR28
  publication-title: DNA Res
  doi: 10.1093/dnares/11.4.247
– volume: 36
  start-page: 803
  year: 2009
  ident: 4891_CR48
  publication-title: J Biogeogr
  doi: 10.1111/j.1365-2699.2008.02071.x
– volume: 15
  start-page: 50
  year: 2019
  ident: 4891_CR50
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0435-7
– volume: 12
  start-page: 674783
  year: 2021
  ident: 4891_CR10
  publication-title: Front Genet
  doi: 10.3389/fgene.2021.674783
– volume: 58
  start-page: 2113
  year: 2015
  ident: 4891_CR44
  publication-title: Sci China Earth Sci
  doi: 10.1007/s11430-015-5124-4
– volume: 12
  start-page: 6935
  year: 2021
  ident: 4891_CR45
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27054-5
– volume: 28
  start-page: 1
  year: 1978
  ident: 4891_CR57
  publication-title: Abh Staatl Mus Mineral Geol Dresden
– volume: 67
  start-page: 901
  year: 2018
  ident: 4891_CR58
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syy032
– volume: 23
  start-page: 766
  year: 2022
  ident: 4891_CR27
  publication-title: BMC Genomics
  doi: 10.1186/s12864-022-08964-0
– volume: 76
  start-page: 1012
  year: 1989
  ident: 4891_CR18
  publication-title: Ann Mo Bot Gard
  doi: 10.2307/2399690
– volume: 15
  start-page: 203
  year: 2022
  ident: 4891_CR40
  publication-title: Nat Geosci
  doi: 10.1038/s41561-022-00895-5
– volume: 34
  start-page: W609
  year: 2006
  ident: 4891_CR53
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl315
– volume: 8
  start-page: 13568
  year: 2018
  ident: 4891_CR6
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-31938-w
– volume: 6
  start-page: 18919
  year: 2016
  ident: 4891_CR7
  publication-title: Sci Rep
  doi: 10.1038/srep18919
– start-page: 223
  volume-title: Die NatürlichenPflanzenfamilien, vol. 17a IV.
  year: 1995
  ident: 4891_CR19
– volume: 12
  start-page: 4247
  year: 2021
  ident: 4891_CR33
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24528-4
– volume: 333
  start-page: 179
  year: 2004
  ident: 4891_CR34
  publication-title: Gene
  doi: 10.1016/j.gene.2004.02.048
– volume: 59
  start-page: 809
  year: 2010
  ident: 4891_CR20
  publication-title: Taxon
  doi: 10.1002/tax.593011
– volume: 16
  start-page: 306
  year: 2015
  ident: 4891_CR12
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1498-0
– volume: 58
  start-page: 533
  year: 2020
  ident: 4891_CR15
  publication-title: J Syst Evol
  doi: 10.1111/jse.12649
– volume: 19
  start-page: 950
  year: 2002
  ident: 4891_CR62
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a004152
– volume: 130
  start-page: 965
  year: 2022
  ident: 4891_CR17
  publication-title: Ann Bot
  doi: 10.1093/aob/mcac128
– volume: 6
  start-page: 27259
  year: 2016
  ident: 4891_CR22
  publication-title: Sci Rep
  doi: 10.1038/srep27259
– volume: 31
  start-page: 1838
  year: 2003
  ident: 4891_CR32
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg296
– volume: 26
  start-page: 678
  year: 2006
  ident: 4891_CR43
  publication-title: Quatern Sci
– volume: 310
  start-page: 1293
  year: 2005
  ident: 4891_CR47
  publication-title: Science
  doi: 10.1126/science.1116412
– volume: 163
  start-page: 107229
  year: 2021
  ident: 4891_CR26
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2021.107229
– volume: 13
  start-page: 1014236
  year: 2022
  ident: 4891_CR36
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.1014236
– volume: 3
  start-page: 217
  year: 2012
  ident: 4891_CR64
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2011.00169.x
– volume: 10
  start-page: e1003537
  year: 2014
  ident: 4891_CR56
  publication-title: PloS Comput Biol
  doi: 10.1371/journal.pcbi.1003537
– volume: 22
  start-page: 507
  year: 2022
  ident: 4891_CR9
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-022-03906-0
– volume: 9
  start-page: 1989
  year: 2019
  ident: 4891_CR31
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01989
– volume: 6
  start-page: 80
  year: 2012
  ident: 4891_CR60
  publication-title: Fly
  doi: 10.4161/fly.19695
– volume: 5
  start-page: 294
  year: 1989
  ident: 4891_CR1
  publication-title: Trends Genet
  doi: 10.1016/0168-9525(89)90111-X
– volume: 2
  start-page: 278
  year: 2019
  ident: 4891_CR11
  publication-title: Commun Biol
  doi: 10.1038/s42003-019-0531-2
– volume: 135
  start-page: 12
  year: 2019
  ident: 4891_CR24
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2019.02.024
– volume: 23
  start-page: 10151
  year: 2022
  ident: 4891_CR25
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms231710151
– volume: 76
  start-page: 273
  year: 2011
  ident: 4891_CR8
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-011-9762-4
– volume: 7
  start-page: 306
  year: 2016
  ident: 4891_CR29
  publication-title: Front Plant Sci
– volume: 52
  start-page: 551
  year: 2014
  ident: 4891_CR21
  publication-title: J Syst Evol
  doi: 10.1111/jse.12101
– volume: 6
  start-page: eaaz1346
  year: 2020
  ident: 4891_CR46
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaz1346
– volume: 34
  start-page: 3299
  year: 2017
  ident: 4891_CR54
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msx248
– volume: 34
  start-page: 3030
  year: 2018
  ident: 4891_CR59
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty220
– volume: 8
  start-page: e60429
  year: 2013
  ident: 4891_CR4
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060429
– volume: 13
  start-page: 1043740
  year: 2022
  ident: 4891_CR30
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.1043740
SSID ssj0017849
Score 2.418127
Snippet Background Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is...
Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about...
Background Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is...
BackgroundExpansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is...
BACKGROUND: Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is...
Abstract Background Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However,...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 202
SubjectTerms Adaptation
Adaptation (Biology)
Adaptive evolution
Agriculture
Analysis
ancestry
Angiosperms
Aquatic environment
Aquatic habitats
Aridity
Base Sequence
Biomedical and Life Sciences
Botanical research
Ceratocephala
Changing environments
Comparative analysis
Contraction
Dehydrogenases
dry environmental conditions
Environmental aspects
Environmental changes
Evolution
Evolution & development
Evolution, Molecular
evolutionary adaptation
Evolutionary genetics
Ficaria verna
Genes
Genetic aspects
Genetic research
Genome, Plastid - genetics
Genomes
Genomics
Global cooling
Habitats
Introns
Life Sciences
Myosurus
Natural history
Photosynthesis
Phylogenetics
Phylogenomics
Phylogeny
Plant Sciences
plastid genome
Plastids
Plastome
Plastomes
Positive selection
Proteins
Ranunculaceae
Ranunculaceae - genetics
RNA polymerase
Rps7 gene
sea level
selection pressure
species
Structural variation
Tree Biology
Variation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQhQQcEN8NFGQQEiAaNYm9jnNsV1QFqRwKlXqz7MRukZYkbBLQ_h9-KDNONt2A-DhwWmk9m008bzzPsf2GkOfgU8dtFoUm4UXIjYwwpLLQiVzmCSSQSON7yOP34uiUvzubnW2U-sI9Yb08cN9xewIysgHYAe9FeSquZ7l0Bc-lEAVj1s_WI5mtJ1PD-kEqebY-IiPFXhPjel4I-SgExGZxmEzSkFfr_3VM3khKP2-YHFdNb5BrXVnr1Te9WGwkpsNb5ObAKOl-_yS3yRVb3iFXDypgfau75Pv8Ut6b1kCV2-qzpXqQIqGVo8AAaYPOXtJzr0FN5yi0DHmtvtALDbYFPV5VTbfsGvryRJeQCTt8-a7tK4oCUABgittA8BOupwtd-3-zXwdY07aiMCUv_KX0FxQXz-nmCbt75PTwzcf5UThUZghzmAC1YWq0TQzHgkMxMIjCsYJxwySemgMGwXSkU5EmlkUGxWyAYwrHjLE8B3aqgWHcJ1tlVdptQg0KxDuGNU9wPGGGx0XkTJrNitTxVAfk9dpRqu4FOJSfuEihercqcKvyblVJQA7Ql6Mlimf7LwBSaoCU-hukAvIMkaBQHqPE_Tfnumsa9fbDidpPpcg4sCYwejEYuQowkevhOAM8FSpqTSx3JpYQv_m0eQ04NYwfjQJiAQacsVlAno7N-EvcE1faqmuUrzrm5ZB-b8MgoYkkBVIdkAc9hse-YRLFE9MsIHKC7knnTVvKTxdegTxGlcJI8oDsrgPh8t7_5J3dMVj-wZkP_4czH5HriY97Bglhh2y1y84-Bh7Zmid-yPgBbxtqpw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGhwQ8IO4EBjIICRCLlsZu4jwgtFabBtIqVJi0N8uOnQ6pJFnTgPp_-KGc4yZtA2LiqVJ9mrY-t8-X8x1CXoFOM26TwNchNz7XIkCXSvwsSkUaQgIJFO5Dno6jkzP-6XxwvkPGbS0MXqtsY6IL1KZIcY_8AEJtLCB9ssGH8tLHrlF4utq20FBNawXz3lGMXSO7ITJj9cju8Gj8ebI-V4gFT9rSGREdVH085_MhT_lgyUnfDzvpybH4_x2rt5LVnxcp16ept8iNOi_V8qeazbYS1vEdcrtBmvRwZRp3yY7N75HrwwLQ4PI--TXa0H7TEiD0ovhuqWooSmiRUUCGtEIjmNOp46amIyRghnxXXqiZAllDT5dFVc_rir6ZqBwyZI2b8sq-pUgMBYZN8XoIvsLzlFGl-zb7ozF3uigoLNWNe5S6RNLxlG5X3j0gZ8dHX0cnftOxwU9hYbTwY61sqDk2IuoDsjAZM4xrJrCaDpAFU4GKozi0LNBIcgPYM8qY1pangFoVII-HpJcXuX1MqEbi-IxhLxSMM0zzvgkyHScDE2c8Vh551ypKlitiDukWNCKSK7VKUKt0apWhR4aoy7Ukkmq7N4r5VDY-KiMAfxoiHCyxkAmNq0EqMsNTEUWGMRt45CVagkTajBzv5UxVXVXy45eJPATbTDigKRB63QhlBdhEqpoyB_hXyLTVkdzrSIJfp93h1uBkE1cqufECj7xYD-Mn8a5cbou6kq4bmaNJ-rcMg0QXhTGAbY88Wtnwem6YQFLFOPGI6Fh3Z_K6I_m3C8dM3kf2wkBwj-y3jrD57VdpZ3_tLP-hzCdXz8xTcjN0Hs0gBeyR3mJe22eAHBf6eRMOfgOr7moW
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQQII9IBgwAgMZhASIRaSx4ziPXcU0kMbDoNLeLDtxOqSSlFxA_T_8UM5xk6zhJniqVJ-4ac7tc3zOZ0KegU5zbpPANyHPfG5kgC6V-LlIZRpCAgk0voc8fS9O5vzdeXTeNYXVfbV7vyXpIrVzayle1xPck_Mhp_hgdcnEh8B7NUI6L7DieTgd9g5iyZO-Pea3141SkGPq_zUebyWkn4slhx3TXXK9LVZ6_U0vl1tJ6fgWudmhSTrdqP82uWKLPbI7XVQdo4bdI9eOSsB_6zvk--yS6JuuADQ35WdLdUdKQsucAhakNaq9ogvHRk1nSLkMGW51oZcaZDN6ui7rtmpr-uJMF5ATW3wNr-1LilRQYMoUC0LwE-bTmV65X7NfOwOnTUlhcZ65qfQXpBlP6Xav3V0yP37zcXbid2c0-CkshRo_NtqGhuPRQxPAElnOMsYNk9g_B1iC6UDHIg4tCwzS2gDaFDkzxvIUcKoGrHGP7BRlYe8TapAqPmd4-glGFmb4JAtyEydRFuc81h551atNrTZUHMotYaRQGyUrULJySlahR45Qs4Mk0mi7L8pqoTqvVALgnoGYBosq5D7jOkplnvFUCpExZgOPPEW7UEiUUWAlzkK3da3efjhT01iKhAN-AqHnnVBegoWkumtsgH-F3FojyYORJHhyOh7uzU91kaRWADFAgDMWeeTJMIxXYnVcYcu2Vu78MUeM9GcZBqlNhDHAa4_sbyx6eDZMIo1inHhEjmx99PDGI8WnC8dFPkG-wkByjxz2bnF573_TzuHgOv-gzAf_N_tDciN0_s4gCRyQnaZq7SPAjo157ELFD1RfZTU
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamDQl44H4JDGQQEiCWLo1dJ3nsKqaB1AkNKo0ny06cbqJLQtKAyu_hh3KOk3bNuAgkniLFJ05zfC6fa5_PhDyDMU25iTxX-zxxuQ49dKnITUUcxj4kEE_h_5DjQ3Ew4W-PB8cbZLyshdFncTGDPpGCqLdegT5rChzwAAVT7hZJ2vh7KHarPi7WuZBsXDDHqO9CRN4SA4Dmm2Rrcvhu-NFWGAXQ4PvRsnDmlw92kpPl8P85Uq-lqovbKFdrqVfJ5Tor1OKrms3W0tX-dZItP7TZpfKpV891L_52gQPyv2niBrnWAls6bCzxJtkw2S1yaS8H8Lm4Tb6PzlnGKbwQIOeZoaplRKF5SgGI0gptrqRTS4VNR8j3DOm1OFEzBbIJHS_yqi7rir44Uhkk5BrXAJR5SZGHCvyI4m4UvEJ_KlGFfZv50noXnedUlaeJ7Up9Ro7zmK4X-t0hk_3XH0YHbntAhBvDPGzuBloZX3M896gPQCZJWcK4ZiEW7wGQYcpTgQh8wzyNnDoAdUXKtDY8BpCsAOjcJZtZnpn7hGrkqU8ZHr2CYY1p3k-8VAfRIAlSHiiHvFpahiwaHhBp50-hkI3aJahdWrVL3yF7aDwrSeTwtjfycirbkCAFYE0NARVmdEi8xtUgDtOEx6EQCWPGc8hTND2JLB0ZbgOaqrqq5Jv3R3IYhCLiAN5A6HkrlOZgG7Fqqyrgq5DYqyO53ZGEMBJ3m5cWLtswVknANyDAGRs45MmqGZ_ErXmZyetK2sPPLCvT72UY5FXhB4DtHXKvcZqVbliIHI5B5JCw404d5XVbstMTS4TeR7JEL-QO2Vl63vlv_9Po7Ky88y8G88G_iT8kV3zrgQwy0DbZnJe1eQTAda4ft-HoB73YkLg
  priority: 102
  providerName: Unpaywall
Title Comparative plastome analysis of the sister genera Ceratocephala and Myosurus (Ranunculaceae) reveals signals of adaptive evolution to arid and aquatic environments
URI https://link.springer.com/article/10.1186/s12870-024-04891-2
https://www.ncbi.nlm.nih.gov/pubmed/38509479
https://www.proquest.com/docview/3037864335
https://www.proquest.com/docview/2973101705
https://www.proquest.com/docview/3153627112
https://pubmed.ncbi.nlm.nih.gov/PMC10953084
https://bmcplantbiol.biomedcentral.com/counter/pdf/10.1186/s12870-024-04891-2
https://doaj.org/article/6600b83297404304a5c8fd4c866d33e0
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: KQ8
  dateStart: 20010901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ, Directory of open access journals
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: A8Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: M48
  dateStart: 20010901
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2229
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017849
  issn: 1471-2229
  databaseCode: U2A
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELbGimB8QLwTGJVBSIBYII1dJ_mAUFttGkitpkGl8smyE6dDKknXNED_Dz-UOzfpC2yIL01TX9LEd-d7_PYcIc9Bpyk3kedqnycu16GHLhW5qYjD2IcA4ikch-wPxPGQfxy1RzukTndUVWBxYdcO80kNZ5M3P88X78Hh31mHD8XbooWzdS5EGxfsMWq50CQ3IFJFmMqhz9ezCkHIo3rjzIXX7ZFrLERKOVzZtRGnLJ3_3432RtT6c0Xlalr1BrleZlO1-KEmk43IdXSL3KwgJ-0sbeQ22THZHXK1mwMsXNwlv3pr_m86BSw9z78ZqiquEpqnFCAiLdAaZnRsSappD5mYIfBNz9REgWxC-4u8KGdlQV-eqgxCZYmj88q8osgQBTVNcZ0IHuF-KlFT-2_me2X3dJ5T6LMn9lbqHNnHY7q5Be8eGR4dfu4du1XqBjeGHtLcDbQyvuaYkagFECNJWcK4ZiFuqwOIwZSnAhH4hnka2W4AhIqUaW14DPBVAQS5T3azPDMPCdXIIJ8yTIqCDQ7TvJV4qQ6idhKkPFAOeV0rSk6XDB3S9mxCIZcalqBhaTUsfYd0UZcrSWTXtj_ks7GsnFUKQIEamjroayElGlftOEwTHodCJIwZzyHP0BIk8mdkuEBnrMqikB8-ncpOEIqIA6wCoReVUJqDTcSq2u8Ab4WUW1uS-1uS4ODxdnFtcLL2DwnIAwQ4Y22HPF0V45W4aC4zeVlIm5bM8iVdLsMg4gk_ANTtkAdLG17VTe0KDgm3rHur8rZLsq9nlqK8hTSGXsgdclA7wvrZ_6Wdg5Wz_IcyH136yI_Jnm_9mkEY2Ce781lpngB6nOsmuRKMgiZpdA8HJ6dw1hO9ph2JadrGAj6HPnxvDAcnnS-_ATbBbZQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamDWnwgLgTGGAQCBCLlsZuLg8TWsumlq0VKpu0N2MnTjepJF3TMPX_8Dv4bZzjJm0DYuJlT5Xik7T1uXzHsc93CHkNOk24Dh1buTy2uQocdKnQTrwoiFwAEEfie8he3-uc8M-nzdM18quqhcFjlVVMNIE6ziJ8R74DodYPAD5Z8-P4wsauUbi7WrXQkGVrhXjXUIyVhR2HenYJS7h8t_sJ9P3GdQ_2j9sdu-wyYEeQzE9tX0ntKo7NcxqAhnHCYsYVC7ACDNCQSUf6nu9q5igkZoF8yUuYUppHkGlJF8mYAAI2OOMhLP42Wvv9L4PFPoYf8LAq1Qm8nbyB-4o24KINnhM2bLcGh6ZrwN_YsAKOfx7cXOze3iKbRTqWs0s5Gq0A5MEdcrvMbOne3BTvkjWd3iM3Whlkn7P75Gd7STNOx5CyT7PvmsqSEoVmCYVMlOZodBM6NFzYtI2Ez4Cv4zM5kiAb094sy4tJkdN3A5kCIhe4CSD1e4pEVOBIFI-j4Cc8T8ZybL5N_yjdi04zKifnsXmUvECS84iuVvo9ICfXoruHZD3NUv2YUIVE9QnD3isY15jijdhJlB82Yz_hvrTIh0pRYjwnAhFmARV4Yq5WAWoVRq3CtUgLdbmQRBJvcyGbDEUZE4QHyaaCiApLOmRe47IZBUnMo8DzYsa0Y5FXaAkCaTpSPAc0lEWei-7XgdgDXwg5ZG8g9LYUSjKwiUiWZRXwr5DZqya5VZOEOBLVhyuDE2Ucy8XS6yzycjGMd-LZvFRnRS5M9zNDy_RvGQbA6rk-JPcWeTS34cXcsABJHP3QIkHNumuTVx9Jz88ME3oD2RKdgFtku3KE5W-_SjvbC2f5D2U-uXpmXpDNznHvSBx1-4dPyU3XeDcD-Nki69NJoZ9B1jpVz8vQQMm3645GvwGIE6RK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQQMAeEIxbYIBBSIBYtDR2HeexK1QbsAkNJu3NshOnQypJaBJQ_w8_lHOctGu4CZ4q1SdumnP7HJ_zmZCnoNOM2zjwTchTnxsZoEvFfiYSmYSQQAKN7yEPj8T-CX9zOjxd6-J31e7LLcm2pwFZmvJ6t0yz1sWl2K0GuD_nQ37xwQLjgQ9B-CKH7IZnGIzFeLWPEEkeL1tlfntdLx051v5fY_Nacvq5cHK1e7pJrjR5qRff9Gy2lqAm18m1DlnSUWsKN8gFm2-RzdF03rFr2C1yaa8ALLi4Sb6Pz0m_aQkAui4-W6o7ghJaZBRwIa3QBOZ06pip6RjplyHblWd6pkE2pYeLomrmTUWfH-sc8mODr-S1fUGRFgrMmmJxCH7CfDrVpfs1-7UzdloXFBbqqZtKf0HK8YSu993dIieT1x_H-353XoOfwLKo9iOjbWg4HkM0AFyRZixl3DCJvXSAK5gOdCSi0LLAIMUNIE-RMWMsTwCzasAdt8lGXuT2LqEGaeMzhiehYJRhhg_SIDNRPEyjjEfaIy-XalNlS8uh3HJGCtUqWYGSlVOyCj2yh5pdSSKltvuimE9V56FKAPQzEN9ggYU8aFwPE5mlPJFCpIzZwCNP0C4UkmbkWJUz1U1VqYMPx2oUSRFzwFIg9KwTygqwkER3TQ7wr5Bnqye53ZMEr076w0vzU11UqRTADRDgjA098ng1jFdipVxui6ZS7iwyR5L0ZxkGaU6EEUBtj9xpLXr1bJhESsUo9ojs2Xrv4fVH8k9njpd8gNyFgeQe2Vm6xfm9_007OyvX-Qdl3vu_2R-Ry-9fTdS7g6O398nV0Lk-g9ywTTbqeWMfAKSszUMXNX4A3flsRw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamDQl44H4JDGQQEiCWLo1dJ3nsKqaB1AkNKo0ny06cbqJLQtKAyu_hh3KOk3bNuAgkniLFJ05zfC6fa5_PhDyDMU25iTxX-zxxuQ49dKnITUUcxj4kEE_h_5DjQ3Ew4W-PB8cbZLyshdFncTGDPpGCqLdegT5rChzwAAVT7hZJ2vh7KHarPi7WuZBsXDDHqO9CRN4SA4Dmm2Rrcvhu-NFWGAXQ4PvRsnDmlw92kpPl8P85Uq-lqovbKFdrqVfJ5Tor1OKrms3W0tX-dZItP7TZpfKpV891L_52gQPyv2niBrnWAls6bCzxJtkw2S1yaS8H8Lm4Tb6PzlnGKbwQIOeZoaplRKF5SgGI0gptrqRTS4VNR8j3DOm1OFEzBbIJHS_yqi7rir44Uhkk5BrXAJR5SZGHCvyI4m4UvEJ_KlGFfZv50noXnedUlaeJ7Up9Ro7zmK4X-t0hk_3XH0YHbntAhBvDPGzuBloZX3M896gPQCZJWcK4ZiEW7wGQYcpTgQh8wzyNnDoAdUXKtDY8BpCsAOjcJZtZnpn7hGrkqU8ZHr2CYY1p3k-8VAfRIAlSHiiHvFpahiwaHhBp50-hkI3aJahdWrVL3yF7aDwrSeTwtjfycirbkCAFYE0NARVmdEi8xtUgDtOEx6EQCWPGc8hTND2JLB0ZbgOaqrqq5Jv3R3IYhCLiAN5A6HkrlOZgG7Fqqyrgq5DYqyO53ZGEMBJ3m5cWLtswVknANyDAGRs45MmqGZ_ErXmZyetK2sPPLCvT72UY5FXhB4DtHXKvcZqVbliIHI5B5JCw404d5XVbstMTS4TeR7JEL-QO2Vl63vlv_9Po7Ky88y8G88G_iT8kV3zrgQwy0DbZnJe1eQTAda4ft-HoB73YkLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+plastome+analysis+of+the+sister+genera+Ceratocephala+and+Myosurus+%28Ranunculaceae%29+reveals+signals+of+adaptive+evolution+to+arid+and+aquatic+environments&rft.jtitle=BMC+plant+biology&rft.au=Long%2C+Jing&rft.au=He%2C+Wen-Chuang&rft.au=Peng%2C+Huan-Wen&rft.au=Erst%2C+Andrey+S&rft.date=2024-03-20&rft.eissn=1471-2229&rft.volume=24&rft.issue=1&rft.spage=202&rft_id=info:doi/10.1186%2Fs12870-024-04891-2&rft_id=info%3Apmid%2F38509479&rft.externalDocID=38509479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon