Site-specific cation release drives actin filament severing by vertebrate cofilin

Significance Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of filament ends available for elongation and subunit exchange. The molecular basis of how cofilin binding interactions fragment filaments, which...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 50; pp. 17821 - 17826
Main Authors Kang, Hyeran, Bradley, Michael J., Cao, Wenxiang, Zhou, Kaifeng, Grintsevich, Elena E., Michelot, Alphée, Sindelar, Charles V., Hochstrasser, Mark, De La Cruz, Enrique M.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.12.2014
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1413397111

Cover

Abstract Significance Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of filament ends available for elongation and subunit exchange. The molecular basis of how cofilin binding interactions fragment filaments, which have stiffness comparable to commercial laboratory plastics, remains a central and unresolved mystery of cellular actin cytoskeleton reorganization. In this study we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single, site-specific cation that controls filament structure and mechanical properties, and that filament severing is an essential function of cofilin in cells. This work establishes that discrete interactions with cations serve a central regulatory function in mediating actin filament fragmentation by certain classes of severing proteins. Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S . cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics.
AbstractList Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S . cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics.
Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this "stiffness cation" unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics.Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this "stiffness cation" unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics.
Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of filament ends available for elongation and subunit exchange. The molecular basis of how cofilin binding interactions fragment filaments, which have stiffness comparable to commercial laboratory plastics, remains a central and unresolved mystery of cellular actin cytoskeleton reorganization. In this study we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single, site-specific cation that controls filament structure and mechanical properties, and that filament severing is an essential function of cofilin in cells. This work establishes that discrete interactions with cations serve a central regulatory function in mediating actin filament fragmentation by certain classes of severing proteins. Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S . cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics.
Significance Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of filament ends available for elongation and subunit exchange. The molecular basis of how cofilin binding interactions fragment filaments, which have stiffness comparable to commercial laboratory plastics, remains a central and unresolved mystery of cellular actin cytoskeleton reorganization. In this study we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single, site-specific cation that controls filament structure and mechanical properties, and that filament severing is an essential function of cofilin in cells. This work establishes that discrete interactions with cations serve a central regulatory function in mediating actin filament fragmentation by certain classes of severing proteins. Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S . cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics.
Author Cao, Wenxiang
Kang, Hyeran
Michelot, Alphée
Bradley, Michael J.
Zhou, Kaifeng
Grintsevich, Elena E.
Sindelar, Charles V.
Hochstrasser, Mark
De La Cruz, Enrique M.
Author_xml – sequence: 1
  givenname: Hyeran
  surname: Kang
  fullname: Kang, Hyeran
– sequence: 2
  givenname: Michael J.
  surname: Bradley
  fullname: Bradley, Michael J.
– sequence: 3
  givenname: Wenxiang
  surname: Cao
  fullname: Cao, Wenxiang
– sequence: 4
  givenname: Kaifeng
  surname: Zhou
  fullname: Zhou, Kaifeng
– sequence: 5
  givenname: Elena E.
  surname: Grintsevich
  fullname: Grintsevich, Elena E.
– sequence: 6
  givenname: Alphée
  surname: Michelot
  fullname: Michelot, Alphée
– sequence: 7
  givenname: Charles V.
  surname: Sindelar
  fullname: Sindelar, Charles V.
– sequence: 8
  givenname: Mark
  surname: Hochstrasser
  fullname: Hochstrasser, Mark
– sequence: 9
  givenname: Enrique M.
  surname: De La Cruz
  fullname: De La Cruz, Enrique M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25468977$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01140866$$DView record in HAL
BookMark eNqFkk1vEzEQhi1URNPAmROwEhc4bDv-Xl-QqgooUiWESs-W15mkjjbeYG8i9d_jJWmASIiTLc_zjt_5OCMnsY9IyEsK5xQ0v1hHl8-poJwbTSl9QiYUDK2VMHBCJgBM141g4pSc5bwEACMbeEZOmRSqMVpPyLfbMGCd1-jDPPjKuyH0sUrYoctYzVLYYq6cH0Ks5qFzK4xDlXGLKcRF1T5U5TZgm9yAle8LEeJz8nTuuowv9ueU3H36-P3qur75-vnL1eVN7RWTQ60k1xJ1i9wZoOgRZkYa5K0xrUHmlZyBmknNmERT3ErhWEslF0Ip4bnnU_Jhl3e9aVc488VZcp1dp7By6cH2Lti_IzHc20W_tYJpLkrzpuT9LsH9kez68saOb0CpgEapLS3su_1nqf-xwTzYVcgeu85F7DfZ0gY4ZaK4_D-quDZlDmZ08PYIXfabFEvXRspI4Iw3hXr9Z6EHq49DLIDcAT71OSecWx-GX4MsdYfOUrDjsthxWezvZSm6iyPdY-p_K6q9lTFwoCm1sih0w0bk1Q5Z5qFPB0ZwphttWIm_2cXnrrdukUK2d7cMqAKg3CgB_CemBd0T
CitedBy_id crossref_primary_10_1073_pnas_2208536120
crossref_primary_10_1016_j_yexcr_2019_111625
crossref_primary_10_1038_s41467_018_04290_w
crossref_primary_10_1016_j_biotechadv_2017_08_002
crossref_primary_10_1016_j_jmb_2016_03_006
crossref_primary_10_1098_rsob_200157
crossref_primary_10_1073_pnas_1911183117
crossref_primary_10_1084_jem_20221042
crossref_primary_10_1021_acs_biochem_8b01001
crossref_primary_10_1073_pnas_1507587112
crossref_primary_10_3390_ijms23010509
crossref_primary_10_1063_5_0198119
crossref_primary_10_1111_mpp_12424
crossref_primary_10_3389_frsfm_2025_1530439
crossref_primary_10_1016_j_bpj_2017_05_016
crossref_primary_10_1016_j_jmb_2021_166833
crossref_primary_10_1073_pnas_1812053116
crossref_primary_10_1103_PhysRevE_101_032409
crossref_primary_10_1016_j_ejcb_2023_151379
crossref_primary_10_1016_j_jbc_2021_100337
crossref_primary_10_1038_s41467_024_45878_9
crossref_primary_10_1002_prot_25813
crossref_primary_10_1016_j_jmb_2015_08_011
crossref_primary_10_1016_j_jbc_2024_108101
crossref_primary_10_1021_acs_jpcb_6b02741
crossref_primary_10_1093_pnasnexus_pgad331
crossref_primary_10_1021_acs_jpcb_8b00663
crossref_primary_10_15252_embj_2021107982
crossref_primary_10_1007_s12035_022_02815_5
crossref_primary_10_1073_pnas_1915987117
crossref_primary_10_1002_cm_21927
crossref_primary_10_3390_ijms21124285
crossref_primary_10_1016_j_jmb_2015_07_005
crossref_primary_10_1073_pnas_1818808116
crossref_primary_10_1083_jcb_202309021
crossref_primary_10_1038_srep44506
crossref_primary_10_1038_s41467_023_44148_4
crossref_primary_10_1016_j_csbj_2022_07_054
crossref_primary_10_1016_j_bpj_2015_03_058
crossref_primary_10_1021_acs_jpcb_8b12320
crossref_primary_10_1074_jbc_R115_636472
crossref_primary_10_1038_s42004_024_01243_x
crossref_primary_10_1002_cm_21384
crossref_primary_10_1074_jbc_M117_808378
crossref_primary_10_1038_ncomms12456
crossref_primary_10_1083_jcb_201810054
Cites_doi 10.1016/S0076-6879(10)82006-3
10.1016/j.molcel.2006.08.006
10.1038/nature09372
10.1016/j.bpj.2010.07.009
10.1038/307058a0
10.1074/jbc.270.19.11437
10.1016/j.jmb.2004.11.065
10.1016/j.jmb.2007.12.073
10.1016/0378-1119(88)90185-0
10.1016/0003-2697(89)90602-7
10.1016/j.jmb.2005.09.021
10.1016/j.bpj.2010.01.023
10.1007/s12551-009-0008-5
10.1038/364685a0
10.1016/j.jmb.2006.10.102
10.1016/j.cell.2012.05.037
10.1073/pnas.0911675107
10.1074/jbc.M111.219964
10.1093/genetics/122.1.19
10.1083/jcb.111.2.453
10.1126/science.1175862
10.1083/jcb.109.4.1597
10.1038/nmeth.2472
10.1016/S1047-8477(03)00069-8
10.1073/pnas.1110109108
10.1073/pnas.1211078109
10.1371/journal.pone.0094766
10.1038/325362a0
10.1006/jmbi.2001.5005
10.1016/j.jsb.2006.05.004
10.1146/annurev.cellbio.15.1.185
10.1016/j.jmb.2011.08.058
10.1042/bj20020231
10.1074/jbc.M113.523365
10.1016/j.ejcb.2013.12.001
10.2144/000112040
10.1016/j.jmb.2005.11.072
10.1016/j.cub.2011.03.064
10.1074/jbc.M804419200
10.1016/j.str.2011.12.014
10.1038/nsmb.1930
10.1016/j.jsb.2011.12.020
10.1016/j.jmb.2006.06.019
10.1016/j.bbrc.2013.07.109
10.1016/j.febslet.2013.01.062
10.1101/gad.1477507
10.1016/j.cub.2007.04.037
10.1016/j.jmb.2008.05.055
10.1083/jcb.138.4.771
10.1016/j.jmb.2013.01.020
10.1529/biophysj.105.073924
10.1039/b919488f
10.1016/S0092-8674(03)00120-X
10.1074/jbc.M403370200
10.1016/j.bpj.2013.10.032
10.1016/j.bpj.2011.05.049
10.1006/jmbi.1993.1393
10.1016/j.devcel.2012.12.008
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 16, 2014
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 16, 2014
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
1XC
5PM
DOI 10.1073/pnas.1413397111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
CrossRef
MEDLINE
Virology and AIDS Abstracts




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Salt linkage in cofilin severing activity
EISSN 1091-6490
EndPage 17826
ExternalDocumentID PMC4273407
oai_HAL_hal_01140866v1
3534500571
25468977
10_1073_pnas_1413397111
111_50_17821
43278792
US201600139640
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM110530
– fundername: NIGMS NIH HHS
  grantid: R01 GM053756
– fundername: NIGMS NIH HHS
  grantid: R01-GM097348
– fundername: NIGMS NIH HHS
  grantid: GM053756
– fundername: PHS HHS
  grantid: NIGMS 077190
– fundername: NIGMS NIH HHS
  grantid: R01 GM097348
– fundername: NIGMS NIH HHS
  grantid: GM11053001
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R01-GM11053001
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R01-GM097348
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R01-GM053756
– fundername: American Cancer Society (ACS)
  grantid: IRG5801255
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R01-077190
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
1XC
5PM
ID FETCH-LOGICAL-c625t-65375e7be3a901ece0d959e3b99b9e2c65d06d57225e946854a2b15344664c3c3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:30:47 EDT 2025
Sun Sep 28 07:52:48 EDT 2025
Fri Sep 05 09:57:18 EDT 2025
Thu Sep 04 21:29:04 EDT 2025
Sat Aug 16 22:23:08 EDT 2025
Wed Feb 19 02:42:08 EST 2025
Tue Jul 01 01:53:17 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Wed Nov 11 00:29:54 EST 2020
Thu May 29 08:43:07 EDT 2025
Wed Dec 27 19:07:22 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords mechanics
electron cryomicroscopy
persistence length
cytoskeleton
cell motility
cofilin
actin poymerization
vertebrate
Cytoskeleton
actin dynamics
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c625t-65375e7be3a901ece0d959e3b99b9e2c65d06d57225e946854a2b15344664c3c3
Notes http://dx.doi.org/10.1073/pnas.1413397111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4273407
Edited by John A. Cooper, Washington University in St. Louis, St. Louis, MO, and accepted by the Editorial Board November 10, 2014 (received for review July 15, 2014)
Author contributions: H.K., M.J.B., M.H., and E.M.D.L.C. designed research; H.K., M.J.B., W.C., K.Z., E.E.G., A.M., C.V.S., M.H., and E.M.D.L.C. performed research; H.K., W.C., C.V.S., M.H., and E.M.D.L.C. contributed new reagents/analytic tools; H.K., M.J.B., K.Z., E.E.G., A.M., C.V.S., M.H., and E.M.D.L.C. analyzed data; and H.K., M.J.B., W.C., E.E.G., A.M., C.V.S., M.H., and E.M.D.L.C. wrote the paper.
ORCID 0000-0003-2023-8094
OpenAccessLink http://doi.org/10.1073/pnas.1413397111
PMID 25468977
PQID 1639503238
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_1413397111
proquest_miscellaneous_1637995897
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4273407
hal_primary_oai_HAL_hal_01140866v1
proquest_miscellaneous_1803124854
proquest_journals_1639503238
pubmed_primary_25468977
pnas_primary_111_50_17821
crossref_primary_10_1073_pnas_1413397111
fao_agris_US201600139640
jstor_primary_43278792
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-16
PublicationDateYYYYMMDD 2014-12-16
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
Galkin VE (e_1_3_3_35_2) 2014
e_1_3_3_42_2
e_1_3_3_51_2
Oosawa F (e_1_3_3_7_2) 1975
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
Guthrie C (e_1_3_3_55_2) 2002
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
15670604 - J Mol Biol. 2005 Feb 18;346(2):557-64
23644547 - Nat Methods. 2013 Jun;10(6):584-90
18258262 - J Mol Biol. 2008 Mar 21;377(2):395-409
24836399 - Eur J Cell Biol. 2014 May-Jun;93(5-6):238-51
22248449 - J Struct Biol. 2012 Feb;177(2):302-13
17493813 - Curr Biol. 2007 May 15;17(10):825-33
6537825 - Nature. 1984 Jan 5-11;307(5946):58-60
25533486 - Structure. 2015 Jan 6;23(1):173-82
2143195 - J Cell Biol. 1990 Aug;111(2):453-63
20858430 - Biophys J. 2010 Sep 22;99(6):1852-60
18945676 - J Biol Chem. 2008 Dec 12;283(50):34844-54
9265645 - J Cell Biol. 1997 Aug 25;138(4):771-81
2659436 - Genetics. 1989 May;122(1):19-27
22158895 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20568-72
21530260 - Curr Biol. 2011 May 24;21(10):862-8
8395021 - Nature. 1993 Aug 19;364(6439):685-92
17018289 - Mol Cell. 2006 Oct 6;24(1):13-23
20368459 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7299-304
21723825 - Biophys J. 2011 Jul 6;101(1):151-9
22817895 - Cell. 2012 Jul 20;150(2):327-38
23333351 - Dev Cell. 2013 Jan 28;24(2):182-95
3073106 - Gene. 1988 Dec 30;74(2):527-34
12600310 - Cell. 2003 Feb 21;112(4):453-65
22325770 - Structure. 2012 Feb 8;20(2):205-14
21454476 - J Biol Chem. 2011 May 13;286(19):17039-46
10611961 - Annu Rev Cell Dev Biol. 1999;15:185-230
16843490 - J Mol Biol. 2006 Aug 11;361(2):257-67
19965462 - Science. 2009 Nov 27;326(5957):1208-12
24740323 - PLoS One. 2014;9(4):e94766
8345515 - J Mol Biol. 1993 Jul 20;232(2):334-41
24359734 - Biophys J. 2013 Dec 17;105(12):2621-8
20700473 - Biophys Rev. 2009 May 15;1(2):51-59
16213521 - J Mol Biol. 2005 Nov 11;353(5):990-1000
12781660 - J Struct Biol. 2003 Jun;142(3):334-47
17134718 - J Mol Biol. 2007 Feb 2;365(5):1350-8
3027569 - Nature. 1987 Jan 22-28;325(6102):362-4
21910998 - J Mol Biol. 2011 Oct 28;413(3):584-92
23395798 - FEBS Lett. 2013 Apr 17;587(8):1215-9
23352932 - J Mol Biol. 2013 Apr 12;425(7):1225-40
2610349 - Anal Biochem. 1989 Nov 1;182(2):319-26
18617188 - J Mol Biol. 2008 Sep 5;381(3):550-8
20441753 - Biophys J. 2010 May 19;98(9):1893-901
12113256 - Biochem J. 2002 Jul 1;365(Pt 1):147-55
11575927 - J Mol Biol. 2001 Sep 28;312(4):721-30
24371134 - J Biol Chem. 2014 Feb 14;289(7):4043-54
17167106 - Genes Dev. 2007 Jan 15;21(2):148-59
16361345 - Biophys J. 2006 Mar 1;90(5):1572-82
2507553 - J Cell Biol. 1989 Oct;109(4 Pt 1):1597-608
20888961 - Methods Enzymol. 2010;482:167-83
20935633 - Nat Struct Mol Biol. 2010 Nov;17(11):1318-23
7744781 - J Biol Chem. 1995 May 12;270(19):11437-44
16454043 - Biotechniques. 2006 Jan;40(1):73-8
23911787 - Biochem Biophys Res Commun. 2013 Sep 6;438(4):728-31
20844487 - Nature. 2010 Oct 7;467(7316):724-8
16375920 - J Mol Biol. 2006 Feb 17;356(2):325-34
15184395 - J Biol Chem. 2004 Aug 13;279(33):34849-55
23027950 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16923-7
16828314 - J Struct Biol. 2007 Jan;157(1):117-25
References_xml – ident: e_1_3_3_52_2
  doi: 10.1016/S0076-6879(10)82006-3
– ident: e_1_3_3_16_2
  doi: 10.1016/j.molcel.2006.08.006
– ident: e_1_3_3_34_2
  doi: 10.1038/nature09372
– ident: e_1_3_3_38_2
  doi: 10.1016/j.bpj.2010.07.009
– ident: e_1_3_3_30_2
  doi: 10.1038/307058a0
– ident: e_1_3_3_28_2
  doi: 10.1074/jbc.270.19.11437
– ident: e_1_3_3_14_2
  doi: 10.1016/j.jmb.2004.11.065
– ident: e_1_3_3_45_2
  doi: 10.1016/j.jmb.2007.12.073
– ident: e_1_3_3_57_2
  doi: 10.1016/0378-1119(88)90185-0
– year: 2014
  ident: e_1_3_3_35_2
  article-title: Near-atomic resolution for one state of F-actin
  publication-title: Structure
– ident: e_1_3_3_46_2
  doi: 10.1016/0003-2697(89)90602-7
– ident: e_1_3_3_13_2
  doi: 10.1016/j.jmb.2005.09.021
– ident: e_1_3_3_39_2
  doi: 10.1016/j.bpj.2010.01.023
– ident: e_1_3_3_5_2
  doi: 10.1007/s12551-009-0008-5
– ident: e_1_3_3_43_2
  doi: 10.1038/364685a0
– ident: e_1_3_3_18_2
  doi: 10.1016/j.jmb.2006.10.102
– ident: e_1_3_3_32_2
  doi: 10.1016/j.cell.2012.05.037
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.0911675107
– ident: e_1_3_3_61_2
  doi: 10.1074/jbc.M111.219964
– ident: e_1_3_3_58_2
  doi: 10.1093/genetics/122.1.19
– ident: e_1_3_3_47_2
  doi: 10.1083/jcb.111.2.453
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1175862
– ident: e_1_3_3_3_2
  doi: 10.1083/jcb.109.4.1597
– ident: e_1_3_3_49_2
  doi: 10.1038/nmeth.2472
– ident: e_1_3_3_50_2
  doi: 10.1016/S1047-8477(03)00069-8
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.1110109108
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.1211078109
– ident: e_1_3_3_27_2
  doi: 10.1371/journal.pone.0094766
– volume-title: Thermodynamics of the Polymerization of Protein
  year: 1975
  ident: e_1_3_3_7_2
– ident: e_1_3_3_44_2
  doi: 10.1038/325362a0
– ident: e_1_3_3_37_2
  doi: 10.1006/jmbi.2001.5005
– ident: e_1_3_3_53_2
  doi: 10.1016/j.jsb.2006.05.004
– ident: e_1_3_3_4_2
  doi: 10.1146/annurev.cellbio.15.1.185
– ident: e_1_3_3_29_2
  doi: 10.1016/j.jmb.2011.08.058
– ident: e_1_3_3_33_2
  doi: 10.1042/bj20020231
– ident: e_1_3_3_40_2
  doi: 10.1074/jbc.M113.523365
– ident: e_1_3_3_42_2
  doi: 10.1016/j.ejcb.2013.12.001
– ident: e_1_3_3_59_2
  doi: 10.2144/000112040
– ident: e_1_3_3_17_2
  doi: 10.1016/j.jmb.2005.11.072
– ident: e_1_3_3_15_2
  doi: 10.1016/j.cub.2011.03.064
– ident: e_1_3_3_22_2
  doi: 10.1074/jbc.M804419200
– ident: e_1_3_3_54_2
  doi: 10.1016/j.str.2011.12.014
– ident: e_1_3_3_23_2
  doi: 10.1038/nsmb.1930
– ident: e_1_3_3_51_2
  doi: 10.1016/j.jsb.2011.12.020
– ident: e_1_3_3_20_2
  doi: 10.1016/j.jmb.2006.06.019
– ident: e_1_3_3_31_2
  doi: 10.1016/j.bbrc.2013.07.109
– ident: e_1_3_3_41_2
  doi: 10.1016/j.febslet.2013.01.062
– volume-title: Guide to Yeast Genetics and Molecular and Cell Biology: Part C
  year: 2002
  ident: e_1_3_3_55_2
– ident: e_1_3_3_56_2
  doi: 10.1101/gad.1477507
– ident: e_1_3_3_6_2
  doi: 10.1016/j.cub.2007.04.037
– ident: e_1_3_3_11_2
  doi: 10.1016/j.jmb.2008.05.055
– ident: e_1_3_3_9_2
  doi: 10.1083/jcb.138.4.771
– ident: e_1_3_3_10_2
  doi: 10.1016/j.jmb.2013.01.020
– ident: e_1_3_3_25_2
  doi: 10.1529/biophysj.105.073924
– ident: e_1_3_3_48_2
  doi: 10.1039/b919488f
– ident: e_1_3_3_1_2
  doi: 10.1016/S0092-8674(03)00120-X
– ident: e_1_3_3_36_2
  doi: 10.1074/jbc.M403370200
– ident: e_1_3_3_21_2
  doi: 10.1016/j.bpj.2013.10.032
– ident: e_1_3_3_12_2
  doi: 10.1016/j.bpj.2011.05.049
– ident: e_1_3_3_24_2
  doi: 10.1006/jmbi.1993.1393
– ident: e_1_3_3_60_2
  doi: 10.1016/j.devcel.2012.12.008
– reference: 20700473 - Biophys Rev. 2009 May 15;1(2):51-59
– reference: 21454476 - J Biol Chem. 2011 May 13;286(19):17039-46
– reference: 17493813 - Curr Biol. 2007 May 15;17(10):825-33
– reference: 23911787 - Biochem Biophys Res Commun. 2013 Sep 6;438(4):728-31
– reference: 19965462 - Science. 2009 Nov 27;326(5957):1208-12
– reference: 17018289 - Mol Cell. 2006 Oct 6;24(1):13-23
– reference: 3027569 - Nature. 1987 Jan 22-28;325(6102):362-4
– reference: 21910998 - J Mol Biol. 2011 Oct 28;413(3):584-92
– reference: 20888961 - Methods Enzymol. 2010;482:167-83
– reference: 22817895 - Cell. 2012 Jul 20;150(2):327-38
– reference: 15184395 - J Biol Chem. 2004 Aug 13;279(33):34849-55
– reference: 15670604 - J Mol Biol. 2005 Feb 18;346(2):557-64
– reference: 22248449 - J Struct Biol. 2012 Feb;177(2):302-13
– reference: 23333351 - Dev Cell. 2013 Jan 28;24(2):182-95
– reference: 11575927 - J Mol Biol. 2001 Sep 28;312(4):721-30
– reference: 16828314 - J Struct Biol. 2007 Jan;157(1):117-25
– reference: 17167106 - Genes Dev. 2007 Jan 15;21(2):148-59
– reference: 8395021 - Nature. 1993 Aug 19;364(6439):685-92
– reference: 12113256 - Biochem J. 2002 Jul 1;365(Pt 1):147-55
– reference: 10611961 - Annu Rev Cell Dev Biol. 1999;15:185-230
– reference: 20441753 - Biophys J. 2010 May 19;98(9):1893-901
– reference: 3073106 - Gene. 1988 Dec 30;74(2):527-34
– reference: 24836399 - Eur J Cell Biol. 2014 May-Jun;93(5-6):238-51
– reference: 6537825 - Nature. 1984 Jan 5-11;307(5946):58-60
– reference: 2610349 - Anal Biochem. 1989 Nov 1;182(2):319-26
– reference: 16213521 - J Mol Biol. 2005 Nov 11;353(5):990-1000
– reference: 20844487 - Nature. 2010 Oct 7;467(7316):724-8
– reference: 22325770 - Structure. 2012 Feb 8;20(2):205-14
– reference: 25533486 - Structure. 2015 Jan 6;23(1):173-82
– reference: 22158895 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20568-72
– reference: 20935633 - Nat Struct Mol Biol. 2010 Nov;17(11):1318-23
– reference: 24371134 - J Biol Chem. 2014 Feb 14;289(7):4043-54
– reference: 23395798 - FEBS Lett. 2013 Apr 17;587(8):1215-9
– reference: 21723825 - Biophys J. 2011 Jul 6;101(1):151-9
– reference: 16454043 - Biotechniques. 2006 Jan;40(1):73-8
– reference: 7744781 - J Biol Chem. 1995 May 12;270(19):11437-44
– reference: 16375920 - J Mol Biol. 2006 Feb 17;356(2):325-34
– reference: 24359734 - Biophys J. 2013 Dec 17;105(12):2621-8
– reference: 20368459 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7299-304
– reference: 9265645 - J Cell Biol. 1997 Aug 25;138(4):771-81
– reference: 17134718 - J Mol Biol. 2007 Feb 2;365(5):1350-8
– reference: 12600310 - Cell. 2003 Feb 21;112(4):453-65
– reference: 16843490 - J Mol Biol. 2006 Aug 11;361(2):257-67
– reference: 24740323 - PLoS One. 2014;9(4):e94766
– reference: 23352932 - J Mol Biol. 2013 Apr 12;425(7):1225-40
– reference: 23644547 - Nat Methods. 2013 Jun;10(6):584-90
– reference: 18617188 - J Mol Biol. 2008 Sep 5;381(3):550-8
– reference: 20858430 - Biophys J. 2010 Sep 22;99(6):1852-60
– reference: 12781660 - J Struct Biol. 2003 Jun;142(3):334-47
– reference: 2659436 - Genetics. 1989 May;122(1):19-27
– reference: 18945676 - J Biol Chem. 2008 Dec 12;283(50):34844-54
– reference: 16361345 - Biophys J. 2006 Mar 1;90(5):1572-82
– reference: 18258262 - J Mol Biol. 2008 Mar 21;377(2):395-409
– reference: 23027950 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16923-7
– reference: 8345515 - J Mol Biol. 1993 Jul 20;232(2):334-41
– reference: 2507553 - J Cell Biol. 1989 Oct;109(4 Pt 1):1597-608
– reference: 2143195 - J Cell Biol. 1990 Aug;111(2):453-63
– reference: 21530260 - Curr Biol. 2011 May 24;21(10):862-8
SSID ssj0009580
Score 2.357458
Snippet Significance Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of...
Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential...
Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of filament ends...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17821
SubjectTerms actin
Actin Cytoskeleton - chemistry
Actin Cytoskeleton - metabolism
Actin Cytoskeleton - ultrastructure
Actin depolymerizing factors
Actins
Bending
Binding sites
Biological Sciences
Cations
Cations - metabolism
Cell Movement - physiology
Cellular Biology
Chromatography, Affinity
Cofilin 1 - metabolism
Cryoelectron Microscopy
dissociation
Electrons
Eukaryotes
Fracture mechanics
Humans
Life Sciences
Mechanical properties
Microfilaments
Models, Molecular
Molecules
plastics
Polymerization
regulatory proteins
Saccharomyces cerevisiae
Stiffness
Vertebrates
Yeast
Yeasts
Title Site-specific cation release drives actin filament severing by vertebrate cofilin
URI https://www.jstor.org/stable/43278792
http://www.pnas.org/content/111/50/17821.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25468977
https://www.proquest.com/docview/1639503238
https://www.proquest.com/docview/1637995897
https://www.proquest.com/docview/1803124854
https://hal.science/hal-01140866
https://pubmed.ncbi.nlm.nih.gov/PMC4273407
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILYsBYYKCAeBiKUpLYiZPHagJVA6qhrdLES2Qn7joJ0mltEfCv8c9xZztuWpUJeImm1Emc3Lf7Yd99R8iruhY8mUgR8oypkElOQQ-CI5dOYsGKXMq4xgLnj6NsOGYnF-lFr_erk7W0XMh-9XNrXcn_SBXOgVyxSvYfJOtuCifgb5AvHEHCcPwrGZ-BvxhirSTm-wRm8U13QQHTFNQ3mlEWCxcapF8SetsfDKEmH0S3E1sx477xAjPWYYQl4bau6qkzbfM2kWDUrhwOVnUoVjnMgzA4Ha26Gg_BlQfV8V5Yy6jLDnWGfnDSD3AHv91R1ttCzXeA6WVwLGbOAoiriYJTn6ezZXdpItYEiKZyssvsbSblptPVxglYSGZqqPvKKGDwX8KMmRaiTkNbfWygaIhqrcKNwcOJt5oC0F3Yv7gRc7AGEIkX3N6mA4zrrxoZ2BMgL2w7mTVK7g1T6RIYMWxKIXzCp--QOwkHx61dKnKMz7mpf7Iv2fJKcfpmY1JISG1nsOYd7UzEDI5TzNA1ybLIwAvXbouGNpN6O17S-X1yz4Y3_sBgdY_0VPOA7LVC8Y8sy_nrh-TTGnh9A17fgtc34PU1eP0WvH4LXl_-8Ffg9S14H5Hxu7fnx8PQ9vcIK4i6F2GWUp4qLhUV4JWqSkV1kRaKyqKQhUqqLK2jrE45mBxVwPdJmUgkWGhMQWAVreg-2W1mjTogPk9ikdJJpFKpWB1H4HPlEIzIivI6pyLxSL_9rmVlye-xB8uXUidhcFridy1XMvHIkbvg2vC-_HnoAQiqFJdglcvxWYKcjRhYZSzyyEuQnrsBUrkPBx9KPIcLEVGeZd_g-n0tXDeM0QTMaAGT9vSj3PM7oPPIYQuB0mokmBOEG2lEwQv3yAv3M9gL3AQUjZot9RjkgASw3TImB1OPXIfMI48NqtwkWqR6hK_hbe0l139prqaat54hlVbEn9zyWk_J3ZUiOSS7i5ulegZe_0I-1_9dvwG63_y7
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Site-specific+cation+release+drives+actin+filament+severing+by+vertebrate+cofilin&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hyeran+Kang&rft.au=Michael+J.+Bradley&rft.au=Wenxiang+Cao&rft.au=Kaifeng+Zhou&rft.date=2014-12-16&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=50&rft.spage=17821&rft_id=info:doi/10.1073%2Fpnas.1413397111&rft_id=info%3Apmid%2F25468977&rft.externalDBID=n%2Fa&rft.externalDocID=111_50_17821
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F50.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F50.cover.gif