Site-specific cation release drives actin filament severing by vertebrate cofilin
Significance Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of filament ends available for elongation and subunit exchange. The molecular basis of how cofilin binding interactions fragment filaments, which...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 50; pp. 17821 - 17826 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
16.12.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1413397111 |
Cover
Abstract | Significance Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of filament ends available for elongation and subunit exchange. The molecular basis of how cofilin binding interactions fragment filaments, which have stiffness comparable to commercial laboratory plastics, remains a central and unresolved mystery of cellular actin cytoskeleton reorganization. In this study we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single, site-specific cation that controls filament structure and mechanical properties, and that filament severing is an essential function of cofilin in cells. This work establishes that discrete interactions with cations serve a central regulatory function in mediating actin filament fragmentation by certain classes of severing proteins.
Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S . cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. |
---|---|
AbstractList | Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S . cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this "stiffness cation" unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics.Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this "stiffness cation" unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of filament ends available for elongation and subunit exchange. The molecular basis of how cofilin binding interactions fragment filaments, which have stiffness comparable to commercial laboratory plastics, remains a central and unresolved mystery of cellular actin cytoskeleton reorganization. In this study we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single, site-specific cation that controls filament structure and mechanical properties, and that filament severing is an essential function of cofilin in cells. This work establishes that discrete interactions with cations serve a central regulatory function in mediating actin filament fragmentation by certain classes of severing proteins. Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S . cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. Significance Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of filament ends available for elongation and subunit exchange. The molecular basis of how cofilin binding interactions fragment filaments, which have stiffness comparable to commercial laboratory plastics, remains a central and unresolved mystery of cellular actin cytoskeleton reorganization. In this study we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single, site-specific cation that controls filament structure and mechanical properties, and that filament severing is an essential function of cofilin in cells. This work establishes that discrete interactions with cations serve a central regulatory function in mediating actin filament fragmentation by certain classes of severing proteins. Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S . cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. |
Author | Cao, Wenxiang Kang, Hyeran Michelot, Alphée Bradley, Michael J. Zhou, Kaifeng Grintsevich, Elena E. Sindelar, Charles V. Hochstrasser, Mark De La Cruz, Enrique M. |
Author_xml | – sequence: 1 givenname: Hyeran surname: Kang fullname: Kang, Hyeran – sequence: 2 givenname: Michael J. surname: Bradley fullname: Bradley, Michael J. – sequence: 3 givenname: Wenxiang surname: Cao fullname: Cao, Wenxiang – sequence: 4 givenname: Kaifeng surname: Zhou fullname: Zhou, Kaifeng – sequence: 5 givenname: Elena E. surname: Grintsevich fullname: Grintsevich, Elena E. – sequence: 6 givenname: Alphée surname: Michelot fullname: Michelot, Alphée – sequence: 7 givenname: Charles V. surname: Sindelar fullname: Sindelar, Charles V. – sequence: 8 givenname: Mark surname: Hochstrasser fullname: Hochstrasser, Mark – sequence: 9 givenname: Enrique M. surname: De La Cruz fullname: De La Cruz, Enrique M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25468977$$D View this record in MEDLINE/PubMed https://hal.science/hal-01140866$$DView record in HAL |
BookMark | eNqFkk1vEzEQhi1URNPAmROwEhc4bDv-Xl-QqgooUiWESs-W15mkjjbeYG8i9d_jJWmASIiTLc_zjt_5OCMnsY9IyEsK5xQ0v1hHl8-poJwbTSl9QiYUDK2VMHBCJgBM141g4pSc5bwEACMbeEZOmRSqMVpPyLfbMGCd1-jDPPjKuyH0sUrYoctYzVLYYq6cH0Ks5qFzK4xDlXGLKcRF1T5U5TZgm9yAle8LEeJz8nTuuowv9ueU3H36-P3qur75-vnL1eVN7RWTQ60k1xJ1i9wZoOgRZkYa5K0xrUHmlZyBmknNmERT3ErhWEslF0Ip4bnnU_Jhl3e9aVc488VZcp1dp7By6cH2Lti_IzHc20W_tYJpLkrzpuT9LsH9kez68saOb0CpgEapLS3su_1nqf-xwTzYVcgeu85F7DfZ0gY4ZaK4_D-quDZlDmZ08PYIXfabFEvXRspI4Iw3hXr9Z6EHq49DLIDcAT71OSecWx-GX4MsdYfOUrDjsthxWezvZSm6iyPdY-p_K6q9lTFwoCm1sih0w0bk1Q5Z5qFPB0ZwphttWIm_2cXnrrdukUK2d7cMqAKg3CgB_CemBd0T |
CitedBy_id | crossref_primary_10_1073_pnas_2208536120 crossref_primary_10_1016_j_yexcr_2019_111625 crossref_primary_10_1038_s41467_018_04290_w crossref_primary_10_1016_j_biotechadv_2017_08_002 crossref_primary_10_1016_j_jmb_2016_03_006 crossref_primary_10_1098_rsob_200157 crossref_primary_10_1073_pnas_1911183117 crossref_primary_10_1084_jem_20221042 crossref_primary_10_1021_acs_biochem_8b01001 crossref_primary_10_1073_pnas_1507587112 crossref_primary_10_3390_ijms23010509 crossref_primary_10_1063_5_0198119 crossref_primary_10_1111_mpp_12424 crossref_primary_10_3389_frsfm_2025_1530439 crossref_primary_10_1016_j_bpj_2017_05_016 crossref_primary_10_1016_j_jmb_2021_166833 crossref_primary_10_1073_pnas_1812053116 crossref_primary_10_1103_PhysRevE_101_032409 crossref_primary_10_1016_j_ejcb_2023_151379 crossref_primary_10_1016_j_jbc_2021_100337 crossref_primary_10_1038_s41467_024_45878_9 crossref_primary_10_1002_prot_25813 crossref_primary_10_1016_j_jmb_2015_08_011 crossref_primary_10_1016_j_jbc_2024_108101 crossref_primary_10_1021_acs_jpcb_6b02741 crossref_primary_10_1093_pnasnexus_pgad331 crossref_primary_10_1021_acs_jpcb_8b00663 crossref_primary_10_15252_embj_2021107982 crossref_primary_10_1007_s12035_022_02815_5 crossref_primary_10_1073_pnas_1915987117 crossref_primary_10_1002_cm_21927 crossref_primary_10_3390_ijms21124285 crossref_primary_10_1016_j_jmb_2015_07_005 crossref_primary_10_1073_pnas_1818808116 crossref_primary_10_1083_jcb_202309021 crossref_primary_10_1038_srep44506 crossref_primary_10_1038_s41467_023_44148_4 crossref_primary_10_1016_j_csbj_2022_07_054 crossref_primary_10_1016_j_bpj_2015_03_058 crossref_primary_10_1021_acs_jpcb_8b12320 crossref_primary_10_1074_jbc_R115_636472 crossref_primary_10_1038_s42004_024_01243_x crossref_primary_10_1002_cm_21384 crossref_primary_10_1074_jbc_M117_808378 crossref_primary_10_1038_ncomms12456 crossref_primary_10_1083_jcb_201810054 |
Cites_doi | 10.1016/S0076-6879(10)82006-3 10.1016/j.molcel.2006.08.006 10.1038/nature09372 10.1016/j.bpj.2010.07.009 10.1038/307058a0 10.1074/jbc.270.19.11437 10.1016/j.jmb.2004.11.065 10.1016/j.jmb.2007.12.073 10.1016/0378-1119(88)90185-0 10.1016/0003-2697(89)90602-7 10.1016/j.jmb.2005.09.021 10.1016/j.bpj.2010.01.023 10.1007/s12551-009-0008-5 10.1038/364685a0 10.1016/j.jmb.2006.10.102 10.1016/j.cell.2012.05.037 10.1073/pnas.0911675107 10.1074/jbc.M111.219964 10.1093/genetics/122.1.19 10.1083/jcb.111.2.453 10.1126/science.1175862 10.1083/jcb.109.4.1597 10.1038/nmeth.2472 10.1016/S1047-8477(03)00069-8 10.1073/pnas.1110109108 10.1073/pnas.1211078109 10.1371/journal.pone.0094766 10.1038/325362a0 10.1006/jmbi.2001.5005 10.1016/j.jsb.2006.05.004 10.1146/annurev.cellbio.15.1.185 10.1016/j.jmb.2011.08.058 10.1042/bj20020231 10.1074/jbc.M113.523365 10.1016/j.ejcb.2013.12.001 10.2144/000112040 10.1016/j.jmb.2005.11.072 10.1016/j.cub.2011.03.064 10.1074/jbc.M804419200 10.1016/j.str.2011.12.014 10.1038/nsmb.1930 10.1016/j.jsb.2011.12.020 10.1016/j.jmb.2006.06.019 10.1016/j.bbrc.2013.07.109 10.1016/j.febslet.2013.01.062 10.1101/gad.1477507 10.1016/j.cub.2007.04.037 10.1016/j.jmb.2008.05.055 10.1083/jcb.138.4.771 10.1016/j.jmb.2013.01.020 10.1529/biophysj.105.073924 10.1039/b919488f 10.1016/S0092-8674(03)00120-X 10.1074/jbc.M403370200 10.1016/j.bpj.2013.10.032 10.1016/j.bpj.2011.05.049 10.1006/jmbi.1993.1393 10.1016/j.devcel.2012.12.008 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 16, 2014 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 16, 2014 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 1XC 5PM |
DOI | 10.1073/pnas.1413397111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Salt linkage in cofilin severing activity |
EISSN | 1091-6490 |
EndPage | 17826 |
ExternalDocumentID | PMC4273407 oai_HAL_hal_01140866v1 3534500571 25468977 10_1073_pnas_1413397111 111_50_17821 43278792 US201600139640 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM110530 – fundername: NIGMS NIH HHS grantid: R01 GM053756 – fundername: NIGMS NIH HHS grantid: R01-GM097348 – fundername: NIGMS NIH HHS grantid: GM053756 – fundername: PHS HHS grantid: NIGMS 077190 – fundername: NIGMS NIH HHS grantid: R01 GM097348 – fundername: NIGMS NIH HHS grantid: GM11053001 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: R01-GM11053001 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: R01-GM097348 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: R01-GM053756 – fundername: American Cancer Society (ACS) grantid: IRG5801255 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: R01-077190 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 1XC 5PM |
ID | FETCH-LOGICAL-c625t-65375e7be3a901ece0d959e3b99b9e2c65d06d57225e946854a2b15344664c3c3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:30:47 EDT 2025 Sun Sep 28 07:52:48 EDT 2025 Fri Sep 05 09:57:18 EDT 2025 Thu Sep 04 21:29:04 EDT 2025 Sat Aug 16 22:23:08 EDT 2025 Wed Feb 19 02:42:08 EST 2025 Tue Jul 01 01:53:17 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Wed Nov 11 00:29:54 EST 2020 Thu May 29 08:43:07 EDT 2025 Wed Dec 27 19:07:22 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | mechanics electron cryomicroscopy persistence length cytoskeleton cell motility cofilin actin poymerization vertebrate Cytoskeleton actin dynamics |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c625t-65375e7be3a901ece0d959e3b99b9e2c65d06d57225e946854a2b15344664c3c3 |
Notes | http://dx.doi.org/10.1073/pnas.1413397111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4273407 Edited by John A. Cooper, Washington University in St. Louis, St. Louis, MO, and accepted by the Editorial Board November 10, 2014 (received for review July 15, 2014) Author contributions: H.K., M.J.B., M.H., and E.M.D.L.C. designed research; H.K., M.J.B., W.C., K.Z., E.E.G., A.M., C.V.S., M.H., and E.M.D.L.C. performed research; H.K., W.C., C.V.S., M.H., and E.M.D.L.C. contributed new reagents/analytic tools; H.K., M.J.B., K.Z., E.E.G., A.M., C.V.S., M.H., and E.M.D.L.C. analyzed data; and H.K., M.J.B., W.C., E.E.G., A.M., C.V.S., M.H., and E.M.D.L.C. wrote the paper. |
ORCID | 0000-0003-2023-8094 |
OpenAccessLink | http://doi.org/10.1073/pnas.1413397111 |
PMID | 25468977 |
PQID | 1639503238 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1413397111 proquest_miscellaneous_1637995897 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4273407 hal_primary_oai_HAL_hal_01140866v1 proquest_miscellaneous_1803124854 proquest_journals_1639503238 pubmed_primary_25468977 pnas_primary_111_50_17821 crossref_primary_10_1073_pnas_1413397111 fao_agris_US201600139640 jstor_primary_43278792 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-16 |
PublicationDateYYYYMMDD | 2014-12-16 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 Galkin VE (e_1_3_3_35_2) 2014 e_1_3_3_42_2 e_1_3_3_51_2 Oosawa F (e_1_3_3_7_2) 1975 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 Guthrie C (e_1_3_3_55_2) 2002 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 15670604 - J Mol Biol. 2005 Feb 18;346(2):557-64 23644547 - Nat Methods. 2013 Jun;10(6):584-90 18258262 - J Mol Biol. 2008 Mar 21;377(2):395-409 24836399 - Eur J Cell Biol. 2014 May-Jun;93(5-6):238-51 22248449 - J Struct Biol. 2012 Feb;177(2):302-13 17493813 - Curr Biol. 2007 May 15;17(10):825-33 6537825 - Nature. 1984 Jan 5-11;307(5946):58-60 25533486 - Structure. 2015 Jan 6;23(1):173-82 2143195 - J Cell Biol. 1990 Aug;111(2):453-63 20858430 - Biophys J. 2010 Sep 22;99(6):1852-60 18945676 - J Biol Chem. 2008 Dec 12;283(50):34844-54 9265645 - J Cell Biol. 1997 Aug 25;138(4):771-81 2659436 - Genetics. 1989 May;122(1):19-27 22158895 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20568-72 21530260 - Curr Biol. 2011 May 24;21(10):862-8 8395021 - Nature. 1993 Aug 19;364(6439):685-92 17018289 - Mol Cell. 2006 Oct 6;24(1):13-23 20368459 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7299-304 21723825 - Biophys J. 2011 Jul 6;101(1):151-9 22817895 - Cell. 2012 Jul 20;150(2):327-38 23333351 - Dev Cell. 2013 Jan 28;24(2):182-95 3073106 - Gene. 1988 Dec 30;74(2):527-34 12600310 - Cell. 2003 Feb 21;112(4):453-65 22325770 - Structure. 2012 Feb 8;20(2):205-14 21454476 - J Biol Chem. 2011 May 13;286(19):17039-46 10611961 - Annu Rev Cell Dev Biol. 1999;15:185-230 16843490 - J Mol Biol. 2006 Aug 11;361(2):257-67 19965462 - Science. 2009 Nov 27;326(5957):1208-12 24740323 - PLoS One. 2014;9(4):e94766 8345515 - J Mol Biol. 1993 Jul 20;232(2):334-41 24359734 - Biophys J. 2013 Dec 17;105(12):2621-8 20700473 - Biophys Rev. 2009 May 15;1(2):51-59 16213521 - J Mol Biol. 2005 Nov 11;353(5):990-1000 12781660 - J Struct Biol. 2003 Jun;142(3):334-47 17134718 - J Mol Biol. 2007 Feb 2;365(5):1350-8 3027569 - Nature. 1987 Jan 22-28;325(6102):362-4 21910998 - J Mol Biol. 2011 Oct 28;413(3):584-92 23395798 - FEBS Lett. 2013 Apr 17;587(8):1215-9 23352932 - J Mol Biol. 2013 Apr 12;425(7):1225-40 2610349 - Anal Biochem. 1989 Nov 1;182(2):319-26 18617188 - J Mol Biol. 2008 Sep 5;381(3):550-8 20441753 - Biophys J. 2010 May 19;98(9):1893-901 12113256 - Biochem J. 2002 Jul 1;365(Pt 1):147-55 11575927 - J Mol Biol. 2001 Sep 28;312(4):721-30 24371134 - J Biol Chem. 2014 Feb 14;289(7):4043-54 17167106 - Genes Dev. 2007 Jan 15;21(2):148-59 16361345 - Biophys J. 2006 Mar 1;90(5):1572-82 2507553 - J Cell Biol. 1989 Oct;109(4 Pt 1):1597-608 20888961 - Methods Enzymol. 2010;482:167-83 20935633 - Nat Struct Mol Biol. 2010 Nov;17(11):1318-23 7744781 - J Biol Chem. 1995 May 12;270(19):11437-44 16454043 - Biotechniques. 2006 Jan;40(1):73-8 23911787 - Biochem Biophys Res Commun. 2013 Sep 6;438(4):728-31 20844487 - Nature. 2010 Oct 7;467(7316):724-8 16375920 - J Mol Biol. 2006 Feb 17;356(2):325-34 15184395 - J Biol Chem. 2004 Aug 13;279(33):34849-55 23027950 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16923-7 16828314 - J Struct Biol. 2007 Jan;157(1):117-25 |
References_xml | – ident: e_1_3_3_52_2 doi: 10.1016/S0076-6879(10)82006-3 – ident: e_1_3_3_16_2 doi: 10.1016/j.molcel.2006.08.006 – ident: e_1_3_3_34_2 doi: 10.1038/nature09372 – ident: e_1_3_3_38_2 doi: 10.1016/j.bpj.2010.07.009 – ident: e_1_3_3_30_2 doi: 10.1038/307058a0 – ident: e_1_3_3_28_2 doi: 10.1074/jbc.270.19.11437 – ident: e_1_3_3_14_2 doi: 10.1016/j.jmb.2004.11.065 – ident: e_1_3_3_45_2 doi: 10.1016/j.jmb.2007.12.073 – ident: e_1_3_3_57_2 doi: 10.1016/0378-1119(88)90185-0 – year: 2014 ident: e_1_3_3_35_2 article-title: Near-atomic resolution for one state of F-actin publication-title: Structure – ident: e_1_3_3_46_2 doi: 10.1016/0003-2697(89)90602-7 – ident: e_1_3_3_13_2 doi: 10.1016/j.jmb.2005.09.021 – ident: e_1_3_3_39_2 doi: 10.1016/j.bpj.2010.01.023 – ident: e_1_3_3_5_2 doi: 10.1007/s12551-009-0008-5 – ident: e_1_3_3_43_2 doi: 10.1038/364685a0 – ident: e_1_3_3_18_2 doi: 10.1016/j.jmb.2006.10.102 – ident: e_1_3_3_32_2 doi: 10.1016/j.cell.2012.05.037 – ident: e_1_3_3_26_2 doi: 10.1073/pnas.0911675107 – ident: e_1_3_3_61_2 doi: 10.1074/jbc.M111.219964 – ident: e_1_3_3_58_2 doi: 10.1093/genetics/122.1.19 – ident: e_1_3_3_47_2 doi: 10.1083/jcb.111.2.453 – ident: e_1_3_3_2_2 doi: 10.1126/science.1175862 – ident: e_1_3_3_3_2 doi: 10.1083/jcb.109.4.1597 – ident: e_1_3_3_49_2 doi: 10.1038/nmeth.2472 – ident: e_1_3_3_50_2 doi: 10.1016/S1047-8477(03)00069-8 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.1110109108 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.1211078109 – ident: e_1_3_3_27_2 doi: 10.1371/journal.pone.0094766 – volume-title: Thermodynamics of the Polymerization of Protein year: 1975 ident: e_1_3_3_7_2 – ident: e_1_3_3_44_2 doi: 10.1038/325362a0 – ident: e_1_3_3_37_2 doi: 10.1006/jmbi.2001.5005 – ident: e_1_3_3_53_2 doi: 10.1016/j.jsb.2006.05.004 – ident: e_1_3_3_4_2 doi: 10.1146/annurev.cellbio.15.1.185 – ident: e_1_3_3_29_2 doi: 10.1016/j.jmb.2011.08.058 – ident: e_1_3_3_33_2 doi: 10.1042/bj20020231 – ident: e_1_3_3_40_2 doi: 10.1074/jbc.M113.523365 – ident: e_1_3_3_42_2 doi: 10.1016/j.ejcb.2013.12.001 – ident: e_1_3_3_59_2 doi: 10.2144/000112040 – ident: e_1_3_3_17_2 doi: 10.1016/j.jmb.2005.11.072 – ident: e_1_3_3_15_2 doi: 10.1016/j.cub.2011.03.064 – ident: e_1_3_3_22_2 doi: 10.1074/jbc.M804419200 – ident: e_1_3_3_54_2 doi: 10.1016/j.str.2011.12.014 – ident: e_1_3_3_23_2 doi: 10.1038/nsmb.1930 – ident: e_1_3_3_51_2 doi: 10.1016/j.jsb.2011.12.020 – ident: e_1_3_3_20_2 doi: 10.1016/j.jmb.2006.06.019 – ident: e_1_3_3_31_2 doi: 10.1016/j.bbrc.2013.07.109 – ident: e_1_3_3_41_2 doi: 10.1016/j.febslet.2013.01.062 – volume-title: Guide to Yeast Genetics and Molecular and Cell Biology: Part C year: 2002 ident: e_1_3_3_55_2 – ident: e_1_3_3_56_2 doi: 10.1101/gad.1477507 – ident: e_1_3_3_6_2 doi: 10.1016/j.cub.2007.04.037 – ident: e_1_3_3_11_2 doi: 10.1016/j.jmb.2008.05.055 – ident: e_1_3_3_9_2 doi: 10.1083/jcb.138.4.771 – ident: e_1_3_3_10_2 doi: 10.1016/j.jmb.2013.01.020 – ident: e_1_3_3_25_2 doi: 10.1529/biophysj.105.073924 – ident: e_1_3_3_48_2 doi: 10.1039/b919488f – ident: e_1_3_3_1_2 doi: 10.1016/S0092-8674(03)00120-X – ident: e_1_3_3_36_2 doi: 10.1074/jbc.M403370200 – ident: e_1_3_3_21_2 doi: 10.1016/j.bpj.2013.10.032 – ident: e_1_3_3_12_2 doi: 10.1016/j.bpj.2011.05.049 – ident: e_1_3_3_24_2 doi: 10.1006/jmbi.1993.1393 – ident: e_1_3_3_60_2 doi: 10.1016/j.devcel.2012.12.008 – reference: 20700473 - Biophys Rev. 2009 May 15;1(2):51-59 – reference: 21454476 - J Biol Chem. 2011 May 13;286(19):17039-46 – reference: 17493813 - Curr Biol. 2007 May 15;17(10):825-33 – reference: 23911787 - Biochem Biophys Res Commun. 2013 Sep 6;438(4):728-31 – reference: 19965462 - Science. 2009 Nov 27;326(5957):1208-12 – reference: 17018289 - Mol Cell. 2006 Oct 6;24(1):13-23 – reference: 3027569 - Nature. 1987 Jan 22-28;325(6102):362-4 – reference: 21910998 - J Mol Biol. 2011 Oct 28;413(3):584-92 – reference: 20888961 - Methods Enzymol. 2010;482:167-83 – reference: 22817895 - Cell. 2012 Jul 20;150(2):327-38 – reference: 15184395 - J Biol Chem. 2004 Aug 13;279(33):34849-55 – reference: 15670604 - J Mol Biol. 2005 Feb 18;346(2):557-64 – reference: 22248449 - J Struct Biol. 2012 Feb;177(2):302-13 – reference: 23333351 - Dev Cell. 2013 Jan 28;24(2):182-95 – reference: 11575927 - J Mol Biol. 2001 Sep 28;312(4):721-30 – reference: 16828314 - J Struct Biol. 2007 Jan;157(1):117-25 – reference: 17167106 - Genes Dev. 2007 Jan 15;21(2):148-59 – reference: 8395021 - Nature. 1993 Aug 19;364(6439):685-92 – reference: 12113256 - Biochem J. 2002 Jul 1;365(Pt 1):147-55 – reference: 10611961 - Annu Rev Cell Dev Biol. 1999;15:185-230 – reference: 20441753 - Biophys J. 2010 May 19;98(9):1893-901 – reference: 3073106 - Gene. 1988 Dec 30;74(2):527-34 – reference: 24836399 - Eur J Cell Biol. 2014 May-Jun;93(5-6):238-51 – reference: 6537825 - Nature. 1984 Jan 5-11;307(5946):58-60 – reference: 2610349 - Anal Biochem. 1989 Nov 1;182(2):319-26 – reference: 16213521 - J Mol Biol. 2005 Nov 11;353(5):990-1000 – reference: 20844487 - Nature. 2010 Oct 7;467(7316):724-8 – reference: 22325770 - Structure. 2012 Feb 8;20(2):205-14 – reference: 25533486 - Structure. 2015 Jan 6;23(1):173-82 – reference: 22158895 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20568-72 – reference: 20935633 - Nat Struct Mol Biol. 2010 Nov;17(11):1318-23 – reference: 24371134 - J Biol Chem. 2014 Feb 14;289(7):4043-54 – reference: 23395798 - FEBS Lett. 2013 Apr 17;587(8):1215-9 – reference: 21723825 - Biophys J. 2011 Jul 6;101(1):151-9 – reference: 16454043 - Biotechniques. 2006 Jan;40(1):73-8 – reference: 7744781 - J Biol Chem. 1995 May 12;270(19):11437-44 – reference: 16375920 - J Mol Biol. 2006 Feb 17;356(2):325-34 – reference: 24359734 - Biophys J. 2013 Dec 17;105(12):2621-8 – reference: 20368459 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7299-304 – reference: 9265645 - J Cell Biol. 1997 Aug 25;138(4):771-81 – reference: 17134718 - J Mol Biol. 2007 Feb 2;365(5):1350-8 – reference: 12600310 - Cell. 2003 Feb 21;112(4):453-65 – reference: 16843490 - J Mol Biol. 2006 Aug 11;361(2):257-67 – reference: 24740323 - PLoS One. 2014;9(4):e94766 – reference: 23352932 - J Mol Biol. 2013 Apr 12;425(7):1225-40 – reference: 23644547 - Nat Methods. 2013 Jun;10(6):584-90 – reference: 18617188 - J Mol Biol. 2008 Sep 5;381(3):550-8 – reference: 20858430 - Biophys J. 2010 Sep 22;99(6):1852-60 – reference: 12781660 - J Struct Biol. 2003 Jun;142(3):334-47 – reference: 2659436 - Genetics. 1989 May;122(1):19-27 – reference: 18945676 - J Biol Chem. 2008 Dec 12;283(50):34844-54 – reference: 16361345 - Biophys J. 2006 Mar 1;90(5):1572-82 – reference: 18258262 - J Mol Biol. 2008 Mar 21;377(2):395-409 – reference: 23027950 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16923-7 – reference: 8345515 - J Mol Biol. 1993 Jul 20;232(2):334-41 – reference: 2507553 - J Cell Biol. 1989 Oct;109(4 Pt 1):1597-608 – reference: 2143195 - J Cell Biol. 1990 Aug;111(2):453-63 – reference: 21530260 - Curr Biol. 2011 May 24;21(10):862-8 |
SSID | ssj0009580 |
Score | 2.357458 |
Snippet | Significance Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of... Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential... Cofilin is an essential actin regulatory protein that severs filaments, which accelerates network remodeling by increasing the concentration of filament ends... |
SourceID | pubmedcentral hal proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17821 |
SubjectTerms | actin Actin Cytoskeleton - chemistry Actin Cytoskeleton - metabolism Actin Cytoskeleton - ultrastructure Actin depolymerizing factors Actins Bending Binding sites Biological Sciences Cations Cations - metabolism Cell Movement - physiology Cellular Biology Chromatography, Affinity Cofilin 1 - metabolism Cryoelectron Microscopy dissociation Electrons Eukaryotes Fracture mechanics Humans Life Sciences Mechanical properties Microfilaments Models, Molecular Molecules plastics Polymerization regulatory proteins Saccharomyces cerevisiae Stiffness Vertebrates Yeast Yeasts |
Title | Site-specific cation release drives actin filament severing by vertebrate cofilin |
URI | https://www.jstor.org/stable/43278792 http://www.pnas.org/content/111/50/17821.abstract https://www.ncbi.nlm.nih.gov/pubmed/25468977 https://www.proquest.com/docview/1639503238 https://www.proquest.com/docview/1637995897 https://www.proquest.com/docview/1803124854 https://hal.science/hal-01140866 https://pubmed.ncbi.nlm.nih.gov/PMC4273407 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILYsBYYKCAeBiKUpLYiZPHagJVA6qhrdLES2Qn7joJ0mltEfCv8c9xZztuWpUJeImm1Emc3Lf7Yd99R8iruhY8mUgR8oypkElOQQ-CI5dOYsGKXMq4xgLnj6NsOGYnF-lFr_erk7W0XMh-9XNrXcn_SBXOgVyxSvYfJOtuCifgb5AvHEHCcPwrGZ-BvxhirSTm-wRm8U13QQHTFNQ3mlEWCxcapF8SetsfDKEmH0S3E1sx477xAjPWYYQl4bau6qkzbfM2kWDUrhwOVnUoVjnMgzA4Ha26Gg_BlQfV8V5Yy6jLDnWGfnDSD3AHv91R1ttCzXeA6WVwLGbOAoiriYJTn6ezZXdpItYEiKZyssvsbSblptPVxglYSGZqqPvKKGDwX8KMmRaiTkNbfWygaIhqrcKNwcOJt5oC0F3Yv7gRc7AGEIkX3N6mA4zrrxoZ2BMgL2w7mTVK7g1T6RIYMWxKIXzCp--QOwkHx61dKnKMz7mpf7Iv2fJKcfpmY1JISG1nsOYd7UzEDI5TzNA1ybLIwAvXbouGNpN6O17S-X1yz4Y3_sBgdY_0VPOA7LVC8Y8sy_nrh-TTGnh9A17fgtc34PU1eP0WvH4LXl_-8Ffg9S14H5Hxu7fnx8PQ9vcIK4i6F2GWUp4qLhUV4JWqSkV1kRaKyqKQhUqqLK2jrE45mBxVwPdJmUgkWGhMQWAVreg-2W1mjTogPk9ikdJJpFKpWB1H4HPlEIzIivI6pyLxSL_9rmVlye-xB8uXUidhcFridy1XMvHIkbvg2vC-_HnoAQiqFJdglcvxWYKcjRhYZSzyyEuQnrsBUrkPBx9KPIcLEVGeZd_g-n0tXDeM0QTMaAGT9vSj3PM7oPPIYQuB0mokmBOEG2lEwQv3yAv3M9gL3AQUjZot9RjkgASw3TImB1OPXIfMI48NqtwkWqR6hK_hbe0l139prqaat54hlVbEn9zyWk_J3ZUiOSS7i5ulegZe_0I-1_9dvwG63_y7 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Site-specific+cation+release+drives+actin+filament+severing+by+vertebrate+cofilin&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hyeran+Kang&rft.au=Michael+J.+Bradley&rft.au=Wenxiang+Cao&rft.au=Kaifeng+Zhou&rft.date=2014-12-16&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=50&rft.spage=17821&rft_id=info:doi/10.1073%2Fpnas.1413397111&rft_id=info%3Apmid%2F25468977&rft.externalDBID=n%2Fa&rft.externalDocID=111_50_17821 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F50.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F50.cover.gif |