Stable feature selection and classification algorithms for multiclass microarray data
Background Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based o...
        Saved in:
      
    
          | Published in | Biology direct Vol. 7; no. 1; p. 33 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        02.10.2012
     BioMed Central Ltd Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1745-6150 1745-6150  | 
| DOI | 10.1186/1745-6150-7-33 | 
Cover
| Abstract | Background
Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists.
Results
This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings.
Conclusions
This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods.
Reviewers
This article was reviewed by Prof Marek Kimmel, Dr Hans Binder (nominated by Dr Tomasz Lipniacki) and Dr Yuriy Gusev | 
    
|---|---|
| AbstractList | Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists.BACKGROUNDRecent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists.This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings.RESULTSThis paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings.This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods.CONCLUSIONSThis paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods. Doc number: 33 Abstract Background: Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists. Results: This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings. Conclusions: This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods. Reviewers: This article was reviewed by Prof Marek Kimmel, Dr Hans Binder (nominated by Dr Tomasz Lipniacki) and Dr Yuriy Gusev Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists. This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings. This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods. Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists. This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings. This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods. Background Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists. Results This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings. Conclusions This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods. Reviewers This article was reviewed by Prof Marek Kimmel, Dr Hans Binder (nominated by Dr Tomasz Lipniacki) and Dr Yuriy Gusev Background Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists. Results This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings. Conclusions This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods. Reviewers This article was reviewed by Prof Marek Kimmel, Dr Hans Binder (nominated by Dr Tomasz Lipniacki) and Dr Yuriy Gusev  | 
    
| Audience | Academic | 
    
| Author | Fujarewicz, Krzysztof Student, Sebastian  | 
    
| AuthorAffiliation | 1 Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland | 
    
| AuthorAffiliation_xml | – name: 1 Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland | 
    
| Author_xml | – sequence: 1 givenname: Sebastian surname: Student fullname: Student, Sebastian email: sebastian.student@polsl.pl organization: Institute of Automatic Control, Silesian University of Technology – sequence: 2 givenname: Krzysztof surname: Fujarewicz fullname: Fujarewicz, Krzysztof organization: Institute of Automatic Control, Silesian University of Technology  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23031190$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkstrFTEUxgep2IduXcqAG11Mm-c8NkIpVQsFwdp1OJNJblMyyTXJqPe_b6b32t5bKpJFwsn3fSf8cg6LPeedKoq3GB1j3NYnuGG8qjFHVVNR-qI4eCjsbZ33i8MYbxFirEXtq2KfUEQx7tBBcX2VoLeq1ArSFFQZlVUyGe9KcEMpLcRotJGwLtmFDybdjLHUPpTjZJO5l5SjkcFDCLAqB0jwunipwUb1ZrMfFdefz3-cfa0uv325ODu9rGRNeKqIGhjDnA1cyp41NeW4A0JADj3joDVgBkzVaugI4rned73Esmn6ptaaMEaPipN17uSWsPoN1oplMCOElcBIzIDEzEDMDEQjKM2OT2vHcupHNUjlUoBHlwcjdm-cuREL_0tQ3nW8xTngwyYg-J-TikmMJkplLTjlpygwxU3LSduSLH3_RHrrp-AykFlVE4xrtqVagFXCOO1zXzmHilNOGSOIoTqrjp9R5TWozD7PhDa5vmP4uGPImqT-pAVMMYqLq--72nfbUB5o_B2Tx-75l2MMSv8fM3tikCbdD1F-trH_tm3-M-Z8t1Bhi9jzjjvxouv_ | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3205618 crossref_primary_10_1038_s41598_023_47783_5 crossref_primary_10_1109_TCBB_2018_2822803 crossref_primary_10_1016_j_ijcce_2020_11_001 crossref_primary_10_1109_TNB_2019_2917814 crossref_primary_10_1186_s13637_014_0015_0 crossref_primary_10_1109_ACCESS_2021_3112169 crossref_primary_10_1109_TNNLS_2018_2849932 crossref_primary_10_1049_iet_syb_2018_5060 crossref_primary_10_1016_j_jmb_2022_167684 crossref_primary_10_1016_j_neucom_2015_08_002 crossref_primary_10_1016_j_ins_2014_05_042 crossref_primary_10_1049_iet_syb_2016_0033 crossref_primary_10_1021_acs_analchem_2c04402 crossref_primary_10_1155_2014_569501 crossref_primary_10_1007_s00405_022_07404_9 crossref_primary_10_1109_ACCESS_2018_2868098 crossref_primary_10_1186_1752_0509_8_S1_S4 crossref_primary_10_1186_1471_2105_15_97  | 
    
| Cites_doi | 10.1080/03610918808812681 10.1186/1471-2105-7-228 10.1093/bioinformatics/btm486 10.1677/ERC-06-0048 10.1073/pnas.0509603102 10.1093/bib/bbp034 10.1016/j.chemolab.2004.12.011 10.1186/1471-2407-12-43 10.1016/j.compbiolchem.2010.07.002 10.1158/0008-5472.CAN-04-3078 10.1186/1471-2105-11-277 10.1142/S0218339003000658 10.1158/0008-5472.CAN-06-4026 10.1093/bioinformatics/bti294 10.1093/bioinformatics/18.1.39 10.1093/bioinformatics/18.9.1216 10.1016/j.cmpb.2008.02.010 10.1093/bioinformatics/btg017 10.1093/bioinformatics/btg419 10.1002/cem.1180020306 10.1186/1471-2105-11-291 10.1038/ng765 10.1023/A:1012487302797 10.1007/BF01277983 10.1093/bioinformatics/bth267 10.1038/89044 10.1186/1471-2105-8-346 10.1186/1297-9686-36-2-191 10.1080/01621459.1983.10477973 10.1002/cem.785 10.1002/cem.846 10.1073/pnas.191502998 10.1214/aos/1176344552 10.1016/S0950-3293(99)00039-7 10.1186/1471-2105-8-S5-S5 10.1038/sj.bjc.6602521 10.1093/bioinformatics/btp295  | 
    
| ContentType | Journal Article | 
    
| Copyright | Student and Fujarewicz; licensee BioMed Central Ltd. 2012 COPYRIGHT 2012 BioMed Central Ltd. 2012 Student and Fujarewicz; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2012 Student and Fujarewicz; licensee BioMed Central Ltd. 2012 Student and Fujarewicz; licensee BioMed Central Ltd.  | 
    
| Copyright_xml | – notice: Student and Fujarewicz; licensee BioMed Central Ltd. 2012 – notice: COPYRIGHT 2012 BioMed Central Ltd. – notice: 2012 Student and Fujarewicz; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2012 Student and Fujarewicz; licensee BioMed Central Ltd. 2012 Student and Fujarewicz; licensee BioMed Central Ltd.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QG 7SN 7SS 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1186/1745-6150-7-33 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Animal Behavior Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1745-6150 | 
    
| EndPage | 33 | 
    
| ExternalDocumentID | 10.1186/1745-6150-7-33 PMC3599581 2914918801 A534420406 23031190 10_1186_1745_6150_7_33  | 
    
| Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5GY 5VS 6J9 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ATCPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS EJD EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAG IAO IGS IHR INH INR IPNFZ ISE ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PATMY PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PYCSY RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP WOQ WOW ~8M AAYXX C1A CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QG 7SN 7SS 7XB 8FK AZQEC C1K DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC AFFHD UNPAY  | 
    
| ID | FETCH-LOGICAL-c625t-2ed44154d5ccb4763519a22acdb45affa14a4e6ed920522ab9bc1c77b76ff2443 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1745-6150 | 
    
| IngestDate | Wed Oct 29 12:21:06 EDT 2025 Tue Sep 30 16:46:31 EDT 2025 Wed Oct 01 17:26:54 EDT 2025 Tue Oct 07 05:30:06 EDT 2025 Mon Oct 20 22:49:44 EDT 2025 Mon Oct 20 16:57:52 EDT 2025 Thu Oct 16 16:17:23 EDT 2025 Fri May 16 01:57:13 EDT 2025 Wed Oct 01 02:54:33 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Sat Sep 06 07:26:30 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Feature Selection Bootstrap Sample Feature Selection Method Partial Little Square Gene List  | 
    
| Language | English | 
    
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c625t-2ed44154d5ccb4763519a22acdb45affa14a4e6ed920522ab9bc1c77b76ff2443 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1745-6150-7-33 | 
    
| PMID | 23031190 | 
    
| PQID | 1316211642 | 
    
| PQPubID | 55140 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | unpaywall_primary_10_1186_1745_6150_7_33 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3599581 proquest_miscellaneous_1317852882 proquest_journals_1316211642 gale_infotracmisc_A534420406 gale_infotracacademiconefile_A534420406 gale_incontextgauss_ISR_A534420406 pubmed_primary_23031190 crossref_primary_10_1186_1745_6150_7_33 crossref_citationtrail_10_1186_1745_6150_7_33 springer_journals_10_1186_1745_6150_7_33  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-10-02 | 
    
| PublicationDateYYYYMMDD | 2012-10-02 | 
    
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-02 day: 02  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | Biology direct | 
    
| PublicationTitleAbbrev | Biol Direct | 
    
| PublicationTitleAlternate | Biol Direct | 
    
| PublicationYear | 2012 | 
    
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V  | 
    
| References | 10.1186/1745-6150-7-33-B5 10.1186/1745-6150-7-33-B15 10.1186/1745-6150-7-33-B48 10.1186/1745-6150-7-33-B16 10.1186/1745-6150-7-33-B47 10.1186/1745-6150-7-33-B8 10.1186/1745-6150-7-33-B19 - 10.1186/1745-6150-7-33-B6 10.1186/1745-6150-7-33-B17 10.1186/1745-6150-7-33-B18 10.1186/1745-6150-7-33-B30 10.1186/1745-6150-7-33-B41 10.1186/1745-6150-7-33-B50 10.1186/1745-6150-7-33-B33 10.1186/1745-6150-7-33-B44 10.1186/1745-6150-7-33-B12 10.1186/1745-6150-7-33-B45 10.1186/1745-6150-7-33-B42 10.1186/1745-6150-7-33-B43 22280244 - BMC Cancer. 2012;12:43 17570864 - BMC Bioinformatics. 2007;8 Suppl 5:S5 18048398 - Bioinformatics. 2008 Jan 1;24(1):110-7 19417058 - Bioinformatics. 2009 Jul 1;25(13):1662-8 20500821 - BMC Bioinformatics. 2010;11:277 15040898 - Genet Sel Evol. 2004 Mar-Apr;36(2):191-205 16365291 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19075-80 11707567 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13790-5 19882273 - Methods Mol Biol. 2010;576:375-407 12611801 - Bioinformatics. 2003 Mar 1;19(4):467-73 15812549 - Br J Cancer. 2005 Apr 25;92(8):1545-52 19259405 - Cancer Inform. 2008;6:77-97 16772269 - Brief Bioinform. 2007 Jan;8(1):32-44 15691862 - Bioinformatics. 2005 May 1;21(9):1979-86 18005434 - BMC Bioinformatics. 2007;8:446 16643657 - BMC Bioinformatics. 2006;7:228 19679825 - Brief Bioinform. 2009 Sep;10(5):556-68 15087314 - Bioinformatics. 2004 Oct 12;20(15):2429-37 17914110 - Endocr Relat Cancer. 2007 Sep;14(3):809-26 14960464 - Bioinformatics. 2004 Feb 12;20(3):374-80 18433926 - Comput Methods Programs Biomed. 2008 Aug;91(2):110-21 19649265 - PLoS One. 2009;4(7):e6416 12217913 - Bioinformatics. 2002 Sep;18(9):1216-26 17877799 - BMC Bioinformatics. 2007;8:346 17804723 - Cancer Res. 2007 Sep 1;67(17):8113-20 20509934 - BMC Bioinformatics. 2010;11:291 11731795 - Nat Genet. 2002 Jan;30(1):41-7 11385503 - Nat Med. 2001 Jun;7(6):673-9 11836210 - Bioinformatics. 2002 Jan;18(1):39-50 15735049 - Cancer Res. 2005 Feb 15;65(4):1587-97 16646813 - Stat Appl Genet Mol Biol. 2004;3:Article33 20702140 - Comput Biol Chem. 2010 Aug;34(4):215-25  | 
    
| References_xml | – ident: - doi: 10.1080/03610918808812681 – ident: - doi: 10.1186/1471-2105-7-228 – ident: 10.1186/1745-6150-7-33-B6 doi: 10.1093/bioinformatics/btm486 – ident: 10.1186/1745-6150-7-33-B44 doi: 10.1677/ERC-06-0048 – ident: 10.1186/1745-6150-7-33-B41 doi: 10.1073/pnas.0509603102 – ident: 10.1186/1745-6150-7-33-B12 doi: 10.1093/bib/bbp034 – ident: - doi: 10.1016/j.chemolab.2004.12.011 – ident: 10.1186/1745-6150-7-33-B16 doi: 10.1186/1471-2407-12-43 – ident: - doi: 10.1016/j.compbiolchem.2010.07.002 – ident: 10.1186/1745-6150-7-33-B50 doi: 10.1158/0008-5472.CAN-04-3078 – ident: 10.1186/1745-6150-7-33-B17 doi: 10.1186/1471-2105-11-277 – ident: - doi: 10.1142/S0218339003000658 – ident: 10.1186/1745-6150-7-33-B42 doi: 10.1158/0008-5472.CAN-06-4026 – ident: 10.1186/1745-6150-7-33-B19 doi: 10.1093/bioinformatics/bti294 – ident: 10.1186/1745-6150-7-33-B8 doi: 10.1093/bioinformatics/18.1.39 – ident: 10.1186/1745-6150-7-33-B30 doi: 10.1093/bioinformatics/18.9.1216 – ident: 10.1186/1745-6150-7-33-B18 doi: 10.1016/j.cmpb.2008.02.010 – ident: 10.1186/1745-6150-7-33-B33 doi: 10.1093/bioinformatics/btg017 – ident: 10.1186/1745-6150-7-33-B15 doi: 10.1093/bioinformatics/btg419 – ident: - doi: 10.1002/cem.1180020306 – ident: - doi: 10.1186/1471-2105-11-291 – ident: 10.1186/1745-6150-7-33-B47 doi: 10.1038/ng765 – ident: - doi: 10.1023/A:1012487302797 – ident: - doi: 10.1007/BF01277983 – ident: 10.1186/1745-6150-7-33-B5 doi: 10.1093/bioinformatics/bth267 – ident: 10.1186/1745-6150-7-33-B48 doi: 10.1038/89044 – ident: - doi: 10.1186/1471-2105-8-346 – ident: - doi: 10.1186/1297-9686-36-2-191 – ident: - doi: 10.1080/01621459.1983.10477973 – ident: - doi: 10.1002/cem.785 – ident: - doi: 10.1002/cem.846 – ident: 10.1186/1745-6150-7-33-B45 doi: 10.1073/pnas.191502998 – ident: - doi: 10.1214/aos/1176344552 – ident: - doi: 10.1016/S0950-3293(99)00039-7 – ident: - doi: 10.1186/1471-2105-8-S5-S5 – ident: - doi: 10.1038/sj.bjc.6602521 – ident: 10.1186/1745-6150-7-33-B43 doi: 10.1093/bioinformatics/btp295 – reference: 18048398 - Bioinformatics. 2008 Jan 1;24(1):110-7 – reference: 17804723 - Cancer Res. 2007 Sep 1;67(17):8113-20 – reference: 19417058 - Bioinformatics. 2009 Jul 1;25(13):1662-8 – reference: 16643657 - BMC Bioinformatics. 2006;7:228 – reference: 17877799 - BMC Bioinformatics. 2007;8:346 – reference: 15735049 - Cancer Res. 2005 Feb 15;65(4):1587-97 – reference: 11707567 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13790-5 – reference: 11385503 - Nat Med. 2001 Jun;7(6):673-9 – reference: 19679825 - Brief Bioinform. 2009 Sep;10(5):556-68 – reference: 11731795 - Nat Genet. 2002 Jan;30(1):41-7 – reference: 16646813 - Stat Appl Genet Mol Biol. 2004;3:Article33 – reference: 18005434 - BMC Bioinformatics. 2007;8:446 – reference: 12611801 - Bioinformatics. 2003 Mar 1;19(4):467-73 – reference: 16772269 - Brief Bioinform. 2007 Jan;8(1):32-44 – reference: 15691862 - Bioinformatics. 2005 May 1;21(9):1979-86 – reference: 17570864 - BMC Bioinformatics. 2007;8 Suppl 5:S5 – reference: 20500821 - BMC Bioinformatics. 2010;11:277 – reference: 11836210 - Bioinformatics. 2002 Jan;18(1):39-50 – reference: 15812549 - Br J Cancer. 2005 Apr 25;92(8):1545-52 – reference: 14960464 - Bioinformatics. 2004 Feb 12;20(3):374-80 – reference: 15040898 - Genet Sel Evol. 2004 Mar-Apr;36(2):191-205 – reference: 15087314 - Bioinformatics. 2004 Oct 12;20(15):2429-37 – reference: 17914110 - Endocr Relat Cancer. 2007 Sep;14(3):809-26 – reference: 19882273 - Methods Mol Biol. 2010;576:375-407 – reference: 12217913 - Bioinformatics. 2002 Sep;18(9):1216-26 – reference: 20702140 - Comput Biol Chem. 2010 Aug;34(4):215-25 – reference: 18433926 - Comput Methods Programs Biomed. 2008 Aug;91(2):110-21 – reference: 19259405 - Cancer Inform. 2008;6:77-97 – reference: 20509934 - BMC Bioinformatics. 2010;11:291 – reference: 16365291 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19075-80 – reference: 22280244 - BMC Cancer. 2012;12:43 – reference: 19649265 - PLoS One. 2009;4(7):e6416  | 
    
| SSID | ssj0044808 | 
    
| Score | 2.1749995 | 
    
| Snippet | Background
Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying... Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA... Background Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying... Doc number: 33 Abstract Background: Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One...  | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 33 | 
    
| SubjectTerms | Algorithms Analysis Bioinformatics Biomedical and Life Sciences Classification Decomposition Discriminant Analysis DNA microarrays Gene expression Gene Expression Profiling - methods Least-Squares Analysis Life Sciences Linear Models Neoplasms - genetics Neoplasms - metabolism Oligonucleotide Array Sequence Analysis - methods Studies Support Vector Machine Transcriptome  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6VVAg4IF4FQ0EGIdGL1Xh3_TogVFCrgkSECpF6W82u1y2S64Q8hPLvmfGLuFLhmp0k9s7s7Df2t98AvE2tsMqOZRAbxEAh1SmoUAUspY4CUWTIZ4e_TuLTqfpyHp3vwKQ7C8O0yi4n1ok6n1l-Rn4YyjCmYoXg8of5r4C7RvHb1a6FBratFfL3tcTYLdgVrIw1gt2Px5NvZ11uplpknLbSjWEaHxIcjwKWRA9opcnB1nQ9QW_tUNfZk_0r1HtwZ13NcfMby3Jrlzp5APdbeOkfNfHwEHZc9QhuNw0nN49hStjSlM4vXK3n6S_rLjjkGh-r3LeMpJk6hM1H5QVNwOryaukTsvVr6mFt4l8xiw8XC9z4zDB9AtOT4x-fToO2sUJgqdxZBcLlXEapPLLWKJakCzMUAm1uVIRFgSG5y8Uuz8SY8BmazNjQJolJ4qIgPCD3YFTNKvcM_LFwqTEuNwQLVYaJiYpQKpsUtCMigQkPgm5OtW1Vx7n5Ranr6iONNftAsw90oqX04F1vP2_0Nm60fMMu0ixiUTFL5gLXy6X-_P1MH0VSKUHpKaafa42KGf2txfbQAV08614NLPcHlrTK7HC4iwTdrvKl_huTHrzuh_mbzFyr3Gxd2yRpJKiQ8eBpEzj9jVH5J0NCZB4kg5DqDVj7ezhS_bysNcAlC8WloQcHXfBtXdYN83XQB-d_pvb5v2_2Bdwl2ChqSqPYh9FqsXYvCZqtzKt2vf0BF9E2jA priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgCAEHxDeBggxCoheLje04ybGqqAoSHICVerPGjtNWSrPVZldo_z0zTjbaFFVwjSdfnrHnjfz8zNiHwkuv_UwJ4wCEBqxTQIMWJKUOEkCWQHuHv303J3P99TQ7HQiytBdmd_0-LcwnBMyZINFygWNB3WZ3MEGZuChrjrYzLlYYs2IQZPz7nknCuT7t7uSd65zIcWH0Abu3bq9g8xuaZif3HD9iDwfQyA97Lz9mt0L7hN3tj5HcPGVzRIyuCbwOUaWTd_FsG-xwDm3FPeFjIgRBf6k5WywvVueXHUe8yiOhMJrwS-LmwXIJG0680Wdsfvz519GJGI5LEB6LmJWQoaLiSFeZ906T0FxagpTgK6czqGtI0QnBhKqUM0Rd4ErnU5_nLjd1jVlePWd77aINLxmfyVA4FyqHYE-XkLusTpX2eY15DtADCRPbPrV-0BKnIy0aG2uKwljygSUf2NwqlbCPo_1Vr6Jxo-V7cpElaYqWuC9nsO46--XnD3uYKa0lTjoGHzcY1Qt8rYdhKwF-PKlZTSz3J5Y4dvy0eRsJdhi7nU1VarAsxsIsYe_GZrqT-GhtWKyjTV5kEsuThL3oA2f8MSzqVIo4K2H5JKRGA1L0nra0F-dR2VuR_FuRJuxgG3w7n3VDfx2MwfmPrn31_099ze4jMJSRtCj32d5quQ5vEHyt3Ns48v4Afasm5g priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB1BKgQc-CxgKMggJHpxGq_XHzlGiKogUSEgUjmtZtfrtqrrRHEiFH49M17HiosqOHDNPjve9czum2TmDcDbzAgjzSgKEo0YSKQ4BSXKgKXUUSCKMXLt8Ofj5GgqP53EJ23-U90IbTe_Jrv9fLhdgl66CgfuoGAXB_O8cA6fJQdEquOAhc0D8pfoJuwkMfHyAexMj79MfriKSAdoVRv_vKh3Kl3dm7cOp6uJk92_p3fh9qqa4_onluXWAXV4Hy42U3N5KRfD1VIPza8rqo__Z-4P4F7LY_2JM7yHcMNWj-CW62y5fgxTIrG6tH5hG-FQv27a7ZAN-FjlvmHKzjlK6D4qT2eL8-XZZe0ThfabHMcG4l9yuiAuFrj2OZV1F6aHH76_PwraDg6BobhqGQibc7wm89gYLVn7LhyjEGhyLWMsCgzJLmxi87EYERFEPdYmNGmq06QoiHhET2BQzSr7DPyRsJnWNtfEP-UYUx0XYSRNWtDRi8RaPAg2b1CZVt6cu2yUqglzskTxUileKpWqKPLgXYefO2GPa5Fv2CAUq2VUnI5ziqu6Vh-_fVWTOJJS0D6Y0O1aUDGjrzXYVjfQw7PAVg-510OSO5v-8MbuVLud1CqMwoQidYoVPXjdDfOVnCJX2dmqwaRZLChi8uCpM9NuYhRnRiFRPw_SngF3ABYZ749U52eN2HjEinRZ6MH-xtS3Huua9drvXOEvS_v836Ev4A5xVdHkUYo9GCwXK_uS-OBSv2od_TeNWFsf priority: 102 providerName: Unpaywall  | 
    
| Title | Stable feature selection and classification algorithms for multiclass microarray data | 
    
| URI | https://link.springer.com/article/10.1186/1745-6150-7-33 https://www.ncbi.nlm.nih.gov/pubmed/23031190 https://www.proquest.com/docview/1316211642 https://www.proquest.com/docview/1317852882 https://pubmed.ncbi.nlm.nih.gov/PMC3599581 https://biologydirect.biomedcentral.com/counter/pdf/10.1186/1745-6150-7-33  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: RBZ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: ABDBF dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection (NC LIVE) customDbUrl: eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1745-6150 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: M48 dateStart: 20060401 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: AAJSJ dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: C6C dateStart: 20060112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVCTP databaseName: EZB Journals (Free) customDbUrl: eissn: 1745-6150 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044808 issn: 1745-6150 databaseCode: OK1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://rzblx1.uni-regensburg.de/ezeit/fl.phtml?bibid=AAAAA&colors=7&lang=de¬ation=ALL providerName: Universitätsbibliothek Regensburg  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF7RVgg4IN4YSmQQEr0Y4vX6dUAoRK1KpEZVS6RwWs2u120l1ylxIsi_Z2btmLhQwcmSd_zIzoz3--LxN4y9TTTXQvcDL1IAngDkKSBAeCSlDhyAp0DfDh-No8OJGE3D6e_6p2YCq79SO-onNZkX739-X33ChP9oEz6JPiCoDj0SNvcwX4IttoOrVEptHI5E-0YBWUg_aUQb_zymsyhdfzRvrE3X6ybbl6f32J1leQWrH1AUG-vTwQN2vwGW7qCOhIfslikfsdt1q8nVYzZBVKkK4-bGKnm6le1_g05xocxcTRiaioag3lWczeYXi_PLykVM69qiQ2viXlL9HsznsHKptvQJmxzsfx0eek1LBU8j0Vl43GREoEQWaq0EidH5KXAOOlMihDwHHx1lIpOlvI_IDFSqtK_jWMVRniMSCJ6y7XJWmufM7XOTKGUyhYBQpBCrMPcDoeMc10JAGOEwbz2nUjd649T2opCWdySRJB9I8oGMZRA47F1rf1Urbdxo-YZcJEm-oqT6mDNYVpX8cnoiB2EgBMcHU4Sna4zyGV5WQ_O5Ad48KV51LHc7lphfuju8jgS5Dk_pB36E1BnJm8Net8N0JNWslWa2tDZxEnKkMA57VgdO-8OQ-AU-YjGHxZ2Qag1I9bs7Ul6cW_XvgCTiEt9he-vg27itG-Zrrw3Of0zti_8_60t2F8Ejt4WNfJdtL-ZL8woB2kL12FY8jXtsZzAYnY5w-3l_fHyCe4fRsGf_9OjZ3MSRyfh48O0XQ989AA | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwvMMAgEHuJ1jjO18OEBmxq2VahsUp7M2fH2SZ1aWlaTf3n-Nu4S5PQTBo87bW-pM75zve75Pw7xt7HRhhpOr4bagBXAuYpIEG6RKUOAkAkQGeHj_phdyC_nQanK-x3fRaGyirrPbHcqNORoXfk257vhZisIFz-NP7lUtco-rpat9CAqrVCulNSjFUHOw7s_ApTuGKn9xXX-4MQ-3snX7pu1WXANYj9p66wKeUUMg2M0ZL42bwEhACTahlAloGHc7ehTRPRQbACOtHGM1GkozDLMDj6eN87bE36MsHkb-3zXv_7cR0LMPfpxBVVpBeH2wj_A5co2F30bL8VCq8HhKWIeL1as_lke5-tz_IxzK9gOFyKivsP2YMKzvLdhf09Yis2f8zuLhpczp-wAWJZPbQ8syV_KC_KrjtoChzylBtC7lSqBIufhmeo8On5ZcERSfOy1LEU4ZdUNQiTCcw5VbQ-ZYNbUfEztpqPcrvBeEfYWGubaoShMoFIB5nnSxNlGIEBwYvD3FqnylQs59RsY6jKbCcOFa2BojVQkfJ9h31s5McLfo8bJd_REikizcipKucMZkWhej-O1W7gSylwOwzxdpVQNsK_NVAdcsDJE89WS3KzJYlebdrDtSWoalcp1F8fcNjbZpiupEq53I5mpUwUBwITJ4c9XxhO82CYbvoeIkCHRS2TagSIa7w9kl-cl5zjPhHTxZ7DtmrjW5rWDfraaozzP6p98e-HfcPWuydHh-qw1z94ye4hZBVlOaXYZKvTycy-Qlg41a8r3-Ps5227-x86bHRE | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9RADLZKEdcD4ihtoEBASPQl6mYyOVbipVpYtRwVAlbq28gzmbSV0uxqkxXaf4-dS5uiCl4zzjW2x581ns8A7xIjjDSjwIs0oieR8hSUKD2mUkeBKMbIZ4e_nUbHM_n5LDzbgg_dWZi62r3bkmzONDBLU1EdLtKscfEkOiQYHXpMZe6RhwS34LakyMb9CybRpFuHKe8YJS1N49_3DMLQ9cV4Ixpdr5Tst0sfwL1VscD1b8zzjYg0fQQPWyjpHjW6fwxbtngCd5rmkuunMCMcqXPrZrbm7nTLuuMNqcHFInUNo2YuE8LmUn4-X15WF1elSyjWrcsMaxH3iiv2cLnEtcvVpDswm376NTn22iYKnqHUpvKETTllkmlojJZMP-ePUQg0qZYhZhn6pBob2XQsRoTFUI-18U0c6zjKMor9wTPYLuaF3QN3JGyitU01QUA5xliHmR9IE2cU_ZCAgwNeN6fKtAzj3OgiV3WmkUSKdaBYBypWQeDA-15-0XBr3Cj5llWkmLCi4IqYc1yVpTr5-UMdhYGUgpaiiB7XCmVzeq3B9oABfTxzXA0k9weS5FFmONxZgmo9ulR-4EeULFO65sCbfpjv5Cq1ws5XtUychIKSFgd2G8Ppf4xSvcAn9OVAPDCpXoB5vocjxeVFzfcdMClc4jtw0BnfxmfdMF8HvXH-Y2qf__9TX8Pd7x-n6uvJ6ZcXcJ-Qo6irGsU-bFfLlX1J6KzSr2on_AP4yjIc | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB1BKgQc-CxgKMggJHpxGq_XHzlGiKogUSEgUjmtZtfrtqrrRHEiFH49M17HiosqOHDNPjve9czum2TmDcDbzAgjzSgKEo0YSKQ4BSXKgKXUUSCKMXLt8Ofj5GgqP53EJ23-U90IbTe_Jrv9fLhdgl66CgfuoGAXB_O8cA6fJQdEquOAhc0D8pfoJuwkMfHyAexMj79MfriKSAdoVRv_vKh3Kl3dm7cOp6uJk92_p3fh9qqa4_onluXWAXV4Hy42U3N5KRfD1VIPza8rqo__Z-4P4F7LY_2JM7yHcMNWj-CW62y5fgxTIrG6tH5hG-FQv27a7ZAN-FjlvmHKzjlK6D4qT2eL8-XZZe0ThfabHMcG4l9yuiAuFrj2OZV1F6aHH76_PwraDg6BobhqGQibc7wm89gYLVn7LhyjEGhyLWMsCgzJLmxi87EYERFEPdYmNGmq06QoiHhET2BQzSr7DPyRsJnWNtfEP-UYUx0XYSRNWtDRi8RaPAg2b1CZVt6cu2yUqglzskTxUileKpWqKPLgXYefO2GPa5Fv2CAUq2VUnI5ziqu6Vh-_fVWTOJJS0D6Y0O1aUDGjrzXYVjfQw7PAVg-510OSO5v-8MbuVLud1CqMwoQidYoVPXjdDfOVnCJX2dmqwaRZLChi8uCpM9NuYhRnRiFRPw_SngF3ABYZ749U52eN2HjEinRZ6MH-xtS3Huua9drvXOEvS_v836Ev4A5xVdHkUYo9GCwXK_uS-OBSv2od_TeNWFsf | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+feature+selection+and+classification+algorithms+for+multiclass+microarray+data&rft.jtitle=Biology+direct&rft.au=Student%2C+Sebastian&rft.au=Fujarewicz%2C+Krzysztof&rft.date=2012-10-02&rft.pub=BioMed+Central&rft.eissn=1745-6150&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2F1745-6150-7-33&rft.externalDocID=10_1186_1745_6150_7_33 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-6150&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-6150&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-6150&client=summon |