Stable feature selection and classification algorithms for multiclass microarray data

Background Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based o...

Full description

Saved in:
Bibliographic Details
Published inBiology direct Vol. 7; no. 1; p. 33
Main Authors Student, Sebastian, Fujarewicz, Krzysztof
Format Journal Article
LanguageEnglish
Published London BioMed Central 02.10.2012
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1745-6150
1745-6150
DOI10.1186/1745-6150-7-33

Cover

Abstract Background Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists. Results This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings. Conclusions This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods. Reviewers This article was reviewed by Prof Marek Kimmel, Dr Hans Binder (nominated by Dr Tomasz Lipniacki) and Dr Yuriy Gusev
AbstractList Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists.BACKGROUNDRecent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists.This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings.RESULTSThis paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings.This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods.CONCLUSIONSThis paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods.
Doc number: 33 Abstract Background: Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists. Results: This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings. Conclusions: This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods. Reviewers: This article was reviewed by Prof Marek Kimmel, Dr Hans Binder (nominated by Dr Tomasz Lipniacki) and Dr Yuriy Gusev
Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists. This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings. This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods.
Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists. This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings. This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods.
Background Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists. Results This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings. Conclusions This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods. Reviewers This article was reviewed by Prof Marek Kimmel, Dr Hans Binder (nominated by Dr Tomasz Lipniacki) and Dr Yuriy Gusev
Background Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists. Results This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings. Conclusions This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods. Reviewers This article was reviewed by Prof Marek Kimmel, Dr Hans Binder (nominated by Dr Tomasz Lipniacki) and Dr Yuriy Gusev
Audience Academic
Author Fujarewicz, Krzysztof
Student, Sebastian
AuthorAffiliation 1 Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
AuthorAffiliation_xml – name: 1 Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Student
  fullname: Student, Sebastian
  email: sebastian.student@polsl.pl
  organization: Institute of Automatic Control, Silesian University of Technology
– sequence: 2
  givenname: Krzysztof
  surname: Fujarewicz
  fullname: Fujarewicz, Krzysztof
  organization: Institute of Automatic Control, Silesian University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23031190$$D View this record in MEDLINE/PubMed
BookMark eNqFkstrFTEUxgep2IduXcqAG11Mm-c8NkIpVQsFwdp1OJNJblMyyTXJqPe_b6b32t5bKpJFwsn3fSf8cg6LPeedKoq3GB1j3NYnuGG8qjFHVVNR-qI4eCjsbZ33i8MYbxFirEXtq2KfUEQx7tBBcX2VoLeq1ArSFFQZlVUyGe9KcEMpLcRotJGwLtmFDybdjLHUPpTjZJO5l5SjkcFDCLAqB0jwunipwUb1ZrMfFdefz3-cfa0uv325ODu9rGRNeKqIGhjDnA1cyp41NeW4A0JADj3joDVgBkzVaugI4rned73Esmn6ptaaMEaPipN17uSWsPoN1oplMCOElcBIzIDEzEDMDEQjKM2OT2vHcupHNUjlUoBHlwcjdm-cuREL_0tQ3nW8xTngwyYg-J-TikmMJkplLTjlpygwxU3LSduSLH3_RHrrp-AykFlVE4xrtqVagFXCOO1zXzmHilNOGSOIoTqrjp9R5TWozD7PhDa5vmP4uGPImqT-pAVMMYqLq--72nfbUB5o_B2Tx-75l2MMSv8fM3tikCbdD1F-trH_tm3-M-Z8t1Bhi9jzjjvxouv_
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3205618
crossref_primary_10_1038_s41598_023_47783_5
crossref_primary_10_1109_TCBB_2018_2822803
crossref_primary_10_1016_j_ijcce_2020_11_001
crossref_primary_10_1109_TNB_2019_2917814
crossref_primary_10_1186_s13637_014_0015_0
crossref_primary_10_1109_ACCESS_2021_3112169
crossref_primary_10_1109_TNNLS_2018_2849932
crossref_primary_10_1049_iet_syb_2018_5060
crossref_primary_10_1016_j_jmb_2022_167684
crossref_primary_10_1016_j_neucom_2015_08_002
crossref_primary_10_1016_j_ins_2014_05_042
crossref_primary_10_1049_iet_syb_2016_0033
crossref_primary_10_1021_acs_analchem_2c04402
crossref_primary_10_1155_2014_569501
crossref_primary_10_1007_s00405_022_07404_9
crossref_primary_10_1109_ACCESS_2018_2868098
crossref_primary_10_1186_1752_0509_8_S1_S4
crossref_primary_10_1186_1471_2105_15_97
Cites_doi 10.1080/03610918808812681
10.1186/1471-2105-7-228
10.1093/bioinformatics/btm486
10.1677/ERC-06-0048
10.1073/pnas.0509603102
10.1093/bib/bbp034
10.1016/j.chemolab.2004.12.011
10.1186/1471-2407-12-43
10.1016/j.compbiolchem.2010.07.002
10.1158/0008-5472.CAN-04-3078
10.1186/1471-2105-11-277
10.1142/S0218339003000658
10.1158/0008-5472.CAN-06-4026
10.1093/bioinformatics/bti294
10.1093/bioinformatics/18.1.39
10.1093/bioinformatics/18.9.1216
10.1016/j.cmpb.2008.02.010
10.1093/bioinformatics/btg017
10.1093/bioinformatics/btg419
10.1002/cem.1180020306
10.1186/1471-2105-11-291
10.1038/ng765
10.1023/A:1012487302797
10.1007/BF01277983
10.1093/bioinformatics/bth267
10.1038/89044
10.1186/1471-2105-8-346
10.1186/1297-9686-36-2-191
10.1080/01621459.1983.10477973
10.1002/cem.785
10.1002/cem.846
10.1073/pnas.191502998
10.1214/aos/1176344552
10.1016/S0950-3293(99)00039-7
10.1186/1471-2105-8-S5-S5
10.1038/sj.bjc.6602521
10.1093/bioinformatics/btp295
ContentType Journal Article
Copyright Student and Fujarewicz; licensee BioMed Central Ltd. 2012
COPYRIGHT 2012 BioMed Central Ltd.
2012 Student and Fujarewicz; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2012 Student and Fujarewicz; licensee BioMed Central Ltd. 2012 Student and Fujarewicz; licensee BioMed Central Ltd.
Copyright_xml – notice: Student and Fujarewicz; licensee BioMed Central Ltd. 2012
– notice: COPYRIGHT 2012 BioMed Central Ltd.
– notice: 2012 Student and Fujarewicz; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2012 Student and Fujarewicz; licensee BioMed Central Ltd. 2012 Student and Fujarewicz; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QG
7SN
7SS
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1745-6150-7-33
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
MEDLINE




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1745-6150
EndPage 33
ExternalDocumentID 10.1186/1745-6150-7-33
PMC3599581
2914918801
A534420406
23031190
10_1186_1745_6150_7_33
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5GY
5VS
6J9
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
INH
INR
IPNFZ
ISE
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PYCSY
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
C1A
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7SN
7SS
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c625t-2ed44154d5ccb4763519a22acdb45affa14a4e6ed920522ab9bc1c77b76ff2443
IEDL.DBID M48
ISSN 1745-6150
IngestDate Wed Oct 29 12:21:06 EDT 2025
Tue Sep 30 16:46:31 EDT 2025
Wed Oct 01 17:26:54 EDT 2025
Tue Oct 07 05:30:06 EDT 2025
Mon Oct 20 22:49:44 EDT 2025
Mon Oct 20 16:57:52 EDT 2025
Thu Oct 16 16:17:23 EDT 2025
Fri May 16 01:57:13 EDT 2025
Wed Oct 01 02:54:33 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
Sat Sep 06 07:26:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Feature Selection
Bootstrap Sample
Feature Selection Method
Partial Little Square
Gene List
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c625t-2ed44154d5ccb4763519a22acdb45affa14a4e6ed920522ab9bc1c77b76ff2443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1745-6150-7-33
PMID 23031190
PQID 1316211642
PQPubID 55140
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_1745_6150_7_33
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3599581
proquest_miscellaneous_1317852882
proquest_journals_1316211642
gale_infotracmisc_A534420406
gale_infotracacademiconefile_A534420406
gale_incontextgauss_ISR_A534420406
pubmed_primary_23031190
crossref_primary_10_1186_1745_6150_7_33
crossref_citationtrail_10_1186_1745_6150_7_33
springer_journals_10_1186_1745_6150_7_33
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-02
PublicationDateYYYYMMDD 2012-10-02
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biology direct
PublicationTitleAbbrev Biol Direct
PublicationTitleAlternate Biol Direct
PublicationYear 2012
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References 10.1186/1745-6150-7-33-B5
10.1186/1745-6150-7-33-B15
10.1186/1745-6150-7-33-B48
10.1186/1745-6150-7-33-B16
10.1186/1745-6150-7-33-B47
10.1186/1745-6150-7-33-B8
10.1186/1745-6150-7-33-B19
-
10.1186/1745-6150-7-33-B6
10.1186/1745-6150-7-33-B17
10.1186/1745-6150-7-33-B18
10.1186/1745-6150-7-33-B30
10.1186/1745-6150-7-33-B41
10.1186/1745-6150-7-33-B50
10.1186/1745-6150-7-33-B33
10.1186/1745-6150-7-33-B44
10.1186/1745-6150-7-33-B12
10.1186/1745-6150-7-33-B45
10.1186/1745-6150-7-33-B42
10.1186/1745-6150-7-33-B43
22280244 - BMC Cancer. 2012;12:43
17570864 - BMC Bioinformatics. 2007;8 Suppl 5:S5
18048398 - Bioinformatics. 2008 Jan 1;24(1):110-7
19417058 - Bioinformatics. 2009 Jul 1;25(13):1662-8
20500821 - BMC Bioinformatics. 2010;11:277
15040898 - Genet Sel Evol. 2004 Mar-Apr;36(2):191-205
16365291 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19075-80
11707567 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13790-5
19882273 - Methods Mol Biol. 2010;576:375-407
12611801 - Bioinformatics. 2003 Mar 1;19(4):467-73
15812549 - Br J Cancer. 2005 Apr 25;92(8):1545-52
19259405 - Cancer Inform. 2008;6:77-97
16772269 - Brief Bioinform. 2007 Jan;8(1):32-44
15691862 - Bioinformatics. 2005 May 1;21(9):1979-86
18005434 - BMC Bioinformatics. 2007;8:446
16643657 - BMC Bioinformatics. 2006;7:228
19679825 - Brief Bioinform. 2009 Sep;10(5):556-68
15087314 - Bioinformatics. 2004 Oct 12;20(15):2429-37
17914110 - Endocr Relat Cancer. 2007 Sep;14(3):809-26
14960464 - Bioinformatics. 2004 Feb 12;20(3):374-80
18433926 - Comput Methods Programs Biomed. 2008 Aug;91(2):110-21
19649265 - PLoS One. 2009;4(7):e6416
12217913 - Bioinformatics. 2002 Sep;18(9):1216-26
17877799 - BMC Bioinformatics. 2007;8:346
17804723 - Cancer Res. 2007 Sep 1;67(17):8113-20
20509934 - BMC Bioinformatics. 2010;11:291
11731795 - Nat Genet. 2002 Jan;30(1):41-7
11385503 - Nat Med. 2001 Jun;7(6):673-9
11836210 - Bioinformatics. 2002 Jan;18(1):39-50
15735049 - Cancer Res. 2005 Feb 15;65(4):1587-97
16646813 - Stat Appl Genet Mol Biol. 2004;3:Article33
20702140 - Comput Biol Chem. 2010 Aug;34(4):215-25
References_xml – ident: -
  doi: 10.1080/03610918808812681
– ident: -
  doi: 10.1186/1471-2105-7-228
– ident: 10.1186/1745-6150-7-33-B6
  doi: 10.1093/bioinformatics/btm486
– ident: 10.1186/1745-6150-7-33-B44
  doi: 10.1677/ERC-06-0048
– ident: 10.1186/1745-6150-7-33-B41
  doi: 10.1073/pnas.0509603102
– ident: 10.1186/1745-6150-7-33-B12
  doi: 10.1093/bib/bbp034
– ident: -
  doi: 10.1016/j.chemolab.2004.12.011
– ident: 10.1186/1745-6150-7-33-B16
  doi: 10.1186/1471-2407-12-43
– ident: -
  doi: 10.1016/j.compbiolchem.2010.07.002
– ident: 10.1186/1745-6150-7-33-B50
  doi: 10.1158/0008-5472.CAN-04-3078
– ident: 10.1186/1745-6150-7-33-B17
  doi: 10.1186/1471-2105-11-277
– ident: -
  doi: 10.1142/S0218339003000658
– ident: 10.1186/1745-6150-7-33-B42
  doi: 10.1158/0008-5472.CAN-06-4026
– ident: 10.1186/1745-6150-7-33-B19
  doi: 10.1093/bioinformatics/bti294
– ident: 10.1186/1745-6150-7-33-B8
  doi: 10.1093/bioinformatics/18.1.39
– ident: 10.1186/1745-6150-7-33-B30
  doi: 10.1093/bioinformatics/18.9.1216
– ident: 10.1186/1745-6150-7-33-B18
  doi: 10.1016/j.cmpb.2008.02.010
– ident: 10.1186/1745-6150-7-33-B33
  doi: 10.1093/bioinformatics/btg017
– ident: 10.1186/1745-6150-7-33-B15
  doi: 10.1093/bioinformatics/btg419
– ident: -
  doi: 10.1002/cem.1180020306
– ident: -
  doi: 10.1186/1471-2105-11-291
– ident: 10.1186/1745-6150-7-33-B47
  doi: 10.1038/ng765
– ident: -
  doi: 10.1023/A:1012487302797
– ident: -
  doi: 10.1007/BF01277983
– ident: 10.1186/1745-6150-7-33-B5
  doi: 10.1093/bioinformatics/bth267
– ident: 10.1186/1745-6150-7-33-B48
  doi: 10.1038/89044
– ident: -
  doi: 10.1186/1471-2105-8-346
– ident: -
  doi: 10.1186/1297-9686-36-2-191
– ident: -
  doi: 10.1080/01621459.1983.10477973
– ident: -
  doi: 10.1002/cem.785
– ident: -
  doi: 10.1002/cem.846
– ident: 10.1186/1745-6150-7-33-B45
  doi: 10.1073/pnas.191502998
– ident: -
  doi: 10.1214/aos/1176344552
– ident: -
  doi: 10.1016/S0950-3293(99)00039-7
– ident: -
  doi: 10.1186/1471-2105-8-S5-S5
– ident: -
  doi: 10.1038/sj.bjc.6602521
– ident: 10.1186/1745-6150-7-33-B43
  doi: 10.1093/bioinformatics/btp295
– reference: 18048398 - Bioinformatics. 2008 Jan 1;24(1):110-7
– reference: 17804723 - Cancer Res. 2007 Sep 1;67(17):8113-20
– reference: 19417058 - Bioinformatics. 2009 Jul 1;25(13):1662-8
– reference: 16643657 - BMC Bioinformatics. 2006;7:228
– reference: 17877799 - BMC Bioinformatics. 2007;8:346
– reference: 15735049 - Cancer Res. 2005 Feb 15;65(4):1587-97
– reference: 11707567 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13790-5
– reference: 11385503 - Nat Med. 2001 Jun;7(6):673-9
– reference: 19679825 - Brief Bioinform. 2009 Sep;10(5):556-68
– reference: 11731795 - Nat Genet. 2002 Jan;30(1):41-7
– reference: 16646813 - Stat Appl Genet Mol Biol. 2004;3:Article33
– reference: 18005434 - BMC Bioinformatics. 2007;8:446
– reference: 12611801 - Bioinformatics. 2003 Mar 1;19(4):467-73
– reference: 16772269 - Brief Bioinform. 2007 Jan;8(1):32-44
– reference: 15691862 - Bioinformatics. 2005 May 1;21(9):1979-86
– reference: 17570864 - BMC Bioinformatics. 2007;8 Suppl 5:S5
– reference: 20500821 - BMC Bioinformatics. 2010;11:277
– reference: 11836210 - Bioinformatics. 2002 Jan;18(1):39-50
– reference: 15812549 - Br J Cancer. 2005 Apr 25;92(8):1545-52
– reference: 14960464 - Bioinformatics. 2004 Feb 12;20(3):374-80
– reference: 15040898 - Genet Sel Evol. 2004 Mar-Apr;36(2):191-205
– reference: 15087314 - Bioinformatics. 2004 Oct 12;20(15):2429-37
– reference: 17914110 - Endocr Relat Cancer. 2007 Sep;14(3):809-26
– reference: 19882273 - Methods Mol Biol. 2010;576:375-407
– reference: 12217913 - Bioinformatics. 2002 Sep;18(9):1216-26
– reference: 20702140 - Comput Biol Chem. 2010 Aug;34(4):215-25
– reference: 18433926 - Comput Methods Programs Biomed. 2008 Aug;91(2):110-21
– reference: 19259405 - Cancer Inform. 2008;6:77-97
– reference: 20509934 - BMC Bioinformatics. 2010;11:291
– reference: 16365291 - Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19075-80
– reference: 22280244 - BMC Cancer. 2012;12:43
– reference: 19649265 - PLoS One. 2009;4(7):e6416
SSID ssj0044808
Score 2.1749995
Snippet Background Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying...
Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA...
Background Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying...
Doc number: 33 Abstract Background: Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 33
SubjectTerms Algorithms
Analysis
Bioinformatics
Biomedical and Life Sciences
Classification
Decomposition
Discriminant Analysis
DNA microarrays
Gene expression
Gene Expression Profiling - methods
Least-Squares Analysis
Life Sciences
Linear Models
Neoplasms - genetics
Neoplasms - metabolism
Oligonucleotide Array Sequence Analysis - methods
Studies
Support Vector Machine
Transcriptome
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6VVAg4IF4FQ0EGIdGL1Xh3_TogVFCrgkSECpF6W82u1y2S64Q8hPLvmfGLuFLhmp0k9s7s7Df2t98AvE2tsMqOZRAbxEAh1SmoUAUspY4CUWTIZ4e_TuLTqfpyHp3vwKQ7C8O0yi4n1ok6n1l-Rn4YyjCmYoXg8of5r4C7RvHb1a6FBratFfL3tcTYLdgVrIw1gt2Px5NvZ11uplpknLbSjWEaHxIcjwKWRA9opcnB1nQ9QW_tUNfZk_0r1HtwZ13NcfMby3Jrlzp5APdbeOkfNfHwEHZc9QhuNw0nN49hStjSlM4vXK3n6S_rLjjkGh-r3LeMpJk6hM1H5QVNwOryaukTsvVr6mFt4l8xiw8XC9z4zDB9AtOT4x-fToO2sUJgqdxZBcLlXEapPLLWKJakCzMUAm1uVIRFgSG5y8Uuz8SY8BmazNjQJolJ4qIgPCD3YFTNKvcM_LFwqTEuNwQLVYaJiYpQKpsUtCMigQkPgm5OtW1Vx7n5Ranr6iONNftAsw90oqX04F1vP2_0Nm60fMMu0ixiUTFL5gLXy6X-_P1MH0VSKUHpKaafa42KGf2txfbQAV08614NLPcHlrTK7HC4iwTdrvKl_huTHrzuh_mbzFyr3Gxd2yRpJKiQ8eBpEzj9jVH5J0NCZB4kg5DqDVj7ezhS_bysNcAlC8WloQcHXfBtXdYN83XQB-d_pvb5v2_2Bdwl2ChqSqPYh9FqsXYvCZqtzKt2vf0BF9E2jA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgCAEHxDeBggxCoheLje04ybGqqAoSHICVerPGjtNWSrPVZldo_z0zTjbaFFVwjSdfnrHnjfz8zNiHwkuv_UwJ4wCEBqxTQIMWJKUOEkCWQHuHv303J3P99TQ7HQiytBdmd_0-LcwnBMyZINFygWNB3WZ3MEGZuChrjrYzLlYYs2IQZPz7nknCuT7t7uSd65zIcWH0Abu3bq9g8xuaZif3HD9iDwfQyA97Lz9mt0L7hN3tj5HcPGVzRIyuCbwOUaWTd_FsG-xwDm3FPeFjIgRBf6k5WywvVueXHUe8yiOhMJrwS-LmwXIJG0680Wdsfvz519GJGI5LEB6LmJWQoaLiSFeZ906T0FxagpTgK6czqGtI0QnBhKqUM0Rd4ErnU5_nLjd1jVlePWd77aINLxmfyVA4FyqHYE-XkLusTpX2eY15DtADCRPbPrV-0BKnIy0aG2uKwljygSUf2NwqlbCPo_1Vr6Jxo-V7cpElaYqWuC9nsO46--XnD3uYKa0lTjoGHzcY1Qt8rYdhKwF-PKlZTSz3J5Y4dvy0eRsJdhi7nU1VarAsxsIsYe_GZrqT-GhtWKyjTV5kEsuThL3oA2f8MSzqVIo4K2H5JKRGA1L0nra0F-dR2VuR_FuRJuxgG3w7n3VDfx2MwfmPrn31_099ze4jMJSRtCj32d5quQ5vEHyt3Ns48v4Afasm5g
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB1BKgQc-CxgKMggJHpxGq_XHzlGiKogUSEgUjmtZtfrtqrrRHEiFH49M17HiosqOHDNPjve9czum2TmDcDbzAgjzSgKEo0YSKQ4BSXKgKXUUSCKMXLt8Ofj5GgqP53EJ23-U90IbTe_Jrv9fLhdgl66CgfuoGAXB_O8cA6fJQdEquOAhc0D8pfoJuwkMfHyAexMj79MfriKSAdoVRv_vKh3Kl3dm7cOp6uJk92_p3fh9qqa4_onluXWAXV4Hy42U3N5KRfD1VIPza8rqo__Z-4P4F7LY_2JM7yHcMNWj-CW62y5fgxTIrG6tH5hG-FQv27a7ZAN-FjlvmHKzjlK6D4qT2eL8-XZZe0ThfabHMcG4l9yuiAuFrj2OZV1F6aHH76_PwraDg6BobhqGQibc7wm89gYLVn7LhyjEGhyLWMsCgzJLmxi87EYERFEPdYmNGmq06QoiHhET2BQzSr7DPyRsJnWNtfEP-UYUx0XYSRNWtDRi8RaPAg2b1CZVt6cu2yUqglzskTxUileKpWqKPLgXYefO2GPa5Fv2CAUq2VUnI5ziqu6Vh-_fVWTOJJS0D6Y0O1aUDGjrzXYVjfQw7PAVg-510OSO5v-8MbuVLud1CqMwoQidYoVPXjdDfOVnCJX2dmqwaRZLChi8uCpM9NuYhRnRiFRPw_SngF3ABYZ749U52eN2HjEinRZ6MH-xtS3Huua9drvXOEvS_v836Ev4A5xVdHkUYo9GCwXK_uS-OBSv2od_TeNWFsf
  priority: 102
  providerName: Unpaywall
Title Stable feature selection and classification algorithms for multiclass microarray data
URI https://link.springer.com/article/10.1186/1745-6150-7-33
https://www.ncbi.nlm.nih.gov/pubmed/23031190
https://www.proquest.com/docview/1316211642
https://www.proquest.com/docview/1317852882
https://pubmed.ncbi.nlm.nih.gov/PMC3599581
https://biologydirect.biomedcentral.com/counter/pdf/10.1186/1745-6150-7-33
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: RBZ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: ABDBF
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection (NC LIVE)
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: M48
  dateStart: 20060401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: AAJSJ
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: C6C
  dateStart: 20060112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVCTP
  databaseName: EZB Journals (Free)
  customDbUrl:
  eissn: 1745-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044808
  issn: 1745-6150
  databaseCode: OK1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://rzblx1.uni-regensburg.de/ezeit/fl.phtml?bibid=AAAAA&colors=7&lang=de&notation=ALL
  providerName: Universitätsbibliothek Regensburg
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF7RVgg4IN4YSmQQEr0Y4vX6dUAoRK1KpEZVS6RwWs2u120l1ylxIsi_Z2btmLhQwcmSd_zIzoz3--LxN4y9TTTXQvcDL1IAngDkKSBAeCSlDhyAp0DfDh-No8OJGE3D6e_6p2YCq79SO-onNZkX739-X33ChP9oEz6JPiCoDj0SNvcwX4IttoOrVEptHI5E-0YBWUg_aUQb_zymsyhdfzRvrE3X6ybbl6f32J1leQWrH1AUG-vTwQN2vwGW7qCOhIfslikfsdt1q8nVYzZBVKkK4-bGKnm6le1_g05xocxcTRiaioag3lWczeYXi_PLykVM69qiQ2viXlL9HsznsHKptvQJmxzsfx0eek1LBU8j0Vl43GREoEQWaq0EidH5KXAOOlMihDwHHx1lIpOlvI_IDFSqtK_jWMVRniMSCJ6y7XJWmufM7XOTKGUyhYBQpBCrMPcDoeMc10JAGOEwbz2nUjd649T2opCWdySRJB9I8oGMZRA47F1rf1Urbdxo-YZcJEm-oqT6mDNYVpX8cnoiB2EgBMcHU4Sna4zyGV5WQ_O5Ad48KV51LHc7lphfuju8jgS5Dk_pB36E1BnJm8Net8N0JNWslWa2tDZxEnKkMA57VgdO-8OQ-AU-YjGHxZ2Qag1I9bs7Ul6cW_XvgCTiEt9he-vg27itG-Zrrw3Of0zti_8_60t2F8Ejt4WNfJdtL-ZL8woB2kL12FY8jXtsZzAYnY5w-3l_fHyCe4fRsGf_9OjZ3MSRyfh48O0XQ989AA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwvMMAgEHuJ1jjO18OEBmxq2VahsUp7M2fH2SZ1aWlaTf3n-Nu4S5PQTBo87bW-pM75zve75Pw7xt7HRhhpOr4bagBXAuYpIEG6RKUOAkAkQGeHj_phdyC_nQanK-x3fRaGyirrPbHcqNORoXfk257vhZisIFz-NP7lUtco-rpat9CAqrVCulNSjFUHOw7s_ApTuGKn9xXX-4MQ-3snX7pu1WXANYj9p66wKeUUMg2M0ZL42bwEhACTahlAloGHc7ehTRPRQbACOtHGM1GkozDLMDj6eN87bE36MsHkb-3zXv_7cR0LMPfpxBVVpBeH2wj_A5co2F30bL8VCq8HhKWIeL1as_lke5-tz_IxzK9gOFyKivsP2YMKzvLdhf09Yis2f8zuLhpczp-wAWJZPbQ8syV_KC_KrjtoChzylBtC7lSqBIufhmeo8On5ZcERSfOy1LEU4ZdUNQiTCcw5VbQ-ZYNbUfEztpqPcrvBeEfYWGubaoShMoFIB5nnSxNlGIEBwYvD3FqnylQs59RsY6jKbCcOFa2BojVQkfJ9h31s5McLfo8bJd_REikizcipKucMZkWhej-O1W7gSylwOwzxdpVQNsK_NVAdcsDJE89WS3KzJYlebdrDtSWoalcp1F8fcNjbZpiupEq53I5mpUwUBwITJ4c9XxhO82CYbvoeIkCHRS2TagSIa7w9kl-cl5zjPhHTxZ7DtmrjW5rWDfraaozzP6p98e-HfcPWuydHh-qw1z94ye4hZBVlOaXYZKvTycy-Qlg41a8r3-Ps5227-x86bHRE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9RADLZKEdcD4ihtoEBASPQl6mYyOVbipVpYtRwVAlbq28gzmbSV0uxqkxXaf4-dS5uiCl4zzjW2x581ns8A7xIjjDSjwIs0oieR8hSUKD2mUkeBKMbIZ4e_nUbHM_n5LDzbgg_dWZi62r3bkmzONDBLU1EdLtKscfEkOiQYHXpMZe6RhwS34LakyMb9CybRpFuHKe8YJS1N49_3DMLQ9cV4Ixpdr5Tst0sfwL1VscD1b8zzjYg0fQQPWyjpHjW6fwxbtngCd5rmkuunMCMcqXPrZrbm7nTLuuMNqcHFInUNo2YuE8LmUn4-X15WF1elSyjWrcsMaxH3iiv2cLnEtcvVpDswm376NTn22iYKnqHUpvKETTllkmlojJZMP-ePUQg0qZYhZhn6pBob2XQsRoTFUI-18U0c6zjKMor9wTPYLuaF3QN3JGyitU01QUA5xliHmR9IE2cU_ZCAgwNeN6fKtAzj3OgiV3WmkUSKdaBYBypWQeDA-15-0XBr3Cj5llWkmLCi4IqYc1yVpTr5-UMdhYGUgpaiiB7XCmVzeq3B9oABfTxzXA0k9weS5FFmONxZgmo9ulR-4EeULFO65sCbfpjv5Cq1ws5XtUychIKSFgd2G8Ppf4xSvcAn9OVAPDCpXoB5vocjxeVFzfcdMClc4jtw0BnfxmfdMF8HvXH-Y2qf__9TX8Pd7x-n6uvJ6ZcXcJ-Qo6irGsU-bFfLlX1J6KzSr2on_AP4yjIc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB1BKgQc-CxgKMggJHpxGq_XHzlGiKogUSEgUjmtZtfrtqrrRHEiFH49M17HiosqOHDNPjve9czum2TmDcDbzAgjzSgKEo0YSKQ4BSXKgKXUUSCKMXLt8Ofj5GgqP53EJ23-U90IbTe_Jrv9fLhdgl66CgfuoGAXB_O8cA6fJQdEquOAhc0D8pfoJuwkMfHyAexMj79MfriKSAdoVRv_vKh3Kl3dm7cOp6uJk92_p3fh9qqa4_onluXWAXV4Hy42U3N5KRfD1VIPza8rqo__Z-4P4F7LY_2JM7yHcMNWj-CW62y5fgxTIrG6tH5hG-FQv27a7ZAN-FjlvmHKzjlK6D4qT2eL8-XZZe0ThfabHMcG4l9yuiAuFrj2OZV1F6aHH76_PwraDg6BobhqGQibc7wm89gYLVn7LhyjEGhyLWMsCgzJLmxi87EYERFEPdYmNGmq06QoiHhET2BQzSr7DPyRsJnWNtfEP-UYUx0XYSRNWtDRi8RaPAg2b1CZVt6cu2yUqglzskTxUileKpWqKPLgXYefO2GPa5Fv2CAUq2VUnI5ziqu6Vh-_fVWTOJJS0D6Y0O1aUDGjrzXYVjfQw7PAVg-510OSO5v-8MbuVLud1CqMwoQidYoVPXjdDfOVnCJX2dmqwaRZLChi8uCpM9NuYhRnRiFRPw_SngF3ABYZ749U52eN2HjEinRZ6MH-xtS3Huua9drvXOEvS_v836Ev4A5xVdHkUYo9GCwXK_uS-OBSv2od_TeNWFsf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+feature+selection+and+classification+algorithms+for+multiclass+microarray+data&rft.jtitle=Biology+direct&rft.au=Student%2C+Sebastian&rft.au=Fujarewicz%2C+Krzysztof&rft.date=2012-10-02&rft.pub=BioMed+Central&rft.eissn=1745-6150&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2F1745-6150-7-33&rft.externalDocID=10_1186_1745_6150_7_33
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-6150&client=summon