模块度引导下的社区发现增量学习算法
TP311; 当前社区发现领域存在诸多静态社区划分算法,而其划分结果的不稳定性和较高的算法复杂度已经不能适应如今规模庞大,变化频繁的网络结构.为解决传统静态算法这一局限性,提出了一种利用模块度优化的增量学习算法,将网络结构的变化划分成边变化、点变化两种基本操作,在对“模块度最大化”的规则指导下实现网络结构的增量学习.实验表明,该算法在保证原有社区划分结果的前提下,可以将新变化的节点快速划分进已有社区,并使得模块度与静态算法重新计算模块度相近,节省了时间,保持了社区划分的实时性....
Saved in:
Published in | 计算机科学与探索 Vol. 11; no. 4; pp. 556 - 564 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
西南交通大学信息科学与技术学院,成都611756
2017
四川省云计算与智能技术高校重点实验室,成都611756 |
Subjects | |
Online Access | Get full text |
ISSN | 1673-9418 |
DOI | 10.3778/j.issn.1673-9418.1603045 |
Cover
Abstract | TP311; 当前社区发现领域存在诸多静态社区划分算法,而其划分结果的不稳定性和较高的算法复杂度已经不能适应如今规模庞大,变化频繁的网络结构.为解决传统静态算法这一局限性,提出了一种利用模块度优化的增量学习算法,将网络结构的变化划分成边变化、点变化两种基本操作,在对“模块度最大化”的规则指导下实现网络结构的增量学习.实验表明,该算法在保证原有社区划分结果的前提下,可以将新变化的节点快速划分进已有社区,并使得模块度与静态算法重新计算模块度相近,节省了时间,保持了社区划分的实时性. |
---|---|
AbstractList | TP311; 当前社区发现领域存在诸多静态社区划分算法,而其划分结果的不稳定性和较高的算法复杂度已经不能适应如今规模庞大,变化频繁的网络结构.为解决传统静态算法这一局限性,提出了一种利用模块度优化的增量学习算法,将网络结构的变化划分成边变化、点变化两种基本操作,在对“模块度最大化”的规则指导下实现网络结构的增量学习.实验表明,该算法在保证原有社区划分结果的前提下,可以将新变化的节点快速划分进已有社区,并使得模块度与静态算法重新计算模块度相近,节省了时间,保持了社区划分的实时性. |
Abstract_FL | There are many static algorithms in the community detection fields but very few of them are able to fit into the current network circumstances where network sizes are getting larger and small-scale changes are getting more frequent.To deal with the limitation,this paper proposes an incremental learning algorithm of community detection based on modularity,which takes consideration of two basic kinds of community operations,edge changes and point changes,and the incremental learning process is carried out with guidance of the principle of modularity maximization.Experimental evaluation shows that the incremental learning algorithm is capable of partitioning new timely changed nodes into existed communities rapidly without any devastation to primitive divisions.Meanwhile,the result is proved to get close to that gained by static algorithm thus saving time and keeping real-time. |
Author | 李天瑞 王宏杰 滕飞 |
AuthorAffiliation | 西南交通大学信息科学与技术学院,成都611756;四川省云计算与智能技术高校重点实验室,成都611756 |
AuthorAffiliation_xml | – name: 西南交通大学信息科学与技术学院,成都611756;四川省云计算与智能技术高校重点实验室,成都611756 |
Author_FL | LI Tianrui TENG Fei WANG Hongjie |
Author_FL_xml | – sequence: 1 fullname: WANG Hongjie – sequence: 2 fullname: TENG Fei – sequence: 3 fullname: LI Tianrui |
Author_xml | – sequence: 1 fullname: 王宏杰 – sequence: 2 fullname: 滕飞 – sequence: 3 fullname: 李天瑞 |
BookMark | eNo9jT1LAzEchzNUsNZ-B1eHO5P8c5dklOIbFFy6l-TuIj0lBaOou-CgWBxKQVC0lOLiC7hoKX6apoffwgPF6ffwDM9vCVVs12YIrRAcAudiLQ87ztmQxBwCyYgoCQNmUQVV_90iqjvX0ThijBIeiyqC-dOjvxv4ydhP-_51Ovu4LG7Pi9GXv5r43k1x_eaH998XPf88nn0-FC-D-Xt_GS0YdeCy-t_WUGtzo9XYDpq7WzuN9WaQxDQKpNEyESbTSZYSkzGpFQhpYoIZppzThAqjmBQ6pqlMJONMpGBAAQimOADU0Opv9kRZo-xeO-8eH9rysJ27fP_07MhRTHhZwxH8AFrzXZs |
ClassificationCodes | TP311 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3778/j.issn.1673-9418.1603045 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Incremental Learning Algorithm of Community Detection under Guidance of Modularity |
EndPage | 564 |
ExternalDocumentID | jsjkxyts201704005 |
GrantInformation_xml | – fundername: The National Natural Science Foundation of China under Grant No.61573292 |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS M~E PSX TCJ |
ID | FETCH-LOGICAL-c625-9fb9c8febced1fe49ba389f610402772c28fa498b62d9c94748d3f3a3384a7333 |
ISSN | 1673-9418 |
IngestDate | Thu May 29 04:00:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 模块度 modularity 增量学习 incremental learning community detection 社区划分 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c625-9fb9c8febced1fe49ba389f610402772c28fa498b62d9c94748d3f3a3384a7333 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_jsjkxyts201704005 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 计算机科学与探索 |
PublicationTitle_FL | Journal of Frontiers of Computer Science & Technology |
PublicationYear | 2017 |
Publisher | 西南交通大学信息科学与技术学院,成都611756 四川省云计算与智能技术高校重点实验室,成都611756 |
Publisher_xml | – name: 西南交通大学信息科学与技术学院,成都611756 – name: 四川省云计算与智能技术高校重点实验室,成都611756 |
SSID | ssib054421768 ssib002040941 ssib002423894 ssib051375751 ssib023646573 ssib036438069 ssib002040926 |
Score | 2.088862 |
Snippet | TP311; 当前社区发现领域存在诸多静态社区划分算法,而其划分结果的不稳定性和较高的算法复杂度已经不能适应如今规模庞大,变化频繁的网络结构.为解决传统静态算法这一局限... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 556 |
Title | 模块度引导下的社区发现增量学习算法 |
URI | https://d.wanfangdata.com.cn/periodical/jsjkxyts201704005 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) issn: 1673-9418 databaseCode: M~E dateStart: 20070101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib054421768 providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANLT14kUUFb8p4jtuTTKT-ThOtlmKoKcVeitJNlEqrOBuofbgSfCgWDyUgqCoSPHiB3jRUvw1TRf_he9NstmsH1i9hJeZN_O-MvPeTOYljnNF6V6eS9q18XGJwnuS4ZiLdSvN0P7ocqRMaEP_-g2xdJNfWw6WZ2bXmtklw2Qh3fhtXsn_WBXL0K6UJfsPlq07xQKE0b54RQvj9VA2hkiAUWA8iALQi6AlAaEBIyzQBh0QYDoERxxCBSqESII2oDgBBgsjwlFtakhAB7RHVSqC0LXNfdCIo0FJqqWSRUsC22owru0nstQFhAzK_1mOQ16IFNUabwpNl-SwRFpyzT4VkUYcvCJpxAk5AuNHo2KN5AioP-JIkPShO0FBPkIrPPKHDEXNGkRVVmSU3WirDW-MUu1_lIme9lm17KMurdyq1DG3OuZWJS7psupMTsvRsUKjHB5Z4C-yGuqqVIxp6liD1qQGv23RFGjX0mUQLgr6Aqpo-BWBg0DzytWMHY_XGGC84UWCqmkZkATlZ95_9nVMSmV9HRFYqAnQdiG9_Z749_rU5epg9c76_eGAtEhzdzDrHPElBmh04vVBNInasFI3V510z6fSnzHMradx-gWBCCZRMN4y5Yo6Sg48JuntXn3POa6DyyTVMdflGTsS6eqfBLJZdf087t9qBIDd486xauU2b8pheMKZ2bh90mEH714XL7aL3Z1ib6v4uLf_5fHo-cPR22_Fk91i89no6afizcvvjzaL9zv7X1-NPmwffN465XQ7Ube91Kr-Q9JKhR-0dJ7oVOVZkmY9L8-4TmIUP8d1B6cDEH7qqzzmWiXC7-lUc8lVj-UsZkzxWDLGTjtz_bv97Iwzn8UY4SvG7IcK3RQnUD9LMShJmZ_EPhdnncuVjCvVNDNY-cVq5w6DdN45SnC5WXjBmRveW8suYvg8TC5ZY_8AWEGPLQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%A8%A1%E5%9D%97%E5%BA%A6%E5%BC%95%E5%AF%BC%E4%B8%8B%E7%9A%84%E7%A4%BE%E5%8C%BA%E5%8F%91%E7%8E%B0%E5%A2%9E%E9%87%8F%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E7%8E%8B%E5%AE%8F%E6%9D%B0&rft.au=%E6%BB%95%E9%A3%9E&rft.au=%E6%9D%8E%E5%A4%A9%E7%91%9E&rft.date=2017&rft.pub=%E8%A5%BF%E5%8D%97%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%88%90%E9%83%BD611756&rft.issn=1673-9418&rft.volume=11&rft.issue=4&rft.spage=556&rft.epage=564&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1603045&rft.externalDocID=jsjkxyts201704005 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg |