Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators
NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination...
        Saved in:
      
    
          | Published in | Cell Vol. 173; no. 7; pp. 1650 - 1662.e14 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        14.06.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0092-8674 1097-4172 1097-4172  | 
| DOI | 10.1016/j.cell.2018.05.017 | 
Cover
| Abstract | NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination and translation. The NusG paralog RfaH engages the EC only at operon polarity suppressor (ops) sites and suppresses both backtrack and hairpin-stabilized pausing. We used single-particle cryoelectron microscopy (cryo-EM) to determine structures of ECs at ops with NusG or RfaH. Both factors chaperone base-pairing of the upstream duplex DNA to suppress backtracking, explaining stimulation of elongation genome-wide. The RfaH-opsEC structure reveals how RfaH confers operon specificity through specific recognition of an ops hairpin in the single-stranded nontemplate DNA and tighter binding to the EC to exclude NusG. Tight EC binding by RfaH sterically blocks the swiveled RNAP conformation necessary for hairpin-stabilized pausing. The universal conservation of NusG/RfaH/Spt5 suggests that the molecular mechanisms uncovered here are widespread.
[Display omitted]
•Cryo-EM structures of NusG and RfaH-bound transcription elongation complexes•NusG and RfaH suppress backtracking by stabilizing the upstream duplex DNA•RfaH recognizes an ops DNA hairpin in the nontemplate strand of the transcription bubble•RfaH suppresses RNA hairpin-stabilized pausing by preventing RNAP swiveling
NusG/Spt5 transcription elongation factors are the only transcription regulators conserved across all domains of life, assisting RNA polymerase elongation and linking the transcription complex to additional accessory factors genome wide. Cryo-electron microscopy structures of bacterial transcription complexes with NusG or its operon-specific paralog RfaH suggest NusG/RfaH inhibit backtrack pausing by stabilizing the upstream duplex DNA following the transcription bubble. RfaH further supresses pausing and termination by preventing RNA-hairpin induced swiveling, an RNA polymerase conformational change associated with pausing. | 
    
|---|---|
| AbstractList | NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination and translation. The NusG paralog RfaH engages the EC only at operon polarity suppressor (ops) sites and suppresses both backtrack and hairpin-stabilized pausing. We used single-particle cryoelectron microscopy (cryo-EM) to determine structures of ECs at ops with NusG or RfaH. Both factors chaperone base-pairing of the upstream duplex DNA to suppress backtracking, explaining stimulation of elongation genome-wide. The RfaH-opsEC structure reveals how RfaH confers operon specificity through specific recognition of an ops hairpin in the single-stranded nontemplate DNA and tighter binding to the EC to exclude NusG. Tight EC binding by RfaH sterically blocks the swiveled RNAP conformation necessary for hairpin-stabilized pausing. The universal conservation of NusG/RfaH/Spt5 suggests that the molecular mechanisms uncovered here are widespread.
[Display omitted]
•Cryo-EM structures of NusG and RfaH-bound transcription elongation complexes•NusG and RfaH suppress backtracking by stabilizing the upstream duplex DNA•RfaH recognizes an ops DNA hairpin in the nontemplate strand of the transcription bubble•RfaH suppresses RNA hairpin-stabilized pausing by preventing RNAP swiveling
NusG/Spt5 transcription elongation factors are the only transcription regulators conserved across all domains of life, assisting RNA polymerase elongation and linking the transcription complex to additional accessory factors genome wide. Cryo-electron microscopy structures of bacterial transcription complexes with NusG or its operon-specific paralog RfaH suggest NusG/RfaH inhibit backtrack pausing by stabilizing the upstream duplex DNA following the transcription bubble. RfaH further supresses pausing and termination by preventing RNA-hairpin induced swiveling, an RNA polymerase conformational change associated with pausing. NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination and translation. The NusG paralog RfaH engages the EC only at operon polarity suppressor (ops) sites and suppresses both backtrack and hairpin-stabilized pausing. We used single-particle cryoelectron microscopy (cryo-EM) to determine structures of ECs at ops with NusG or RfaH. Both factors chaperone base-pairing of the upstream duplex DNA to suppress backtracking, explaining stimulation of elongation genome-wide. The RfaH-opsEC structure reveals how RfaH confers operon specificity through specific recognition of an ops hairpin in the single-stranded nontemplate DNA and tighter binding to the EC to exclude NusG. Tight EC binding by RfaH sterically blocks the swiveled RNAP conformation necessary for hairpin-stabilized pausing. The universal conservation of NusG/RfaH/Spt5 suggests that the molecular mechanisms uncovered here are widespread. NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination and translation. The NusG paralog RfaH engages the EC only at operon polarity suppressor (ops) sites and suppresses both backtrack and hairpin-stabilized pausing. We used single-particle cryoelectron microscopy (cryo-EM) to determine structures of ECs at ops with NusG or RfaH. Both factors chaperone base-pairing of the upstream duplex DNA to suppress backtracking, explaining stimulation of elongation genome-wide. The RfaH-opsEC structure reveals how RfaH confers operon specificity through specific recognition of an ops hairpin in the single-stranded nontemplate DNA and tighter binding to the EC to exclude NusG. Tight EC binding by RfaH sterically blocks the swiveled RNAP conformation necessary for hairpin-stabilized pausing. The universal conservation of NusG/RfaH/Spt5 suggests that the molecular mechanisms uncovered here are widespread. NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination and translation. The NusG paralog RfaH engages the EC only at operon polarity suppressor (ops) sites and suppresses both backtrack and hairpin-stabilized pausing. We used single-particle cryoelectron microscopy (cryo-EM) to determine structures of ECs at ops with NusG or RfaH. Both factors chaperone base-pairing of the upstream duplex DNA to suppress backtracking, explaining stimulation of elongation genome-wide. The RfaH-opsEC structure reveals how RfaH confers operon specificity through specific recognition of an ops hairpin in the single-stranded nontemplate DNA and tighter binding to the EC to exclude NusG. Tight EC binding by RfaH sterically blocks the swiveled RNAP conformation necessary for hairpin-stabilized pausing. The universal conservation of NusG/RfaH/Spt5 suggests that the molecular mechanisms uncovered here are widespread.NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination and translation. The NusG paralog RfaH engages the EC only at operon polarity suppressor (ops) sites and suppresses both backtrack and hairpin-stabilized pausing. We used single-particle cryoelectron microscopy (cryo-EM) to determine structures of ECs at ops with NusG or RfaH. Both factors chaperone base-pairing of the upstream duplex DNA to suppress backtracking, explaining stimulation of elongation genome-wide. The RfaH-opsEC structure reveals how RfaH confers operon specificity through specific recognition of an ops hairpin in the single-stranded nontemplate DNA and tighter binding to the EC to exclude NusG. Tight EC binding by RfaH sterically blocks the swiveled RNAP conformation necessary for hairpin-stabilized pausing. The universal conservation of NusG/RfaH/Spt5 suggests that the molecular mechanisms uncovered here are widespread. NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination and translation. The NusG paralog RfaH engages the EC only at operon polarity suppressor (ops) sites and suppresses both backtrack and hairpin-stabilized pausing. We used single-particle cryo-EM to determine structures of ECs at ops with NusG or RfaH. Both factors chaperone base pairing of the upstream duplex DNA to suppress backtracking, explaining stimulation of elongation genome-wide. The RfaH-opsEC structure reveals how RfaH confers operon specificity through specific recognition of an ops hairpin in the single-stranded nontemplate DNA and tighter binding to the EC to exclude NusG. Tight EC binding by RfaH sterically blocks the swiveled RNAP conformation necessary for hairpin-stabilized pausing. The universal conservation of NusG/RfaH/Spt5 suggests that the molecular mechanisms uncovered here are widespread.  | 
    
| Author | Mishanina, Tatiana V. Artsimovitch, Irina Landick, Robert Darst, Seth A. Saba, Jason Nedialkov, Yuri Mooney, Rachel Anne Kang, Jin Young  | 
    
| AuthorAffiliation | 1 The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA 5 Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA 4 The Center for RNA Biology, The Ohio State University, Columbus, OH 43210 USA 3 Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA 2 Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA  | 
    
| AuthorAffiliation_xml | – name: 1 The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA – name: 4 The Center for RNA Biology, The Ohio State University, Columbus, OH 43210 USA – name: 5 Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA – name: 3 Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA – name: 2 Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA  | 
    
| Author_xml | – sequence: 1 givenname: Jin Young surname: Kang fullname: Kang, Jin Young organization: The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA – sequence: 2 givenname: Rachel Anne surname: Mooney fullname: Mooney, Rachel Anne organization: Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 3 givenname: Yuri surname: Nedialkov fullname: Nedialkov, Yuri organization: Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA – sequence: 4 givenname: Jason surname: Saba fullname: Saba, Jason organization: Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 5 givenname: Tatiana V. surname: Mishanina fullname: Mishanina, Tatiana V. organization: Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 6 givenname: Irina surname: Artsimovitch fullname: Artsimovitch, Irina organization: Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA – sequence: 7 givenname: Robert surname: Landick fullname: Landick, Robert organization: Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 8 givenname: Seth A. surname: Darst fullname: Darst, Seth A. email: darst@rockefeller.edu organization: The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29887376$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUtv1DAUhS1URKeFP8ACZckmwY84diSEREdtqVSBBC1by3FuBo889mA7g-bfkzClPBaFlS35fsf3nHOCjnzwgNBzgiuCSfNqXRlwrqKYyArzChPxCC0IbkVZE0GP0ALjlpayEfUxOklpjTGWnPMn6Ji2UgommgX6_CnH0eQxalec6WRTMYRY3ETtk4l2m4tzF_xKZxt8sQw-x-CKbl-8H9NlcaE31u2LW293ENMk8BFWo9M5xPQUPR60S_Ds7jxFtxfnN8t35fWHy6vl2-vSNLTOZd-3NYhaC2Bi6OoOWmYI72nHMBNdL8wwNAxqbSSl0wUMEZox3ctOa066lp0idtAd_Vbvv2nn1DbajY57RbCaU1JrNaek5pQU5mpKaaLeHKjt2G2gNzD50r_IoK3688XbL2oVdqrBmEnJJ4GXdwIxfB0hZbWxaf5GewhjUpRSgimuGf33KOaMipaKWfXF72vd7_OzrWmAHgZMDClFGP7PrPwLMjb_KHSyZt3D6OsDClOFOwtRJWPBG-htBJNVH-xD-He_idK9 | 
    
| CitedBy_id | crossref_primary_10_1126_science_ado8476 crossref_primary_10_1002_pro_4097 crossref_primary_10_1063_4_0000251 crossref_primary_10_3389_fmolb_2020_607158 crossref_primary_10_1016_j_jmb_2021_167100 crossref_primary_10_1042_BST20210674 crossref_primary_10_1038_s41467_024_51801_z crossref_primary_10_1038_s41467_022_32315_y crossref_primary_10_1038_s41594_024_01372_w crossref_primary_10_1146_annurev_genet_072220_033342 crossref_primary_10_1038_s41467_022_29321_5 crossref_primary_10_1016_j_mib_2024_102540 crossref_primary_10_1126_science_abd1673 crossref_primary_10_1126_sciadv_ade7093 crossref_primary_10_1038_s41467_022_31532_9 crossref_primary_10_1038_s41467_024_55215_9 crossref_primary_10_1111_mmi_14093 crossref_primary_10_7554_eLife_58182 crossref_primary_10_1038_s41467_022_29148_0 crossref_primary_10_3390_microorganisms10030587 crossref_primary_10_1016_j_bpj_2019_11_014 crossref_primary_10_1073_pnas_2101805118 crossref_primary_10_1038_s41467_024_48409_8 crossref_primary_10_1002_pro_4596 crossref_primary_10_7554_eLife_76630 crossref_primary_10_1021_acs_jpcb_1c10965 crossref_primary_10_1073_pnas_2109026118 crossref_primary_10_1002_prot_26755 crossref_primary_10_1016_j_jmb_2024_168770 crossref_primary_10_1016_j_bbrc_2021_01_078 crossref_primary_10_1016_j_biochi_2019_12_011 crossref_primary_10_1016_j_molcel_2020_08_010 crossref_primary_10_1016_j_jmb_2024_168814 crossref_primary_10_3389_fmicb_2020_619618 crossref_primary_10_1016_j_jmb_2024_168779 crossref_primary_10_1016_j_molcel_2019_01_016 crossref_primary_10_1073_pnas_2207581119 crossref_primary_10_1002_bip_23420 crossref_primary_10_1093_nar_gkaa904 crossref_primary_10_3390_ijms20102595 crossref_primary_10_1038_s41467_024_47368_4 crossref_primary_10_1038_s41467_019_08567_6 crossref_primary_10_3389_fmicb_2021_661827 crossref_primary_10_1021_acs_jmedchem_4c01386 crossref_primary_10_1080_21541264_2022_2103366 crossref_primary_10_1371_journal_pcbi_1008882 crossref_primary_10_1073_pnas_2201301119 crossref_primary_10_1038_s41467_021_23666_z crossref_primary_10_1073_pnas_2218516120 crossref_primary_10_1080_21541264_2021_1981713 crossref_primary_10_1016_j_molcel_2023_04_007 crossref_primary_10_1146_annurev_micro_051721_043826 crossref_primary_10_1002_bip_23416 crossref_primary_10_1093_molbev_msab240 crossref_primary_10_1128_mBio_01547_18 crossref_primary_10_1038_s41467_019_10955_x crossref_primary_10_1073_pnas_2215945120 crossref_primary_10_1016_j_jmb_2019_07_017 crossref_primary_10_1111_mmi_14191 crossref_primary_10_1016_j_cell_2023_02_008 crossref_primary_10_1093_nar_gkae282 crossref_primary_10_1007_s12551_023_01064_7 crossref_primary_10_1038_s41586_019_1517_4 crossref_primary_10_1007_s12551_023_01087_0 crossref_primary_10_1002_bies_202300057 crossref_primary_10_1002_prot_26014 crossref_primary_10_1021_acs_biochem_4c00258 crossref_primary_10_1126_science_abb3758 crossref_primary_10_1093_nar_gkac501 crossref_primary_10_1128_microbiolspec_RWR_0031_2018 crossref_primary_10_1002_pro_4337 crossref_primary_10_1038_s41467_021_22990_8 crossref_primary_10_1038_s41586_024_07979_9 crossref_primary_10_1128_mBio_01423_21 crossref_primary_10_2139_ssrn_3231853 crossref_primary_10_1038_s41594_023_01002_x crossref_primary_10_1016_j_molcel_2018_07_014 crossref_primary_10_1016_j_str_2024_07_024 crossref_primary_10_3389_fmicb_2020_624830 crossref_primary_10_1016_j_molcel_2020_11_013 crossref_primary_10_1021_acs_jpcb_3c06550 crossref_primary_10_1042_ETLS20180014 crossref_primary_10_1016_j_jmb_2019_05_042 crossref_primary_10_1038_s41586_024_08308_w crossref_primary_10_1016_j_yjsbx_2019_100005 crossref_primary_10_1038_s41467_021_21392_0 crossref_primary_10_3390_v13010084 crossref_primary_10_1080_10409238_2020_1828261 crossref_primary_10_1002_bip_23471 crossref_primary_10_1038_s41467_023_41237_2 crossref_primary_10_1016_j_cell_2019_04_038 crossref_primary_10_7554_eLife_40981 crossref_primary_10_1016_j_jmb_2019_04_003 crossref_primary_10_1128_mBio_02717_20 crossref_primary_10_1021_acs_jpcb_2c08771 crossref_primary_10_1002_pro_4836 crossref_primary_10_1038_s41467_021_21150_2 crossref_primary_10_1080_21541264_2020_1838865 crossref_primary_10_1073_pnas_1909801116 crossref_primary_10_1093_nar_gkac449 crossref_primary_10_1016_j_molcel_2019_04_029 crossref_primary_10_1126_science_abb5036 crossref_primary_10_1126_science_abb5317 crossref_primary_10_1016_j_isci_2020_101352 crossref_primary_10_1016_j_molcel_2024_01_025 crossref_primary_10_1016_j_molcel_2024_01_023 crossref_primary_10_1371_journal_pgen_1008425 crossref_primary_10_1016_j_sbi_2022_102422 crossref_primary_10_1038_s41586_022_05658_1 crossref_primary_10_1093_nar_gkac453 crossref_primary_10_1093_nar_gkac174 crossref_primary_10_1016_j_molcel_2022_09_020 crossref_primary_10_1080_21541264_2021_1985931 crossref_primary_10_1016_j_str_2020_10_006 crossref_primary_10_1021_acs_jctc_3c00679 crossref_primary_10_1128_jb_00599_21 crossref_primary_10_3389_fmolb_2021_661448 crossref_primary_10_1016_j_jmb_2024_168746 crossref_primary_10_1016_j_jmb_2019_01_003 crossref_primary_10_1016_j_str_2024_06_001 crossref_primary_10_1080_21541264_2021_1991773 crossref_primary_10_1111_mmi_13983 crossref_primary_10_1073_pnas_2023426118 crossref_primary_10_1038_s41467_019_14200_3 crossref_primary_10_1073_pnas_2221114120  | 
    
| Cites_doi | 10.1038/nsmb.3465 10.7554/eLife.18096 10.1016/j.jsb.2012.09.006 10.1126/science.1066303 10.1093/nar/gkq135 10.1126/science.289.5479.619 10.1038/nsmb.1903 10.1016/j.cell.2012.05.042 10.1038/nmeth.2089 10.1016/S0092-8674(02)00724-9 10.1016/j.jsb.2005.03.010 10.1016/S0092-8674(00)81515-9 10.1126/science.1218716 10.1002/jcc.20084 10.1016/j.jsb.2013.08.002 10.1146/annurev-genet-110711-155440 10.1093/nar/gkx220 10.1016/j.jsb.2015.08.008 10.7554/eLife.01456 10.1073/pnas.97.13.7090 10.1016/j.molcel.2018.02.008 10.1016/j.jmb.2009.05.078 10.1038/nbt.3418 10.1073/pnas.1613673114 10.1016/j.molcel.2018.01.018 10.1093/nar/gkx233 10.1038/nature09573 10.1016/j.bbagrm.2012.08.007 10.1016/j.jmb.2012.01.031 10.1074/jbc.M116.716001 10.7554/eLife.06980 10.1016/j.molcel.2008.12.021 10.1016/j.molcel.2007.02.021 10.1038/emboj.2008.268 10.1038/nmicrobiol.2017.62 10.1016/j.cell.2012.12.020 10.1107/S0907444904019158 10.1128/MCB.05318-11 10.1111/mmi.13953 10.1002/pro.622 10.1073/pnas.0708432105 10.1093/nar/gku997 10.1126/science.1059495 10.1016/j.ceb.2017.03.002 10.1126/science.1057738 10.1038/nsmb.2867 10.1016/j.jsb.2005.07.007 10.1016/j.jsb.2015.08.007 10.1038/embor.2009.31 10.1101/gad.7.1.161 10.1107/S174430910603658X 10.1016/S0021-9258(19)38764-2 10.1107/S0021889892009944 10.1073/pnas.1013828108 10.1038/emboj.2011.64 10.1007/978-1-4939-2392-2_2 10.1038/nmicrobiol.2017.3 10.1074/jbc.M113.521393 10.1016/j.jmb.2010.03.051 10.1093/nar/gkw1159 10.1016/S0092-8674(00)80713-8 10.1126/science.1251871 10.1126/science.aan8552 10.1107/S0907444909052925 10.1111/j.1365-2958.2010.07056.x 10.1107/S0907444909042073 10.1038/nature05932 10.7554/eLife.25478 10.1016/j.molcel.2011.05.026  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved.  | 
    
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved.  | 
    
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| DOI | 10.1016/j.cell.2018.05.017 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1097-4172 | 
    
| EndPage | 1662.e14 | 
    
| ExternalDocumentID | 10.1016/j.cell.2018.05.017 PMC6003885 29887376 10_1016_j_cell_2018_05_017 S0092867418305944  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM008349 – fundername: NIGMS NIH HHS grantid: P41 GM103310 – fundername: NIGMS NIH HHS grantid: T32 GM135066 – fundername: NIGMS NIH HHS grantid: R01 GM067153 – fundername: NIGMS NIH HHS grantid: R35 GM118130 – fundername: NIGMS NIH HHS grantid: R01 GM038660  | 
    
| GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 0SF CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c624t-dd94e74a7e37fb4be93c15d2b3037bd7cff63e4ac82263eec17a33ad8baa51b93 | 
    
| IEDL.DBID | IXB | 
    
| ISSN | 0092-8674 1097-4172  | 
    
| IngestDate | Wed Oct 01 16:04:10 EDT 2025 Tue Sep 30 16:31:17 EDT 2025 Sun Sep 28 07:45:45 EDT 2025 Sun Sep 28 10:13:24 EDT 2025 Thu Jan 02 22:41:07 EST 2025 Thu Oct 02 04:27:02 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Fri Feb 23 02:47:53 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Keywords | transcription elongation Spt5 transcription pausing nontemplate DNA  | 
    
| Language | English | 
    
| License | This article is made available under the Elsevier license. Copyright © 2018 Elsevier Inc. All rights reserved.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c624t-dd94e74a7e37fb4be93c15d2b3037bd7cff63e4ac82263eec17a33ad8baa51b93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact: darst@rockefeller.edu  | 
    
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867418305944 | 
    
| PMID | 29887376 | 
    
| PQID | 2053279275 | 
    
| PQPubID | 23479 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_cell_2018_05_017 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003885 proquest_miscellaneous_2221020432 proquest_miscellaneous_2053279275 pubmed_primary_29887376 crossref_primary_10_1016_j_cell_2018_05_017 crossref_citationtrail_10_1016_j_cell_2018_05_017 elsevier_sciencedirect_doi_10_1016_j_cell_2018_05_017  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-06-14 | 
    
| PublicationDateYYYYMMDD | 2018-06-14 | 
    
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-14 day: 14  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Cell | 
    
| PublicationTitleAlternate | Cell | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib46) 2004; 25 Rubinstein, Brubaker (bib48) 2015; 192 Hirtreiter, Damsma, Cheung, Klose, Grohmann, Vojnic, Martin, Cramer, Werner (bib24) 2010; 38 Guo, Myasnikov, Chen, Crucifix, Papai, Takacs, Schultz, Weixlbaumer (bib20) 2018; 69 Herbert, Zhou, Mooney, Porta, Landick, Block (bib23) 2010; 399 Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib1) 2010; 66 Yamaguchi, Takagi, Wada, Yano, Furuya, Sugimoto, Hasegawa, Handa (bib69) 1999; 97 Rohou, Grigorieff (bib47) 2015; 192 Tagami, Sekine, Kumarevel, Hino, Murayama, Kamegamori, Yamamoto, Sakamoto, Yokoyama (bib60) 2010; 468 Larson, Mooney, Peters, Windgassen, Nayak, Gross, Block, Greenleaf, Landick, Weissman (bib32) 2014; 344 Kwak, Lis (bib31) 2013; 47 Kang, Mishanina, Bellecourt, Mooney, Darst, Landick (bib26) 2018; 69 Li, Mason, Greenblatt (bib34) 1993; 7 Vassylyev, Vassylyeva, Perederina, Tahirov, Artsimovitch (bib64) 2007; 448 Emsley, Cowtan (bib16) 2004; 60 Cardone, Heymann, Steven (bib10) 2013; 184 Hein, Kolb, Windgassen, Bellecourt, Darst, Mooney, Landick (bib22) 2014; 21 Sevostyanova, Belogurov, Mooney, Landick, Artsimovitch (bib56) 2011; 43 Turtola, Belogurov (bib62) 2016; 5 Chakraborty, Wang, Ebright, Korlann, Kortkhonjia, Kim, Chowdhury, Wigneshweraraj, Irschik, Jansen (bib11) 2012; 337 Zhang, Campbell, Minakhin, Richter, Severinov, Darst (bib70) 1999; 98 Mooney, Schweimer, Rösch, Gottesman, Landick (bib41) 2009; 391 Bies-Etheve, Pontier, Lahmy, Picart, Vega, Cooke, Lagrange (bib8) 2009; 10 Gnatt, Cramer, Fu, Bushnell, Kornberg (bib17) 2001; 292 Schmidt, Kochanowski, Vedelaar, Ahrné, Volkmer, Callipo, Knoops, Bauer, Aebersold, Heinemann (bib53) 2016; 34 Burmann, Knauer, Sevostyanova, Schweimer, Mooney, Landick, Artsimovitch, Rösch (bib9) 2012; 150 Said, Krupp, Anedchenko, Santos, Dybkov, Huang, Lee, Loll, Behrmann, Bürger (bib50) 2017; 2 Toulokhonov, Artsimovitch, Landick (bib61) 2001; 292 Chen, Arendall, Headd, Keedy, Immormino, Kapral, Murray, Richardson, Richardson (bib12) 2010; 66 Belogurov, Sevostyanova, Svetlov, Artsimovitch (bib6) 2010; 76 Sevostyanova, Svetlov, Vassylyev, Artsimovitch (bib55) 2008; 105 Grant, Grigorieff (bib19) 2015; 4 Mooney, Davis, Peters, Rowland, Ansari, Landick (bib40) 2009; 33 Schneider, Rasband, Eliceiri (bib54) 2012; 9 Artsimovitch, Landick (bib3) 2002; 109 Liu, Steitz (bib35) 2017; 45 Korzheva, Mustaev, Kozlov, Malhotra, Nikiforov, Goldfarb, Darst (bib29) 2000; 289 Ehara, Yokoyama, Shigematsu, Yokoyama, Shirouzu, Sekine (bib15) 2017; 357 Scheres (bib52) 2012; 180 Svetlov, Artsimovitch (bib59) 2015; 1276 Crickard, Fu, Reese (bib13) 2016; 291 Belogurov, Vassylyeva, Svetlov, Klyuyev, Grishin, Vassylyev, Artsimovitch (bib4) 2007; 26 Weixlbaumer, Leon, Landick, Darst (bib66) 2013; 152 Morin, Eisenbraun, Key, Sanschagrin, Timony, Ottaviano, Sliz (bib42) 2013; 2 Belogurov, Mooney, Svetlov, Landick, Artsimovitch (bib5) 2009; 28 Mastronarde (bib37) 2005; 152 Vassylyeva, Svetlov, Klyuyev, Devedjiev, Artsimovitch, Vassylyev (bib65) 2006; 62 Klein, Bose, Baker, Yusoff, Zhang, Murakami (bib27) 2011; 108 Martinez-Rucobo, Sainsbury, Cheung, Cramer (bib36) 2011; 30 Saenger (bib49) 1984 Pavco, Steege (bib45) 1990; 265 Windgassen, Mooney, Nayak, Palangat, Zhang, Landick (bib68) 2014; 42 Kang, Olinares, Chen, Campbell, Mustaev, Chait, Gottesman, Darst (bib25) 2017; 6 Werner (bib67) 2012; 417 NandyMazumdar, Nedialkov, Svetlov, Sevostyanova, Belogurov, Artsimovitch (bib43) 2016; 113 Strobel, Watters, Nedialkov, Artsimovitch, Lucks (bib57) 2017; 45 Palangat, Grass, Langelier, Coulombe, Landick (bib44) 2011; 31 Laskowski, MacArthur, Moss, Thornton, I.U.C.R. (bib33) 1993; 26 Kolb, Hein, Landick (bib28) 2014; 289 Goodson, Klupt, Zhang, Straight, Winkler (bib18) 2017; 2 Kuznedelov, Minakhin, Niedziela-Majka, Dove, Rogulja, Nickels, Hochschild, Heyduk, Severinov (bib30) 2002; 295 Bernecky, Plitzko, Cramer (bib7) 2017; 24 Saxena, Myka, Washburn, Costantino, Court, Gottesman (bib51) 2018 Twist, Husnain, Franke, Jain, Campbell, Nickels, Thomas, Darst, Westblade (bib63) 2011; 20 Crickard, Lee, Lee, Reese (bib14) 2017; 45 Mayer, Lidschreiber, Siebert, Leike, Söding, Cramer (bib38) 2010; 17 Artsimovitch, Landick (bib2) 2000; 97 Hartzog, Fu (bib21) 2013; 1829 Mayer, Landry, Churchman (bib39) 2017; 46 Suloway, Pulokas, Fellmann, Cheng, Guerra, Quispe, Stagg, Potter, Carragher (bib58) 2005; 151 Rubinstein (10.1016/j.cell.2018.05.017_bib48) 2015; 192 Weixlbaumer (10.1016/j.cell.2018.05.017_bib66) 2013; 152 Cardone (10.1016/j.cell.2018.05.017_bib10) 2013; 184 Guo (10.1016/j.cell.2018.05.017_bib20) 2018; 69 Liu (10.1016/j.cell.2018.05.017_bib35) 2017; 45 Mayer (10.1016/j.cell.2018.05.017_bib38) 2010; 17 Mastronarde (10.1016/j.cell.2018.05.017_bib37) 2005; 152 Mooney (10.1016/j.cell.2018.05.017_bib40) 2009; 33 Klein (10.1016/j.cell.2018.05.017_bib27) 2011; 108 Schneider (10.1016/j.cell.2018.05.017_bib54) 2012; 9 Sevostyanova (10.1016/j.cell.2018.05.017_bib55) 2008; 105 Saenger (10.1016/j.cell.2018.05.017_bib49) 1984 Scheres (10.1016/j.cell.2018.05.017_bib52) 2012; 180 Chen (10.1016/j.cell.2018.05.017_bib12) 2010; 66 Grant (10.1016/j.cell.2018.05.017_bib19) 2015; 4 Zhang (10.1016/j.cell.2018.05.017_bib70) 1999; 98 Schmidt (10.1016/j.cell.2018.05.017_bib53) 2016; 34 Emsley (10.1016/j.cell.2018.05.017_bib16) 2004; 60 Herbert (10.1016/j.cell.2018.05.017_bib23) 2010; 399 Toulokhonov (10.1016/j.cell.2018.05.017_bib61) 2001; 292 Bies-Etheve (10.1016/j.cell.2018.05.017_bib8) 2009; 10 Kolb (10.1016/j.cell.2018.05.017_bib28) 2014; 289 Adams (10.1016/j.cell.2018.05.017_bib1) 2010; 66 Goodson (10.1016/j.cell.2018.05.017_bib18) 2017; 2 Belogurov (10.1016/j.cell.2018.05.017_bib4) 2007; 26 Mooney (10.1016/j.cell.2018.05.017_bib41) 2009; 391 Kuznedelov (10.1016/j.cell.2018.05.017_bib30) 2002; 295 Artsimovitch (10.1016/j.cell.2018.05.017_bib3) 2002; 109 Larson (10.1016/j.cell.2018.05.017_bib32) 2014; 344 Vassylyeva (10.1016/j.cell.2018.05.017_bib65) 2006; 62 Vassylyev (10.1016/j.cell.2018.05.017_bib64) 2007; 448 Korzheva (10.1016/j.cell.2018.05.017_bib29) 2000; 289 Martinez-Rucobo (10.1016/j.cell.2018.05.017_bib36) 2011; 30 Mayer (10.1016/j.cell.2018.05.017_bib39) 2017; 46 NandyMazumdar (10.1016/j.cell.2018.05.017_bib43) 2016; 113 Kang (10.1016/j.cell.2018.05.017_bib25) 2017; 6 Ehara (10.1016/j.cell.2018.05.017_bib15) 2017; 357 Windgassen (10.1016/j.cell.2018.05.017_bib68) 2014; 42 Rohou (10.1016/j.cell.2018.05.017_bib47) 2015; 192 Kang (10.1016/j.cell.2018.05.017_bib26) 2018; 69 Tagami (10.1016/j.cell.2018.05.017_bib60) 2010; 468 Hein (10.1016/j.cell.2018.05.017_bib22) 2014; 21 Bernecky (10.1016/j.cell.2018.05.017_bib7) 2017; 24 Kwak (10.1016/j.cell.2018.05.017_bib31) 2013; 47 Laskowski (10.1016/j.cell.2018.05.017_bib33) 1993; 26 Palangat (10.1016/j.cell.2018.05.017_bib44) 2011; 31 Svetlov (10.1016/j.cell.2018.05.017_bib59) 2015; 1276 Saxena (10.1016/j.cell.2018.05.017_bib51) 2018 Gnatt (10.1016/j.cell.2018.05.017_bib17) 2001; 292 Artsimovitch (10.1016/j.cell.2018.05.017_bib2) 2000; 97 Twist (10.1016/j.cell.2018.05.017_bib63) 2011; 20 Chakraborty (10.1016/j.cell.2018.05.017_bib11) 2012; 337 Turtola (10.1016/j.cell.2018.05.017_bib62) 2016; 5 Strobel (10.1016/j.cell.2018.05.017_bib57) 2017; 45 Pettersen (10.1016/j.cell.2018.05.017_bib46) 2004; 25 Burmann (10.1016/j.cell.2018.05.017_bib9) 2012; 150 Morin (10.1016/j.cell.2018.05.017_bib42) 2013; 2 Crickard (10.1016/j.cell.2018.05.017_bib14) 2017; 45 Hartzog (10.1016/j.cell.2018.05.017_bib21) 2013; 1829 Belogurov (10.1016/j.cell.2018.05.017_bib5) 2009; 28 Hirtreiter (10.1016/j.cell.2018.05.017_bib24) 2010; 38 Suloway (10.1016/j.cell.2018.05.017_bib58) 2005; 151 Crickard (10.1016/j.cell.2018.05.017_bib13) 2016; 291 Sevostyanova (10.1016/j.cell.2018.05.017_bib56) 2011; 43 Said (10.1016/j.cell.2018.05.017_bib50) 2017; 2 Werner (10.1016/j.cell.2018.05.017_bib67) 2012; 417 Pavco (10.1016/j.cell.2018.05.017_bib45) 1990; 265 Li (10.1016/j.cell.2018.05.017_bib34) 1993; 7 Yamaguchi (10.1016/j.cell.2018.05.017_bib69) 1999; 97 Belogurov (10.1016/j.cell.2018.05.017_bib6) 2010; 76  | 
    
| References_xml | – volume: 289 start-page: 619 year: 2000 end-page: 625 ident: bib29 article-title: A structural model of transcription elongation publication-title: Science – volume: 69 start-page: 816 year: 2018 end-page: 827 ident: bib20 article-title: Structural basis for NusA stabilized transcriptional pausing publication-title: Mol. Cell – volume: 46 start-page: 72 year: 2017 end-page: 80 ident: bib39 article-title: Pause & go: from the discovery of RNA polymerase pausing to its functional implications publication-title: Curr. Opin. Cell Biol. – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: bib12 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 62 start-page: 1027 year: 2006 end-page: 1030 ident: bib65 article-title: Crystallization and preliminary crystallographic analysis of the transcriptional regulator RfaH from Escherichia coli and its complex with ops DNA publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. – volume: 42 start-page: 12707 year: 2014 end-page: 12721 ident: bib68 article-title: Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase publication-title: Nucleic Acids Res. – volume: 1276 start-page: 13 year: 2015 end-page: 29 ident: bib59 article-title: Purification of bacterial RNA polymerase: tools and protocols publication-title: Methods Mol. Biol. – volume: 109 start-page: 193 year: 2002 end-page: 203 ident: bib3 article-title: The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand publication-title: Cell – volume: 21 start-page: 794 year: 2014 end-page: 802 ident: bib22 article-title: RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement publication-title: Nat. Struct. Mol. Biol. – volume: 97 start-page: 41 year: 1999 end-page: 51 ident: bib69 article-title: NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation publication-title: Cell – volume: 97 start-page: 7090 year: 2000 end-page: 7095 ident: bib2 article-title: Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 start-page: 1302 year: 2011 end-page: 1310 ident: bib36 article-title: Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity publication-title: EMBO J. – volume: 417 start-page: 13 year: 2012 end-page: 27 ident: bib67 article-title: A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life publication-title: J. Mol. Biol. – volume: 113 start-page: 14994 year: 2016 end-page: 14999 ident: bib43 article-title: RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 3312 year: 2011 end-page: 3325 ident: bib44 article-title: The RPB2 flap loop of human RNA polymerase II is dispensable for transcription initiation and elongation publication-title: Mol. Cell. Biol. – volume: 108 start-page: 546 year: 2011 end-page: 550 ident: bib27 article-title: RNA polymerase and transcription elongation factor Spt4/5 complex structure publication-title: Proc. Natl. Acad. Sci. USA – volume: 192 start-page: 216 year: 2015 end-page: 221 ident: bib47 article-title: CTFFIND4: Fast and accurate defocus estimation from electron micrographs publication-title: J. Struct. Biol. – volume: 2 start-page: 17062 year: 2017 ident: bib50 article-title: Structural basis for λN-dependent processive transcription antitermination publication-title: Nat. Microbiol. – volume: 180 start-page: 519 year: 2012 end-page: 530 ident: bib52 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. – volume: 28 start-page: 112 year: 2009 end-page: 122 ident: bib5 article-title: Functional specialization of transcription elongation factors publication-title: EMBO J. – volume: 20 start-page: 986 year: 2011 end-page: 995 ident: bib63 article-title: A novel method for the production of in vivo-assembled, recombinant Escherichia coli RNA polymerase lacking the α C-terminal domain publication-title: Protein Sci. – volume: 1829 start-page: 105 year: 2013 end-page: 115 ident: bib21 article-title: The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation publication-title: Biochim. Biophys. Acta – volume: 391 start-page: 341 year: 2009 end-page: 358 ident: bib41 article-title: Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators publication-title: J. Mol. Biol. – volume: 5 start-page: e18096 year: 2016 ident: bib62 article-title: NusG inhibits RNA polymerase backtracking by stabilizing the minimal transcription bubble publication-title: eLife – volume: 10 start-page: 649 year: 2009 end-page: 654 ident: bib8 article-title: RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family publication-title: EMBO Rep. – volume: 105 start-page: 865 year: 2008 end-page: 870 ident: bib55 article-title: The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex publication-title: Proc. Natl. Acad. Sci. USA – volume: 45 start-page: 6362 year: 2017 end-page: 6374 ident: bib14 article-title: The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome publication-title: Nucleic Acids Res. – volume: 38 start-page: 4040 year: 2010 end-page: 4051 ident: bib24 article-title: Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif publication-title: Nucleic Acids Res. – volume: 45 start-page: 968 year: 2017 end-page: 974 ident: bib35 article-title: Structural insights into NusG regulating transcription elongation publication-title: Nucleic Acids Res. – volume: 2 start-page: 17003 year: 2017 ident: bib18 article-title: LoaP is a broadly conserved antiterminator protein that regulates antibiotic gene clusters in Bacillus amyloliquefaciens publication-title: Nat. Microbiol. – volume: 399 start-page: 17 year: 2010 end-page: 30 ident: bib23 article-title: E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase publication-title: J. Mol. Biol. – volume: 295 start-page: 855 year: 2002 end-page: 857 ident: bib30 article-title: A role for interaction of the RNA polymerase flap domain with the sigma subunit in promoter recognition publication-title: Science – volume: 357 start-page: 921 year: 2017 end-page: 924 ident: bib15 article-title: Structure of the complete elongation complex of RNA polymerase II with basal factors publication-title: Science – volume: 151 start-page: 41 year: 2005 end-page: 60 ident: bib58 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. – volume: 17 start-page: 1272 year: 2010 end-page: 1278 ident: bib38 article-title: Uniform transitions of the general RNA polymerase II transcription complex publication-title: Nat. Struct. Mol. Biol. – volume: 292 start-page: 730 year: 2001 end-page: 733 ident: bib61 article-title: Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins publication-title: Science – volume: 76 start-page: 286 year: 2010 end-page: 301 ident: bib6 article-title: Functional regions of the N-terminal domain of the antiterminator RfaH publication-title: Mol. Microbiol. – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib46 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 45 start-page: e109 year: 2017 ident: bib57 article-title: Distributed biotin-streptavidin transcription roadblocks for mapping cotranscriptional RNA folding publication-title: Nucleic Acids Res. – volume: 33 start-page: 97 year: 2009 end-page: 108 ident: bib40 article-title: Regulator trafficking on bacterial transcription units in vivo publication-title: Mol. Cell – volume: 468 start-page: 978 year: 2010 end-page: 982 ident: bib60 article-title: Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein publication-title: Nature – volume: 192 start-page: 188 year: 2015 end-page: 195 ident: bib48 article-title: Alignment of cryo-EM movies of individual particles by optimization of image translations publication-title: J. Struct. Biol. – volume: 4 start-page: e06980 year: 2015 ident: bib19 article-title: Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 publication-title: eLife – volume: 291 start-page: 9853 year: 2016 end-page: 9870 ident: bib13 article-title: Biochemical analysis of yeast suppressor of Ty 4/5 (Spt4/5) reveals the importance of nucleic acid interactions in the prevention of RNA polymerase II arrest publication-title: J. Biol. Chem. – volume: 69 start-page: 802 year: 2018 end-page: 815 ident: bib26 article-title: RNA polymerase accommodates a pause RNA hairpin by global conformational rearrangements that prolong pausing publication-title: Mol. Cell – volume: 448 start-page: 157 year: 2007 end-page: 162 ident: bib64 article-title: Structural basis for transcription elongation by bacterial RNA polymerase publication-title: Nature – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 289 start-page: 1151 year: 2014 end-page: 1163 ident: bib28 article-title: Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH publication-title: J. Biol. Chem. – volume: 292 start-page: 1876 year: 2001 end-page: 1882 ident: bib17 article-title: Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution publication-title: Science – volume: 265 start-page: 9960 year: 1990 end-page: 9969 ident: bib45 article-title: Elongation by Escherichia coli RNA polymerase is blocked in vitro by a site-specific DNA binding protein publication-title: J. Biol. Chem. – volume: 184 start-page: 226 year: 2013 end-page: 236 ident: bib10 article-title: One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions publication-title: J. Struct. Biol. – volume: 6 start-page: e25478 year: 2017 ident: bib25 article-title: Structural basis of transcription arrest by coliphage HK022 Nun in an publication-title: eLife – volume: 24 start-page: 809 year: 2017 end-page: 815 ident: bib7 article-title: Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp publication-title: Nat. Struct. Mol. Biol. – volume: 150 start-page: 291 year: 2012 end-page: 303 ident: bib9 article-title: An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor publication-title: Cell – volume: 152 start-page: 431 year: 2013 end-page: 441 ident: bib66 article-title: Structural basis of transcriptional pausing in bacteria publication-title: Cell – volume: 152 start-page: 36 year: 2005 end-page: 51 ident: bib37 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J. Struct. Biol. – volume: 34 start-page: 104 year: 2016 end-page: 110 ident: bib53 article-title: The quantitative and condition-dependent Escherichia coli proteome publication-title: Nat. Biotechnol. – volume: 26 start-page: 283 year: 1993 end-page: 291 ident: bib33 article-title: PROCHECK: a program to check the stereochemical quality of protein structures publication-title: J. Appl. Cryst. – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bib16 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – year: 2018 ident: bib51 article-title: Escherichia coli transcription factor NusG binds to 70S ribosomes publication-title: Mol. Microbiol. – volume: 2 start-page: e01456 year: 2013 ident: bib42 article-title: Collaboration gets the most out of software publication-title: eLife – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib54 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 7 start-page: 161 year: 1993 end-page: 172 ident: bib34 article-title: Elongation factor NusG interacts with termination factor rho to regulate termination and antitermination of transcription publication-title: Genes Dev. – volume: 337 start-page: 591 year: 2012 end-page: 595 ident: bib11 article-title: Opening and closing of the bacterial RNA polymerase clamp publication-title: Science – volume: 98 start-page: 811 year: 1999 end-page: 824 ident: bib70 article-title: Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution publication-title: Cell – volume: 26 start-page: 117 year: 2007 end-page: 129 ident: bib4 article-title: Structural basis for converting a general transcription factor into an operon-specific virulence regulator publication-title: Mol. Cell – volume: 43 start-page: 253 year: 2011 end-page: 262 ident: bib56 article-title: The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG publication-title: Mol. Cell – volume: 47 start-page: 483 year: 2013 end-page: 508 ident: bib31 article-title: Control of transcriptional elongation publication-title: Annu. Rev. Genet. – year: 1984 ident: bib49 article-title: Principles of Nucleic Acid Structure – volume: 344 start-page: 1042 year: 2014 end-page: 1047 ident: bib32 article-title: A pause sequence enriched at translation start sites drives transcription dynamics in vivo publication-title: Science – volume: 24 start-page: 809 year: 2017 ident: 10.1016/j.cell.2018.05.017_bib7 article-title: Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3465 – volume: 5 start-page: e18096 year: 2016 ident: 10.1016/j.cell.2018.05.017_bib62 article-title: NusG inhibits RNA polymerase backtracking by stabilizing the minimal transcription bubble publication-title: eLife doi: 10.7554/eLife.18096 – volume: 180 start-page: 519 year: 2012 ident: 10.1016/j.cell.2018.05.017_bib52 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – volume: 295 start-page: 855 year: 2002 ident: 10.1016/j.cell.2018.05.017_bib30 article-title: A role for interaction of the RNA polymerase flap domain with the sigma subunit in promoter recognition publication-title: Science doi: 10.1126/science.1066303 – volume: 38 start-page: 4040 year: 2010 ident: 10.1016/j.cell.2018.05.017_bib24 article-title: Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq135 – volume: 289 start-page: 619 year: 2000 ident: 10.1016/j.cell.2018.05.017_bib29 article-title: A structural model of transcription elongation publication-title: Science doi: 10.1126/science.289.5479.619 – volume: 17 start-page: 1272 year: 2010 ident: 10.1016/j.cell.2018.05.017_bib38 article-title: Uniform transitions of the general RNA polymerase II transcription complex publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1903 – volume: 150 start-page: 291 year: 2012 ident: 10.1016/j.cell.2018.05.017_bib9 article-title: An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor publication-title: Cell doi: 10.1016/j.cell.2012.05.042 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.cell.2018.05.017_bib54 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 109 start-page: 193 year: 2002 ident: 10.1016/j.cell.2018.05.017_bib3 article-title: The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand publication-title: Cell doi: 10.1016/S0092-8674(02)00724-9 – volume: 151 start-page: 41 year: 2005 ident: 10.1016/j.cell.2018.05.017_bib58 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.03.010 – volume: 98 start-page: 811 year: 1999 ident: 10.1016/j.cell.2018.05.017_bib70 article-title: Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution publication-title: Cell doi: 10.1016/S0092-8674(00)81515-9 – volume: 337 start-page: 591 year: 2012 ident: 10.1016/j.cell.2018.05.017_bib11 article-title: Opening and closing of the bacterial RNA polymerase clamp publication-title: Science doi: 10.1126/science.1218716 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.cell.2018.05.017_bib46 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 184 start-page: 226 year: 2013 ident: 10.1016/j.cell.2018.05.017_bib10 article-title: One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.08.002 – volume: 47 start-page: 483 year: 2013 ident: 10.1016/j.cell.2018.05.017_bib31 article-title: Control of transcriptional elongation publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110711-155440 – volume: 45 start-page: 6362 year: 2017 ident: 10.1016/j.cell.2018.05.017_bib14 article-title: The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx220 – volume: 192 start-page: 216 year: 2015 ident: 10.1016/j.cell.2018.05.017_bib47 article-title: CTFFIND4: Fast and accurate defocus estimation from electron micrographs publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.008 – volume: 2 start-page: e01456 year: 2013 ident: 10.1016/j.cell.2018.05.017_bib42 article-title: Collaboration gets the most out of software publication-title: eLife doi: 10.7554/eLife.01456 – volume: 97 start-page: 7090 year: 2000 ident: 10.1016/j.cell.2018.05.017_bib2 article-title: Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.13.7090 – volume: 69 start-page: 816 year: 2018 ident: 10.1016/j.cell.2018.05.017_bib20 article-title: Structural basis for NusA stabilized transcriptional pausing publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.02.008 – volume: 391 start-page: 341 year: 2009 ident: 10.1016/j.cell.2018.05.017_bib41 article-title: Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.05.078 – volume: 34 start-page: 104 year: 2016 ident: 10.1016/j.cell.2018.05.017_bib53 article-title: The quantitative and condition-dependent Escherichia coli proteome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3418 – volume: 113 start-page: 14994 year: 2016 ident: 10.1016/j.cell.2018.05.017_bib43 article-title: RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1613673114 – volume: 69 start-page: 802 year: 2018 ident: 10.1016/j.cell.2018.05.017_bib26 article-title: RNA polymerase accommodates a pause RNA hairpin by global conformational rearrangements that prolong pausing publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.01.018 – volume: 45 start-page: e109 year: 2017 ident: 10.1016/j.cell.2018.05.017_bib57 article-title: Distributed biotin-streptavidin transcription roadblocks for mapping cotranscriptional RNA folding publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx233 – volume: 468 start-page: 978 year: 2010 ident: 10.1016/j.cell.2018.05.017_bib60 article-title: Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein publication-title: Nature doi: 10.1038/nature09573 – volume: 1829 start-page: 105 year: 2013 ident: 10.1016/j.cell.2018.05.017_bib21 article-title: The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2012.08.007 – volume: 417 start-page: 13 year: 2012 ident: 10.1016/j.cell.2018.05.017_bib67 article-title: A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2012.01.031 – volume: 291 start-page: 9853 year: 2016 ident: 10.1016/j.cell.2018.05.017_bib13 article-title: Biochemical analysis of yeast suppressor of Ty 4/5 (Spt4/5) reveals the importance of nucleic acid interactions in the prevention of RNA polymerase II arrest publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.716001 – volume: 4 start-page: e06980 year: 2015 ident: 10.1016/j.cell.2018.05.017_bib19 article-title: Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 publication-title: eLife doi: 10.7554/eLife.06980 – volume: 33 start-page: 97 year: 2009 ident: 10.1016/j.cell.2018.05.017_bib40 article-title: Regulator trafficking on bacterial transcription units in vivo publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.12.021 – volume: 26 start-page: 117 year: 2007 ident: 10.1016/j.cell.2018.05.017_bib4 article-title: Structural basis for converting a general transcription factor into an operon-specific virulence regulator publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.02.021 – volume: 28 start-page: 112 year: 2009 ident: 10.1016/j.cell.2018.05.017_bib5 article-title: Functional specialization of transcription elongation factors publication-title: EMBO J. doi: 10.1038/emboj.2008.268 – volume: 2 start-page: 17062 year: 2017 ident: 10.1016/j.cell.2018.05.017_bib50 article-title: Structural basis for λN-dependent processive transcription antitermination publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.62 – volume: 152 start-page: 431 year: 2013 ident: 10.1016/j.cell.2018.05.017_bib66 article-title: Structural basis of transcriptional pausing in bacteria publication-title: Cell doi: 10.1016/j.cell.2012.12.020 – volume: 60 start-page: 2126 year: 2004 ident: 10.1016/j.cell.2018.05.017_bib16 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 31 start-page: 3312 year: 2011 ident: 10.1016/j.cell.2018.05.017_bib44 article-title: The RPB2 flap loop of human RNA polymerase II is dispensable for transcription initiation and elongation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.05318-11 – year: 2018 ident: 10.1016/j.cell.2018.05.017_bib51 article-title: Escherichia coli transcription factor NusG binds to 70S ribosomes publication-title: Mol. Microbiol. doi: 10.1111/mmi.13953 – volume: 20 start-page: 986 year: 2011 ident: 10.1016/j.cell.2018.05.017_bib63 article-title: A novel method for the production of in vivo-assembled, recombinant Escherichia coli RNA polymerase lacking the α C-terminal domain publication-title: Protein Sci. doi: 10.1002/pro.622 – volume: 105 start-page: 865 year: 2008 ident: 10.1016/j.cell.2018.05.017_bib55 article-title: The elongation factor RfaH and the initiation factor sigma bind to the same site on the transcription elongation complex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0708432105 – volume: 42 start-page: 12707 year: 2014 ident: 10.1016/j.cell.2018.05.017_bib68 article-title: Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku997 – volume: 292 start-page: 1876 year: 2001 ident: 10.1016/j.cell.2018.05.017_bib17 article-title: Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution publication-title: Science doi: 10.1126/science.1059495 – volume: 46 start-page: 72 year: 2017 ident: 10.1016/j.cell.2018.05.017_bib39 article-title: Pause & go: from the discovery of RNA polymerase pausing to its functional implications publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2017.03.002 – volume: 292 start-page: 730 year: 2001 ident: 10.1016/j.cell.2018.05.017_bib61 article-title: Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins publication-title: Science doi: 10.1126/science.1057738 – volume: 21 start-page: 794 year: 2014 ident: 10.1016/j.cell.2018.05.017_bib22 article-title: RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2867 – volume: 152 start-page: 36 year: 2005 ident: 10.1016/j.cell.2018.05.017_bib37 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.07.007 – volume: 192 start-page: 188 year: 2015 ident: 10.1016/j.cell.2018.05.017_bib48 article-title: Alignment of cryo-EM movies of individual particles by optimization of image translations publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.007 – volume: 10 start-page: 649 year: 2009 ident: 10.1016/j.cell.2018.05.017_bib8 article-title: RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family publication-title: EMBO Rep. doi: 10.1038/embor.2009.31 – volume: 7 start-page: 161 year: 1993 ident: 10.1016/j.cell.2018.05.017_bib34 article-title: Elongation factor NusG interacts with termination factor rho to regulate termination and antitermination of transcription publication-title: Genes Dev. doi: 10.1101/gad.7.1.161 – volume: 62 start-page: 1027 year: 2006 ident: 10.1016/j.cell.2018.05.017_bib65 article-title: Crystallization and preliminary crystallographic analysis of the transcriptional regulator RfaH from Escherichia coli and its complex with ops DNA publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. doi: 10.1107/S174430910603658X – volume: 265 start-page: 9960 year: 1990 ident: 10.1016/j.cell.2018.05.017_bib45 article-title: Elongation by Escherichia coli RNA polymerase is blocked in vitro by a site-specific DNA binding protein publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)38764-2 – volume: 26 start-page: 283 year: 1993 ident: 10.1016/j.cell.2018.05.017_bib33 article-title: PROCHECK: a program to check the stereochemical quality of protein structures publication-title: J. Appl. Cryst. doi: 10.1107/S0021889892009944 – volume: 108 start-page: 546 year: 2011 ident: 10.1016/j.cell.2018.05.017_bib27 article-title: RNA polymerase and transcription elongation factor Spt4/5 complex structure publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1013828108 – volume: 30 start-page: 1302 year: 2011 ident: 10.1016/j.cell.2018.05.017_bib36 article-title: Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity publication-title: EMBO J. doi: 10.1038/emboj.2011.64 – volume: 1276 start-page: 13 year: 2015 ident: 10.1016/j.cell.2018.05.017_bib59 article-title: Purification of bacterial RNA polymerase: tools and protocols publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2392-2_2 – volume: 2 start-page: 17003 year: 2017 ident: 10.1016/j.cell.2018.05.017_bib18 article-title: LoaP is a broadly conserved antiterminator protein that regulates antibiotic gene clusters in Bacillus amyloliquefaciens publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.3 – volume: 289 start-page: 1151 year: 2014 ident: 10.1016/j.cell.2018.05.017_bib28 article-title: Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.521393 – year: 1984 ident: 10.1016/j.cell.2018.05.017_bib49 – volume: 399 start-page: 17 year: 2010 ident: 10.1016/j.cell.2018.05.017_bib23 article-title: E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.03.051 – volume: 45 start-page: 968 year: 2017 ident: 10.1016/j.cell.2018.05.017_bib35 article-title: Structural insights into NusG regulating transcription elongation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1159 – volume: 97 start-page: 41 year: 1999 ident: 10.1016/j.cell.2018.05.017_bib69 article-title: NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation publication-title: Cell doi: 10.1016/S0092-8674(00)80713-8 – volume: 344 start-page: 1042 year: 2014 ident: 10.1016/j.cell.2018.05.017_bib32 article-title: A pause sequence enriched at translation start sites drives transcription dynamics in vivo publication-title: Science doi: 10.1126/science.1251871 – volume: 357 start-page: 921 year: 2017 ident: 10.1016/j.cell.2018.05.017_bib15 article-title: Structure of the complete elongation complex of RNA polymerase II with basal factors publication-title: Science doi: 10.1126/science.aan8552 – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.cell.2018.05.017_bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 76 start-page: 286 year: 2010 ident: 10.1016/j.cell.2018.05.017_bib6 article-title: Functional regions of the N-terminal domain of the antiterminator RfaH publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07056.x – volume: 66 start-page: 12 year: 2010 ident: 10.1016/j.cell.2018.05.017_bib12 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909042073 – volume: 448 start-page: 157 year: 2007 ident: 10.1016/j.cell.2018.05.017_bib64 article-title: Structural basis for transcription elongation by bacterial RNA polymerase publication-title: Nature doi: 10.1038/nature05932 – volume: 6 start-page: e25478 year: 2017 ident: 10.1016/j.cell.2018.05.017_bib25 article-title: Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex publication-title: eLife doi: 10.7554/eLife.25478 – volume: 43 start-page: 253 year: 2011 ident: 10.1016/j.cell.2018.05.017_bib56 article-title: The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.05.026  | 
    
| SSID | ssj0008555 | 
    
| Score | 2.6002512 | 
    
| Snippet | NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP)... NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP)...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1650 | 
    
| SubjectTerms | Amino Acid Sequence Catalytic Domain cryo-electron microscopy Cryoelectron Microscopy DNA DNA - chemistry DNA - metabolism DNA-directed RNA polymerase DNA-Directed RNA Polymerases - chemistry DNA-Directed RNA Polymerases - genetics DNA-Directed RNA Polymerases - metabolism Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism nontemplate DNA Nucleic Acid Conformation operon Peptide Elongation Factors - chemistry Peptide Elongation Factors - genetics Peptide Elongation Factors - metabolism Protein Binding Protein Structure, Quaternary Recombinant Proteins - biosynthesis Recombinant Proteins - chemistry Recombinant Proteins - isolation & purification rRNA Operon - genetics Sequence Alignment Spt5 Trans-Activators - chemistry Trans-Activators - genetics Trans-Activators - metabolism transcription elongation Transcription Factors - chemistry Transcription Factors - genetics Transcription Factors - metabolism transcription pausing Transcription, Genetic transcriptional elongation factors translation (genetics)  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4anRC8cL-Um4zEG2Rr4kuSxzFtTEhUaFA0nizbscegSivSCpVfzzlxUjFVVOMtUU5uPsf-PifH3wF4FUyqDOJqUjnHExEynxReqESOVBmCkcYKWu_8YaxOJuL9mTzbgb5wIWVV0hfrdozu2o5W85ZZoUhnhZO8iNifV-Ea7CqJ9HsAu5Pxx4OvUW0Se7dqlZfpx2oiEJ27hTIxp6u9NEJeEdU683-B0SbZ3MyZvLGs52b1y0ynfwHS8W047Zf1xDyUH3vLhd1zvzdVHq_-rnfgVkdP2UG0uws7vr4H12PBytV9-PKplZslqQ721jQXDUPOy1q8a0cfdjSd1eets9lhTIJndsXGy-YdiyU2WJcJghc49edUO2z2s3kAk-Ojz4cnSVeZIXEqE4ukqkrhc2Fyz_NghfUld6msMouAmNsqdyEo7oVxSD9ww7s0N5ybqrDGyNSW_CEM6lntHwMTxBhDSCvhcbIWpBUFgqp3GFrcjko-hLR3kXadbDlVz5jqPj_tu6ZW1ORWPZIa3TqE1-tz5lG0Y6u17D2vO9oR6YRGVNl63ss-TDT2STpsaj9bNmgkOQkz5nKLTUaTbRJEHMKjGFrrZ81KHPpx5B9Cfino1gakCX75SH3xrdUGV_Srt8D7vlmH5xWa4Mn_mT-Fm7RHGXOpeAYDDD3_HLnZwr7oeuMf9l43Rw priority: 102 providerName: Unpaywall  | 
    
| Title | Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators | 
    
| URI | https://dx.doi.org/10.1016/j.cell.2018.05.017 https://www.ncbi.nlm.nih.gov/pubmed/29887376 https://www.proquest.com/docview/2053279275 https://www.proquest.com/docview/2221020432 https://pubmed.ncbi.nlm.nih.gov/PMC6003885 http://www.cell.com/article/S0092867418305944/pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 173 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1097-4172 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008555 issn: 1097-4172 databaseCode: HH5 dateStart: 19950101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1097-4172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008555 issn: 1097-4172 databaseCode: KQ8 dateStart: 19950101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1097-4172 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008555 issn: 1097-4172 databaseCode: IXB dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1097-4172 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008555 issn: 1097-4172 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1097-4172 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008555 issn: 1097-4172 databaseCode: AKRWK dateStart: 19740101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTQhe0PjuGJWReINoTfyVPG7VxkCiQkBRebJsxx5FVVotq1D_-93FSUQ1USHekviSWHfnu3Ny9ztC3gSTSgN-NSmdYwkPmU9yz2UiRrIIwQhjOdY7f5rIyyn_OBOzPTLuamEwrbK1_dGmN9a6vXLScvNkNZ9jjW-R5RLRVxiCjiAmKOM5tm_4MDvrrXEuROxiUMDKB-q2cCbmeOHHcUzvyiN6p_qbc7obfN7Noby_rlZm89ssFn84qItD8rCNLOlpnPwjsuerx-Re7DW5eUK-f22QYhFlg56Zel5TCFdp46oaw0HPF8vqqpETHcf8dWo3dLKu39PYHYO2SRzwgC-xg_3yun5Kphfn38aXSdtUIXEy4zdJWRbcK26UZypYbn3BXCrKzIIvU7ZULgTJPDcOIgc48C5VhjFT5tYYkdqCPSP71bLyLwjlGOyFkJbcwz4rCAvcZ9I70ApmRwUbkLTjpnYt4jg2vljoLrXsl0YJaJSAHgkNEhiQt_09q4i3sZNadELSW1qjwSHsvO91J1ENywmHTeWX6xqIBENMRSV20GS4T0YswwF5HrWgn2tWgNUGoz0gaks_egKE894eqeY_G1hviX9pc3jvu16T_oEFR__JgpfkAZ5h1lvKj8k-6KB_BfHVjR2idxPDZhkNycF08vn0xy099igX | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NITRe0PgahQ2MxBtEa2I7Th5ZtVFg6wNsqG-WndhQVKUVWYX633MXJ9GqiQrxFsXnxLo7352Tu98BvPEmTg361agsCh4Jn7gocyKN5DDNvTfSWEH1zheTdHwlPk3ldAdGXS0MpVW2tj_Y9MZat3eOW24eL2czqvHNkywl9BVOoCPiDtwVEqMTquKbnvTmOJMytDHIcesjeVs5E5K86Os45XdlAb5T_c073Y4-bydR7q2qpVn_NvP5DQ91tg8P2tCSvQ-rfwg7rnoE90KzyfVj-Pa1gYolmA12YupZzTBeZY2vaiwHO50vqu-NoNgoJLAzu2aTVf2BhfYYrM3iwAd8CS3sF7_qJ3B1dno5GkdtV4WoSBNxHZVlLpwSRjmuvBXW5byIZZlYdGbKlqrwPuVOmAJDB7xwRawM56bMrDEytjl_CrvVonLPgAmK9ryPS-HwoOWlFRk6RFegWnA7zPkA4o6bumghx6nzxVx3uWU_NUlAkwT0UGqUwADe9nOWAXBjK7XshKQ31EajR9g673UnUY37iYZN5RarGokkJ1BFJbfQJHRQJjDDARwELejXmuRottFqD0Bt6EdPQHjemyPV7EeD653Sb9oM3_uu16R_YMHz_2TBK9gbX16c6_OPk88v4D6NUApcLA5hF_XRHWGwdW1fNpvpD_DqKKc | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4anRC8cL-Um4zEG2Rr4kuSxzFtTEhUaFA0nizbscegSivSCpVfzzlxUjFVVOMtUU5uPsf-PifH3wF4FUyqDOJqUjnHExEynxReqESOVBmCkcYKWu_8YaxOJuL9mTzbgb5wIWVV0hfrdozu2o5W85ZZoUhnhZO8iNifV-Ea7CqJ9HsAu5Pxx4OvUW0Se7dqlZfpx2oiEJ27hTIxp6u9NEJeEdU683-B0SbZ3MyZvLGs52b1y0ynfwHS8W047Zf1xDyUH3vLhd1zvzdVHq_-rnfgVkdP2UG0uws7vr4H12PBytV9-PKplZslqQ721jQXDUPOy1q8a0cfdjSd1eets9lhTIJndsXGy-YdiyU2WJcJghc49edUO2z2s3kAk-Ojz4cnSVeZIXEqE4ukqkrhc2Fyz_NghfUld6msMouAmNsqdyEo7oVxSD9ww7s0N5ybqrDGyNSW_CEM6lntHwMTxBhDSCvhcbIWpBUFgqp3GFrcjko-hLR3kXadbDlVz5jqPj_tu6ZW1ORWPZIa3TqE1-tz5lG0Y6u17D2vO9oR6YRGVNl63ss-TDT2STpsaj9bNmgkOQkz5nKLTUaTbRJEHMKjGFrrZ81KHPpx5B9Cfino1gakCX75SH3xrdUGV_Srt8D7vlmH5xWa4Mn_mT-Fm7RHGXOpeAYDDD3_HLnZwr7oeuMf9l43Rw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Basis+for+Transcript+Elongation+Control+by+NusG+Family+Universal+Regulators&rft.jtitle=Cell&rft.au=Kang%2C+Jin+Young&rft.au=Mooney%2C+Rachel+Anne&rft.au=Nedialkov%2C+Yuri&rft.au=Saba%2C+Jason&rft.date=2018-06-14&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=173&rft.issue=7&rft.spage=1650&rft_id=info:doi/10.1016%2Fj.cell.2018.05.017&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |