Enhanced bone-integration capability of alkali- and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy

This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that are smaller than 100nm and determines whether and how the addition of these nanofeatures to a microroughened titanium surface affects bone–im...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 32; no. 30; pp. 7297 - 7308
Main Authors Ueno, Takeshi, Tsukimura, Naoki, Yamada, Masahiro, Ogawa, Takahiro
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.10.2011
Subjects
Online AccessGet full text
ISSN0142-9612
1878-5905
1878-5905
DOI10.1016/j.biomaterials.2011.06.033

Cover

Abstract This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that are smaller than 100nm and determines whether and how the addition of these nanofeatures to a microroughened titanium surface affects bone–implant integration. A comprehensive assessment of biomechanical, interfacial, and histological analyses in a rat model was performed for machined surfaces without microroughness, sandblasted-microroughened surfaces, and micro–nano hybrid surfaces created by sandblasting and alkali and heat treatment. The microroughened surface accelerated the establishment of implant biomechanical fixation at the early healing stage compared with the non-microroughened surface but did not increase the implant fixation at the late healing stage. The addition of the nanopolymorphic features to the microroughened surface further increased implant fixation throughout the healing time. The area of the new bone within 50μm proximity of the implant surfaces, which was increased 2–3-fold using microroughened surfaces, was further increased 2-fold using nanopolymorphic surfaces. In contrast, the bone area in a 50–200μm zone was not influenced by either microroughened or nanopolymorphic surfaces. The percentage of bone–implant contact, which was increased 4–5-fold, using microroughened surfaces, was further increased substantially by over 2-fold throughout the healing period. The percentage of soft tissue intervention between bone and implant surfaces, which was reduced to half by microroughened surfaces, was additionally reduced by the nanopolymorphic surfaces to between one-third and one-fourth, resulting in only 5–7% soft tissue intervention compared with 60–75% for the non-microroughened surface. Thus, using an exemplary alkali- and heat-treated nanopolymorphic surface, this study identified critical parameters necessary to describe the process and consequences of bone–implant integration, for which nanofeatures have specific and substantial roles beyond those of microfeatures. Nanofeature-enhanced osteoconductivity, which resulted in both the acceleration and elevation of bone–implant integration, has clearly been demonstrated. ► We created nanopolymorphic titanium surfaces using alkali and heat treatment. ► The nanopolymorphic titanium features nanotufts, nanoplates, and nanonodules. ► The nanopolymorphic titanium accelerated and enhanced bone–implant integration.
AbstractList This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that are smaller than 100nm and determines whether and how the addition of these nanofeatures to a microroughened titanium surface affects bone-implant integration. A comprehensive assessment of biomechanical, interfacial, and histological analyses in a rat model was performed for machined surfaces without microroughness, sandblasted-microroughened surfaces, and micro-nano hybrid surfaces created by sandblasting and alkali and heat treatment. The microroughened surface accelerated the establishment of implant biomechanical fixation at the early healing stage compared with the non-microroughened surface but did not increase the implant fixation at the late healing stage. The addition of the nanopolymorphic features to the microroughened surface further increased implant fixation throughout the healing time. The area of the new bone within 50 mu m proximity of the implant surfaces, which was increased 2-3-fold using microroughened surfaces, was further increased 2-fold using nanopolymorphic surfaces. In contrast, the bone area in a 50-200 mu m zone was not influenced by either microroughened or nanopolymorphic surfaces. The percentage of bone-implant contact, which was increased 4-5-fold, using microroughened surfaces, was further increased substantially by over 2-fold throughout the healing period. The percentage of soft tissue intervention between bone and implant surfaces, which was reduced to half by microroughened surfaces, was additionally reduced by the nanopolymorphic surfaces to between one-third and one-fourth, resulting in only 5-7% soft tissue intervention compared with 60-75% for the non-microroughened surface. Thus, using an exemplary alkali- and heat-treated nanopolymorphic surface, this study identified critical parameters necessary to describe the process and consequences of bone-implant integration, for which nanofeatures have specific and substantial roles beyond those of microfeatures. Nanofeature-enhanced osteoconductivity, which resulted in both the acceleration and elevation of bone-implant integration, has clearly been demonstrated.
This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that are smaller than 100 nm and determines whether and how the addition of these nanofeatures to a microroughened titanium surface affects bone-implant integration. A comprehensive assessment of biomechanical, interfacial, and histological analyses in a rat model was performed for machined surfaces without microroughness, sandblasted-microroughened surfaces, and micro-nano hybrid surfaces created by sandblasting and alkali and heat treatment. The microroughened surface accelerated the establishment of implant biomechanical fixation at the early healing stage compared with the non-microroughened surface but did not increase the implant fixation at the late healing stage. The addition of the nanopolymorphic features to the microroughened surface further increased implant fixation throughout the healing time. The area of the new bone within 50 μm proximity of the implant surfaces, which was increased 2-3-fold using microroughened surfaces, was further increased 2-fold using nanopolymorphic surfaces. In contrast, the bone area in a 50-200 μm zone was not influenced by either microroughened or nanopolymorphic surfaces. The percentage of bone-implant contact, which was increased 4-5-fold, using microroughened surfaces, was further increased substantially by over 2-fold throughout the healing period. The percentage of soft tissue intervention between bone and implant surfaces, which was reduced to half by microroughened surfaces, was additionally reduced by the nanopolymorphic surfaces to between one-third and one-fourth, resulting in only 5-7% soft tissue intervention compared with 60-75% for the non-microroughened surface. Thus, using an exemplary alkali- and heat-treated nanopolymorphic surface, this study identified critical parameters necessary to describe the process and consequences of bone-implant integration, for which nanofeatures have specific and substantial roles beyond those of microfeatures. Nanofeature-enhanced osteoconductivity, which resulted in both the acceleration and elevation of bone-implant integration, has clearly been demonstrated.This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that are smaller than 100 nm and determines whether and how the addition of these nanofeatures to a microroughened titanium surface affects bone-implant integration. A comprehensive assessment of biomechanical, interfacial, and histological analyses in a rat model was performed for machined surfaces without microroughness, sandblasted-microroughened surfaces, and micro-nano hybrid surfaces created by sandblasting and alkali and heat treatment. The microroughened surface accelerated the establishment of implant biomechanical fixation at the early healing stage compared with the non-microroughened surface but did not increase the implant fixation at the late healing stage. The addition of the nanopolymorphic features to the microroughened surface further increased implant fixation throughout the healing time. The area of the new bone within 50 μm proximity of the implant surfaces, which was increased 2-3-fold using microroughened surfaces, was further increased 2-fold using nanopolymorphic surfaces. In contrast, the bone area in a 50-200 μm zone was not influenced by either microroughened or nanopolymorphic surfaces. The percentage of bone-implant contact, which was increased 4-5-fold, using microroughened surfaces, was further increased substantially by over 2-fold throughout the healing period. The percentage of soft tissue intervention between bone and implant surfaces, which was reduced to half by microroughened surfaces, was additionally reduced by the nanopolymorphic surfaces to between one-third and one-fourth, resulting in only 5-7% soft tissue intervention compared with 60-75% for the non-microroughened surface. Thus, using an exemplary alkali- and heat-treated nanopolymorphic surface, this study identified critical parameters necessary to describe the process and consequences of bone-implant integration, for which nanofeatures have specific and substantial roles beyond those of microfeatures. Nanofeature-enhanced osteoconductivity, which resulted in both the acceleration and elevation of bone-implant integration, has clearly been demonstrated.
This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that are smaller than 100nm and determines whether and how the addition of these nanofeatures to a microroughened titanium surface affects bone–implant integration. A comprehensive assessment of biomechanical, interfacial, and histological analyses in a rat model was performed for machined surfaces without microroughness, sandblasted-microroughened surfaces, and micro–nano hybrid surfaces created by sandblasting and alkali and heat treatment. The microroughened surface accelerated the establishment of implant biomechanical fixation at the early healing stage compared with the non-microroughened surface but did not increase the implant fixation at the late healing stage. The addition of the nanopolymorphic features to the microroughened surface further increased implant fixation throughout the healing time. The area of the new bone within 50μm proximity of the implant surfaces, which was increased 2–3-fold using microroughened surfaces, was further increased 2-fold using nanopolymorphic surfaces. In contrast, the bone area in a 50–200μm zone was not influenced by either microroughened or nanopolymorphic surfaces. The percentage of bone–implant contact, which was increased 4–5-fold, using microroughened surfaces, was further increased substantially by over 2-fold throughout the healing period. The percentage of soft tissue intervention between bone and implant surfaces, which was reduced to half by microroughened surfaces, was additionally reduced by the nanopolymorphic surfaces to between one-third and one-fourth, resulting in only 5–7% soft tissue intervention compared with 60–75% for the non-microroughened surface. Thus, using an exemplary alkali- and heat-treated nanopolymorphic surface, this study identified critical parameters necessary to describe the process and consequences of bone–implant integration, for which nanofeatures have specific and substantial roles beyond those of microfeatures. Nanofeature-enhanced osteoconductivity, which resulted in both the acceleration and elevation of bone–implant integration, has clearly been demonstrated. ► We created nanopolymorphic titanium surfaces using alkali and heat treatment. ► The nanopolymorphic titanium features nanotufts, nanoplates, and nanonodules. ► The nanopolymorphic titanium accelerated and enhanced bone–implant integration.
Abstract This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that are smaller than 100 nm and determines whether and how the addition of these nanofeatures to a microroughened titanium surface affects bone–implant integration. A comprehensive assessment of biomechanical, interfacial, and histological analyses in a rat model was performed for machined surfaces without microroughness, sandblasted-microroughened surfaces, and micro–nano hybrid surfaces created by sandblasting and alkali and heat treatment. The microroughened surface accelerated the establishment of implant biomechanical fixation at the early healing stage compared with the non-microroughened surface but did not increase the implant fixation at the late healing stage. The addition of the nanopolymorphic features to the microroughened surface further increased implant fixation throughout the healing time. The area of the new bone within 50 μm proximity of the implant surfaces, which was increased 2–3-fold using microroughened surfaces, was further increased 2-fold using nanopolymorphic surfaces. In contrast, the bone area in a 50–200 μm zone was not influenced by either microroughened or nanopolymorphic surfaces. The percentage of bone–implant contact, which was increased 4–5-fold, using microroughened surfaces, was further increased substantially by over 2-fold throughout the healing period. The percentage of soft tissue intervention between bone and implant surfaces, which was reduced to half by microroughened surfaces, was additionally reduced by the nanopolymorphic surfaces to between one-third and one-fourth, resulting in only 5–7% soft tissue intervention compared with 60–75% for the non-microroughened surface. Thus, using an exemplary alkali- and heat-treated nanopolymorphic surface, this study identified critical parameters necessary to describe the process and consequences of bone–implant integration, for which nanofeatures have specific and substantial roles beyond those of microfeatures. Nanofeature-enhanced osteoconductivity, which resulted in both the acceleration and elevation of bone–implant integration, has clearly been demonstrated.
This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that are smaller than 100 nm and determines whether and how the addition of these nanofeatures to a microroughened titanium surface affects bone-implant integration. A comprehensive assessment of biomechanical, interfacial, and histological analyses in a rat model was performed for machined surfaces without microroughness, sandblasted-microroughened surfaces, and micro-nano hybrid surfaces created by sandblasting and alkali and heat treatment. The microroughened surface accelerated the establishment of implant biomechanical fixation at the early healing stage compared with the non-microroughened surface but did not increase the implant fixation at the late healing stage. The addition of the nanopolymorphic features to the microroughened surface further increased implant fixation throughout the healing time. The area of the new bone within 50 μm proximity of the implant surfaces, which was increased 2-3-fold using microroughened surfaces, was further increased 2-fold using nanopolymorphic surfaces. In contrast, the bone area in a 50-200 μm zone was not influenced by either microroughened or nanopolymorphic surfaces. The percentage of bone-implant contact, which was increased 4-5-fold, using microroughened surfaces, was further increased substantially by over 2-fold throughout the healing period. The percentage of soft tissue intervention between bone and implant surfaces, which was reduced to half by microroughened surfaces, was additionally reduced by the nanopolymorphic surfaces to between one-third and one-fourth, resulting in only 5-7% soft tissue intervention compared with 60-75% for the non-microroughened surface. Thus, using an exemplary alkali- and heat-treated nanopolymorphic surface, this study identified critical parameters necessary to describe the process and consequences of bone-implant integration, for which nanofeatures have specific and substantial roles beyond those of microfeatures. Nanofeature-enhanced osteoconductivity, which resulted in both the acceleration and elevation of bone-implant integration, has clearly been demonstrated.
This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that are smaller than 100nm and determines whether and how the addition of these nanofeatures to a microroughened titanium surface affects bone–implant integration. A comprehensive assessment of biomechanical, interfacial, and histological analyses in a rat model was performed for machined surfaces without microroughness, sandblasted-microroughened surfaces, and micro–nano hybrid surfaces created by sandblasting and alkali and heat treatment. The microroughened surface accelerated the establishment of implant biomechanical fixation at the early healing stage compared with the non-microroughened surface but did not increase the implant fixation at the late healing stage. The addition of the nanopolymorphic features to the microroughened surface further increased implant fixation throughout the healing time. The area of the new bone within 50μm proximity of the implant surfaces, which was increased 2–3-fold using microroughened surfaces, was further increased 2-fold using nanopolymorphic surfaces. In contrast, the bone area in a 50–200μm zone was not influenced by either microroughened or nanopolymorphic surfaces. The percentage of bone–implant contact, which was increased 4–5-fold, using microroughened surfaces, was further increased substantially by over 2-fold throughout the healing period. The percentage of soft tissue intervention between bone and implant surfaces, which was reduced to half by microroughened surfaces, was additionally reduced by the nanopolymorphic surfaces to between one-third and one-fourth, resulting in only 5–7% soft tissue intervention compared with 60–75% for the non-microroughened surface. Thus, using an exemplary alkali- and heat-treated nanopolymorphic surface, this study identified critical parameters necessary to describe the process and consequences of bone–implant integration, for which nanofeatures have specific and substantial roles beyond those of microfeatures. Nanofeature-enhanced osteoconductivity, which resulted in both the acceleration and elevation of bone–implant integration, has clearly been demonstrated.
Author Ueno, Takeshi
Ogawa, Takahiro
Tsukimura, Naoki
Yamada, Masahiro
Author_xml – sequence: 1
  givenname: Takeshi
  surname: Ueno
  fullname: Ueno, Takeshi
– sequence: 2
  givenname: Naoki
  surname: Tsukimura
  fullname: Tsukimura, Naoki
– sequence: 3
  givenname: Masahiro
  surname: Yamada
  fullname: Yamada, Masahiro
– sequence: 4
  givenname: Takahiro
  surname: Ogawa
  fullname: Ogawa, Takahiro
  email: togawa@dentistry.ucla.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21742375$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLcLXwFFXOCSYDtO7HBAQCl_pEocgLPlOLPsbBN7a3uR8u1xtAWhSqC9eGTpvTej-c0FOXPeASHPGK0YZe3LXdWjn0yCgGaMFaeMVbStaF0_ICumpCqbjjZnZEWZ4GXXMn5OLmLc0fyngj8i55xJwWvZrMh85bbGWRiKPjcp0SX4EUxC7wpr9qbHEdNc-E1hxhszYlkYNxRbMKlMIb_Z54zzez_Okw_7LdoiYTIOD1OBrpjQBl8mXy6iaM0IxRYhmGC382PycJPHhyd3dU2-f7j6dvmpvP7y8fPl2-vStlykcpCN4LzOpaYNo4NQwqqOSTBt39YNGGk7EKrlDSgphmYDchCd4XJjlWgkq9fk-TF3H_ztAWLSE0YL42gc-EPUSilGu5qeoqyVaLtc1uTFf5VMMspr3uah1-TpnfTQTzDofcDJhFn_RpAFr46CvKoYA2z-SBjVC2-903_z1gtvTVudeWfzm3tmm9e_4EvB4HhaxPtjBGQIPzMdHS3CchIYwCY9eDwt5vW9GDuiw8z8BmaIO38IbvEwHbmm-utym8tpMkZp3ukS8O7fAadO8QuBDPx-
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2017_01_089
crossref_primary_10_1016_j_msec_2014_11_021
crossref_primary_10_1557_s43578_023_00895_0
crossref_primary_10_1080_09506608_2022_2153217
crossref_primary_10_1371_journal_pone_0068086
crossref_primary_10_3390_coatings11070812
crossref_primary_10_2147_IJN_S409033
crossref_primary_10_2186_jpr_JPR_D_22_00225
crossref_primary_10_1007_s11595_017_1619_5
crossref_primary_10_1007_s10856_014_5232_2
crossref_primary_10_3390_ijms24031978
crossref_primary_10_1016_j_msec_2018_10_068
crossref_primary_10_3390_nano7100323
crossref_primary_10_4103_tdj_tdj_20_22
crossref_primary_10_1016_j_tsf_2017_12_005
crossref_primary_10_4012_dmj_2015_010
crossref_primary_10_1039_D1TB00231G
crossref_primary_10_1002_jbm_a_35960
crossref_primary_10_3389_fbioe_2022_835008
crossref_primary_10_1088_1748_6041_9_4_045001
crossref_primary_10_1016_j_surfin_2022_102390
crossref_primary_10_1016_j_ceramint_2016_05_077
crossref_primary_10_1007_s11192_019_03013_2
crossref_primary_10_15541_jim20220580
crossref_primary_10_1007_s10853_016_0219_7
crossref_primary_10_21823_2311_2905_2018_24_2_95_107
crossref_primary_10_2497_jjspm_63_755
crossref_primary_10_1016_j_ultramic_2012_07_007
crossref_primary_10_1016_j_bioactmat_2023_03_006
crossref_primary_10_1155_2015_408634
crossref_primary_10_1039_C4RA08322A
crossref_primary_10_1016_j_surfcoat_2020_125362
crossref_primary_10_3390_cells12010019
crossref_primary_10_1177_0954411916675382
crossref_primary_10_1016_j_msec_2019_110519
crossref_primary_10_1186_s40729_024_00550_1
crossref_primary_10_1002_jbm_b_33462
crossref_primary_10_1016_j_actbio_2012_01_021
crossref_primary_10_1039_D1BM00116G
crossref_primary_10_2174_1874120701509010029
crossref_primary_10_1016_j_actbio_2016_08_013
crossref_primary_10_2217_nnm_12_177
crossref_primary_10_1016_j_electacta_2015_06_100
crossref_primary_10_1016_j_matlet_2017_10_040
crossref_primary_10_1039_D1BM01657A
crossref_primary_10_1016_j_dental_2015_01_014
crossref_primary_10_1007_s10856_012_4706_3
crossref_primary_10_3389_fbioe_2015_00176
crossref_primary_10_1016_j_nano_2016_01_011
crossref_primary_10_3390_ijms22157969
crossref_primary_10_2217_nnm_14_216
crossref_primary_10_1016_j_heliyon_2018_e00662
crossref_primary_10_14368_jdras_2013_29_2_141
crossref_primary_10_1007_s10856_016_5747_9
crossref_primary_10_3390_ijms222212396
crossref_primary_10_1039_D2DT02470E
crossref_primary_10_3390_biomimetics8040376
crossref_primary_10_1097_ID_0b013e31829deb62
crossref_primary_10_1111_j_1600_0501_2012_02507_x
crossref_primary_10_1002_adhm_201400015
crossref_primary_10_1016_j_heliyon_2023_e23779
crossref_primary_10_1016_j_actbio_2021_10_019
crossref_primary_10_1016_j_biomaterials_2013_09_072
crossref_primary_10_1186_s40729_024_00554_x
crossref_primary_10_2186_jpr_JPR_D_22_00015
crossref_primary_10_1016_j_colsurfb_2016_04_020
crossref_primary_10_3390_ma17061290
crossref_primary_10_1016_j_actbio_2022_08_023
crossref_primary_10_1016_j_ultrasmedbio_2014_08_016
crossref_primary_10_3390_met8010029
crossref_primary_10_1016_j_msec_2020_111505
crossref_primary_10_1002_adhm_201200353
crossref_primary_10_1016_j_jmrt_2022_07_088
crossref_primary_10_3390_coatings14010052
crossref_primary_10_1002_jbm_b_33686
crossref_primary_10_3389_fmats_2021_739071
crossref_primary_10_3390_ma14195493
crossref_primary_10_1155_2016_2908570
Cites_doi 10.1039/b403983a
10.1002/jbm.a.31422
10.1016/j.biomaterials.2007.08.032
10.1177/00220345000790110701
10.1016/j.biomaterials.2007.11.009
10.1016/j.biomaterials.2008.11.004
10.1016/S0167-7799(00)01536-5
10.1177/154405910608500616
10.1016/j.biomaterials.2011.03.001
10.1088/0957-4484/18/24/245101
10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B
10.1021/cr0200062
10.1038/nrm1890
10.2174/157488807780599220
10.1016/j.biomaterials.2007.11.040
10.1586/17434440.1.1.105
10.1016/j.biomaterials.2005.07.009
10.1002/jbm.a.30624
10.1109/TNB.2009.2016477
10.1016/j.biomaterials.2008.05.012
10.1038/nmat1339
10.1359/JBMR.050703
10.1177/154405910608500617
10.1088/1748-6041/6/2/025001
10.1016/S0142-9612(98)90203-4
10.1016/j.biomaterials.2009.11.018
10.1089/ten.tea.2009.0294
10.1002/term.132
10.1002/1521-3773(20020916)41:18<3359::AID-ANIE3359>3.0.CO;2-Y
10.1126/science.1106587
10.1002/jbm.a.30281
10.1002/1097-4636(20001215)52:4<652::AID-JBM9>3.0.CO;2-W
10.1177/154405910708600208
10.1016/j.biomaterials.2009.06.021
10.1002/jbm.a.30227
10.1007/s10439-009-9722-1
10.2174/138161209787002870
10.1177/154405910808700809
10.1111/j.1600-0501.2009.01775.x
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Elsevier Ltd
Copyright © 2011 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2011 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7QO
7QP
8FD
FR3
P64
DOI 10.1016/j.biomaterials.2011.06.033
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE - Academic



MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 7308
ExternalDocumentID 21742375
10_1016_j_biomaterials_2011_06_033
S0142961211006983
1_s2_0_S0142961211006983
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: C06RR014529
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7S9
ACLOT
L.6
~HD
7X8
7QO
7QP
8FD
FR3
P64
ID FETCH-LOGICAL-c624t-d754223d7530510d484c8917ea6b635ea7c9e48625e874d5fe7d49a27fc845713
IEDL.DBID .~1
ISSN 0142-9612
1878-5905
IngestDate Fri Sep 05 06:22:51 EDT 2025
Sun Sep 28 12:29:40 EDT 2025
Sun Sep 28 00:47:25 EDT 2025
Mon Jul 21 05:40:03 EDT 2025
Tue Jul 01 03:47:29 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Fri Feb 23 02:23:09 EST 2024
Sun Feb 23 10:19:01 EST 2025
Tue Aug 26 17:18:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords Osseointegration
Dental and orthopedic implant
Nanotuft
Nanotechnology
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-d754223d7530510d484c8917ea6b635ea7c9e48625e874d5fe7d49a27fc845713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21742375
PQID 1710232675
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_888109301
proquest_miscellaneous_883846988
proquest_miscellaneous_1710232675
pubmed_primary_21742375
crossref_primary_10_1016_j_biomaterials_2011_06_033
crossref_citationtrail_10_1016_j_biomaterials_2011_06_033
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2011_06_033
elsevier_clinicalkeyesjournals_1_s2_0_S0142961211006983
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2011_06_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cooper, Masuda, Yliheikkila, Felton (bib19) 1998; 13
Masuda, Yliheikkila, Felton, Cooper (bib20) 1998; 13
Chun, Webster (bib1) 2009; 37
Ogawa, Ozawa, Shih, Ryu, Sukotjo, Yang (bib32) 2000; 79
Martins, Chung, Pedro, Sousa, Marques, Reis (bib9) 2009; 3
Debbage (bib7) 2009; 15
Nishio, Neo, Akiyama, Nishiguchi, Kim, Kokubo (bib30) 2000; 52
Sanchez, Arribart, Guille (bib25) 2005; 4
Saruwatari, Aita, Butz, Nakamura, Ouyang, Yang (bib37) 2005; 20
Soler-Illia, Sanchez, Lebeau, Patarin (bib10) 2002; 102
Takeuchi, Saruwatari, Nakamura, Yang, Ogawa (bib36) 2005; 72A
Khang, Lu, Yao, Haberstroh, Webster (bib22) 2008; 29
Kubo, Tsukimura, Iwasa, Ueno, Saruwatari, Aita (bib23) 2009; 30
Butz, Aita, Takeuchi, Ogawa (bib43) 2005; 74
Kim, Miyaji, Kokubo, Nakamura (bib29) 1996; 32
Guo, Padilla, Ambrose, De Kok, Cooper (bib21) 2007; 28
Seunarine, Curtis, Meredith, Wilkinson, Riehle, Gadegaard (bib12) 2009; 8
Vogel, Sheetz (bib4) 2006; 7
Ogawa, Nishimura (bib35) 2003; 18
Stevens, George (bib2) 2005; 310
Spatz (bib13) 2002; 41
Aita, Hori, Takeuchi, Suzuki, Yamada, Anpo (bib34) 2009; 30
Ogawa, Saruwatari, Takeuchi, Aita, Ohno (bib26) 2008; 87
Nakamura, Butz, Saruwatari, Ogawa (bib45) 2007; 86
Ogawa, Nishimura (bib39) 2006; 85
Ikkala, ten Brinke (bib8) 2004
Wennerberg, Albrektsson (bib15) 2010; 25
Butz, Aita, Wang, Ogawa (bib42) 2006; 85
Nuffer, Siegel (bib6) 2010; 16
Curtis, Wilkinson (bib3) 2001; 19
Dalby, Gadegaard, Curtis, Oreffo (bib5) 2007; 2
Variola, Yi, Richert, Wuest, Rosei, Nanci (bib11) 2008; 29
Ueno, Yamada, Suzuki, Minamikawa, Sato, Hori (bib33) 2010; 31
Zhang EW, Wang YB, Shuai KG, Gao F, Bai YJ, Cheng Y, et al. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment. Biomed Mater 6(2):025001. Epub 2011 Feb 4.
Sato, Webster (bib18) 2004; 1
Weinlaender, Kenney, Lekovic, Beumer, Moy, Lewis (bib41) 1992; 7
Wennerberg, Albrektsson (bib16) 2009; 20
Ellingsen, Johansson, Wennerberg, Holmen (bib28) 2004; 19
Nishimura, Huang, Butz, Ogawa, Lin, Wang (bib27) 2007; 18
Cooper, Zhou, Takebe, Guo, Abron, Holmen (bib46) 2006; 27
Ogawa, Sukotjo, Nishimura (bib40) 2002; 11
Nakamura, Shim, Butz, Aita, Gupta, Ogawa (bib44) 2006; 77
Tsukimura, Yamada, Iwasa, Minamikawa, Att, Ueno (bib24) 2011; 32
Mendonca, Mendonca, Aragao, Cooper (bib17) 2008; 29
Nishiguchi, Nakamura, Kobayashi, Kim, Miyaji, Kokubo (bib31) 1999; 20
Tsukimura, Kojima, Kubo, Att, Takeuchi, Kameyama (bib47) 2008; 84
Butz, Ogawa, Chang, Nishimura (bib38) 2006; 21
Chun (10.1016/j.biomaterials.2011.06.033_bib1) 2009; 37
Ogawa (10.1016/j.biomaterials.2011.06.033_bib35) 2003; 18
Variola (10.1016/j.biomaterials.2011.06.033_bib11) 2008; 29
Ueno (10.1016/j.biomaterials.2011.06.033_bib33) 2010; 31
Nuffer (10.1016/j.biomaterials.2011.06.033_bib6) 2010; 16
Stevens (10.1016/j.biomaterials.2011.06.033_bib2) 2005; 310
Mendonca (10.1016/j.biomaterials.2011.06.033_bib17) 2008; 29
Masuda (10.1016/j.biomaterials.2011.06.033_bib20) 1998; 13
Aita (10.1016/j.biomaterials.2011.06.033_bib34) 2009; 30
Dalby (10.1016/j.biomaterials.2011.06.033_bib5) 2007; 2
Spatz (10.1016/j.biomaterials.2011.06.033_bib13) 2002; 41
Cooper (10.1016/j.biomaterials.2011.06.033_bib19) 1998; 13
Kubo (10.1016/j.biomaterials.2011.06.033_bib23) 2009; 30
Ellingsen (10.1016/j.biomaterials.2011.06.033_bib28) 2004; 19
Nakamura (10.1016/j.biomaterials.2011.06.033_bib45) 2007; 86
Cooper (10.1016/j.biomaterials.2011.06.033_bib46) 2006; 27
10.1016/j.biomaterials.2011.06.033_bib14
Ogawa (10.1016/j.biomaterials.2011.06.033_bib26) 2008; 87
Soler-Illia (10.1016/j.biomaterials.2011.06.033_bib10) 2002; 102
Nakamura (10.1016/j.biomaterials.2011.06.033_bib44) 2006; 77
Wennerberg (10.1016/j.biomaterials.2011.06.033_bib15) 2010; 25
Weinlaender (10.1016/j.biomaterials.2011.06.033_bib41) 1992; 7
Curtis (10.1016/j.biomaterials.2011.06.033_bib3) 2001; 19
Nishimura (10.1016/j.biomaterials.2011.06.033_bib27) 2007; 18
Khang (10.1016/j.biomaterials.2011.06.033_bib22) 2008; 29
Debbage (10.1016/j.biomaterials.2011.06.033_bib7) 2009; 15
Takeuchi (10.1016/j.biomaterials.2011.06.033_bib36) 2005; 72A
Tsukimura (10.1016/j.biomaterials.2011.06.033_bib47) 2008; 84
Guo (10.1016/j.biomaterials.2011.06.033_bib21) 2007; 28
Ikkala (10.1016/j.biomaterials.2011.06.033_bib8) 2004
Tsukimura (10.1016/j.biomaterials.2011.06.033_bib24) 2011; 32
Ogawa (10.1016/j.biomaterials.2011.06.033_bib39) 2006; 85
Butz (10.1016/j.biomaterials.2011.06.033_bib43) 2005; 74
Nishio (10.1016/j.biomaterials.2011.06.033_bib30) 2000; 52
Nishiguchi (10.1016/j.biomaterials.2011.06.033_bib31) 1999; 20
Vogel (10.1016/j.biomaterials.2011.06.033_bib4) 2006; 7
Seunarine (10.1016/j.biomaterials.2011.06.033_bib12) 2009; 8
Saruwatari (10.1016/j.biomaterials.2011.06.033_bib37) 2005; 20
Sato (10.1016/j.biomaterials.2011.06.033_bib18) 2004; 1
Butz (10.1016/j.biomaterials.2011.06.033_bib42) 2006; 85
Ogawa (10.1016/j.biomaterials.2011.06.033_bib40) 2002; 11
Wennerberg (10.1016/j.biomaterials.2011.06.033_bib16) 2009; 20
Ogawa (10.1016/j.biomaterials.2011.06.033_bib32) 2000; 79
Butz (10.1016/j.biomaterials.2011.06.033_bib38) 2006; 21
Sanchez (10.1016/j.biomaterials.2011.06.033_bib25) 2005; 4
Kim (10.1016/j.biomaterials.2011.06.033_bib29) 1996; 32
Martins (10.1016/j.biomaterials.2011.06.033_bib9) 2009; 3
References_xml – volume: 7
  start-page: 491
  year: 1992
  end-page: 496
  ident: bib41
  article-title: Histomorphometry of bone apposition around three types of endosseous dental implants
  publication-title: Int J Oral Maxillofac Implants
– volume: 16
  start-page: 423
  year: 2010
  end-page: 430
  ident: bib6
  article-title: Nanostructure–biomolecule interactions: implications for tissue regeneration and nanomedicine
  publication-title: Tissue Eng Part A
– volume: 28
  start-page: 5418
  year: 2007
  end-page: 5425
  ident: bib21
  article-title: The effect of hydrofluoric acid treatment of TiO
  publication-title: Biomaterials
– volume: 79
  start-page: 1857
  year: 2000
  end-page: 1863
  ident: bib32
  article-title: Biomechanical evaluation of osseous implants having different surface topographies in rats
  publication-title: J Dent Res
– volume: 8
  start-page: 219
  year: 2009
  end-page: 225
  ident: bib12
  article-title: A hierarchical response of cells to perpendicular micro- and nanometric textural cues
  publication-title: IEEE Trans Nanobiosci
– volume: 85
  start-page: 560
  year: 2006
  end-page: 565
  ident: bib42
  article-title: Harder and stiffer bone osseointegrated to roughened titanium
  publication-title: J Dent Res
– volume: 32
  start-page: 4358
  year: 2011
  end-page: 4368
  ident: bib24
  article-title: Synergistic effects of UV photofunctionalization and micro–nano hybrid topography on the biological properties of titanium
  publication-title: Biomaterials
– reference: Zhang EW, Wang YB, Shuai KG, Gao F, Bai YJ, Cheng Y, et al. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment. Biomed Mater 6(2):025001. Epub 2011 Feb 4.
– volume: 15
  start-page: 153
  year: 2009
  end-page: 172
  ident: bib7
  article-title: Targeted drugs and nanomedicine: present and future
  publication-title: Curr Pharm Des
– volume: 29
  start-page: 3822
  year: 2008
  end-page: 3835
  ident: bib17
  article-title: Advancing dental implant surface technology – from micron- to nanotopography
  publication-title: Biomaterials
– volume: 18
  start-page: 200
  year: 2003
  end-page: 210
  ident: bib35
  article-title: Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes
  publication-title: Int J Oral Maxillofac Implants
– volume: 21
  start-page: 687
  year: 2006
  end-page: 695
  ident: bib38
  article-title: Three-dimensional bone–implant integration profiling using micro-computed tomography
  publication-title: Int J Oral Maxillofac Implants
– volume: 3
  start-page: 37
  year: 2009
  end-page: 42
  ident: bib9
  article-title: Hierarchical starch-based fibrous scaffold for bone tissue engineering applications
  publication-title: J Tissue Eng Regen Med
– volume: 74
  start-page: 164
  year: 2005
  end-page: 170
  ident: bib43
  article-title: Enhanced mineralized tissue adhesion to titanium over polystyrene assessed by the nano-scratch test
  publication-title: J Biomed Mater Res A
– volume: 20
  start-page: 172
  year: 2009
  end-page: 184
  ident: bib16
  article-title: Effects of titanium surface topography on bone integration: a systematic review
  publication-title: Clin Oral Implants Res
– volume: 32
  start-page: 409
  year: 1996
  end-page: 417
  ident: bib29
  article-title: Preparation of bioactive Ti and its alloys via simple chemical surface treatment
  publication-title: J Biomed Mater Res
– volume: 102
  start-page: 4093
  year: 2002
  end-page: 4138
  ident: bib10
  article-title: Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures
  publication-title: Chem Rev
– volume: 85
  start-page: 566
  year: 2006
  end-page: 570
  ident: bib39
  article-title: Genes differentially expressed in titanium implant healing
  publication-title: J Dent Res
– volume: 13
  start-page: 17
  year: 1998
  end-page: 29
  ident: bib20
  article-title: Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies
  publication-title: Int J Oral Maxillofac Implants
– volume: 29
  start-page: 970
  year: 2008
  end-page: 983
  ident: bib22
  article-title: The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium
  publication-title: Biomaterials
– volume: 25
  start-page: 63
  year: 2010
  end-page: 74
  ident: bib15
  article-title: On implant surfaces: a review of current knowledge and opinions
  publication-title: Int J Oral Maxillofac Implants
– volume: 52
  start-page: 652
  year: 2000
  end-page: 661
  ident: bib30
  article-title: The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells
  publication-title: J Biomed Mater Res
– volume: 7
  start-page: 265
  year: 2006
  end-page: 275
  ident: bib4
  article-title: Local force and geometry sensing regulate cell functions
  publication-title: Nat Rev Mol Cell Biol
– volume: 86
  start-page: 147
  year: 2007
  end-page: 152
  ident: bib45
  article-title: A role for proteoglycans in mineralized tissue–titanium adhesion
  publication-title: J Dent Res
– volume: 84
  start-page: 108
  year: 2008
  end-page: 116
  ident: bib47
  article-title: The effect of superficial chemistry of titanium on osteoblastic function
  publication-title: J Biomed Mater Res A
– volume: 2
  start-page: 129
  year: 2007
  end-page: 138
  ident: bib5
  article-title: Nanotopographical control of human osteoprogenitor differentiation
  publication-title: Curr Stem Cell Res Ther
– volume: 37
  start-page: 2034
  year: 2009
  end-page: 2047
  ident: bib1
  article-title: The role of nanomedicine in growing tissues
  publication-title: Ann Biomed Eng
– volume: 27
  start-page: 926
  year: 2006
  end-page: 936
  ident: bib46
  article-title: Fluoride modification effects on osteoblast behavior and bone formation at TiO
  publication-title: Biomaterials
– volume: 19
  start-page: 97
  year: 2001
  end-page: 101
  ident: bib3
  article-title: Nantotechniques and approaches in biotechnology
  publication-title: Trends Biotechnol
– volume: 18
  year: 2007
  ident: bib27
  article-title: Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration
  publication-title: Nanotechnology
– start-page: 2131
  year: 2004
  end-page: 2137
  ident: bib8
  article-title: Hierarchical self-assembly in polymeric complexes: towards functional materials
  publication-title: Chem Commun (Camb)
– volume: 19
  start-page: 659
  year: 2004
  end-page: 666
  ident: bib28
  article-title: Improved retention and bone-tolmplant contact with fluoride-modified titanium implants
  publication-title: Int J Oral Maxillofac Implants
– volume: 41
  start-page: 3359
  year: 2002
  end-page: 3362
  ident: bib13
  article-title: Nano- and micropatterning by organic–inorganic templating of hierarchical self-assembled structures
  publication-title: Angew Chem Int Ed Engl
– volume: 20
  start-page: 491
  year: 1999
  end-page: 500
  ident: bib31
  article-title: The effect of heat treatment on bone-bonding ability of alkali-treated titanium
  publication-title: Biomaterials
– volume: 310
  start-page: 1135
  year: 2005
  end-page: 1138
  ident: bib2
  article-title: Exploring and engineering the cell surface interface
  publication-title: Science
– volume: 30
  start-page: 1015
  year: 2009
  end-page: 1025
  ident: bib34
  article-title: The effect of ultraviolet functionalization of titanium on integration with bone
  publication-title: Biomaterials
– volume: 11
  start-page: 241
  year: 2002
  end-page: 247
  ident: bib40
  article-title: Modulated bone matrix-related gene expression is associated with differences in interfacial strength of different implant surface roughness
  publication-title: J Prosthodont
– volume: 87
  start-page: 751
  year: 2008
  end-page: 756
  ident: bib26
  article-title: Ti nano-nodular structuring for bone integration and regeneration
  publication-title: J Dent Res
– volume: 29
  start-page: 1285
  year: 2008
  end-page: 1298
  ident: bib11
  article-title: Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation
  publication-title: Biomaterials
– volume: 77
  start-page: 478
  year: 2006
  end-page: 486
  ident: bib44
  article-title: Glycosaminoglycan degradation reduces mineralized tissue–titanium interfacial strength
  publication-title: J Biomed Mater Res A
– volume: 30
  start-page: 5319
  year: 2009
  end-page: 5329
  ident: bib23
  article-title: Cellular behavior on TiO
  publication-title: Biomaterials
– volume: 20
  start-page: 2002
  year: 2005
  end-page: 2016
  ident: bib37
  article-title: Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure
  publication-title: J Bone Miner Res
– volume: 13
  start-page: 163
  year: 1998
  end-page: 174
  ident: bib19
  article-title: Generalizations regarding the process and phenomenon of osseointegration. Part II. In vitro studies
  publication-title: Int J Oral Maxillofac Implants
– volume: 4
  start-page: 277
  year: 2005
  end-page: 288
  ident: bib25
  article-title: Biomimetism and bioinspiration as tools for the design of innovative materials and systems
  publication-title: Nat Mater
– volume: 72A
  start-page: 296
  year: 2005
  end-page: 305
  ident: bib36
  article-title: Enhanced intrinsic biomechanical properties of osteoblastic mineralized tissue on roughened titanium surface
  publication-title: J Biomed Mater Res A
– volume: 1
  start-page: 105
  year: 2004
  end-page: 114
  ident: bib18
  article-title: Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications
  publication-title: Expert Rev Med Dev
– volume: 31
  start-page: 1546
  year: 2010
  end-page: 1557
  ident: bib33
  article-title: Enhancement of bone–titanium integration profile with UV-photofunctionalized titanium in a gap healing model
  publication-title: Biomaterials
– start-page: 2131
  year: 2004
  ident: 10.1016/j.biomaterials.2011.06.033_bib8
  article-title: Hierarchical self-assembly in polymeric complexes: towards functional materials
  publication-title: Chem Commun (Camb)
  doi: 10.1039/b403983a
– volume: 18
  start-page: 200
  year: 2003
  ident: 10.1016/j.biomaterials.2011.06.033_bib35
  article-title: Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes
  publication-title: Int J Oral Maxillofac Implants
– volume: 84
  start-page: 108
  year: 2008
  ident: 10.1016/j.biomaterials.2011.06.033_bib47
  article-title: The effect of superficial chemistry of titanium on osteoblastic function
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.31422
– volume: 28
  start-page: 5418
  year: 2007
  ident: 10.1016/j.biomaterials.2011.06.033_bib21
  article-title: The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.08.032
– volume: 79
  start-page: 1857
  year: 2000
  ident: 10.1016/j.biomaterials.2011.06.033_bib32
  article-title: Biomechanical evaluation of osseous implants having different surface topographies in rats
  publication-title: J Dent Res
  doi: 10.1177/00220345000790110701
– volume: 29
  start-page: 970
  year: 2008
  ident: 10.1016/j.biomaterials.2011.06.033_bib22
  article-title: The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.11.009
– volume: 30
  start-page: 1015
  year: 2009
  ident: 10.1016/j.biomaterials.2011.06.033_bib34
  article-title: The effect of ultraviolet functionalization of titanium on integration with bone
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.11.004
– volume: 19
  start-page: 97
  year: 2001
  ident: 10.1016/j.biomaterials.2011.06.033_bib3
  article-title: Nantotechniques and approaches in biotechnology
  publication-title: Trends Biotechnol
  doi: 10.1016/S0167-7799(00)01536-5
– volume: 19
  start-page: 659
  year: 2004
  ident: 10.1016/j.biomaterials.2011.06.033_bib28
  article-title: Improved retention and bone-tolmplant contact with fluoride-modified titanium implants
  publication-title: Int J Oral Maxillofac Implants
– volume: 85
  start-page: 560
  year: 2006
  ident: 10.1016/j.biomaterials.2011.06.033_bib42
  article-title: Harder and stiffer bone osseointegrated to roughened titanium
  publication-title: J Dent Res
  doi: 10.1177/154405910608500616
– volume: 32
  start-page: 4358
  year: 2011
  ident: 10.1016/j.biomaterials.2011.06.033_bib24
  article-title: Synergistic effects of UV photofunctionalization and micro–nano hybrid topography on the biological properties of titanium
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.001
– volume: 18
  year: 2007
  ident: 10.1016/j.biomaterials.2011.06.033_bib27
  article-title: Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/24/245101
– volume: 32
  start-page: 409
  year: 1996
  ident: 10.1016/j.biomaterials.2011.06.033_bib29
  article-title: Preparation of bioactive Ti and its alloys via simple chemical surface treatment
  publication-title: J Biomed Mater Res
  doi: 10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B
– volume: 102
  start-page: 4093
  year: 2002
  ident: 10.1016/j.biomaterials.2011.06.033_bib10
  article-title: Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures
  publication-title: Chem Rev
  doi: 10.1021/cr0200062
– volume: 7
  start-page: 265
  year: 2006
  ident: 10.1016/j.biomaterials.2011.06.033_bib4
  article-title: Local force and geometry sensing regulate cell functions
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1890
– volume: 2
  start-page: 129
  year: 2007
  ident: 10.1016/j.biomaterials.2011.06.033_bib5
  article-title: Nanotopographical control of human osteoprogenitor differentiation
  publication-title: Curr Stem Cell Res Ther
  doi: 10.2174/157488807780599220
– volume: 29
  start-page: 1285
  year: 2008
  ident: 10.1016/j.biomaterials.2011.06.033_bib11
  article-title: Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.11.040
– volume: 1
  start-page: 105
  year: 2004
  ident: 10.1016/j.biomaterials.2011.06.033_bib18
  article-title: Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications
  publication-title: Expert Rev Med Dev
  doi: 10.1586/17434440.1.1.105
– volume: 27
  start-page: 926
  year: 2006
  ident: 10.1016/j.biomaterials.2011.06.033_bib46
  article-title: Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.009
– volume: 77
  start-page: 478
  year: 2006
  ident: 10.1016/j.biomaterials.2011.06.033_bib44
  article-title: Glycosaminoglycan degradation reduces mineralized tissue–titanium interfacial strength
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.30624
– volume: 8
  start-page: 219
  year: 2009
  ident: 10.1016/j.biomaterials.2011.06.033_bib12
  article-title: A hierarchical response of cells to perpendicular micro- and nanometric textural cues
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2009.2016477
– volume: 29
  start-page: 3822
  year: 2008
  ident: 10.1016/j.biomaterials.2011.06.033_bib17
  article-title: Advancing dental implant surface technology – from micron- to nanotopography
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.05.012
– volume: 4
  start-page: 277
  year: 2005
  ident: 10.1016/j.biomaterials.2011.06.033_bib25
  article-title: Biomimetism and bioinspiration as tools for the design of innovative materials and systems
  publication-title: Nat Mater
  doi: 10.1038/nmat1339
– volume: 20
  start-page: 2002
  year: 2005
  ident: 10.1016/j.biomaterials.2011.06.033_bib37
  article-title: Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure
  publication-title: J Bone Miner Res
  doi: 10.1359/JBMR.050703
– volume: 13
  start-page: 17
  year: 1998
  ident: 10.1016/j.biomaterials.2011.06.033_bib20
  article-title: Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies
  publication-title: Int J Oral Maxillofac Implants
– volume: 85
  start-page: 566
  year: 2006
  ident: 10.1016/j.biomaterials.2011.06.033_bib39
  article-title: Genes differentially expressed in titanium implant healing
  publication-title: J Dent Res
  doi: 10.1177/154405910608500617
– volume: 21
  start-page: 687
  year: 2006
  ident: 10.1016/j.biomaterials.2011.06.033_bib38
  article-title: Three-dimensional bone–implant integration profiling using micro-computed tomography
  publication-title: Int J Oral Maxillofac Implants
– ident: 10.1016/j.biomaterials.2011.06.033_bib14
  doi: 10.1088/1748-6041/6/2/025001
– volume: 20
  start-page: 491
  year: 1999
  ident: 10.1016/j.biomaterials.2011.06.033_bib31
  article-title: The effect of heat treatment on bone-bonding ability of alkali-treated titanium
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)90203-4
– volume: 31
  start-page: 1546
  year: 2010
  ident: 10.1016/j.biomaterials.2011.06.033_bib33
  article-title: Enhancement of bone–titanium integration profile with UV-photofunctionalized titanium in a gap healing model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.018
– volume: 16
  start-page: 423
  year: 2010
  ident: 10.1016/j.biomaterials.2011.06.033_bib6
  article-title: Nanostructure–biomolecule interactions: implications for tissue regeneration and nanomedicine
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2009.0294
– volume: 7
  start-page: 491
  year: 1992
  ident: 10.1016/j.biomaterials.2011.06.033_bib41
  article-title: Histomorphometry of bone apposition around three types of endosseous dental implants
  publication-title: Int J Oral Maxillofac Implants
– volume: 25
  start-page: 63
  year: 2010
  ident: 10.1016/j.biomaterials.2011.06.033_bib15
  article-title: On implant surfaces: a review of current knowledge and opinions
  publication-title: Int J Oral Maxillofac Implants
– volume: 13
  start-page: 163
  year: 1998
  ident: 10.1016/j.biomaterials.2011.06.033_bib19
  article-title: Generalizations regarding the process and phenomenon of osseointegration. Part II. In vitro studies
  publication-title: Int J Oral Maxillofac Implants
– volume: 3
  start-page: 37
  year: 2009
  ident: 10.1016/j.biomaterials.2011.06.033_bib9
  article-title: Hierarchical starch-based fibrous scaffold for bone tissue engineering applications
  publication-title: J Tissue Eng Regen Med
  doi: 10.1002/term.132
– volume: 11
  start-page: 241
  year: 2002
  ident: 10.1016/j.biomaterials.2011.06.033_bib40
  article-title: Modulated bone matrix-related gene expression is associated with differences in interfacial strength of different implant surface roughness
  publication-title: J Prosthodont
– volume: 41
  start-page: 3359
  year: 2002
  ident: 10.1016/j.biomaterials.2011.06.033_bib13
  article-title: Nano- and micropatterning by organic–inorganic templating of hierarchical self-assembled structures
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/1521-3773(20020916)41:18<3359::AID-ANIE3359>3.0.CO;2-Y
– volume: 310
  start-page: 1135
  year: 2005
  ident: 10.1016/j.biomaterials.2011.06.033_bib2
  article-title: Exploring and engineering the cell surface interface
  publication-title: Science
  doi: 10.1126/science.1106587
– volume: 74
  start-page: 164
  year: 2005
  ident: 10.1016/j.biomaterials.2011.06.033_bib43
  article-title: Enhanced mineralized tissue adhesion to titanium over polystyrene assessed by the nano-scratch test
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.30281
– volume: 52
  start-page: 652
  year: 2000
  ident: 10.1016/j.biomaterials.2011.06.033_bib30
  article-title: The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells
  publication-title: J Biomed Mater Res
  doi: 10.1002/1097-4636(20001215)52:4<652::AID-JBM9>3.0.CO;2-W
– volume: 86
  start-page: 147
  year: 2007
  ident: 10.1016/j.biomaterials.2011.06.033_bib45
  article-title: A role for proteoglycans in mineralized tissue–titanium adhesion
  publication-title: J Dent Res
  doi: 10.1177/154405910708600208
– volume: 30
  start-page: 5319
  year: 2009
  ident: 10.1016/j.biomaterials.2011.06.033_bib23
  article-title: Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.06.021
– volume: 72A
  start-page: 296
  year: 2005
  ident: 10.1016/j.biomaterials.2011.06.033_bib36
  article-title: Enhanced intrinsic biomechanical properties of osteoblastic mineralized tissue on roughened titanium surface
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.30227
– volume: 37
  start-page: 2034
  year: 2009
  ident: 10.1016/j.biomaterials.2011.06.033_bib1
  article-title: The role of nanomedicine in growing tissues
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9722-1
– volume: 15
  start-page: 153
  year: 2009
  ident: 10.1016/j.biomaterials.2011.06.033_bib7
  article-title: Targeted drugs and nanomedicine: present and future
  publication-title: Curr Pharm Des
  doi: 10.2174/138161209787002870
– volume: 87
  start-page: 751
  year: 2008
  ident: 10.1016/j.biomaterials.2011.06.033_bib26
  article-title: Ti nano-nodular structuring for bone integration and regeneration
  publication-title: J Dent Res
  doi: 10.1177/154405910808700809
– volume: 20
  start-page: 172
  issue: Suppl. 4
  year: 2009
  ident: 10.1016/j.biomaterials.2011.06.033_bib16
  article-title: Effects of titanium surface topography on bone integration: a systematic review
  publication-title: Clin Oral Implants Res
  doi: 10.1111/j.1600-0501.2009.01775.x
SSID ssj0014042
Score 2.3489144
Snippet This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that...
Abstract This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7297
SubjectTerms Advanced Basic Science
animal models
Animals
Artificial Limbs
Biomechanical Phenomena
biomechanics
Bone Substitutes - chemistry
Bone Substitutes - metabolism
Dental and orthopedic implant
Dentistry
Femur - surgery
Femur - ultrastructure
heat treatment
Hot Temperature
Male
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology
Nanotuft
Osseointegration
prostheses
Rats
Rats, Sprague-Dawley
Surface Properties
titanium
Titanium - chemistry
Titanium - metabolism
Title Enhanced bone-integration capability of alkali- and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961211006983
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961211006983
https://dx.doi.org/10.1016/j.biomaterials.2011.06.033
https://www.ncbi.nlm.nih.gov/pubmed/21742375
https://www.proquest.com/docview/1710232675
https://www.proquest.com/docview/883846988
https://www.proquest.com/docview/888109301
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AKRWK
  dateStart: 19800101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhdIeSpO-3DRBhV6VtfU2oYcQErYtyamB3ITWlqmbrBy63sNe-ts748eS0m5Z6MlgNMjWPDRC33xDyAerjMkzqxlylTGpBWd-ZjSrDLeVlaVXFouTL6_09Fp-vlE3O-RsrIVBWOUQ-_uY3kXr4c1kWM3JfV1PEJbEcyTAypBu1yLjJ7J_gU0f_1zDPJA9hvcwRs5w9Eg82mG8sMTdt72qBzpPfZwKsWmT2pSEdpvRxXPybMgi6Wn_oXtkJ8R98vQBt-A-eXw53Jq_IKvz-K276KezJgY2MkSARmgBe2UHj13RpqL-7hbSckZ9LCkGadbB0EEu-ojNFFbzBtRSFxQr02K9nNM60jlC-ljbMBy0AJUHiv210YFWL8n1xfnXsykbWi6wQnPZshIb4nIBD4HeWkorCwsnuuD1DFKT4E2RBwmnIBWskaWqgill7rmpCisVHHhfkd0Iv_KGUF2AmFYhrVSQla58CLn3qfYVpAWmDAnJxzV2xcBHjm0x7twIPPvuHurHoX4covCESIhYy973rBxbSZ2MqnRj3SlESgebx1bS5m_SYTE4_cJlbsFd6v4wzIR8XEv-Zttbz_x-tDsHzo83Oj6GZgkzYn4ICbhRCaEbxlgrLLYJtf8aYpFVLM0S8ro36_Wq4omVC6Pe_uc_HJAnfERPZu_IbvtjGQ4hnWtnR52_HpFHp5--TK9-AZsuTQk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5SB_o4lDZ9uc8t9Lq1pH2K0kMICU4T-5RAbstaWhG3sRRq--B_3xl5ZVJaF0NPArHDSjs7s7PMN98AfLLKmDy1mhNXGZdaZNxPjOaVyWxlZemVpeLk0VgPL-W3K3W1B0ddLQzBKqPvX_v01lvHN4O4moPb6XRAsKQsJwKslOh2rbgH-1KhT-7B_uHp2XC8SSbIpO2hQ-M5CXTcoy3Mi6rc_WKt7cjoqT8nQmw7p7bFoe15dPIEHsdAkh2uv_Up7IX6AB7doRc8gPujmDh_Bqvj-rrN9bNJUwfekUSgUliBx2WLkF2xpmL-5gdG5pz5umTkp3mLREe52tfUT2E1a1Az04JRcVo9Xc7YtGYzQvXxRcNp0By1Hhi12CYbWj2Hy5Pji6Mhj10XeKEzueAl9cTNBD4EGWwprSwsXuqC1xOMToI3RR4kXoRUsEaWqgqmlLnPTFVYqfDO-wJ6Nf7KK2C6QDGtQlKpICtd-RBy7xPtK4wMTBn6kHdr7IpISU6dMW5chz377u7qx5F-HAHxhOiD2Mjerok5dpL60qnSdaWn6Cwdnh87SZu_SYd5tPu5S908c4n7Y2_24etG8rftvfPMH7t959D-Kanj69AscUYKETEGN6oPbMsYa4WlTqH2X0MsEYslaR9errf1ZlXp0poJo17_5z98gAfDi9G5Oz8dn72Bh1kHpkzfQm_xcxneYXS3mLyP1vsLu11PtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+bone-integration+capability+of+alkali-+and+heat-treated+nanopolymorphic+titanium+in+micro-to-nanoscale+hierarchy&rft.jtitle=Biomaterials&rft.au=Ueno%2C+Takeshi&rft.au=Tsukimura%2C+Naoki&rft.au=Yamada%2C+Masahiro&rft.au=Ogawa%2C+Takahiro&rft.date=2011-10-01&rft.issn=0142-9612&rft.volume=32&rft.issue=30&rft.spage=7297&rft.epage=7308&rft_id=info:doi/10.1016%2Fj.biomaterials.2011.06.033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2011_06_033
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961211X00248%2Fcov150h.gif