GA-based Design Algorithms for the Robust Synthetic Genetic Oscillators with Prescribed Amplitude, Period and Phase
Bor-Sen Chen1 and Po-Wei Chen11Lab. of Control and Systems Biology, National Tsing-Hua University, 101 Section 2, Kuang Fu Rd., Hsin-chu 300, Taiwan. AbstractIn the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In particular, the genetic...
Saved in:
| Published in | Gene regulation and systems biology Vol. 2010; no. 4; pp. 35 - 52 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London, England
SAGE Publishing
24.05.2010
SAGE Publications Sage Publications Ltd. (UK) Sage Publications Ltd Libertas Academica |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1177-6250 1177-6250 |
| DOI | 10.4137/GRSB.S4818 |
Cover
| Abstract | Bor-Sen Chen1 and Po-Wei Chen11Lab. of Control and Systems Biology, National Tsing-Hua University, 101 Section 2, Kuang Fu Rd., Hsin-chu 300, Taiwan. AbstractIn the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In particular, the genetic oscillator known as the repressilator has become a paradigm for how to design a gene network with a desired dynamic behaviour. Even though the repressilator can show oscillatory properties in its protein concentrations, their amplitudes, frequencies and phases are perturbed by the kinetic parametric fluctuations (intrinsic molecular perturbations) and external disturbances (extrinsic molecular noises) of the environment. Therefore, how to design a robust genetic oscillator with desired amplitude, frequency and phase under stochastic intrinsic and extrinsic molecular noises is an important topic for synthetic biology. In this study, based on periodic reference signals with arbitrary amplitudes, frequencies and phases, a robust synthetic gene oscillator is designed by tuning the kinetic parameters of repressilator via a genetic algorithm (GA) so that the protein concentrations can track the desired periodic reference signals under intrinsic and extrinsic molecular noises. GA is a stochastic optimization algorithm which was inspired by the mechanisms of natural selection and evolution genetics. By the proposed GA-based design algorithm, the repressilator can track the desired amplitude, frequency and phase of oscillation under intrinsic and extrinsic noises through the optimization of fitness function. The proposed GA-based design algorithm can mimic the natural selection in evolutionary process to select adequate kinetic parameters for robust genetic oscillators. The design method can be easily extended to any synthetic gene network design with prescribed behaviours. |
|---|---|
| AbstractList | In the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In particular, the genetic oscillator known as the repressilator has become a paradigm for how to design a gene network with a desired dynamic behaviour. Even though the repressilator can show oscillatory properties in its protein concentrations, their amplitudes, frequencies and phases are perturbed by the kinetic parametric fluctuations (intrinsic molecular perturbations) and external disturbances (extrinsic molecular noises) of the environment. Therefore, how to design a robust genetic oscillator with desired amplitude, frequency and phase under stochastic intrinsic and extrinsic molecular noises is an important topic for synthetic biology.
In this study, based on periodic reference signals with arbitrary amplitudes, frequencies and phases, a robust synthetic gene oscillator is designed by tuning the kinetic parameters of repressilator via a genetic algorithm (GA) so that the protein concentrations can track the desired periodic reference signals under intrinsic and extrinsic molecular noises. GA is a stochastic optimization algorithm which was inspired by the mechanisms of natural selection and evolution genetics. By the proposed GA-based design algorithm, the repressilator can track the desired amplitude, frequency and phase of oscillation under intrinsic and extrinsic noises through the optimization of fitness function.
The proposed GA-based design algorithm can mimic the natural selection in evolutionary process to select adequate kinetic parameters for robust genetic oscillators. The design method can be easily extended to any synthetic gene network design with prescribed behaviours. In the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In particular, the genetic oscillator known as the repressilator has become a paradigm for how to design a gene network with a desired dynamic behaviour. Even though the repressilator can show oscillatory properties in its protein concentrations, their amplitudes, frequencies and phases are perturbed by the kinetic parametric fluctuations (intrinsic molecular perturbations) and external disturbances (extrinsic molecular noises) of the environment. Therefore, how to design a robust genetic oscillator with desired amplitude, frequency and phase under stochastic intrinsic and extrinsic molecular noises is an important topic for synthetic biology.In this study, based on periodic reference signals with arbitrary amplitudes, frequencies and phases, a robust synthetic gene oscillator is designed by tuning the kinetic parameters of repressilator via a genetic algorithm (GA) so that the protein concentrations can track the desired periodic reference signals under intrinsic and extrinsic molecular noises. GA is a stochastic optimization algorithm which was inspired by the mechanisms of natural selection and evolution genetics. By the proposed GA-based design algorithm, the repressilator can track the desired amplitude, frequency and phase of oscillation under intrinsic and extrinsic noises through the optimization of fitness function.The proposed GA-based design algorithm can mimic the natural selection in evolutionary process to select adequate kinetic parameters for robust genetic oscillators. The design method can be easily extended to any synthetic gene network design with prescribed behaviours.In the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In particular, the genetic oscillator known as the repressilator has become a paradigm for how to design a gene network with a desired dynamic behaviour. Even though the repressilator can show oscillatory properties in its protein concentrations, their amplitudes, frequencies and phases are perturbed by the kinetic parametric fluctuations (intrinsic molecular perturbations) and external disturbances (extrinsic molecular noises) of the environment. Therefore, how to design a robust genetic oscillator with desired amplitude, frequency and phase under stochastic intrinsic and extrinsic molecular noises is an important topic for synthetic biology.In this study, based on periodic reference signals with arbitrary amplitudes, frequencies and phases, a robust synthetic gene oscillator is designed by tuning the kinetic parameters of repressilator via a genetic algorithm (GA) so that the protein concentrations can track the desired periodic reference signals under intrinsic and extrinsic molecular noises. GA is a stochastic optimization algorithm which was inspired by the mechanisms of natural selection and evolution genetics. By the proposed GA-based design algorithm, the repressilator can track the desired amplitude, frequency and phase of oscillation under intrinsic and extrinsic noises through the optimization of fitness function.The proposed GA-based design algorithm can mimic the natural selection in evolutionary process to select adequate kinetic parameters for robust genetic oscillators. The design method can be easily extended to any synthetic gene network design with prescribed behaviours. Bor-Sen Chen1 and Po-Wei Chen11Lab. of Control and Systems Biology, National Tsing-Hua University, 101 Section 2, Kuang Fu Rd., Hsin-chu 300, Taiwan. AbstractIn the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In particular, the genetic oscillator known as the repressilator has become a paradigm for how to design a gene network with a desired dynamic behaviour. Even though the repressilator can show oscillatory properties in its protein concentrations, their amplitudes, frequencies and phases are perturbed by the kinetic parametric fluctuations (intrinsic molecular perturbations) and external disturbances (extrinsic molecular noises) of the environment. Therefore, how to design a robust genetic oscillator with desired amplitude, frequency and phase under stochastic intrinsic and extrinsic molecular noises is an important topic for synthetic biology. In this study, based on periodic reference signals with arbitrary amplitudes, frequencies and phases, a robust synthetic gene oscillator is designed by tuning the kinetic parameters of repressilator via a genetic algorithm (GA) so that the protein concentrations can track the desired periodic reference signals under intrinsic and extrinsic molecular noises. GA is a stochastic optimization algorithm which was inspired by the mechanisms of natural selection and evolution genetics. By the proposed GA-based design algorithm, the repressilator can track the desired amplitude, frequency and phase of oscillation under intrinsic and extrinsic noises through the optimization of fitness function. The proposed GA-based design algorithm can mimic the natural selection in evolutionary process to select adequate kinetic parameters for robust genetic oscillators. The design method can be easily extended to any synthetic gene network design with prescribed behaviours. In the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In particular, the genetic oscillator known as the repressilator has become a paradigm for how to design a gene network with a desired dynamic behaviour. Even though the repressilator can show oscillatory properties in its protein concentrations, their amplitudes, frequencies and phases are perturbed by the kinetic parametric fluctuations (intrinsic molecular perturbations) and external disturbances (extrinsic molecular noises) of the environment. Therefore, how to design a robust genetic oscillator with desired amplitude, frequency and phase under stochastic intrinsic and extrinsic molecular noises is an important topic for synthetic biology. In this study, based on periodic reference signals with arbitrary amplitudes, frequencies and phases, a robust synthetic gene oscillator is designed by tuning the kinetic parameters of repressilator via a genetic algorithm (GA) so that the protein concentrations can track the desired periodic reference signals under intrinsic and extrinsic molecular noises. GA is a stochastic optimization algorithm which was inspired by the mechanisms of natural selection and evolution genetics. By the proposed GA-based design algorithm, the repressilator can track the desired amplitude, frequency and phase of oscillation under intrinsic and extrinsic noises through the optimization of fitness function. The proposed GA-based design algorithm can mimic the natural selection in evolutionary process to select adequate kinetic parameters for robust genetic oscillators. The design method can be easily extended to any synthetic gene network design with prescribed behaviours. |
| Audience | Academic |
| Author | Po-Wei Chen Bor-Sen Chen |
| AuthorAffiliation | 1 Lab. of Control and Systems Biology, National Tsing-Hua University, 101 Section 2, Kuang Fu Rd., Hsin-chu 300, Taiwan |
| AuthorAffiliation_xml | – name: 1 Lab. of Control and Systems Biology, National Tsing-Hua University, 101 Section 2, Kuang Fu Rd., Hsin-chu 300, Taiwan |
| Author_xml | – sequence: 1 givenname: Bor-Sen surname: Chen fullname: Chen, Bor-Sen email: bschen@ee.nthu.edu.tw – sequence: 2 givenname: Po-Wei surname: Chen fullname: Chen, Po-Wei email: bschen@ee.nthu.edu.tw |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20535234$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkl1v0zAUhiM0xD7ghh-ALHEBAlr8mTg3SGVAQZq0aoVry3Gc1lNiF9th2r_HoWFrqwmUCzvxc17nvO85zY6sszrLniM4pYgU7-dXy4_TJeWIP8pOECqKSY4ZPNrZH2enIVxDyDgs4JPsGENGGCb0JAvz2aSSQdfgkw5mZcGsXTlv4roLoHEexLUGV67qQwTLW5veolFgru2f9TIo07YyOh_ATaoBC6-D8qZKcrNu05rY1_odWGhvXA2krcFine56mj1uZBv0s3E9y358-fz9_Ovk4nL-7Xx2MVE5pnGi6koTXmhGGc9RrnlFNasURAoqmLYNbSpOiwozSWqUcwabGpYSYl6qsiwxOcvebnV7u5G3N7JtxcabTvpbgaAYrBMrHyoRBusS_WFLb_qq07XSNnp5X-GkEfsn1qzFyv0SmHPEEE0Cr0YB7372OkTRmaB0Mshq1wdR0Bxymv74_yQhOEe4JIl8_U8SwZLQAsJ8uP7lAXrtem-TwYkiHCHEGLynVrLVwtjGpV7UICpmtMCIlgwPWtMHqPTUujMqTV9j0ve9ghe75t259nfQEgC3gPIuBK8boUyU0bjBS9PeBTLMsliOgbw5KDlMbw8eLQ1ypXc7f4Acc27TnPoow9iW3Iv64FBJoVyX2ik4-Q2RVhXK |
| CitedBy_id | crossref_primary_10_1109_TCBB_2014_2316814 crossref_primary_10_3390_e12051071 crossref_primary_10_4137_EBO_S8123 crossref_primary_10_1186_s13036_017_0071_6 crossref_primary_10_1007_s00214_012_1191_1 crossref_primary_10_1049_enb_2017_0006 crossref_primary_10_1186_s13036_018_0109_4 crossref_primary_10_3182_20120620_3_DK_2025_00083 crossref_primary_10_1186_1752_0509_8_4 |
| Cites_doi | 10.1038/nbt0708-771 10.1038/nbt1413 10.1038/msb4100073 10.1073/pnas.022642299 10.1016/j.tibtech.2005.12.003 10.1038/nrg1471 10.1109/TSMC.1986.289288 10.1109/3477.485836 10.1128/AEM.68.5.2397-2403.2002 10.1186/1471-2105-10-140 10.1016/0304-3940(90)90302-P 10.1186/1752-0509-3-66 10.1103/PhysRevLett.95.178103 10.1109/37.466262 10.21236/ADA457791 10.1073/pnas.96.7.3807 10.1093/bioinformatics/btp310 10.1073/pnas.0334340100 10.1038/35002131 10.1016/S0305-0548(96)00077-9 10.1093/bioinformatics/btm362 10.1002/1520-6440(200102)84:2<76::AID-ECJC9>3.0.CO;2-O 10.1016/j.copbio.2005.07.002 10.1126/science.1089072 10.1177/0748730405275653 10.1534/genetics.105.049619 10.1038/nature04342 10.1038/35002125 10.1063/1.2978183 10.1186/1471-2105-7-52 10.1109/TBCAS.2008.926728 10.1016/S0895-7177(00)00088-1 10.1016/j.molcel.2006.04.027 10.1093/bioinformatics/btl182 10.1177/117693430700300010 10.1007/BF01009452 10.1038/nature03461 10.1038/nature01257 |
| ContentType | Journal Article |
| Copyright | 2010 SAGE Publications. COPYRIGHT 2010 Sage Publications Ltd. (UK) Copyright Libertas Academica Ltd 2010 2010 the author(s), publisher and licensee Libertas Academica Ltd. 2010 |
| Copyright_xml | – notice: 2010 SAGE Publications. – notice: COPYRIGHT 2010 Sage Publications Ltd. (UK) – notice: Copyright Libertas Academica Ltd 2010 – notice: 2010 the author(s), publisher and licensee Libertas Academica Ltd. 2010 |
| DBID | AFRWT AAYXX CITATION NPM 8FD 8FE 8FH ABUWG AFKRA AYAGU AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.4137/GRSB.S4818 |
| DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland Australia & New Zealand Database ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Australia & New Zealand Database ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Genetics Abstracts Genetics Abstracts PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1177-6250 |
| EndPage | 52 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:2881514 PMC2881514 2753508221 A472149524 20535234 10_4137_GRSB_S4818 10.4137_GRSB.S4818 oai_libertasacademica_com_2078 |
| Genre | Journal Article |
| GroupedDBID | - 0R 2WC 3V. 53G 5VS 8FE 8FH ABDBF ABPTK ABQXT ABUWG ACGFS ADACO ADBBV ADRAZ AEWDL AFKRA AFRWT ALMA_UNASSIGNED_HOLDINGS AOIJS AUTPY AYAGU AYAKG BAWUL BBNVY BENPR BHPHI BPHCQ C1A DIK DV7 E3Z EBD EBS EJD ESX GROUPED_DOAJ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION HCIFZ HYE IAO IHR IPNFZ ITC J8X K.F KQ8 LK8 M48 M7P M~E O5R O5S O9- OK1 P2P PIMPY PQEST PQQKQ PQUKI PRINS PROAC RIG RPM SFC TUS --- 188 2UF AASGM ACUHS AFCOW AINHJ CCPQU CEFSP CNMHZ H13 PGMZT PHGZM PHGZT SAUOL SCNPE UZ5 AAYXX ACHEB CITATION PQGLB PUEGO NPM 8FD AZQEC DWQXO FR3 GNUQQ P64 PKEHL RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c624t-cdbe387e5458616e8b4e5bc01c0c04e5f4fb847b25a3d16850fd09a0289c99923 |
| IEDL.DBID | M48 |
| ISSN | 1177-6250 |
| IngestDate | Sun Oct 26 03:56:47 EDT 2025 Tue Sep 30 16:32:58 EDT 2025 Thu Oct 02 07:36:40 EDT 2025 Thu Oct 02 10:50:41 EDT 2025 Fri Sep 05 14:29:11 EDT 2025 Fri Jul 25 12:09:45 EDT 2025 Mon Oct 20 21:51:25 EDT 2025 Mon Oct 20 16:19:11 EDT 2025 Mon Jul 21 06:04:15 EDT 2025 Wed Oct 01 02:43:35 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Tue Jun 17 22:35:40 EDT 2025 Thu Dec 16 16:54:48 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | genetic algorithm (GA) synthetic gene network robust synthetic gene oscillator nature selection evolutionaiy genetic repressilator evolutionary genetic repressilator |
| Language | English |
| License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). https://journals.sagepub.com/page/policies/text-and-data-mining-license This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c624t-cdbe387e5458616e8b4e5bc01c0c04e5f4fb847b25a3d16850fd09a0289c99923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.4137/GRSB.S4818 |
| PMID | 20535234 |
| PQID | 1038111550 |
| PQPubID | 23462 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_4137_grsb_s4818 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2881514 proquest_miscellaneous_746084847 proquest_miscellaneous_733261293 proquest_miscellaneous_1093470064 proquest_journals_1038111550 gale_infotracmisc_A472149524 gale_infotracacademiconefile_A472149524 pubmed_primary_20535234 crossref_citationtrail_10_4137_GRSB_S4818 crossref_primary_10_4137_GRSB_S4818 sage_journals_10_4137_GRSB_S4818 libertasacademia_primary_oai_libertasacademica_com_2078 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20100524 |
| PublicationDateYYYYMMDD | 2010-05-24 |
| PublicationDate_xml | – month: 5 year: 2010 text: 20100524 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | London, England |
| PublicationPlace_xml | – name: London, England – name: United States – name: Thousand Oaks, CA |
| PublicationTitle | Gene regulation and systems biology |
| PublicationTitleAlternate | Gene Regul Syst Bio |
| PublicationYear | 2010 |
| Publisher | SAGE Publishing SAGE Publications Sage Publications Ltd. (UK) Sage Publications Ltd Libertas Academica |
| Publisher_xml | – name: SAGE Publishing – name: SAGE Publications – name: Sage Publications Ltd. (UK) – name: Sage Publications Ltd – name: Libertas Academica |
| References | Kitano 2004; 5 Renders, Flasse 1996; 26 Zhou 2005; 95 Hammer 2006; 24 Endy 2005; 438 Batt 2007; 23 Chen, Wu 2007; 3 Chen, Wang 2006; 7 Khan 1997; 24 Chen 2009; 25 Andrianantoandro 2006; 2 Chen, Wu 2009; 3 Cox 2007 Zhou 2008; 18 Kirkpatrick 1984; 34 Alon 2003; 301 McGinness 2006; 22 Cooper 2003; 100 Chen, Chen 2008; 2 McAdams, Arkin 1999; 15 Chen 1995; 15 Grefenstette 1986; 16 Wang, Chen 2005; 20 Katayama 2000; 31 Hasty 2002; 420 Papadopoulos 1999 Lin, Lin 2009 Solem, Jensen 2002; 68 Ko 2009; 10 McDaniel, Weiss 2005; 16 Pelosi 2006; 173 Gardner 2000; 403 Katayama, Narihisa 2001; 84 Basu 2005; 434 Wong 2007 McMillen 2002; 99 Folkard; 113 Wang 2006; 22 Elowitz, Leibler 2000; 403 bibr43-GRSB.S4818 Holland J.H. (bibr22-GRSB.S4818) 1975 Lin Y.C. (bibr17-GRSB.S4818) 2009 bibr13-GRSB.S4818 bibr3-GRSB.S4818 bibr40-GRSB.S4818 bibr6-GRSB.S4818 bibr30-GRSB.S4818 bibr26-GRSB.S4818 bibr36-GRSB.S4818 Katayama K. (bibr23-GRSB.S4818) 2001; 84 bibr39-GRSB.S4818 bibr9-GRSB.S4818 bibr44-GRSB.S4818 bibr11-GRSB.S4818 bibr16-GRSB.S4818 bibr2-GRSB.S4818 bibr12-GRSB.S4818 bibr5-GRSB.S4818 bibr21-GRSB.S4818 bibr31-GRSB.S4818 bibr19-GRSB.S4818 bibr45-GRSB.S4818 bibr29-GRSB.S4818 bibr35-GRSB.S4818 bibr41-GRSB.S4818 bibr15-GRSB.S4818 McAdams H.H. (bibr7-GRSB.S4818) 1999; 15 bibr8-GRSB.S4818 bibr25-GRSB.S4818 bibr1-GRSB.S4818 Goldberg D.E. (bibr20-GRSB.S4818) 1989 Cox R.S. (bibr28-GRSB.S4818) 2007 bibr18-GRSB.S4818 Wong W.W. (bibr32-GRSB.S4818) 2007 bibr38-GRSB.S4818 bibr34-GRSB.S4818 bibr42-GRSB.S4818 bibr24-GRSB.S4818 bibr4-GRSB.S4818 bibr14-GRSB.S4818 bibr27-GRSB.S4818 bibr37-GRSB.S4818 bibr33-GRSB.S4818 Alon U. (bibr10-GRSB.S4818) 2007 19566953 - BMC Syst Biol. 2009;3:66 14512615 - Science. 2003 Sep 26;301(5641):1866-7 15851532 - J Biol Rhythms. 2005 Jun;20(3):257-69 16702438 - Genetics. 2006 Aug;173(4):1851-69 16762842 - Mol Cell. 2006 Jun 9;22(5):701-7 19432964 - BMC Bioinformatics. 2009;10:140 16383875 - Phys Rev Lett. 2005 Oct 21;95(17):178103 10659856 - Nature. 2000 Jan 20;403(6767):335-8 11976114 - Appl Environ Microbiol. 2002 May;68(5):2397-403 12538876 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1072-7 15520792 - Nat Rev Genet. 2004 Nov;5(11):826-37 17667952 - Mol Syst Biol. 2007;3:130 10097119 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3807-12 16457708 - BMC Bioinformatics. 2006;7:52 23852758 - IEEE Trans Biomed Circuits Syst. 2008 Jun;2(2):114-32 18612298 - Nat Biotechnol. 2008 Jul;26(7):771-4 18263027 - IEEE Trans Syst Man Cybern B Cybern. 1996;26(2):243-58 16690633 - Bioinformatics. 2006 Jul 15;22(14):1775-81 10659857 - Nature. 2000 Jan 20;403(6767):339-42 16406119 - Trends Biotechnol. 2006 Feb;24(2):53-5 18612302 - Nat Biotechnol. 2008 Jul;26(7):787-93 10098409 - Trends Genet. 1999 Feb;15(2):65-9 19468310 - Evol Bioinform Online. 2007 Sep 26;3:245-62 16019200 - Curr Opin Biotechnol. 2005 Aug;16(4):476-83 15858574 - Nature. 2005 Apr 28;434(7037):1130-4 16738572 - Mol Syst Biol. 2006;2:2006.0028 19045500 - Chaos. 2008 Sep;18(3):037126 2377316 - Neurosci Lett. 1990 May 31;113(2):193-8 11805323 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):679-84 12432407 - Nature. 2002 Nov 14;420(6912):224-30 19435742 - Bioinformatics. 2009 Jul 15;25(14):1822-30 16306983 - Nature. 2005 Nov 24;438(7067):449-53 17660209 - Bioinformatics. 2007 Sep 15;23(18):2415-22 18004278 - Mol Syst Biol. 2007;3:145 |
| References_xml | – volume: 16 start-page: 122 year: 1986 end-page: 8 article-title: “Optimization of control parameters for genetic algorithms,” publication-title: IEEE Transactions on Systems, Man and Cybernetics. – volume: 3 start-page: 245 year: 2007 end-page: 62 article-title: “Underlying principles of natural selection in network evolution: systems biology approach,” publication-title: Evolutionary Bioinformatics. – start-page: 3 year: 2007 article-title: “Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator,” publication-title: Molecular Systems Biology. – volume: 16 start-page: 476 year: 2005 end-page: 83 article-title: “Advances in synthetic biology: on the path from prototypes to applications,” publication-title: Current Opinion in Biotechnology. – volume: 434 start-page: 1130 year: 2005 end-page: 4 article-title: “A synthetic multicellular system for programmed pattern formation,” publication-title: Nature. – volume: 95 start-page: 178103 year: 2005 article-title: “Molecular communication through stochastic synchronization induced by extracellular fluctuations,” publication-title: Physical Review Letters. – volume: 420 start-page: 224 year: 2002 end-page: 30 article-title: “Engineered gene circuits,” publication-title: Nature. – volume: 100 start-page: 1072 year: 2003 end-page: 7 article-title: “Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli,” publication-title: Proceedings of the National Academy of Sciences. – volume: 23 start-page: 2415 year: 2007 article-title: “Robustness analysis and tuning of synthetic gene networks,” publication-title: Bioinformatics. – volume: 113 start-page: 193 article-title: “Melatonin stabilises sleep onset time in a blind man without entrainment of cortisol or temperature rhythms,” publication-title: Neuroscience Letters. – volume: 24 start-page: 53 year: 2006 end-page: 5 article-title: “Synthetic promoter libraries–tuning of gene expression,” publication-title: Trends in Biotechnology. – volume: 31 start-page: 197 year: 2000 end-page: 203 article-title: “The efficiency of hybrid mutation genetic algorithm for the travelling salesman problem,” publication-title: Mathematical and Computer Modelling. – volume: 3 start-page: 66 year: 2009 article-title: “A systematic design method for robust synthetic biology to satisfy design specifications,” publication-title: BMC Systems Biology. – volume: 22 start-page: 1775 year: 2006 end-page: 81 article-title: “Synchronizing a multicellular system by external input: an artificial control strategy,” publication-title: Bioinformatics. – volume: 25 start-page: 1822 issue: 14 year: 2009 end-page: 30 article-title: “Robust synthetic biology design: stochastic game theory approach,” publication-title: Bioinformatics. – start-page: 3807 year: 1999 end-page: 12 article-title: “Genomic evolution during a 10,000-generation experiment with bacteria,” publication-title: National Acad Sciences. – volume: 173 start-page: 1851 year: 2006 article-title: “Parallel Changes in Global Protein Profiles During Long-Term Experimental Evolution in Escherichia coli,” publication-title: Genetics. – volume: 403 start-page: 339 year: 2000 end-page: 42 article-title: “Construction of a genetic toggle switch in Escherichia coh,” publication-title: Nature. – start-page: 30 year: 2009 article-title: “Optimal control approach for robust control design of neutral systems,” publication-title: Optimal Control Applications and Methods. – start-page: 3 year: 2007 article-title: “Programming gene expression with combinatorial promoters,” publication-title: Molecular Systems Biology. – volume: 2 start-page: 10 year: 2006 article-title: “Synthetic biology: new engineering rules for an emerging discipline,” publication-title: Mol Syst Biol. – volume: 22 start-page: 701 year: 2006 end-page: 7 article-title: “Engineering Controllable Protein Degradation,” publication-title: Molecular Cell. – volume: 34 start-page: 975 year: 1984 end-page: 86 article-title: “Optimization by simulated annealing: Quantitative studies,” publication-title: Journal of Statistical Physics. – volume: 18 start-page: 037126 year: 2008 article-title: “Synchronization of genetic oscillators,” publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science. – volume: 438 start-page: 449 year: 2005 end-page: 53 article-title: “Foundations for engineering biology,” publication-title: Nature. – volume: 2 start-page: 114 year: 2008 end-page: 32 article-title: “Robust Engineered Circuit Design Principles for Stochastic Biochemical Networks With Parameter Uncertainties and Disturbances,” publication-title: IEEE Transactions on Biomedical Circuits and Systems. – volume: 15 start-page: 51 year: 1995 end-page: 60 article-title: “A genetic approach to mixed H2/H∞ optimal PID control,” publication-title: Control Systems Magazine IEEE. – volume: 68 start-page: 2397 year: 2002 end-page: 403 article-title: “Modulation of Gene Expression Made Easy,” publication-title: Applied and Environmental Microbiology. – volume: 7 start-page: 52 year: 2006 article-title: “On the attenuation and amplification of molecular noise in genetic regulatory networks,” publication-title: BMC Bioinformatics. – volume: 20 start-page: 257 year: 2005 article-title: “Synchronizing genetic oscillators by signaling molecules,” publication-title: Journal of Biological Rhythms. – volume: 5 start-page: 826 year: 2004 end-page: 37 article-title: “Biological robustness,” publication-title: Nature Reviews Genetics. – volume: 26 start-page: 243 year: 1996 end-page: 58 article-title: “Hybrid methods using genetic algorithms for global optimization,” publication-title: Systems, Man and Cybernetics, Part B, IEEE Transactions on. – volume: 301 start-page: 1866 year: 2003 end-page: 7 article-title: “Biological networks: the tinkerer as an engineer,” publication-title: American Association for the Advancement of Science. – volume: 84 start-page: 76 year: 2001 end-page: 83 article-title: “An Efficient Hybrid Genetic Algorithm for the Traveling Salesman Problem,” publication-title: Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi). – volume: 403 start-page: 335 year: 2000 end-page: 8 article-title: “A synthetic oscillatory network of transcriptional regulators,” publication-title: Nature. – volume: 10 start-page: 140 year: 2009 article-title: “Estimating parameters for generalized mass action models with connectivity information,” publication-title: BMC Bioinformatics. – volume: 15 start-page: 65 year: 1999 end-page: 9 article-title: “It's a noise business,” publication-title: Genetic regulation at the nanomolar scale. Trends in Genetics. – volume: 24 start-page: 647 year: 1997 end-page: 57 article-title: “Machining condition optimization by genetic algorithms and simulated annealing,” publication-title: Computers and Operations Research. – volume: 99 start-page: 679 year: 2002 end-page: 4 article-title: “Synchronizing genetic relaxation oscillators by intercell signaling,” publication-title: Proceedings of the National Academy of Sciences. – ident: bibr33-GRSB.S4818 doi: 10.1038/nbt0708-771 – ident: bibr34-GRSB.S4818 doi: 10.1038/nbt1413 – ident: bibr2-GRSB.S4818 doi: 10.1038/msb4100073 – volume: 15 start-page: 65 year: 1999 ident: bibr7-GRSB.S4818 publication-title: Genetic regulation at the nanomolar scale. Trends in Genetics. – ident: bibr37-GRSB.S4818 doi: 10.1073/pnas.022642299 – ident: bibr29-GRSB.S4818 doi: 10.1016/j.tibtech.2005.12.003 – ident: bibr9-GRSB.S4818 doi: 10.1038/nrg1471 – ident: bibr21-GRSB.S4818 doi: 10.1109/TSMC.1986.289288 – ident: bibr26-GRSB.S4818 doi: 10.1109/3477.485836 – start-page: 3 year: 2007 ident: bibr32-GRSB.S4818 publication-title: Molecular Systems Biology. – ident: bibr31-GRSB.S4818 doi: 10.1128/AEM.68.5.2397-2403.2002 – ident: bibr12-GRSB.S4818 doi: 10.1186/1471-2105-10-140 – ident: bibr36-GRSB.S4818 doi: 10.1016/0304-3940(90)90302-P – ident: bibr16-GRSB.S4818 doi: 10.1186/1752-0509-3-66 – ident: bibr44-GRSB.S4818 doi: 10.1103/PhysRevLett.95.178103 – ident: bibr19-GRSB.S4818 doi: 10.1109/37.466262 – ident: bibr35-GRSB.S4818 doi: 10.21236/ADA457791 – ident: bibr40-GRSB.S4818 doi: 10.1073/pnas.96.7.3807 – ident: bibr15-GRSB.S4818 doi: 10.1093/bioinformatics/btp310 – ident: bibr39-GRSB.S4818 doi: 10.1073/pnas.0334340100 – ident: bibr6-GRSB.S4818 doi: 10.1038/35002131 – start-page: 30 year: 2009 ident: bibr17-GRSB.S4818 publication-title: Optimal Control Applications and Methods. – ident: bibr24-GRSB.S4818 doi: 10.1016/S0305-0548(96)00077-9 – start-page: 3 year: 2007 ident: bibr28-GRSB.S4818 publication-title: Molecular Systems Biology. – ident: bibr13-GRSB.S4818 doi: 10.1093/bioinformatics/btm362 – volume: 84 start-page: 76 year: 2001 ident: bibr23-GRSB.S4818 publication-title: Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi). doi: 10.1002/1520-6440(200102)84:2<76::AID-ECJC9>3.0.CO;2-O – ident: bibr3-GRSB.S4818 doi: 10.1016/j.copbio.2005.07.002 – ident: bibr11-GRSB.S4818 doi: 10.1126/science.1089072 – ident: bibr42-GRSB.S4818 doi: 10.1177/0748730405275653 – ident: bibr41-GRSB.S4818 doi: 10.1534/genetics.105.049619 – ident: bibr1-GRSB.S4818 doi: 10.1038/nature04342 – ident: bibr4-GRSB.S4818 doi: 10.1038/35002125 – ident: bibr45-GRSB.S4818 doi: 10.1063/1.2978183 – ident: bibr8-GRSB.S4818 doi: 10.1186/1471-2105-7-52 – ident: bibr14-GRSB.S4818 doi: 10.1109/TBCAS.2008.926728 – volume-title: Genetic Algorithms in Search, Optimization and Machine Learning year: 1989 ident: bibr20-GRSB.S4818 – ident: bibr38-GRSB.S4818 doi: 10.1016/S0895-7177(00)00088-1 – ident: bibr30-GRSB.S4818 doi: 10.1016/j.molcel.2006.04.027 – ident: bibr43-GRSB.S4818 doi: 10.1093/bioinformatics/btl182 – ident: bibr18-GRSB.S4818 doi: 10.1177/117693430700300010 – ident: bibr25-GRSB.S4818 doi: 10.1007/BF01009452 – ident: bibr27-GRSB.S4818 doi: 10.1038/nature03461 – volume-title: Adaptation in natural and artificial systems year: 1975 ident: bibr22-GRSB.S4818 – ident: bibr5-GRSB.S4818 doi: 10.1038/nature01257 – volume-title: An introduction to systems biology: design principles of biological circuits year: 2007 ident: bibr10-GRSB.S4818 – reference: 18612298 - Nat Biotechnol. 2008 Jul;26(7):771-4 – reference: 11976114 - Appl Environ Microbiol. 2002 May;68(5):2397-403 – reference: 19435742 - Bioinformatics. 2009 Jul 15;25(14):1822-30 – reference: 15858574 - Nature. 2005 Apr 28;434(7037):1130-4 – reference: 18004278 - Mol Syst Biol. 2007;3:145 – reference: 15851532 - J Biol Rhythms. 2005 Jun;20(3):257-69 – reference: 10098409 - Trends Genet. 1999 Feb;15(2):65-9 – reference: 16383875 - Phys Rev Lett. 2005 Oct 21;95(17):178103 – reference: 16762842 - Mol Cell. 2006 Jun 9;22(5):701-7 – reference: 10659856 - Nature. 2000 Jan 20;403(6767):335-8 – reference: 18263027 - IEEE Trans Syst Man Cybern B Cybern. 1996;26(2):243-58 – reference: 16702438 - Genetics. 2006 Aug;173(4):1851-69 – reference: 18612302 - Nat Biotechnol. 2008 Jul;26(7):787-93 – reference: 11805323 - Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):679-84 – reference: 16457708 - BMC Bioinformatics. 2006;7:52 – reference: 17667952 - Mol Syst Biol. 2007;3:130 – reference: 12432407 - Nature. 2002 Nov 14;420(6912):224-30 – reference: 10097119 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3807-12 – reference: 12538876 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1072-7 – reference: 19432964 - BMC Bioinformatics. 2009;10:140 – reference: 14512615 - Science. 2003 Sep 26;301(5641):1866-7 – reference: 2377316 - Neurosci Lett. 1990 May 31;113(2):193-8 – reference: 16306983 - Nature. 2005 Nov 24;438(7067):449-53 – reference: 16406119 - Trends Biotechnol. 2006 Feb;24(2):53-5 – reference: 15520792 - Nat Rev Genet. 2004 Nov;5(11):826-37 – reference: 19468310 - Evol Bioinform Online. 2007 Sep 26;3:245-62 – reference: 16019200 - Curr Opin Biotechnol. 2005 Aug;16(4):476-83 – reference: 19566953 - BMC Syst Biol. 2009;3:66 – reference: 23852758 - IEEE Trans Biomed Circuits Syst. 2008 Jun;2(2):114-32 – reference: 10659857 - Nature. 2000 Jan 20;403(6767):339-42 – reference: 17660209 - Bioinformatics. 2007 Sep 15;23(18):2415-22 – reference: 16738572 - Mol Syst Biol. 2006;2:2006.0028 – reference: 16690633 - Bioinformatics. 2006 Jul 15;22(14):1775-81 – reference: 19045500 - Chaos. 2008 Sep;18(3):037126 |
| SSID | ssj0058070 |
| Score | 1.9111818 |
| Snippet | Bor-Sen Chen1 and Po-Wei Chen11Lab. of Control and Systems Biology, National Tsing-Hua University, 101 Section 2, Kuang Fu Rd., Hsin-chu 300, Taiwan.... In the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In particular, the genetic oscillator known... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref sage libertasacademia |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 35 |
| SubjectTerms | Algorithms Analysis Anopheles Evolution Fitness Gene regulation Genes Genetic research Kinetics Natural selection Original Research Oscillators Stochasticity |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwELdGJwRfeMMCAxkxCSGRLXWc1weEMthDSJSqZdK-WbbjrEhdUpZUqP89d3nRrGOf2spXO86d736OL78jZA-CZiB14tkasL3N0yiwI-4x27ipo2XIZKDwRPf7yD8949_OvfMtMmrfhcG0ytYnVo46yTU-Iz9AIm9YlwCoPy9-21g1Ck9X2xIasimtkHyqKMbukG2GzFgDsn14NBpPWt_shWDhNUkpOO_g4GQyPdyf8hBLfqyFpcY5P6wJbmUh61R1eRMK3UymbF7Xv7fMFnL1R87nawHr-BF50CBNGtem8ZhsmewJuVvXnlw9JcVJbGMIS-jXKomDxvMLmG85uywoAFkKwJBOcrUsSjpdZfALuqFIUo2fPyBwgv1gpR6KT3IpZnKA_1HQXYw56siY-ZGOwbzzhMosoeMZjPWMnB0f_fxyajcVGGztM17aOlHGDQODp2v-0Deh4sZT2hlqRzvwNeWpgvCmmCfdZOiHnpMmTiTx9FID8mTuczLI8szsEGrCyCju69CBf-kgVYA0uJc4YEPS95RrkQ-tAoRu6MmxSsZcwDYFlSVQWaJSlkXedbKLmpTjRqn3qEeBKxV60o0WNVwPcl6JmMPuF_aHjFtktycJK0z3moPrltANi-zc1xq1FGC4ggH4go5bgxGNbyjEP0u2yNuuGcfEfLfM5EuUiVweIF60CP2PTOC6yP8WubeIcB_rJfDAIi9qK-0unFXEPi5Orme_vZn1W7Jfs4p_nIUh4ES8MrT09YltqmCvWwUbmrq4KpQoUOzl7bfpFbnf5mwwvksG5dXSvAYoWKo3zfr-C38TYY0 priority: 102 providerName: ProQuest – databaseName: Sage Journals GOLD Open Access 2024 dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJwQvfA8CAxkxCSGRkTpOnDyh8NFNSMDUbmJvlu0466Q2mZpEqP89d01SLe2Ap374aju9n31n-_w7Qg7AaApl0sA14Nu7PIuFG_OAudbPPKMipoTGE93vP8LjM_7tPDjfIdPuLkz7D5aHGFYFPVpN1ji6cTcahzhMuuLD0Xjy6XDCwdh8rKu5bPa5u3Qa-A0eTNdzPNM2GAm5dLt7bbfILhOwJhqQ3WQ0_nXazdpBBNhv6Es3WugZrHbavt9Q36pSNUHs6ib_dDvMsr3If6fOr9Tyt5rNrpmy0QNyr_VBadKA5iHZsfkjcrvJSrl8TMqjxEXjltIvq_AOmswuisVlNZ2XFFxcCi4jHRe6Lis6WebwCaqhSF-Nrz_BpAKyMIcPxT1eijEeMDNpqC7B6HXk0nxPTwD4RUpVntKTKbT1hJyNvp5-Pnbb3AyuCRmvXJNq60fC4rlbOAxtpLkNtPGGxjMevM14psHwaRYoPx2GUeBlqRcrPNc04JMyf48M8iK3zwi1UWw1D03kwa-MyDT4IDxIPUCXCgPtO-RdpwBpWuJyzJ8xk7CAQWVJVJZcKcshb9ayVw1dx41Sb1GPEscw1GRaLRroD7JhyYTDuhhWjow7ZL8nCWPP9IrFJhLWzSJv90ahURLgLBm4ZVBxBxjZYV4iWT3YHlg0OuT1uhjbxEi43BY1ysQ-F-hJOoT-RUb4PjLDxf4_RHiImRS4cMjTBqXrjrMV5Y-PD9fDb-_J-iX55XTFTM6iCDxI7Bki_fqDbavgYD0KtjR1sSi1LFHs-f9rekHudhEdjO-TQbWo7UtwFCv9qh3jfwCmCG0N priority: 102 providerName: SAGE Publications – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGJwQvjNsgMJARkxASadPEiZPHcNkmJEbVUmk8WbbjrBVtWjWpUPn1nJNL1ctA8NRUPrFj-Vw-xyffIeQUgiaXOvFtDdjeZmnE7Yj5rm281NEydCVXeKL75TK4GLLPV_7VAek238KUSftajdvZZNrOxqMyt3I-1Z0mT6zjhiFEKXaLHAY-wO8WORxe9uLvVREVbgOedyoaUnDPvHO9yFU7ZyEW9dgIPLX7PaoobGUuq2R0eRPO3E-XrD_Iv7PM5nL1U04mGyHp7Ij0m8lUmSg_2stCtfWvHZ7H_5rtfXKvBqg0rpoekAOTPSS3q5KVq0ckP49tjHwJ_VjmftB4cj1bjIvRNKeAfyngSdqfqWVe0MEqg3_QDUVua_z9CvEW1A4L_FB8AUwxAQTcloLuYkxtR6LNd7QHVjFLqMwS2hvBWI_J8OzTtw8Xdl24wdaBywpbJ8p4ITd4KBd0AxMqZnylna52tAOXKUsVREXl-tJLukHoO2niRBIPPTUAVtc7Jq1slpmnhJowMooFOnTgLs1TBQCF-YkDqicDX3kWedusqtA1qzkW15gI2N2gBojz_uC9GKAGWOT1WnZecXncKPUGlUOggUNPulYNDc-DVFkiZrBphm2lyyxysiUJhqm3mvmueq2HRVLvnUYtBfgY4QJmg44bLRS1S8kFMtlDYIIdpUVerZtxTEyTy8xsiTKRxzjCTIvQP8hwz0PauMj7iwgLsMwC4xZ5Uqn--sHdkg_Iw8ltGcXWzLZbQK9L2vJalWFYNJ_Nie0vwenatPZWCi1alBb97N_EnpO7TcqHy05Iq1gszQtAkoV6WfuO39Gdd9M priority: 102 providerName: Unpaywall |
| Title | GA-based Design Algorithms for the Robust Synthetic Genetic Oscillators with Prescribed Amplitude, Period and Phase |
| URI | http://insights.sagepub.com/ga-based-design-algorithms-for-the-robust-synthetic-genetic-oscillator-article-a2078 https://journals.sagepub.com/doi/full/10.4137/GRSB.S4818 https://www.ncbi.nlm.nih.gov/pubmed/20535234 https://www.proquest.com/docview/1038111550 https://www.proquest.com/docview/1093470064 https://www.proquest.com/docview/733261293 https://www.proquest.com/docview/746084847 https://pubmed.ncbi.nlm.nih.gov/PMC2881514 https://www.ncbi.nlm.nih.gov/pmc/articles/2881514 |
| UnpaywallVersion | submittedVersion |
| Volume | 2010 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1177-6250 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0058070 issn: 1177-6250 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Academic Search Ultimate | Ebsco customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1177-6250 dateEnd: 20190131 omitProxy: true ssIdentifier: ssj0058070 issn: 1177-6250 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1177-6250 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0058070 issn: 1177-6250 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1177-6250 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0058070 issn: 1177-6250 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Australia & New Zealand Database customDbUrl: eissn: 1177-6250 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0058070 issn: 1177-6250 databaseCode: AYAGU dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/anz providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1177-6250 dateEnd: 20180131 omitProxy: true ssIdentifier: ssj0058070 issn: 1177-6250 databaseCode: BENPR dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1177-6250 dateEnd: 20190228 omitProxy: true ssIdentifier: ssj0058070 issn: 1177-6250 databaseCode: M48 dateStart: 20070901 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGJgQvfMMCYzJiAiGRkibO1xPKYO2EtFK1q9ieLNtx1kkh7ZpW0P-euySNlrbAkxv56o_e2XeXu_6OkCNQmr5QsWsqsO1NloS-GTLXNrWTWEoEtvAlRnTPet7piH27cC92yCqJvfoB862uHdaTGs3S1u-b5Wc48GC_tuAK9j9dzXLZyhmonnfTGxMLSmHgtaqucYfsgdIKsarDGasDDG5gFXXkMGRpggtglcila8M1dFV1Yz8sUW9FLsr8dbHNNN3MsKz-w39vkU3F8pdI01tarPOIPKjMTxqV8vKY7OjsCblbFqRcPiV5NzJRr8X0a5HZQaP0CnY6H__MKVi3FKxFOpjIRT6nw2UGTzAMReRqbL-DNgWhwvI9FF_vUkzvgEtJwnARJq4jjOZH2geZn8RUZDHtj2GuZ2TUOTn_cmpWZRlM5dlsbqpYaifwNYbcvLanA8m0K5XVVpay4GPCEgk6T9qucOK2F7hWEluhwJCmAnPUdp6T3WyS6X1CdRBqyTwVWPAt5ScSzA_mxhYIlvBc6Rjkw4oBXFWY5Vg6I-XguyCzeHcwPOZDZJZB3ta00xKpYyvVe-QjR4GCkVTFRQXrQSAsHjFwicFptJlBDhqUcOxUo9tfl4R6WoTsXutUgsMNwm2wyGDglcDwlbxzxKkHtQP-okHe1N04JybBZXqyQJrQYT4akQahf6HxHQdB4ULnHyTMwyIKzDfIi1JK64XbBdqPg5tryG9jZ82e7HpcgJLbQQDGI64MJf32xjZZcFSfgg1O4eHjxeF7-f89viL3V8kcNjsgu_PZQr8GG3EuD8le1Bn8OMf2MuqOoD0-6fUHh8UtAE-jXj-6_AOUgnAG |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTWi8jDsLDDBiCCERljrO7WFCHbt0bCtVu0l7M7bjrEglKUurqX-O38Y5uZR2HXvbU1v51Lmc2-f45DuEbELSDKSOPVsDtrd5EgV2xD1mGzdxtAyZDBTu6J60_dYZ_3bunS-RP_W7MFhWWcfEIlDHmcZn5FtI5A1-CYD6y_C3jV2jcHe1bqEhq9YK8XZBMVa92HFkJlewhMu3D3dB3-8Z2987_dqyqy4DtvYZH9k6VsYNA4M7SH7DN6HixlPaaWhHO_A14YmCEK6YJ9244Yeek8ROJHGHTgO6QuIDSAEr3OURLP5WdvbanW6dC7wQPKokRYVkEWwddHs7n3s8xBYjM2mwSgYPSkJdmcuyNF7ehHoXizcreoDVcTqUkys5GMwkyP2HZK1CtrRZmuIjsmTSx-Re2ety8oTkB00bU2ZMd4uiEdocXMD9HfV_5RSAMwUgSruZGucj2puk8AumoUiKjZ_fIVGDvWJnIIpPjilWjkC8UzBdE2vikaHzE-2AO2UxlWlMO3041lNydie6eEaW0yw164SaMDKK-zp04F86SBQgG-7FDtis9D3lWuRjrQChKzp07MoxELAsQmUJVJYolGWRd1PZYUkCcqPUB9SjwMgAM-lKixrOBzm2RJPDahvWo4xbZGNOEjxazw0H1y1helhkA782qKUARxEMwB5MXBuMqGJRLv55jkXeTofxmFhfl5psjDKRywPEpxah_5EJXBf55iL3FhHuY38GHljkeWml0xNnBZGQixc3Z79zVzY_kv7sF3znLAwBl-KZoaXPXtiiCjanXrCgqYvLXIkcxV7cfpvekNXW6cmxOD5sH70k9-t6EcY3yPLocmxeAQwdqdeVr1Py467Dy1-JJZ4B |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwELdgE48vvB-BAUZMQpPISGPn9TEwuvEaVbuJfbNsx1knlaRqUqH-99zlpaUd8KmtfLGd3u98d_HlZ0J2wWkGUieerSG2t3kaBXbEPdc2LHW0DF0ZKNzR_X7sH53yL2feWfPoAt-Faf7BYh_LqmBG1WKN1j1PUrRwWHOD94fjyYf9CQdfc51sQz7DIOvajofjnyftIuyFAOWajXTtip7_aVbhuzWTrSxkXZMurwo3N6smm_fyby2zuVz9lrPZJc80vEfuNCEljWsM3CfXTPaA3KgPmVw9JMVhbKOvSuhBVa1B49l5vrgop78KChErhQiQjnO1LEo6WWXwC7qhyEaNnz_AQwJQ8Egeio9sKZZswEKjoLsYi9GRGvMdHQGO84TKLKGjKYz1iJwOP518PLKboxZs7bu8tHWiDAsDg9to_sA3oeLGU9oZaEc78DXlqQI_plxPsmTgh56TJk4kcZtSQ4jpssdkK8sz85RQE0ZGcV-HDlylg1RBSMG9xAGwSN9TzCJ7rQKEbnjI8TiMmYB8BJUlUFmiUpZF3nSy85p940qpt6hHgSYJPelGixrmg-RWIuaQ5kIi6HKL7PQkwZR0rzlYR0I3LNJwrzVqKQCdwoUoCzpuASNaCAvkngdXAjmgRV53zTgmFrZlJl-iTMR4gIGhRehfZALGkOgtYv8Q4T4ejMADizypUdpN3K0YfBjeXA-_vTvrt2QX04po3A1DCAhxZoj0yze2qYLdzgo2NHW-KJQoUOzZ_3t6RW6ODobi2-fjr8_J7bZWw-U7ZKtcLM0LCAFL9bIx9z9G_luE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGJwQvjNsgMJARkxASadPEiZPHcNkmJEbVUmk8WbbjrBVtWjWpUPn1nJNL1ctA8NRUPrFj-Vw-xyffIeQUgiaXOvFtDdjeZmnE7Yj5rm281NEydCVXeKL75TK4GLLPV_7VAek238KUSftajdvZZNrOxqMyt3I-1Z0mT6zjhiFEKXaLHAY-wO8WORxe9uLvVREVbgOedyoaUnDPvHO9yFU7ZyEW9dgIPLX7PaoobGUuq2R0eRPO3E-XrD_Iv7PM5nL1U04mGyHp7Ij0m8lUmSg_2stCtfWvHZ7H_5rtfXKvBqg0rpoekAOTPSS3q5KVq0ckP49tjHwJ_VjmftB4cj1bjIvRNKeAfyngSdqfqWVe0MEqg3_QDUVua_z9CvEW1A4L_FB8AUwxAQTcloLuYkxtR6LNd7QHVjFLqMwS2hvBWI_J8OzTtw8Xdl24wdaBywpbJ8p4ITd4KBd0AxMqZnylna52tAOXKUsVREXl-tJLukHoO2niRBIPPTUAVtc7Jq1slpmnhJowMooFOnTgLs1TBQCF-YkDqicDX3kWedusqtA1qzkW15gI2N2gBojz_uC9GKAGWOT1WnZecXncKPUGlUOggUNPulYNDc-DVFkiZrBphm2lyyxysiUJhqm3mvmueq2HRVLvnUYtBfgY4QJmg44bLRS1S8kFMtlDYIIdpUVerZtxTEyTy8xsiTKRxzjCTIvQP8hwz0PauMj7iwgLsMwC4xZ5Uqn--sHdkg_Iw8ltGcXWzLZbQK9L2vJalWFYNJ_Nie0vwenatPZWCi1alBb97N_EnpO7TcqHy05Iq1gszQtAkoV6WfuO39Gdd9M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GA-based+Design+Algorithms+for+the+Robust+Synthetic+Genetic+Oscillators+with+Prescribed+Amplitude%2C+Period+and+Phase&rft.jtitle=Gene+regulation+and+systems+biology&rft.au=Chen%2C+Bor-Sen&rft.au=Chen%2C+Po-Wei&rft.date=2010-05-24&rft.issn=1177-6250&rft.eissn=1177-6250&rft.volume=4&rft.spage=35&rft_id=info:doi/10.4137%2Fgrsb.s4818&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1177-6250&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1177-6250&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1177-6250&client=summon |