Improving Single Injection CSF Delivery of AAV9-mediated Gene Therapy for SMA: A Dose–response Study in Mice and Nonhuman Primates

Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intra...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy Vol. 23; no. 3; pp. 477 - 487
Main Authors Meyer, Kathrin, Ferraiuolo, Laura, Schmelzer, Leah, Braun, Lyndsey, McGovern, Vicki, Likhite, Shibi, Michels, Olivia, Govoni, Alessandra, Fitzgerald, Julie, Morales, Pablo, Foust, Kevin D, Mendell, Jerry R, Burghes, Arthur H M, Kaspar, Brian K
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2015
Elsevier Limited
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1525-0016
1525-0024
1525-0024
DOI10.1038/mt.2014.210

Cover

Abstract Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.
AbstractList Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.
Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.
Author Burghes, Arthur H M
Likhite, Shibi
Mendell, Jerry R
Braun, Lyndsey
Meyer, Kathrin
Govoni, Alessandra
Foust, Kevin D
McGovern, Vicki
Schmelzer, Leah
Michels, Olivia
Fitzgerald, Julie
Ferraiuolo, Laura
Morales, Pablo
Kaspar, Brian K
Author_xml – sequence: 1
  givenname: Kathrin
  surname: Meyer
  fullname: Meyer, Kathrin
  organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
– sequence: 2
  givenname: Laura
  surname: Ferraiuolo
  fullname: Ferraiuolo, Laura
  organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
– sequence: 3
  givenname: Leah
  surname: Schmelzer
  fullname: Schmelzer, Leah
  organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
– sequence: 4
  givenname: Lyndsey
  surname: Braun
  fullname: Braun, Lyndsey
  organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
– sequence: 5
  givenname: Vicki
  surname: McGovern
  fullname: McGovern, Vicki
  organization: Department of Molecular & Cellular Biochemistry, The Ohio State University Medical Center, Columbus, Ohio, USA
– sequence: 6
  givenname: Shibi
  surname: Likhite
  fullname: Likhite, Shibi
  organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
– sequence: 7
  givenname: Olivia
  surname: Michels
  fullname: Michels, Olivia
  organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
– sequence: 8
  givenname: Alessandra
  surname: Govoni
  fullname: Govoni, Alessandra
  organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
– sequence: 9
  givenname: Julie
  surname: Fitzgerald
  fullname: Fitzgerald, Julie
  organization: Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
– sequence: 10
  givenname: Pablo
  surname: Morales
  fullname: Morales, Pablo
  organization: Mannheimer Foundation, Inc., Homestead, Florida, USA
– sequence: 11
  givenname: Kevin D
  surname: Foust
  fullname: Foust, Kevin D
  organization: Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
– sequence: 12
  givenname: Jerry R
  surname: Mendell
  fullname: Mendell, Jerry R
  organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
– sequence: 13
  givenname: Arthur H M
  surname: Burghes
  fullname: Burghes, Arthur H M
  organization: Department of Molecular & Cellular Biochemistry, The Ohio State University Medical Center, Columbus, Ohio, USA
– sequence: 14
  givenname: Brian K
  surname: Kaspar
  fullname: Kaspar, Brian K
  email: Brian.Kaspar@NationwideChildrens.org
  organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25358252$$D View this record in MEDLINE/PubMed
BookMark eNqFUk-L1DAcLbLi_tGTdwl4EaRjkjZpx4NQZt11YFeFGbyGNPl1J0Ob1KQdmJsHv4Hf0E9iyuwuuix4SX6Q93u8l_dOkyPrLCTJS4JnBGflu26YUUzyGSX4SXJCGGUpxjQ_up8JP05OQ9jGibA5f5YcU5axkjJ6kvxcdr13O2Nv0CoeLaCl3YIajLNosbpA59CaHfg9cg2qqm_ztANt5AAaXYIFtN6Al_0eNc6j1XX1HlXo3AX4_eOXh9A7GwCthlHvkbHo2ihA0mr02dnN2EmLvnrTRa7wPHnayDbAi9v7LFlffFwvPqVXXy6Xi-oqVZzmQ6oUkbhgXEOt9DznTOUcSqkJcMobomtJdV3QBrMc84YpRcu6odGnpoWSWXaWfDjQ9mMdbSiwg5et6CcVfi-cNOLfF2s24sbtRJ4xkjMaCd7cEnj3fYQwiM4EBW0rLbgxCFIUnLOc8Pz_UM5jSOWcTbJeP4Bu3eht_IhIOCdZWWScRdSrv8Xfq76LMgLIAaC8C8FDI5QZ5BRk9GJaQbCY6iK6QUx1EbEuceftg5072sfR7ICGmNHOgBdBGbAqNsLHygjtzKN7fwA7eNMi
CitedBy_id crossref_primary_10_1056_NEJMoa2412392
crossref_primary_10_1016_j_ejpn_2020_07_001
crossref_primary_10_1073_pnas_2007785118
crossref_primary_10_1089_hum_2016_087
crossref_primary_10_1080_14712598_2017_1250880
crossref_primary_10_1038_gt_2017_46
crossref_primary_10_1016_j_neuropharm_2016_02_013
crossref_primary_10_1016_j_ymthe_2019_07_017
crossref_primary_10_1002_14651858_CD006282_pub5
crossref_primary_10_1002_jev2_12464
crossref_primary_10_1016_j_omtm_2018_12_001
crossref_primary_10_1016_j_omtn_2025_102469
crossref_primary_10_1016_j_brainres_2020_146832
crossref_primary_10_3390_jpm10040258
crossref_primary_10_1172_jci_insight_169650
crossref_primary_10_1007_s00018_023_05018_w
crossref_primary_10_1007_s11910_017_0798_y
crossref_primary_10_1016_j_jconrel_2016_09_011
crossref_primary_10_1089_hum_2023_173
crossref_primary_10_1093_hmg_ddx058
crossref_primary_10_26508_lsa_202000889
crossref_primary_10_1089_hum_2022_138
crossref_primary_10_1016_j_omtn_2018_04_015
crossref_primary_10_1038_gt_2017_27
crossref_primary_10_1016_j_mad_2021_111549
crossref_primary_10_1016_j_mrrev_2024_108515
crossref_primary_10_1016_j_omtm_2019_11_006
crossref_primary_10_1016_j_ymthe_2019_11_012
crossref_primary_10_1016_j_omtm_2020_10_014
crossref_primary_10_1016_j_pediatrneurol_2020_04_010
crossref_primary_10_3389_fnins_2021_747726
crossref_primary_10_3389_fnmol_2016_00056
crossref_primary_10_1038_nrneurol_2015_77
crossref_primary_10_1089_hum_2023_060
crossref_primary_10_1038_s41598_017_14313_z
crossref_primary_10_3390_pharmaceutics15061764
crossref_primary_10_1089_hum_2018_015
crossref_primary_10_17925_USN_2022_18_2_133
crossref_primary_10_1007_s00115_019_0761_z
crossref_primary_10_1016_j_omtm_2018_07_006
crossref_primary_10_1016_j_omtm_2018_07_005
crossref_primary_10_3233_JND_221560
crossref_primary_10_1038_mtm_2016_46
crossref_primary_10_1089_hum_2020_301
crossref_primary_10_1016_j_ymthe_2019_08_017
crossref_primary_10_1007_s10072_019_03764_z
crossref_primary_10_1080_17512433_2019_1634543
crossref_primary_10_1016_j_neuron_2019_02_017
crossref_primary_10_1002_ana_24618
crossref_primary_10_1080_14712598_2018_1479739
crossref_primary_10_1016_j_omtm_2023_05_016
crossref_primary_10_1038_s41434_022_00346_1
crossref_primary_10_1172_jci_insight_164608
crossref_primary_10_3389_fnins_2020_580179
crossref_primary_10_1089_crispr_2020_0025
crossref_primary_10_1016_j_ymthe_2024_08_024
crossref_primary_10_3389_fped_2021_684134
crossref_primary_10_1038_mtm_2016_60
crossref_primary_10_1186_s12987_024_00556_2
crossref_primary_10_1093_hmg_ddab093
crossref_primary_10_1038_srep11746
crossref_primary_10_1016_j_omtm_2024_101312
crossref_primary_10_3389_fncel_2023_1307636
crossref_primary_10_1089_hum_2017_026
crossref_primary_10_1080_21678707_2020_1856654
crossref_primary_10_1016_j_omtm_2018_02_005
crossref_primary_10_1016_S1474_4422_23_00419_2
crossref_primary_10_1038_s41434_019_0085_4
crossref_primary_10_1089_hum_2016_101
crossref_primary_10_1089_hum_2018_079
crossref_primary_10_3389_fneur_2021_726468
crossref_primary_10_1517_21678707_2015_1039511
crossref_primary_10_1002_cpz1_1091
crossref_primary_10_1172_JCI159814
crossref_primary_10_1016_j_ymthe_2020_12_031
crossref_primary_10_3390_genes15080999
crossref_primary_10_1016_j_ymthe_2021_07_010
crossref_primary_10_1126_sciadv_aau9859
crossref_primary_10_3390_biology11060894
crossref_primary_10_1002_14651858_CD006281_pub5
crossref_primary_10_1038_s41434_018_0028_5
crossref_primary_10_3233_JND_200531
crossref_primary_10_1126_scitranslmed_aau6414
crossref_primary_10_4103_singaporemedj_SMJ_2021_376
crossref_primary_10_2174_1566523221666210922155413
crossref_primary_10_1080_21678707_2021_2003778
crossref_primary_10_1007_s12035_016_9777_6
crossref_primary_10_1523_JNEUROSCI_1635_16_2016
crossref_primary_10_1007_s12035_019_1533_2
crossref_primary_10_1089_hum_2016_109
crossref_primary_10_1038_s41598_021_99979_2
crossref_primary_10_1016_j_celrep_2024_114876
crossref_primary_10_1016_j_ymthe_2020_05_011
crossref_primary_10_1016_j_omtn_2024_102264
crossref_primary_10_1080_14712598_2018_1416089
crossref_primary_10_3390_ijms24021130
crossref_primary_10_1016_j_omtn_2018_06_009
crossref_primary_10_1016_j_brainres_2020_146683
crossref_primary_10_1007_s00018_022_04522_9
crossref_primary_10_1016_j_omtm_2020_04_012
crossref_primary_10_1038_mtm_2015_36
crossref_primary_10_1038_s41598_018_23607_9
crossref_primary_10_1038_gt_2015_25
crossref_primary_10_1016_j_molmed_2015_06_001
crossref_primary_10_1089_hum_2020_105
crossref_primary_10_1093_brain_awz373
crossref_primary_10_1016_j_omtm_2021_06_013
crossref_primary_10_1002_cpz1_70069
crossref_primary_10_1016_j_jconrel_2023_01_067
crossref_primary_10_1016_j_ymthe_2020_01_004
crossref_primary_10_1080_14728222_2020_1738390
crossref_primary_10_1126_sciadv_abb1703
crossref_primary_10_1038_s41434_021_00292_4
crossref_primary_10_1016_j_omtm_2024_101369
crossref_primary_10_1016_j_neurot_2024_e00446
crossref_primary_10_1093_hmg_ddv127
crossref_primary_10_1172_jci_insight_130574
crossref_primary_10_1111_nyas_12813
crossref_primary_10_1016_j_brainresbull_2019_05_024
crossref_primary_10_3390_cells11030417
crossref_primary_10_1038_s41587_023_01758_z
crossref_primary_10_1080_14737175_2023_2252179
crossref_primary_10_1089_hum_2016_013
crossref_primary_10_1016_j_omtm_2020_12_014
crossref_primary_10_1016_j_jpeds_2020_05_044
crossref_primary_10_1038_s41434_020_0178_0
crossref_primary_10_1590_0004_282x20180011
crossref_primary_10_1172_JCI130600
crossref_primary_10_1016_j_omtm_2024_101354
crossref_primary_10_3390_brainsci11020194
crossref_primary_10_1016_j_omtm_2024_101357
crossref_primary_10_1038_mt_2015_168
crossref_primary_10_1001_jama_2019_22214
crossref_primary_10_1002_cpt_2972
crossref_primary_10_1016_j_mehy_2018_05_014
crossref_primary_10_1089_thy_2016_0060
crossref_primary_10_1016_j_xphs_2023_08_023
crossref_primary_10_1016_j_ymthe_2024_05_040
crossref_primary_10_1126_science_adg6518
crossref_primary_10_1016_j_ejmg_2017_12_001
crossref_primary_10_2147_DDDT_S214174
crossref_primary_10_1038_s41551_022_00911_4
crossref_primary_10_1016_j_xcrm_2021_100346
crossref_primary_10_1016_j_ymthe_2023_07_013
crossref_primary_10_1016_j_omtm_2022_01_013
crossref_primary_10_1089_humc_2017_231
crossref_primary_10_1016_j_nbd_2021_105488
crossref_primary_10_1016_j_neuron_2022_02_011
crossref_primary_10_1016_j_omtm_2024_101371
crossref_primary_10_1016_j_omtm_2020_04_001
crossref_primary_10_1126_scitranslmed_aah4985
crossref_primary_10_1186_s40478_017_0464_2
crossref_primary_10_1089_hum_2019_217
crossref_primary_10_1002_acn3_375
crossref_primary_10_1089_hum_2021_069
crossref_primary_10_1242_dmm_042903
crossref_primary_10_3389_fnmol_2023_1248271
crossref_primary_10_1007_s12035_021_02555_y
crossref_primary_10_1016_j_molmed_2021_03_010
crossref_primary_10_3233_JND_170209
crossref_primary_10_1016_j_neurot_2024_e00376
crossref_primary_10_1038_s42255_023_00932_6
crossref_primary_10_1093_hmg_ddz131
crossref_primary_10_1007_s10072_018_3521_0
crossref_primary_10_1016_j_expneurol_2022_114170
crossref_primary_10_1016_j_mayocp_2014_12_004
crossref_primary_10_1038_gt_2017_9
crossref_primary_10_1007_s12035_017_0831_9
crossref_primary_10_1016_j_scib_2024_03_013
crossref_primary_10_3390_brainsci10020119
crossref_primary_10_1016_j_ymthe_2017_03_036
crossref_primary_10_1089_hum_2015_122
crossref_primary_10_1016_j_prerep_2025_100031
crossref_primary_10_1038_s41467_024_54475_9
crossref_primary_10_1172_JCI121658
crossref_primary_10_1089_hum_2022_163
crossref_primary_10_1089_hgtb_2018_041
crossref_primary_10_3389_fnmol_2017_00405
crossref_primary_10_3390_ijms22168494
crossref_primary_10_3390_brainsci13101446
crossref_primary_10_3390_jpm12121979
crossref_primary_10_1038_s41434_022_00338_1
crossref_primary_10_1186_s12987_022_00304_4
crossref_primary_10_1016_S1474_4422_15_00199_4
crossref_primary_10_1038_s44321_024_00148_5
crossref_primary_10_1002_jimd_12699
crossref_primary_10_1089_hum_2022_054
crossref_primary_10_18553_jmcp_2018_24_12_a_s3
crossref_primary_10_1146_annurev_genom_102319_103602
crossref_primary_10_1089_hum_2024_224
crossref_primary_10_1016_j_omtm_2021_09_017
crossref_primary_10_1089_hum_2021_255
crossref_primary_10_1016_j_ymthe_2018_11_013
crossref_primary_10_1089_hgtb_2017_250
crossref_primary_10_1007_s11940_019_0568_z
crossref_primary_10_1080_14737175_2017_1364159
crossref_primary_10_1177_2633105520973985
crossref_primary_10_1097_WCO_0000000000000368
crossref_primary_10_3390_jpm12050758
crossref_primary_10_1038_s41591_021_01664_4
crossref_primary_10_1038_s41598_019_45822_8
crossref_primary_10_2183_pjab_94_020
crossref_primary_10_1016_j_ymthe_2019_06_015
crossref_primary_10_1038_nm_4052
crossref_primary_10_1089_hum_2020_116
crossref_primary_10_1038_s41591_021_01483_7
crossref_primary_10_1172_jci_insight_144712
crossref_primary_10_1038_mt_2016_152
crossref_primary_10_1002_med_21937
crossref_primary_10_1016_j_ymgme_2024_108496
Cites_doi 10.1038/gt.2012.101
10.1128/JVI.77.12.7034-7040.2003
10.1089/hgtb.2013.076
10.1038/gt.2011.130
10.1136/adc.45.239.33
10.1093/hmg/ddu169
10.1002/ana.23995
10.1089/hum.2010.245
10.1086/515465
10.1007/BF03017356
10.1038/mt.2014.135
10.1128/MCB.01262-08
10.1093/hmg/ddi078
10.1093/hmg/ddq514
10.1038/mt.2011.157
10.1523/JNEUROSCI.1854-13.2013
10.1038/mt.2014.68
10.1089/hum.2011.008
10.1002/ajmg.a.33474
10.1056/NEJMoa1108046
10.1089/hum.2013.005
10.1089/hum.2014.011
10.1093/hmg/ddr600
10.1016/j.bbrc.2011.11.121
10.1006/nbdi.1996.0010
10.1093/hmg/ddr360
10.1038/ng0598-63
10.1038/nrneurol.2013.221
10.1038/mt.2011.232
10.1038/mt.2012.261
10.1126/scitranslmed.3000830
10.1136/jmg.15.6.409
10.1097/00125817-200201000-00004
10.1089/hum.2013.021
10.1038/nbt.1610
10.1038/mt.2013.211
10.1089/hum.2011.200
10.1038/ng0797-265
10.3791/2968
10.1038/mt.2011.72
10.1001/archneur.1995.00540290108025
10.1038/nbt.1515
10.1172/JCI41615
10.1093/hmg/6.8.1205
10.1016/j.ydbio.2012.05.037
10.1038/mt.2011.98
10.1002/acn3.23
10.1177/0883073807305673
10.1371/journal.pone.0067680
10.1093/hmg/8.7.1177
10.1038/mt.2013.276
10.1038/mt.2008.166
ContentType Journal Article
Copyright 2015 American Society of Gene & Cell Therapy
Copyright Nature Publishing Group Mar 2015
Copyright © 2015 American Society of Gene & Cell Therapy 2015 American Society of Gene & Cell Therapy
Copyright_xml – notice: 2015 American Society of Gene & Cell Therapy
– notice: Copyright Nature Publishing Group Mar 2015
– notice: Copyright © 2015 American Society of Gene & Cell Therapy 2015 American Society of Gene & Cell Therapy
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7QO
7U9
8FD
FR3
H94
P64
RC3
5PM
DOI 10.1038/mt.2014.210
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Biotechnology Research Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Genetics Abstracts
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
Genetics Abstracts
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1525-0024
EndPage 487
ExternalDocumentID PMC4351452
4068158881
25358252
10_1038_mt_2014_210
S1525001616300612
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Ohio
GeographicLocations_xml – name: United States--US
– name: Ohio
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: U01 NS080836
GroupedDBID ---
--K
0R~
123
1B1
29M
2WC
36B
39C
3V.
4.4
53G
6I.
7X7
88E
8FE
8FH
8FI
8FJ
AACTN
AAEDW
AAFTH
AAIAV
AALRI
AAVLU
AAXUO
ABAWZ
ABJNI
ABMAC
ABUDA
ABUWG
ABVKL
ACGFO
ACGFS
ACPRK
ADBBV
ADFRT
ADJPV
ADMUD
ADQMX
AEDAW
AENEX
AFKRA
AFTJW
AGAYW
AHMBA
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
FDB
FEDTE
FRP
FYUFA
GX1
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IHE
JIG
JSO
KQ8
LG5
LK8
M1P
M41
M7P
NCXOZ
NQ-
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
RCE
RIG
RNS
RNTTT
ROL
RPM
RPZ
SEW
SSZ
SV3
TR2
UHS
UKHRP
W2D
XPP
ZA5
ZMT
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
ALIPV
APXCP
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
7QO
7U9
8FD
FR3
H94
P64
RC3
5PM
ID FETCH-LOGICAL-c624t-cc1a0756debcd9465c46e8ad1e626f1dba2db72f05406f5cc28bf2825d27ca33
IEDL.DBID 7X7
ISSN 1525-0016
1525-0024
IngestDate Thu Aug 21 17:51:06 EDT 2025
Sun Sep 28 11:55:47 EDT 2025
Fri Sep 05 14:45:46 EDT 2025
Fri Jul 25 11:21:17 EDT 2025
Mon Jul 21 05:55:31 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Tue Jul 01 01:46:45 EDT 2025
Fri Feb 23 02:31:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-cc1a0756debcd9465c46e8ad1e626f1dba2db72f05406f5cc28bf2825d27ca33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The first two authors are the first authors of this study.
OpenAccessLink https://dx.doi.org/10.1038/mt.2014.210
PMID 25358252
PQID 1791387365
PQPubID 2042164
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4351452
proquest_miscellaneous_1776654164
proquest_miscellaneous_1660028953
proquest_journals_1791387365
pubmed_primary_25358252
crossref_citationtrail_10_1038_mt_2014_210
crossref_primary_10_1038_mt_2014_210
elsevier_sciencedirect_doi_10_1038_mt_2014_210
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Milwaukee
PublicationTitle Molecular therapy
PublicationTitleAlternate Mol Ther
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Nature Publishing Group
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Nature Publishing Group
References Passini, Bu, Richards, Treleaven, Sullivan, O’Riordan (bib24) 2014; 25
Bevan, Duque, Foust, Morales, Braun, Schmelzer (bib21) 2011; 19
Osman, Yen, Lorson (bib45) 2012; 20
Yang, Li, Wang, Guo, Gessler, Cao (bib25) 2014; 22
Gray, Matagne, Bachaboina, Yadav, Ojeda, Samulski (bib26) 2011; 19
Pearn (bib3) 1978; 15
Federici, Taub, Baum, Gray, Grieger, Matthews (bib32) 2012; 19
Gray, Foti, Schwartz, Bachaboina, Taylor-Blake, Coleman (bib48) 2011; 22
Glascock, Shababi, Wetz, Krogman, Lorson (bib18) 2012; 417
Zerres, Rudnik-Schöneborn (bib5) 1995; 52
Arnold, Porensky, McGovern, Iyer, Duque, Li (bib39) 2014; 1
Foust, Salazar, Likhite, Ferraiuolo, Ditsworth, Ilieva (bib40) 2013; 21
Braak, Brettschneider, Ludolph, Lee, Trojanowski, Del Tredici (bib44) 2013; 9
Passini, Bu, Roskelley, Richards, Sardi, O’Riordan (bib20) 2010; 120
Dominguez, Marais, Chatauret, Benkhelifa-Ziyyat, Duque, Ravassard (bib17) 2011; 20
Dirren, Towne, Setola, Redmond, Schneider, Aebischer (bib30) 2014; 25
Gray, Nagabhushan Kalburgi, McCown, Jude Samulski (bib31) 2013; 20
Mailman, Heinz, Papp, Snyder, Sedra, Wirth (bib12) 2002; 4
Samaranch, Salegio, San Sebastian, Kells, Foust, Bringas (bib33) 2012; 23
Lefebvre, Burlet, Liu, Bertrandy, Clermont, Munnich (bib7) 1997; 16
Porensky (bib51) 2012; 21
Roberts, Chavez, Court (bib2) 1970; 45
Arnold, Burghes (bib14) 2013; 74
Valori, Ning, Wyles, Mead, Grierson, Shaw (bib16) 2010; 2
Chakrabarty, Rosario, Cruz, Siemienski, Ceballos-Diaz, Crosby (bib27) 2013; 8
Snyder, Gray, Quach, Huang, Leung, Samulski (bib29) 2011; 22
Crawford, Pardo (bib1) 1996; 3
Robbins, Glascock, Osman, Miller, Lorson (bib23) 2014; 23
Hayhurst, Wagner, Cerletti, Wagers, Rubin (bib50) 2012; 368
Mutsaers, Wishart, Lamont, Riessland, Schreml, Comley (bib49) 2011; 20
Prior, Snyder, Rink, Pearl, Pyatt, Mihal (bib4) 2010; 152A
Foust, Wang, McGovern, Braun, Bevan, Haidet (bib15) 2010; 28
Gholizadeh, Tharmalingam, Macaldaz, Hampson (bib28) 2013; 24
Samaranch, Salegio, San Sebastian, Kells, Bringas, Forsayeth (bib34) 2013; 24
Le, Pham, Butchbach, Zhang, Monani, Coovert (bib38) 2005; 14
Passini, Watson, Vite, Landsburg, Feigenbaum, Wolfe (bib35) 2003; 77
Russman (bib6) 2007; 22
Foust, Nurre, Montgomery, Hernandez, Chan, Kaspar (bib41) 2009; 27
Coovert, Le, McAndrew, Strasswimmer, Crawford, Mendell (bib8) 1997; 6
Burnett, Muñoz, Tandon, Kwon, Sumner, Fischbeck (bib11) 2009; 29
Garg, Lioy, Cheval, McGann, Bissonnette, Murtha (bib43) 2013; 33
Monani, Lorson, Parsons, Prior, Androphy, Burghes (bib9) 1999; 8
Benkhelifa-Ziyyat, Besse, Roda, Duque, Astord, Carcenac (bib19) 2013; 21
Zhang, Yang, Mu, Ahmed, Su, He (bib37) 2011; 19
Hinderer (bib47) 2014
Setayesh, Kholdebarin, Moghadam, Setayesh (bib42) 2001; 48
Nathwani, Tuddenham, Rangarajan, Rosales, McIntosh, Linch (bib22) 2011; 365
Cearley, Vandenberghe, Parente, Carnish, Wilson, Wolfe (bib36) 2008; 16
Glascock (bib52) 2011
McAndrew, Parsons, Simard, Rochette, Ray, Mendell (bib13) 1997; 60
Pao, Wee, Yee, Pramono, Dwipramono (bib46) 2014; 22
Lorson, Strasswimmer, Yao, Baleja, Hahnen, Wirth (bib10) 1998; 19
Prior (10.1038/mt.2014.210_bib4) 2010; 152A
Lefebvre (10.1038/mt.2014.210_bib7) 1997; 16
Le (10.1038/mt.2014.210_bib38) 2005; 14
Coovert (10.1038/mt.2014.210_bib8) 1997; 6
Chakrabarty (10.1038/mt.2014.210_bib27) 2013; 8
Valori (10.1038/mt.2014.210_bib16) 2010; 2
Mailman (10.1038/mt.2014.210_bib12) 2002; 4
Glascock (10.1038/mt.2014.210_bib18) 2012; 417
Bevan (10.1038/mt.2014.210_bib21) 2011; 19
Arnold (10.1038/mt.2014.210_bib14) 2013; 74
Braak (10.1038/mt.2014.210_bib44) 2013; 9
Gray (10.1038/mt.2014.210_bib31) 2013; 20
Zerres (10.1038/mt.2014.210_bib5) 1995; 52
Mutsaers (10.1038/mt.2014.210_bib49) 2011; 20
Hayhurst (10.1038/mt.2014.210_bib50) 2012; 368
Foust (10.1038/mt.2014.210_bib15) 2010; 28
Arnold (10.1038/mt.2014.210_bib39) 2014; 1
Samaranch (10.1038/mt.2014.210_bib34) 2013; 24
Russman (10.1038/mt.2014.210_bib6) 2007; 22
Zhang (10.1038/mt.2014.210_bib37) 2011; 19
Passini (10.1038/mt.2014.210_bib24) 2014; 25
Gray (10.1038/mt.2014.210_bib48) 2011; 22
Crawford (10.1038/mt.2014.210_bib1) 1996; 3
Robbins (10.1038/mt.2014.210_bib23) 2014; 23
Roberts (10.1038/mt.2014.210_bib2) 1970; 45
Lorson (10.1038/mt.2014.210_bib10) 1998; 19
Gray (10.1038/mt.2014.210_bib26) 2011; 19
Samaranch (10.1038/mt.2014.210_bib33) 2012; 23
Osman (10.1038/mt.2014.210_bib45) 2012; 20
Yang (10.1038/mt.2014.210_bib25) 2014; 22
Foust (10.1038/mt.2014.210_bib41) 2009; 27
Passini (10.1038/mt.2014.210_bib20) 2010; 120
Dirren (10.1038/mt.2014.210_bib30) 2014; 25
Gholizadeh (10.1038/mt.2014.210_bib28) 2013; 24
Garg (10.1038/mt.2014.210_bib43) 2013; 33
Passini (10.1038/mt.2014.210_bib35) 2003; 77
Cearley (10.1038/mt.2014.210_bib36) 2008; 16
Glascock (10.1038/mt.2014.210_bib52) 2011
McAndrew (10.1038/mt.2014.210_bib13) 1997; 60
Dominguez (10.1038/mt.2014.210_bib17) 2011; 20
Foust (10.1038/mt.2014.210_bib40) 2013; 21
Pao (10.1038/mt.2014.210_bib46) 2014; 22
Monani (10.1038/mt.2014.210_bib9) 1999; 8
Hinderer (10.1038/mt.2014.210_bib47) 2014
Burnett (10.1038/mt.2014.210_bib11) 2009; 29
Federici (10.1038/mt.2014.210_bib32) 2012; 19
Benkhelifa-Ziyyat (10.1038/mt.2014.210_bib19) 2013; 21
Snyder (10.1038/mt.2014.210_bib29) 2011; 22
Setayesh (10.1038/mt.2014.210_bib42) 2001; 48
Nathwani (10.1038/mt.2014.210_bib22) 2011; 365
Pearn (10.1038/mt.2014.210_bib3) 1978; 15
Porensky (10.1038/mt.2014.210_bib51) 2012; 21
22149959 - N Engl J Med. 2011 Dec 22;365(25):2357-65
20234094 - J Clin Invest. 2010 Apr;120(4):1253-64
24781136 - Mol Ther. 2014 Jul;22(7):1299-309
7733848 - Arch Neurol. 1995 May;52(5):518-23
19103745 - Mol Cell Biol. 2009 Mar;29(5):1107-15
11839954 - Genet Med. 2002 Jan-Feb;4(1):20-6
25027660 - Mol Ther. 2014 Dec;22(12):2018-27
745211 - J Med Genet. 1978 Dec;15(6):409-13
23825679 - PLoS One. 2013;8(6):e67680
21118896 - Hum Mol Genet. 2011 Feb 15;20(4):681-93
23517473 - Hum Gene Ther. 2013 May;24(5):526-32
24617515 - Hum Gene Ther. 2014 Jul;25(7):619-30
9590291 - Nat Genet. 1998 May;19(1):63-6
24317636 - Mol Ther. 2014 Apr;22(4):854-61
9259265 - Hum Mol Genet. 1997 Aug;6(8):1205-14
23966684 - J Neurosci. 2013 Aug 21;33(34):13612-20
23808551 - Hum Gene Ther Methods. 2013 Aug;24(4):205-13
4245389 - Arch Dis Child. 1970 Feb;45(239):33-8
22186025 - Hum Mol Genet. 2012 Apr 1;21(7):1625-38
24191919 - Hum Gene Ther. 2014 Feb;25(2):109-20
23295949 - Mol Ther. 2013 Feb;21(2):282-90
21610699 - Mol Ther. 2011 Aug;19(8):1440-8
22705478 - Dev Biol. 2012 Aug 15;368(2):323-34
21918551 - Gene Ther. 2012 Aug;19(8):852-9
12768022 - J Virol. 2003 Jun;77(12):7034-40
24722206 - Hum Mol Genet. 2014 Sep 1;23(17):4559-68
9207792 - Nat Genet. 1997 Jul;16(3):265-9
24217521 - Nat Rev Neurol. 2013 Dec;9(12):708-14
21487395 - Mol Ther. 2011 Jun;19(6):1058-69
20190738 - Nat Biotechnol. 2010 Mar;28(3):271-4
21840928 - Hum Mol Genet. 2011 Nov 15;20(22):4334-44
20538619 - Sci Transl Med. 2010 Jun 9;2(35):35ra42
9199562 - Am J Hum Genet. 1997 Jun;60(6):1411-22
21443428 - Hum Gene Ther. 2011 Sep;22(9):1129-35
21988897 - J Vis Exp. 2011;(56). pii: 2968. doi: 10.3791/2968
24511555 - Ann Clin Transl Neurol. 2014 Jan 1;1(1):34-44
23303281 - Gene Ther. 2013 Apr;20(4):450-9
20578137 - Am J Med Genet A. 2010 Jul;152A(7):1608-16
9173917 - Neurobiol Dis. 1996 Apr;3(2):97-110
24008656 - Mol Ther. 2013 Dec;21(12):2148-59
19098898 - Nat Biotechnol. 2009 Jan;27(1):59-65
21811247 - Mol Ther. 2011 Nov;19(11):1971-80
10369862 - Hum Mol Genet. 1999 Jul;8(7):1177-83
22172949 - Biochem Biophys Res Commun. 2012 Jan 6;417(1):376-81
22031236 - Mol Ther. 2012 Jan;20(1):119-26
21476867 - Hum Gene Ther. 2011 Sep;22(9):1143-53
23939659 - Ann Neurol. 2013 Sep;74(3):348-62
22201473 - Hum Gene Ther. 2012 Apr;23(4):382-9
15703193 - Hum Mol Genet. 2005 Mar 15;14(6):845-57
17761648 - J Child Neurol. 2007 Aug;22(8):946-51
18714307 - Mol Ther. 2008 Oct;16(10):1710-8
11606347 - Can J Anaesth. 2001 Oct;48(9):890-3
References_xml – volume: 8
  start-page: 1177
  year: 1999
  end-page: 1183
  ident: bib9
  article-title: A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2
  publication-title: Hum Mol Genet
– volume: 29
  start-page: 1107
  year: 2009
  end-page: 1115
  ident: bib11
  article-title: Regulation of SMN protein stability
  publication-title: Mol Cell Biol
– volume: 22
  start-page: 1299
  year: 2014
  end-page: 1309
  ident: bib25
  article-title: Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10
  publication-title: Mol Ther
– volume: 77
  start-page: 7034
  year: 2003
  end-page: 7040
  ident: bib35
  article-title: Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice
  publication-title: J Virol
– volume: 23
  start-page: 382
  year: 2012
  end-page: 389
  ident: bib33
  article-title: Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates
  publication-title: Hum Gene Ther
– volume: 25
  start-page: 619
  year: 2014
  end-page: 630
  ident: bib24
  article-title: Translational fidelity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy
  publication-title: Hum Gene Ther
– volume: 33
  start-page: 13612
  year: 2013
  end-page: 13620
  ident: bib43
  article-title: Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome
  publication-title: J Neurosci
– volume: 20
  start-page: 119
  year: 2012
  end-page: 126
  ident: bib45
  article-title: Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy
  publication-title: Mol Ther
– volume: 23
  start-page: 4559
  year: 2014
  end-page: 4568
  ident: bib23
  article-title: Defining the therapeutic window in a severe animal model of spinal muscular atrophy
  publication-title: Hum Mol Genet
– volume: 16
  start-page: 265
  year: 1997
  end-page: 269
  ident: bib7
  article-title: Correlation between severity and SMN protein level in spinal muscular atrophy
  publication-title: Nat Genet
– volume: 20
  start-page: 450
  year: 2013
  end-page: 459
  ident: bib31
  article-title: Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates
  publication-title: Gene Ther
– volume: 2
  start-page: 35ra42
  year: 2010
  ident: bib16
  article-title: Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy
  publication-title: Sci Transl Med
– volume: 60
  start-page: 1411
  year: 1997
  end-page: 1422
  ident: bib13
  article-title: Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number
  publication-title: Am J Hum Genet
– volume: 22
  start-page: 1129
  year: 2011
  end-page: 1135
  ident: bib29
  article-title: Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery
  publication-title: Hum Gene Ther
– volume: 120
  start-page: 1253
  year: 2010
  end-page: 1264
  ident: bib20
  article-title: CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy
  publication-title: J Clin Invest
– volume: 25
  start-page: 109
  year: 2014
  end-page: 120
  ident: bib30
  article-title: Intracerebroventricular injection of adeno-associated virus 6 and 9 vectors for cell type-specific transgene expression in the spinal cord
  publication-title: Hum Gene Ther
– volume: 19
  start-page: 1058
  year: 2011
  end-page: 1069
  ident: bib26
  article-title: Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates
  publication-title: Mol Ther
– volume: 52
  start-page: 518
  year: 1995
  end-page: 523
  ident: bib5
  article-title: Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications
  publication-title: Arch Neurol
– volume: 27
  start-page: 59
  year: 2009
  end-page: 65
  ident: bib41
  article-title: Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes
  publication-title: Nat Biotechnol
– volume: 22
  start-page: 1143
  year: 2011
  end-page: 1153
  ident: bib48
  article-title: Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors
  publication-title: Hum Gene Ther
– volume: 365
  start-page: 2357
  year: 2011
  end-page: 2365
  ident: bib22
  article-title: Adenovirus-associated virus vector-mediated gene transfer in hemophilia B
  publication-title: N Engl J Med
– volume: 417
  start-page: 376
  year: 2012
  end-page: 381
  ident: bib18
  article-title: Direct central nervous system delivery provides enhanced protection following vector mediated gene replacement in a severe model of spinal muscular atrophy
  publication-title: Biochem Biophys Res Commun
– volume: 24
  start-page: 526
  year: 2013
  end-page: 532
  ident: bib34
  article-title: Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates
  publication-title: Hum Gene Ther
– volume: 74
  start-page: 348
  year: 2013
  end-page: 362
  ident: bib14
  article-title: Spinal muscular atrophy: development and implementation of potential treatments
  publication-title: Ann Neurol
– year: 2011
  ident: bib52
  article-title: Delivery of therapeutic agents through intracerebroventricular (ICV) and intravenous (IV) injection in mice
  publication-title: Journal of visualized experiments: JoVE
– volume: 1
  start-page: 34
  year: 2014
  end-page: 44
  ident: bib39
  article-title: Electrophysiological Biomarkers in Spinal Muscular Atrophy: Preclinical Proof of Concept
  publication-title: Ann Clin Transl Neurol
– volume: 22
  start-page: 854
  year: 2014
  end-page: 861
  ident: bib46
  article-title: Dual masking of specific negative splicing regulatory elements resulted in maximal exon 7 inclusion of SMN2 gene
  publication-title: Mol Ther
– volume: 19
  start-page: 1440
  year: 2011
  end-page: 1448
  ident: bib37
  article-title: Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system
  publication-title: Mol Ther
– volume: 8
  start-page: e67680
  year: 2013
  ident: bib27
  article-title: Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain
  publication-title: PLoS One
– volume: 21
  start-page: 1625
  year: 2012
  end-page: 1638
  ident: bib51
  article-title: A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse
  publication-title: Hum Mol Genet
– volume: 21
  start-page: 282
  year: 2013
  end-page: 290
  ident: bib19
  article-title: Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice
  publication-title: Mol Ther
– volume: 14
  start-page: 845
  year: 2005
  end-page: 857
  ident: bib38
  article-title: SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN
  publication-title: Hum Mol Genet
– volume: 368
  start-page: 323
  year: 2012
  end-page: 334
  ident: bib50
  article-title: A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein
  publication-title: Dev Biol
– volume: 6
  start-page: 1205
  year: 1997
  end-page: 1214
  ident: bib8
  article-title: The survival motor neuron protein in spinal muscular atrophy
  publication-title: Hum Mol Genet
– volume: 4
  start-page: 20
  year: 2002
  end-page: 26
  ident: bib12
  article-title: Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2
  publication-title: Genet Med
– volume: 45
  start-page: 33
  year: 1970
  end-page: 38
  ident: bib2
  article-title: The genetic component in child mortality
  publication-title: Arch Dis Child
– year: 2014
  ident: bib47
  article-title: Intrathecal gene therapy corrects CNS pathology in a feline model of mucopolysaccharidosis I
  publication-title: Mol Ther
– volume: 24
  start-page: 205
  year: 2013
  end-page: 213
  ident: bib28
  article-title: Transduction of the central nervous system after intracerebroventricular injection of adeno-associated viral vectors in neonatal and juvenile mice
  publication-title: Hum Gene Ther Methods
– volume: 15
  start-page: 409
  year: 1978
  end-page: 413
  ident: bib3
  article-title: Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy
  publication-title: J Med Genet
– volume: 20
  start-page: 4334
  year: 2011
  end-page: 4344
  ident: bib49
  article-title: Reversible molecular pathology of skeletal muscle in spinal muscular atrophy
  publication-title: Hum Mol Genet
– volume: 19
  start-page: 1971
  year: 2011
  end-page: 1980
  ident: bib21
  article-title: Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders
  publication-title: Mol Ther
– volume: 20
  start-page: 681
  year: 2011
  end-page: 693
  ident: bib17
  article-title: Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice
  publication-title: Hum Mol Genet
– volume: 28
  start-page: 271
  year: 2010
  end-page: 274
  ident: bib15
  article-title: Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN
  publication-title: Nat Biotechnol
– volume: 16
  start-page: 1710
  year: 2008
  end-page: 1718
  ident: bib36
  article-title: Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain
  publication-title: Mol Ther
– volume: 152A
  start-page: 1608
  year: 2010
  end-page: 1616
  ident: bib4
  article-title: Newborn and carrier screening for spinal muscular atrophy
  publication-title: Am J Med Genet A
– volume: 22
  start-page: 946
  year: 2007
  end-page: 951
  ident: bib6
  article-title: Spinal muscular atrophy: clinical classification and disease heterogeneity
  publication-title: J Child Neurol
– volume: 19
  start-page: 852
  year: 2012
  end-page: 859
  ident: bib32
  article-title: Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs
  publication-title: Gene Ther
– volume: 3
  start-page: 97
  year: 1996
  end-page: 110
  ident: bib1
  article-title: The neurobiology of childhood spinal muscular atrophy
  publication-title: Neurobiol Dis
– volume: 48
  start-page: 890
  year: 2001
  end-page: 893
  ident: bib42
  article-title: The Trendelenburg position increases the spread and accelerates the onset of epidural anesthesia for Cesarean section
  publication-title: Can J Anaesth
– volume: 19
  start-page: 63
  year: 1998
  end-page: 66
  ident: bib10
  article-title: SMN oligomerization defect correlates with spinal muscular atrophy severity
  publication-title: Nat Genet
– volume: 9
  start-page: 708
  year: 2013
  end-page: 714
  ident: bib44
  article-title: Amyotrophic lateral sclerosis–a model of corticofugal axonal spread
  publication-title: Nat Rev Neurol
– volume: 21
  start-page: 2148
  year: 2013
  end-page: 2159
  ident: bib40
  article-title: Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS
  publication-title: Mol Ther
– volume: 20
  start-page: 450
  year: 2013
  ident: 10.1038/mt.2014.210_bib31
  article-title: Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates
  publication-title: Gene Ther
  doi: 10.1038/gt.2012.101
– volume: 77
  start-page: 7034
  year: 2003
  ident: 10.1038/mt.2014.210_bib35
  publication-title: J Virol
  doi: 10.1128/JVI.77.12.7034-7040.2003
– volume: 24
  start-page: 205
  year: 2013
  ident: 10.1038/mt.2014.210_bib28
  article-title: Transduction of the central nervous system after intracerebroventricular injection of adeno-associated viral vectors in neonatal and juvenile mice
  publication-title: Hum Gene Ther Methods
  doi: 10.1089/hgtb.2013.076
– volume: 19
  start-page: 852
  year: 2012
  ident: 10.1038/mt.2014.210_bib32
  article-title: Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs
  publication-title: Gene Ther
  doi: 10.1038/gt.2011.130
– volume: 45
  start-page: 33
  year: 1970
  ident: 10.1038/mt.2014.210_bib2
  article-title: The genetic component in child mortality
  publication-title: Arch Dis Child
  doi: 10.1136/adc.45.239.33
– volume: 23
  start-page: 4559
  year: 2014
  ident: 10.1038/mt.2014.210_bib23
  article-title: Defining the therapeutic window in a severe animal model of spinal muscular atrophy
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddu169
– volume: 74
  start-page: 348
  year: 2013
  ident: 10.1038/mt.2014.210_bib14
  article-title: Spinal muscular atrophy: development and implementation of potential treatments
  publication-title: Ann Neurol
  doi: 10.1002/ana.23995
– volume: 22
  start-page: 1143
  year: 2011
  ident: 10.1038/mt.2014.210_bib48
  article-title: Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors
  publication-title: Hum Gene Ther
  doi: 10.1089/hum.2010.245
– volume: 60
  start-page: 1411
  year: 1997
  ident: 10.1038/mt.2014.210_bib13
  article-title: Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number
  publication-title: Am J Hum Genet
  doi: 10.1086/515465
– volume: 48
  start-page: 890
  year: 2001
  ident: 10.1038/mt.2014.210_bib42
  article-title: The Trendelenburg position increases the spread and accelerates the onset of epidural anesthesia for Cesarean section
  publication-title: Can J Anaesth
  doi: 10.1007/BF03017356
– year: 2014
  ident: 10.1038/mt.2014.210_bib47
  article-title: Intrathecal gene therapy corrects CNS pathology in a feline model of mucopolysaccharidosis I
  publication-title: Mol Ther
  doi: 10.1038/mt.2014.135
– volume: 29
  start-page: 1107
  year: 2009
  ident: 10.1038/mt.2014.210_bib11
  article-title: Regulation of SMN protein stability
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01262-08
– volume: 14
  start-page: 845
  year: 2005
  ident: 10.1038/mt.2014.210_bib38
  article-title: SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddi078
– volume: 20
  start-page: 681
  year: 2011
  ident: 10.1038/mt.2014.210_bib17
  article-title: Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddq514
– volume: 19
  start-page: 1971
  year: 2011
  ident: 10.1038/mt.2014.210_bib21
  article-title: Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders
  publication-title: Mol Ther
  doi: 10.1038/mt.2011.157
– volume: 33
  start-page: 13612
  year: 2013
  ident: 10.1038/mt.2014.210_bib43
  article-title: Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1854-13.2013
– volume: 22
  start-page: 1299
  year: 2014
  ident: 10.1038/mt.2014.210_bib25
  article-title: Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10
  publication-title: Mol Ther
  doi: 10.1038/mt.2014.68
– volume: 22
  start-page: 1129
  year: 2011
  ident: 10.1038/mt.2014.210_bib29
  article-title: Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery
  publication-title: Hum Gene Ther
  doi: 10.1089/hum.2011.008
– volume: 152A
  start-page: 1608
  year: 2010
  ident: 10.1038/mt.2014.210_bib4
  article-title: Newborn and carrier screening for spinal muscular atrophy
  publication-title: Am J Med Genet A
  doi: 10.1002/ajmg.a.33474
– volume: 365
  start-page: 2357
  year: 2011
  ident: 10.1038/mt.2014.210_bib22
  article-title: Adenovirus-associated virus vector-mediated gene transfer in hemophilia B
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1108046
– volume: 24
  start-page: 526
  year: 2013
  ident: 10.1038/mt.2014.210_bib34
  article-title: Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates
  publication-title: Hum Gene Ther
  doi: 10.1089/hum.2013.005
– volume: 25
  start-page: 619
  year: 2014
  ident: 10.1038/mt.2014.210_bib24
  article-title: Translational fidelity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy
  publication-title: Hum Gene Ther
  doi: 10.1089/hum.2014.011
– volume: 21
  start-page: 1625
  year: 2012
  ident: 10.1038/mt.2014.210_bib51
  article-title: A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddr600
– volume: 417
  start-page: 376
  year: 2012
  ident: 10.1038/mt.2014.210_bib18
  article-title: Direct central nervous system delivery provides enhanced protection following vector mediated gene replacement in a severe model of spinal muscular atrophy
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2011.11.121
– volume: 3
  start-page: 97
  year: 1996
  ident: 10.1038/mt.2014.210_bib1
  article-title: The neurobiology of childhood spinal muscular atrophy
  publication-title: Neurobiol Dis
  doi: 10.1006/nbdi.1996.0010
– volume: 20
  start-page: 4334
  year: 2011
  ident: 10.1038/mt.2014.210_bib49
  article-title: Reversible molecular pathology of skeletal muscle in spinal muscular atrophy
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddr360
– volume: 19
  start-page: 63
  year: 1998
  ident: 10.1038/mt.2014.210_bib10
  article-title: SMN oligomerization defect correlates with spinal muscular atrophy severity
  publication-title: Nat Genet
  doi: 10.1038/ng0598-63
– volume: 9
  start-page: 708
  year: 2013
  ident: 10.1038/mt.2014.210_bib44
  article-title: Amyotrophic lateral sclerosis–a model of corticofugal axonal spread
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2013.221
– volume: 20
  start-page: 119
  year: 2012
  ident: 10.1038/mt.2014.210_bib45
  article-title: Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy
  publication-title: Mol Ther
  doi: 10.1038/mt.2011.232
– volume: 21
  start-page: 282
  year: 2013
  ident: 10.1038/mt.2014.210_bib19
  article-title: Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice
  publication-title: Mol Ther
  doi: 10.1038/mt.2012.261
– volume: 2
  start-page: 35ra42
  year: 2010
  ident: 10.1038/mt.2014.210_bib16
  article-title: Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3000830
– volume: 15
  start-page: 409
  year: 1978
  ident: 10.1038/mt.2014.210_bib3
  article-title: Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy
  publication-title: J Med Genet
  doi: 10.1136/jmg.15.6.409
– volume: 4
  start-page: 20
  year: 2002
  ident: 10.1038/mt.2014.210_bib12
  article-title: Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2
  publication-title: Genet Med
  doi: 10.1097/00125817-200201000-00004
– volume: 25
  start-page: 109
  year: 2014
  ident: 10.1038/mt.2014.210_bib30
  article-title: Intracerebroventricular injection of adeno-associated virus 6 and 9 vectors for cell type-specific transgene expression in the spinal cord
  publication-title: Hum Gene Ther
  doi: 10.1089/hum.2013.021
– volume: 28
  start-page: 271
  year: 2010
  ident: 10.1038/mt.2014.210_bib15
  article-title: Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1610
– volume: 21
  start-page: 2148
  year: 2013
  ident: 10.1038/mt.2014.210_bib40
  article-title: Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS
  publication-title: Mol Ther
  doi: 10.1038/mt.2013.211
– volume: 23
  start-page: 382
  year: 2012
  ident: 10.1038/mt.2014.210_bib33
  article-title: Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates
  publication-title: Hum Gene Ther
  doi: 10.1089/hum.2011.200
– volume: 16
  start-page: 265
  year: 1997
  ident: 10.1038/mt.2014.210_bib7
  article-title: Correlation between severity and SMN protein level in spinal muscular atrophy
  publication-title: Nat Genet
  doi: 10.1038/ng0797-265
– year: 2011
  ident: 10.1038/mt.2014.210_bib52
  article-title: Delivery of therapeutic agents through intracerebroventricular (ICV) and intravenous (IV) injection in mice
  publication-title: Journal of visualized experiments: JoVE
  doi: 10.3791/2968
– volume: 19
  start-page: 1058
  year: 2011
  ident: 10.1038/mt.2014.210_bib26
  article-title: Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates
  publication-title: Mol Ther
  doi: 10.1038/mt.2011.72
– volume: 52
  start-page: 518
  year: 1995
  ident: 10.1038/mt.2014.210_bib5
  article-title: Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1995.00540290108025
– volume: 27
  start-page: 59
  year: 2009
  ident: 10.1038/mt.2014.210_bib41
  article-title: Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1515
– volume: 120
  start-page: 1253
  year: 2010
  ident: 10.1038/mt.2014.210_bib20
  article-title: CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy
  publication-title: J Clin Invest
  doi: 10.1172/JCI41615
– volume: 6
  start-page: 1205
  year: 1997
  ident: 10.1038/mt.2014.210_bib8
  article-title: The survival motor neuron protein in spinal muscular atrophy
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/6.8.1205
– volume: 368
  start-page: 323
  year: 2012
  ident: 10.1038/mt.2014.210_bib50
  article-title: A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2012.05.037
– volume: 19
  start-page: 1440
  year: 2011
  ident: 10.1038/mt.2014.210_bib37
  article-title: Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system
  publication-title: Mol Ther
  doi: 10.1038/mt.2011.98
– volume: 1
  start-page: 34
  year: 2014
  ident: 10.1038/mt.2014.210_bib39
  article-title: Electrophysiological Biomarkers in Spinal Muscular Atrophy: Preclinical Proof of Concept
  publication-title: Ann Clin Transl Neurol
  doi: 10.1002/acn3.23
– volume: 22
  start-page: 946
  year: 2007
  ident: 10.1038/mt.2014.210_bib6
  article-title: Spinal muscular atrophy: clinical classification and disease heterogeneity
  publication-title: J Child Neurol
  doi: 10.1177/0883073807305673
– volume: 8
  start-page: e67680
  year: 2013
  ident: 10.1038/mt.2014.210_bib27
  article-title: Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0067680
– volume: 8
  start-page: 1177
  year: 1999
  ident: 10.1038/mt.2014.210_bib9
  article-title: A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/8.7.1177
– volume: 22
  start-page: 854
  year: 2014
  ident: 10.1038/mt.2014.210_bib46
  article-title: Dual masking of specific negative splicing regulatory elements resulted in maximal exon 7 inclusion of SMN2 gene
  publication-title: Mol Ther
  doi: 10.1038/mt.2013.276
– volume: 16
  start-page: 1710
  year: 2008
  ident: 10.1038/mt.2014.210_bib36
  article-title: Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain
  publication-title: Mol Ther
  doi: 10.1038/mt.2008.166
– reference: 22186025 - Hum Mol Genet. 2012 Apr 1;21(7):1625-38
– reference: 9199562 - Am J Hum Genet. 1997 Jun;60(6):1411-22
– reference: 24511555 - Ann Clin Transl Neurol. 2014 Jan 1;1(1):34-44
– reference: 21476867 - Hum Gene Ther. 2011 Sep;22(9):1143-53
– reference: 23825679 - PLoS One. 2013;8(6):e67680
– reference: 20234094 - J Clin Invest. 2010 Apr;120(4):1253-64
– reference: 7733848 - Arch Neurol. 1995 May;52(5):518-23
– reference: 9259265 - Hum Mol Genet. 1997 Aug;6(8):1205-14
– reference: 24617515 - Hum Gene Ther. 2014 Jul;25(7):619-30
– reference: 21988897 - J Vis Exp. 2011;(56). pii: 2968. doi: 10.3791/2968
– reference: 20578137 - Am J Med Genet A. 2010 Jul;152A(7):1608-16
– reference: 21118896 - Hum Mol Genet. 2011 Feb 15;20(4):681-93
– reference: 23939659 - Ann Neurol. 2013 Sep;74(3):348-62
– reference: 24008656 - Mol Ther. 2013 Dec;21(12):2148-59
– reference: 24722206 - Hum Mol Genet. 2014 Sep 1;23(17):4559-68
– reference: 23808551 - Hum Gene Ther Methods. 2013 Aug;24(4):205-13
– reference: 11606347 - Can J Anaesth. 2001 Oct;48(9):890-3
– reference: 4245389 - Arch Dis Child. 1970 Feb;45(239):33-8
– reference: 21443428 - Hum Gene Ther. 2011 Sep;22(9):1129-35
– reference: 22031236 - Mol Ther. 2012 Jan;20(1):119-26
– reference: 24781136 - Mol Ther. 2014 Jul;22(7):1299-309
– reference: 15703193 - Hum Mol Genet. 2005 Mar 15;14(6):845-57
– reference: 21918551 - Gene Ther. 2012 Aug;19(8):852-9
– reference: 9207792 - Nat Genet. 1997 Jul;16(3):265-9
– reference: 11839954 - Genet Med. 2002 Jan-Feb;4(1):20-6
– reference: 9173917 - Neurobiol Dis. 1996 Apr;3(2):97-110
– reference: 9590291 - Nat Genet. 1998 May;19(1):63-6
– reference: 22149959 - N Engl J Med. 2011 Dec 22;365(25):2357-65
– reference: 12768022 - J Virol. 2003 Jun;77(12):7034-40
– reference: 25027660 - Mol Ther. 2014 Dec;22(12):2018-27
– reference: 21610699 - Mol Ther. 2011 Aug;19(8):1440-8
– reference: 22172949 - Biochem Biophys Res Commun. 2012 Jan 6;417(1):376-81
– reference: 23966684 - J Neurosci. 2013 Aug 21;33(34):13612-20
– reference: 21811247 - Mol Ther. 2011 Nov;19(11):1971-80
– reference: 23517473 - Hum Gene Ther. 2013 May;24(5):526-32
– reference: 17761648 - J Child Neurol. 2007 Aug;22(8):946-51
– reference: 23295949 - Mol Ther. 2013 Feb;21(2):282-90
– reference: 24191919 - Hum Gene Ther. 2014 Feb;25(2):109-20
– reference: 21487395 - Mol Ther. 2011 Jun;19(6):1058-69
– reference: 745211 - J Med Genet. 1978 Dec;15(6):409-13
– reference: 23303281 - Gene Ther. 2013 Apr;20(4):450-9
– reference: 18714307 - Mol Ther. 2008 Oct;16(10):1710-8
– reference: 20190738 - Nat Biotechnol. 2010 Mar;28(3):271-4
– reference: 19103745 - Mol Cell Biol. 2009 Mar;29(5):1107-15
– reference: 20538619 - Sci Transl Med. 2010 Jun 9;2(35):35ra42
– reference: 21840928 - Hum Mol Genet. 2011 Nov 15;20(22):4334-44
– reference: 19098898 - Nat Biotechnol. 2009 Jan;27(1):59-65
– reference: 10369862 - Hum Mol Genet. 1999 Jul;8(7):1177-83
– reference: 22201473 - Hum Gene Ther. 2012 Apr;23(4):382-9
– reference: 24317636 - Mol Ther. 2014 Apr;22(4):854-61
– reference: 22705478 - Dev Biol. 2012 Aug 15;368(2):323-34
– reference: 24217521 - Nat Rev Neurol. 2013 Dec;9(12):708-14
SSID ssj0011596
Score 2.5713935
Snippet Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 477
SubjectTerms Animals
Animals, Newborn
Atrophy
Brain research
Brain Stem - metabolism
Cerebral Cortex - metabolism
Dependovirus - genetics
Disease Models, Animal
DNA, Complementary - administration & dosage
DNA, Complementary - genetics
DNA, Complementary - metabolism
Dose-Response Relationship, Drug
Gene Expression
Gene therapy
Genetic Therapy - methods
Genetic Vectors - administration & dosage
Genetic Vectors - pharmacokinetics
Injections, Epidural
Macaca fascicularis
Mice
Mice, Knockout
Motor Neurons - metabolism
Motor Neurons - pathology
Muscular Atrophy, Spinal - genetics
Muscular Atrophy, Spinal - metabolism
Muscular Atrophy, Spinal - pathology
Muscular Atrophy, Spinal - therapy
Neurons
Original
Proteins
Spinal cord
Spinal Cord - metabolism
Spinal Cord - pathology
Survival of Motor Neuron 1 Protein - genetics
Survival of Motor Neuron 1 Protein - metabolism
Transduction, Genetic
Transgenes
Title Improving Single Injection CSF Delivery of AAV9-mediated Gene Therapy for SMA: A Dose–response Study in Mice and Nonhuman Primates
URI https://dx.doi.org/10.1038/mt.2014.210
https://www.ncbi.nlm.nih.gov/pubmed/25358252
https://www.proquest.com/docview/1791387365
https://www.proquest.com/docview/1660028953
https://www.proquest.com/docview/1776654164
https://pubmed.ncbi.nlm.nih.gov/PMC4351452
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgE4gXBANGYEyHtCekbI0TOwkvqKyrNlCriRbUt8ixHTHUOWPtHvrKX85d4gYG1V4iRblESc4_Pvu-u4-xAy5sr1IqCnOi0CRS5mHOjQi1xLVzhHN-llPu8GgsT78mn2Zi5jfcFp5WuR4Tm4Ha1Jr2yI-ojGacpbEUH65-hqQaRdFVL6Fxn21HiERIuiGddQsuBDuNPhdJ_ISEbXx-Xi_Oji6JRxklh5xSZzfPSP8jzn-Jk3_NRMMn7LGHkNBvff6U3bNuhz1oRSVXO-zhyIfLn7Ff3ZYBTPAwt3DmfjTcKwfHkyEM7JxoGSuoK-j3v-Vhk0eCGBSoGjVM24oDgLgWJqP-e-jDoF7Y8Lrl1VogEuIKLhyMcLgB5QyMa9eo_sE5VbFAGPucTYcn0-PT0IsuoHt4sgy1jhTCCGlsqU2eSKETaTNlIotLnyoypeKmTHlFUE9WQmuelRUlwBqeahXHL9iWq519yQAtMpXn1uYKh2ObqgSfmFjbk2XUKysTsHfr_15oX5CcdDHmRRMYj7PiclmQkwp0UsAOOuOrtg7HZrPDtQMLDyFaaFDgDLH5hr21mwvfexfFn7YWsLfdZex3FExRztY3aCNlE6UV8R02aUrizrgiDdhu23K6l-eCcpQFD1h6q011BlT3-_YVd_G9qf-dUPaF4K_ufvXX7BF-pGj5cntsa3l9Y98ggFqW-00v2WfbH0_G51_wbHD2-TcLchxJ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqXhcEJRXoMAilQuS23jtXdtIFQpNo4Q2UUUC6m219q7VVqldmlQoV_4X_40Zv6AQ9dZLLp5EG8_uzrc73zcDsMWF7aRau05EFBpfysiJuBFOIvHs7GLMDyPSDo_GcvDV_3wsjtfgV62FIVplvScWG7XJE7oj36Eyml4YeFJ8vPjuUNcoyq7WLTR01VrB7BYlxiphx4Fd_sAj3Hx32EN_v-O8vz_dGzhVlwEcD_cXTpK4GuOmNDZOTORLkfjShtq4FrF-6ppYcxMHPCVsI1ORJDyMU1J8Gh4kmu5DMQKs-3R_0oL1T_vjoy9NGgOxQiFvElw4BK4qgWDHC3fOicjp-tuctLurQ-L_kPdf5uZfobD_EB5UGJZ1y0n3CNZstgF3yq6Wyw24O6ry9Y_hZ3NnwSb4MbNsmJ0V5K-M7U36rGdnxAtZsjxl3e63yCmELAiCGZXDZtOy5AFDYM0mo-4H1mW9fG6dy5LYaxmxIJfsNGMj3O-Yzgwb51nRdpAdURkNxNFPYHob_ngKrSzP7HNgaBHqKLI20hgPbKB9_EXf2o6M3U6cmja8r9-7SqqK6NSYY6aKzLwXqvOFIicpdFIbthrji7IQyGqz7dqBqsIwJTZRGKJWf2GzdrOqto-5-jPZ2_C2eYwLn7I5OrP5FdpIWaSJhXeDTRBQd2k8ErfhWTlzmsFzQSJpwdsQXJtTjQEVHr_-JDs9KQqQ-yT_EPzFzUN_A_cG09GhOhyOD17CffzDoiTvbUJrcXllXyGaW8SvqzXDQN3yKv0NdgJd8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Single+Injection+CSF+Delivery+of+AAV9-mediated+Gene+Therapy+for+SMA%3A+A+Dose-response+Study+in+Mice+and+Nonhuman+Primates&rft.jtitle=Molecular+therapy&rft.au=Meyer%2C+Kathrin&rft.au=Ferraiuolo%2C+Laura&rft.au=Schmelzer%2C+Leah&rft.au=Braun%2C+Lyndsey&rft.date=2015-03-01&rft.pub=Elsevier+Limited&rft.issn=1525-0016&rft.eissn=1525-0024&rft.volume=23&rft.issue=3&rft.spage=477&rft_id=info:doi/10.1038%2Fmt.2014.210&rft.externalDocID=4068158881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-0016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-0016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-0016&client=summon