Improving Single Injection CSF Delivery of AAV9-mediated Gene Therapy for SMA: A Dose–response Study in Mice and Nonhuman Primates
Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intra...
Saved in:
Published in | Molecular therapy Vol. 23; no. 3; pp. 477 - 487 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2015
Elsevier Limited Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1525-0016 1525-0024 1525-0024 |
DOI | 10.1038/mt.2014.210 |
Cover
Abstract | Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders. |
---|---|
AbstractList | Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders. Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders. |
Author | Burghes, Arthur H M Likhite, Shibi Mendell, Jerry R Braun, Lyndsey Meyer, Kathrin Govoni, Alessandra Foust, Kevin D McGovern, Vicki Schmelzer, Leah Michels, Olivia Fitzgerald, Julie Ferraiuolo, Laura Morales, Pablo Kaspar, Brian K |
Author_xml | – sequence: 1 givenname: Kathrin surname: Meyer fullname: Meyer, Kathrin organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA – sequence: 2 givenname: Laura surname: Ferraiuolo fullname: Ferraiuolo, Laura organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA – sequence: 3 givenname: Leah surname: Schmelzer fullname: Schmelzer, Leah organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA – sequence: 4 givenname: Lyndsey surname: Braun fullname: Braun, Lyndsey organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA – sequence: 5 givenname: Vicki surname: McGovern fullname: McGovern, Vicki organization: Department of Molecular & Cellular Biochemistry, The Ohio State University Medical Center, Columbus, Ohio, USA – sequence: 6 givenname: Shibi surname: Likhite fullname: Likhite, Shibi organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA – sequence: 7 givenname: Olivia surname: Michels fullname: Michels, Olivia organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA – sequence: 8 givenname: Alessandra surname: Govoni fullname: Govoni, Alessandra organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA – sequence: 9 givenname: Julie surname: Fitzgerald fullname: Fitzgerald, Julie organization: Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA – sequence: 10 givenname: Pablo surname: Morales fullname: Morales, Pablo organization: Mannheimer Foundation, Inc., Homestead, Florida, USA – sequence: 11 givenname: Kevin D surname: Foust fullname: Foust, Kevin D organization: Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA – sequence: 12 givenname: Jerry R surname: Mendell fullname: Mendell, Jerry R organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA – sequence: 13 givenname: Arthur H M surname: Burghes fullname: Burghes, Arthur H M organization: Department of Molecular & Cellular Biochemistry, The Ohio State University Medical Center, Columbus, Ohio, USA – sequence: 14 givenname: Brian K surname: Kaspar fullname: Kaspar, Brian K email: Brian.Kaspar@NationwideChildrens.org organization: The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25358252$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk-L1DAcLbLi_tGTdwl4EaRjkjZpx4NQZt11YFeFGbyGNPl1J0Ob1KQdmJsHv4Hf0E9iyuwuuix4SX6Q93u8l_dOkyPrLCTJS4JnBGflu26YUUzyGSX4SXJCGGUpxjQ_up8JP05OQ9jGibA5f5YcU5axkjJ6kvxcdr13O2Nv0CoeLaCl3YIajLNosbpA59CaHfg9cg2qqm_ztANt5AAaXYIFtN6Al_0eNc6j1XX1HlXo3AX4_eOXh9A7GwCthlHvkbHo2ihA0mr02dnN2EmLvnrTRa7wPHnayDbAi9v7LFlffFwvPqVXXy6Xi-oqVZzmQ6oUkbhgXEOt9DznTOUcSqkJcMobomtJdV3QBrMc84YpRcu6odGnpoWSWXaWfDjQ9mMdbSiwg5et6CcVfi-cNOLfF2s24sbtRJ4xkjMaCd7cEnj3fYQwiM4EBW0rLbgxCFIUnLOc8Pz_UM5jSOWcTbJeP4Bu3eht_IhIOCdZWWScRdSrv8Xfq76LMgLIAaC8C8FDI5QZ5BRk9GJaQbCY6iK6QUx1EbEuceftg5072sfR7ICGmNHOgBdBGbAqNsLHygjtzKN7fwA7eNMi |
CitedBy_id | crossref_primary_10_1056_NEJMoa2412392 crossref_primary_10_1016_j_ejpn_2020_07_001 crossref_primary_10_1073_pnas_2007785118 crossref_primary_10_1089_hum_2016_087 crossref_primary_10_1080_14712598_2017_1250880 crossref_primary_10_1038_gt_2017_46 crossref_primary_10_1016_j_neuropharm_2016_02_013 crossref_primary_10_1016_j_ymthe_2019_07_017 crossref_primary_10_1002_14651858_CD006282_pub5 crossref_primary_10_1002_jev2_12464 crossref_primary_10_1016_j_omtm_2018_12_001 crossref_primary_10_1016_j_omtn_2025_102469 crossref_primary_10_1016_j_brainres_2020_146832 crossref_primary_10_3390_jpm10040258 crossref_primary_10_1172_jci_insight_169650 crossref_primary_10_1007_s00018_023_05018_w crossref_primary_10_1007_s11910_017_0798_y crossref_primary_10_1016_j_jconrel_2016_09_011 crossref_primary_10_1089_hum_2023_173 crossref_primary_10_1093_hmg_ddx058 crossref_primary_10_26508_lsa_202000889 crossref_primary_10_1089_hum_2022_138 crossref_primary_10_1016_j_omtn_2018_04_015 crossref_primary_10_1038_gt_2017_27 crossref_primary_10_1016_j_mad_2021_111549 crossref_primary_10_1016_j_mrrev_2024_108515 crossref_primary_10_1016_j_omtm_2019_11_006 crossref_primary_10_1016_j_ymthe_2019_11_012 crossref_primary_10_1016_j_omtm_2020_10_014 crossref_primary_10_1016_j_pediatrneurol_2020_04_010 crossref_primary_10_3389_fnins_2021_747726 crossref_primary_10_3389_fnmol_2016_00056 crossref_primary_10_1038_nrneurol_2015_77 crossref_primary_10_1089_hum_2023_060 crossref_primary_10_1038_s41598_017_14313_z crossref_primary_10_3390_pharmaceutics15061764 crossref_primary_10_1089_hum_2018_015 crossref_primary_10_17925_USN_2022_18_2_133 crossref_primary_10_1007_s00115_019_0761_z crossref_primary_10_1016_j_omtm_2018_07_006 crossref_primary_10_1016_j_omtm_2018_07_005 crossref_primary_10_3233_JND_221560 crossref_primary_10_1038_mtm_2016_46 crossref_primary_10_1089_hum_2020_301 crossref_primary_10_1016_j_ymthe_2019_08_017 crossref_primary_10_1007_s10072_019_03764_z crossref_primary_10_1080_17512433_2019_1634543 crossref_primary_10_1016_j_neuron_2019_02_017 crossref_primary_10_1002_ana_24618 crossref_primary_10_1080_14712598_2018_1479739 crossref_primary_10_1016_j_omtm_2023_05_016 crossref_primary_10_1038_s41434_022_00346_1 crossref_primary_10_1172_jci_insight_164608 crossref_primary_10_3389_fnins_2020_580179 crossref_primary_10_1089_crispr_2020_0025 crossref_primary_10_1016_j_ymthe_2024_08_024 crossref_primary_10_3389_fped_2021_684134 crossref_primary_10_1038_mtm_2016_60 crossref_primary_10_1186_s12987_024_00556_2 crossref_primary_10_1093_hmg_ddab093 crossref_primary_10_1038_srep11746 crossref_primary_10_1016_j_omtm_2024_101312 crossref_primary_10_3389_fncel_2023_1307636 crossref_primary_10_1089_hum_2017_026 crossref_primary_10_1080_21678707_2020_1856654 crossref_primary_10_1016_j_omtm_2018_02_005 crossref_primary_10_1016_S1474_4422_23_00419_2 crossref_primary_10_1038_s41434_019_0085_4 crossref_primary_10_1089_hum_2016_101 crossref_primary_10_1089_hum_2018_079 crossref_primary_10_3389_fneur_2021_726468 crossref_primary_10_1517_21678707_2015_1039511 crossref_primary_10_1002_cpz1_1091 crossref_primary_10_1172_JCI159814 crossref_primary_10_1016_j_ymthe_2020_12_031 crossref_primary_10_3390_genes15080999 crossref_primary_10_1016_j_ymthe_2021_07_010 crossref_primary_10_1126_sciadv_aau9859 crossref_primary_10_3390_biology11060894 crossref_primary_10_1002_14651858_CD006281_pub5 crossref_primary_10_1038_s41434_018_0028_5 crossref_primary_10_3233_JND_200531 crossref_primary_10_1126_scitranslmed_aau6414 crossref_primary_10_4103_singaporemedj_SMJ_2021_376 crossref_primary_10_2174_1566523221666210922155413 crossref_primary_10_1080_21678707_2021_2003778 crossref_primary_10_1007_s12035_016_9777_6 crossref_primary_10_1523_JNEUROSCI_1635_16_2016 crossref_primary_10_1007_s12035_019_1533_2 crossref_primary_10_1089_hum_2016_109 crossref_primary_10_1038_s41598_021_99979_2 crossref_primary_10_1016_j_celrep_2024_114876 crossref_primary_10_1016_j_ymthe_2020_05_011 crossref_primary_10_1016_j_omtn_2024_102264 crossref_primary_10_1080_14712598_2018_1416089 crossref_primary_10_3390_ijms24021130 crossref_primary_10_1016_j_omtn_2018_06_009 crossref_primary_10_1016_j_brainres_2020_146683 crossref_primary_10_1007_s00018_022_04522_9 crossref_primary_10_1016_j_omtm_2020_04_012 crossref_primary_10_1038_mtm_2015_36 crossref_primary_10_1038_s41598_018_23607_9 crossref_primary_10_1038_gt_2015_25 crossref_primary_10_1016_j_molmed_2015_06_001 crossref_primary_10_1089_hum_2020_105 crossref_primary_10_1093_brain_awz373 crossref_primary_10_1016_j_omtm_2021_06_013 crossref_primary_10_1002_cpz1_70069 crossref_primary_10_1016_j_jconrel_2023_01_067 crossref_primary_10_1016_j_ymthe_2020_01_004 crossref_primary_10_1080_14728222_2020_1738390 crossref_primary_10_1126_sciadv_abb1703 crossref_primary_10_1038_s41434_021_00292_4 crossref_primary_10_1016_j_omtm_2024_101369 crossref_primary_10_1016_j_neurot_2024_e00446 crossref_primary_10_1093_hmg_ddv127 crossref_primary_10_1172_jci_insight_130574 crossref_primary_10_1111_nyas_12813 crossref_primary_10_1016_j_brainresbull_2019_05_024 crossref_primary_10_3390_cells11030417 crossref_primary_10_1038_s41587_023_01758_z crossref_primary_10_1080_14737175_2023_2252179 crossref_primary_10_1089_hum_2016_013 crossref_primary_10_1016_j_omtm_2020_12_014 crossref_primary_10_1016_j_jpeds_2020_05_044 crossref_primary_10_1038_s41434_020_0178_0 crossref_primary_10_1590_0004_282x20180011 crossref_primary_10_1172_JCI130600 crossref_primary_10_1016_j_omtm_2024_101354 crossref_primary_10_3390_brainsci11020194 crossref_primary_10_1016_j_omtm_2024_101357 crossref_primary_10_1038_mt_2015_168 crossref_primary_10_1001_jama_2019_22214 crossref_primary_10_1002_cpt_2972 crossref_primary_10_1016_j_mehy_2018_05_014 crossref_primary_10_1089_thy_2016_0060 crossref_primary_10_1016_j_xphs_2023_08_023 crossref_primary_10_1016_j_ymthe_2024_05_040 crossref_primary_10_1126_science_adg6518 crossref_primary_10_1016_j_ejmg_2017_12_001 crossref_primary_10_2147_DDDT_S214174 crossref_primary_10_1038_s41551_022_00911_4 crossref_primary_10_1016_j_xcrm_2021_100346 crossref_primary_10_1016_j_ymthe_2023_07_013 crossref_primary_10_1016_j_omtm_2022_01_013 crossref_primary_10_1089_humc_2017_231 crossref_primary_10_1016_j_nbd_2021_105488 crossref_primary_10_1016_j_neuron_2022_02_011 crossref_primary_10_1016_j_omtm_2024_101371 crossref_primary_10_1016_j_omtm_2020_04_001 crossref_primary_10_1126_scitranslmed_aah4985 crossref_primary_10_1186_s40478_017_0464_2 crossref_primary_10_1089_hum_2019_217 crossref_primary_10_1002_acn3_375 crossref_primary_10_1089_hum_2021_069 crossref_primary_10_1242_dmm_042903 crossref_primary_10_3389_fnmol_2023_1248271 crossref_primary_10_1007_s12035_021_02555_y crossref_primary_10_1016_j_molmed_2021_03_010 crossref_primary_10_3233_JND_170209 crossref_primary_10_1016_j_neurot_2024_e00376 crossref_primary_10_1038_s42255_023_00932_6 crossref_primary_10_1093_hmg_ddz131 crossref_primary_10_1007_s10072_018_3521_0 crossref_primary_10_1016_j_expneurol_2022_114170 crossref_primary_10_1016_j_mayocp_2014_12_004 crossref_primary_10_1038_gt_2017_9 crossref_primary_10_1007_s12035_017_0831_9 crossref_primary_10_1016_j_scib_2024_03_013 crossref_primary_10_3390_brainsci10020119 crossref_primary_10_1016_j_ymthe_2017_03_036 crossref_primary_10_1089_hum_2015_122 crossref_primary_10_1016_j_prerep_2025_100031 crossref_primary_10_1038_s41467_024_54475_9 crossref_primary_10_1172_JCI121658 crossref_primary_10_1089_hum_2022_163 crossref_primary_10_1089_hgtb_2018_041 crossref_primary_10_3389_fnmol_2017_00405 crossref_primary_10_3390_ijms22168494 crossref_primary_10_3390_brainsci13101446 crossref_primary_10_3390_jpm12121979 crossref_primary_10_1038_s41434_022_00338_1 crossref_primary_10_1186_s12987_022_00304_4 crossref_primary_10_1016_S1474_4422_15_00199_4 crossref_primary_10_1038_s44321_024_00148_5 crossref_primary_10_1002_jimd_12699 crossref_primary_10_1089_hum_2022_054 crossref_primary_10_18553_jmcp_2018_24_12_a_s3 crossref_primary_10_1146_annurev_genom_102319_103602 crossref_primary_10_1089_hum_2024_224 crossref_primary_10_1016_j_omtm_2021_09_017 crossref_primary_10_1089_hum_2021_255 crossref_primary_10_1016_j_ymthe_2018_11_013 crossref_primary_10_1089_hgtb_2017_250 crossref_primary_10_1007_s11940_019_0568_z crossref_primary_10_1080_14737175_2017_1364159 crossref_primary_10_1177_2633105520973985 crossref_primary_10_1097_WCO_0000000000000368 crossref_primary_10_3390_jpm12050758 crossref_primary_10_1038_s41591_021_01664_4 crossref_primary_10_1038_s41598_019_45822_8 crossref_primary_10_2183_pjab_94_020 crossref_primary_10_1016_j_ymthe_2019_06_015 crossref_primary_10_1038_nm_4052 crossref_primary_10_1089_hum_2020_116 crossref_primary_10_1038_s41591_021_01483_7 crossref_primary_10_1172_jci_insight_144712 crossref_primary_10_1038_mt_2016_152 crossref_primary_10_1002_med_21937 crossref_primary_10_1016_j_ymgme_2024_108496 |
Cites_doi | 10.1038/gt.2012.101 10.1128/JVI.77.12.7034-7040.2003 10.1089/hgtb.2013.076 10.1038/gt.2011.130 10.1136/adc.45.239.33 10.1093/hmg/ddu169 10.1002/ana.23995 10.1089/hum.2010.245 10.1086/515465 10.1007/BF03017356 10.1038/mt.2014.135 10.1128/MCB.01262-08 10.1093/hmg/ddi078 10.1093/hmg/ddq514 10.1038/mt.2011.157 10.1523/JNEUROSCI.1854-13.2013 10.1038/mt.2014.68 10.1089/hum.2011.008 10.1002/ajmg.a.33474 10.1056/NEJMoa1108046 10.1089/hum.2013.005 10.1089/hum.2014.011 10.1093/hmg/ddr600 10.1016/j.bbrc.2011.11.121 10.1006/nbdi.1996.0010 10.1093/hmg/ddr360 10.1038/ng0598-63 10.1038/nrneurol.2013.221 10.1038/mt.2011.232 10.1038/mt.2012.261 10.1126/scitranslmed.3000830 10.1136/jmg.15.6.409 10.1097/00125817-200201000-00004 10.1089/hum.2013.021 10.1038/nbt.1610 10.1038/mt.2013.211 10.1089/hum.2011.200 10.1038/ng0797-265 10.3791/2968 10.1038/mt.2011.72 10.1001/archneur.1995.00540290108025 10.1038/nbt.1515 10.1172/JCI41615 10.1093/hmg/6.8.1205 10.1016/j.ydbio.2012.05.037 10.1038/mt.2011.98 10.1002/acn3.23 10.1177/0883073807305673 10.1371/journal.pone.0067680 10.1093/hmg/8.7.1177 10.1038/mt.2013.276 10.1038/mt.2008.166 |
ContentType | Journal Article |
Copyright | 2015 American Society of Gene & Cell Therapy Copyright Nature Publishing Group Mar 2015 Copyright © 2015 American Society of Gene & Cell Therapy 2015 American Society of Gene & Cell Therapy |
Copyright_xml | – notice: 2015 American Society of Gene & Cell Therapy – notice: Copyright Nature Publishing Group Mar 2015 – notice: Copyright © 2015 American Society of Gene & Cell Therapy 2015 American Society of Gene & Cell Therapy |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7QO 7U9 8FD FR3 H94 P64 RC3 5PM |
DOI | 10.1038/mt.2014.210 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Biotechnology Research Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Genetics Abstracts Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1525-0024 |
EndPage | 487 |
ExternalDocumentID | PMC4351452 4068158881 25358252 10_1038_mt_2014_210 S1525001616300612 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US Ohio |
GeographicLocations_xml | – name: United States--US – name: Ohio |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: U01 NS080836 |
GroupedDBID | --- --K 0R~ 123 1B1 29M 2WC 36B 39C 3V. 4.4 53G 6I. 7X7 88E 8FE 8FH 8FI 8FJ AACTN AAEDW AAFTH AAIAV AALRI AAVLU AAXUO ABAWZ ABJNI ABMAC ABUDA ABUWG ABVKL ACGFO ACGFS ACPRK ADBBV ADFRT ADJPV ADMUD ADQMX AEDAW AENEX AFKRA AFTJW AGAYW AHMBA AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 DIK DU5 E3Z EBS EJD EMB EMOBN F5P FDB FEDTE FRP FYUFA GX1 HCIFZ HMCUK HVGLF HYE HZ~ IHE JIG JSO KQ8 LG5 LK8 M1P M41 M7P NCXOZ NQ- O9- OK1 P2P PQQKQ PROAC PSQYO RCE RIG RNS RNTTT ROL RPM RPZ SEW SSZ SV3 TR2 UHS UKHRP W2D XPP ZA5 ZMT AAMRU AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AGCQF AIGII AKAPO AKBMS AKRWK AKYEP ALIPV APXCP CITATION PHGZM PHGZT CGR CUY CVF ECM EFKBS EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 7QO 7U9 8FD FR3 H94 P64 RC3 5PM |
ID | FETCH-LOGICAL-c624t-cc1a0756debcd9465c46e8ad1e626f1dba2db72f05406f5cc28bf2825d27ca33 |
IEDL.DBID | 7X7 |
ISSN | 1525-0016 1525-0024 |
IngestDate | Thu Aug 21 17:51:06 EDT 2025 Sun Sep 28 11:55:47 EDT 2025 Fri Sep 05 14:45:46 EDT 2025 Fri Jul 25 11:21:17 EDT 2025 Mon Jul 21 05:55:31 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Tue Jul 01 01:46:45 EDT 2025 Fri Feb 23 02:31:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c624t-cc1a0756debcd9465c46e8ad1e626f1dba2db72f05406f5cc28bf2825d27ca33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The first two authors are the first authors of this study. |
OpenAccessLink | https://dx.doi.org/10.1038/mt.2014.210 |
PMID | 25358252 |
PQID | 1791387365 |
PQPubID | 2042164 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4351452 proquest_miscellaneous_1776654164 proquest_miscellaneous_1660028953 proquest_journals_1791387365 pubmed_primary_25358252 crossref_citationtrail_10_1038_mt_2014_210 crossref_primary_10_1038_mt_2014_210 elsevier_sciencedirect_doi_10_1038_mt_2014_210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Milwaukee |
PublicationTitle | Molecular therapy |
PublicationTitleAlternate | Mol Ther |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Limited Nature Publishing Group |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Nature Publishing Group |
References | Passini, Bu, Richards, Treleaven, Sullivan, O’Riordan (bib24) 2014; 25 Bevan, Duque, Foust, Morales, Braun, Schmelzer (bib21) 2011; 19 Osman, Yen, Lorson (bib45) 2012; 20 Yang, Li, Wang, Guo, Gessler, Cao (bib25) 2014; 22 Gray, Matagne, Bachaboina, Yadav, Ojeda, Samulski (bib26) 2011; 19 Pearn (bib3) 1978; 15 Federici, Taub, Baum, Gray, Grieger, Matthews (bib32) 2012; 19 Gray, Foti, Schwartz, Bachaboina, Taylor-Blake, Coleman (bib48) 2011; 22 Glascock, Shababi, Wetz, Krogman, Lorson (bib18) 2012; 417 Zerres, Rudnik-Schöneborn (bib5) 1995; 52 Arnold, Porensky, McGovern, Iyer, Duque, Li (bib39) 2014; 1 Foust, Salazar, Likhite, Ferraiuolo, Ditsworth, Ilieva (bib40) 2013; 21 Braak, Brettschneider, Ludolph, Lee, Trojanowski, Del Tredici (bib44) 2013; 9 Passini, Bu, Roskelley, Richards, Sardi, O’Riordan (bib20) 2010; 120 Dominguez, Marais, Chatauret, Benkhelifa-Ziyyat, Duque, Ravassard (bib17) 2011; 20 Dirren, Towne, Setola, Redmond, Schneider, Aebischer (bib30) 2014; 25 Gray, Nagabhushan Kalburgi, McCown, Jude Samulski (bib31) 2013; 20 Mailman, Heinz, Papp, Snyder, Sedra, Wirth (bib12) 2002; 4 Samaranch, Salegio, San Sebastian, Kells, Foust, Bringas (bib33) 2012; 23 Lefebvre, Burlet, Liu, Bertrandy, Clermont, Munnich (bib7) 1997; 16 Porensky (bib51) 2012; 21 Roberts, Chavez, Court (bib2) 1970; 45 Arnold, Burghes (bib14) 2013; 74 Valori, Ning, Wyles, Mead, Grierson, Shaw (bib16) 2010; 2 Chakrabarty, Rosario, Cruz, Siemienski, Ceballos-Diaz, Crosby (bib27) 2013; 8 Snyder, Gray, Quach, Huang, Leung, Samulski (bib29) 2011; 22 Crawford, Pardo (bib1) 1996; 3 Robbins, Glascock, Osman, Miller, Lorson (bib23) 2014; 23 Hayhurst, Wagner, Cerletti, Wagers, Rubin (bib50) 2012; 368 Mutsaers, Wishart, Lamont, Riessland, Schreml, Comley (bib49) 2011; 20 Prior, Snyder, Rink, Pearl, Pyatt, Mihal (bib4) 2010; 152A Foust, Wang, McGovern, Braun, Bevan, Haidet (bib15) 2010; 28 Gholizadeh, Tharmalingam, Macaldaz, Hampson (bib28) 2013; 24 Samaranch, Salegio, San Sebastian, Kells, Bringas, Forsayeth (bib34) 2013; 24 Le, Pham, Butchbach, Zhang, Monani, Coovert (bib38) 2005; 14 Passini, Watson, Vite, Landsburg, Feigenbaum, Wolfe (bib35) 2003; 77 Russman (bib6) 2007; 22 Foust, Nurre, Montgomery, Hernandez, Chan, Kaspar (bib41) 2009; 27 Coovert, Le, McAndrew, Strasswimmer, Crawford, Mendell (bib8) 1997; 6 Burnett, Muñoz, Tandon, Kwon, Sumner, Fischbeck (bib11) 2009; 29 Garg, Lioy, Cheval, McGann, Bissonnette, Murtha (bib43) 2013; 33 Monani, Lorson, Parsons, Prior, Androphy, Burghes (bib9) 1999; 8 Benkhelifa-Ziyyat, Besse, Roda, Duque, Astord, Carcenac (bib19) 2013; 21 Zhang, Yang, Mu, Ahmed, Su, He (bib37) 2011; 19 Hinderer (bib47) 2014 Setayesh, Kholdebarin, Moghadam, Setayesh (bib42) 2001; 48 Nathwani, Tuddenham, Rangarajan, Rosales, McIntosh, Linch (bib22) 2011; 365 Cearley, Vandenberghe, Parente, Carnish, Wilson, Wolfe (bib36) 2008; 16 Glascock (bib52) 2011 McAndrew, Parsons, Simard, Rochette, Ray, Mendell (bib13) 1997; 60 Pao, Wee, Yee, Pramono, Dwipramono (bib46) 2014; 22 Lorson, Strasswimmer, Yao, Baleja, Hahnen, Wirth (bib10) 1998; 19 Prior (10.1038/mt.2014.210_bib4) 2010; 152A Lefebvre (10.1038/mt.2014.210_bib7) 1997; 16 Le (10.1038/mt.2014.210_bib38) 2005; 14 Coovert (10.1038/mt.2014.210_bib8) 1997; 6 Chakrabarty (10.1038/mt.2014.210_bib27) 2013; 8 Valori (10.1038/mt.2014.210_bib16) 2010; 2 Mailman (10.1038/mt.2014.210_bib12) 2002; 4 Glascock (10.1038/mt.2014.210_bib18) 2012; 417 Bevan (10.1038/mt.2014.210_bib21) 2011; 19 Arnold (10.1038/mt.2014.210_bib14) 2013; 74 Braak (10.1038/mt.2014.210_bib44) 2013; 9 Gray (10.1038/mt.2014.210_bib31) 2013; 20 Zerres (10.1038/mt.2014.210_bib5) 1995; 52 Mutsaers (10.1038/mt.2014.210_bib49) 2011; 20 Hayhurst (10.1038/mt.2014.210_bib50) 2012; 368 Foust (10.1038/mt.2014.210_bib15) 2010; 28 Arnold (10.1038/mt.2014.210_bib39) 2014; 1 Samaranch (10.1038/mt.2014.210_bib34) 2013; 24 Russman (10.1038/mt.2014.210_bib6) 2007; 22 Zhang (10.1038/mt.2014.210_bib37) 2011; 19 Passini (10.1038/mt.2014.210_bib24) 2014; 25 Gray (10.1038/mt.2014.210_bib48) 2011; 22 Crawford (10.1038/mt.2014.210_bib1) 1996; 3 Robbins (10.1038/mt.2014.210_bib23) 2014; 23 Roberts (10.1038/mt.2014.210_bib2) 1970; 45 Lorson (10.1038/mt.2014.210_bib10) 1998; 19 Gray (10.1038/mt.2014.210_bib26) 2011; 19 Samaranch (10.1038/mt.2014.210_bib33) 2012; 23 Osman (10.1038/mt.2014.210_bib45) 2012; 20 Yang (10.1038/mt.2014.210_bib25) 2014; 22 Foust (10.1038/mt.2014.210_bib41) 2009; 27 Passini (10.1038/mt.2014.210_bib20) 2010; 120 Dirren (10.1038/mt.2014.210_bib30) 2014; 25 Gholizadeh (10.1038/mt.2014.210_bib28) 2013; 24 Garg (10.1038/mt.2014.210_bib43) 2013; 33 Passini (10.1038/mt.2014.210_bib35) 2003; 77 Cearley (10.1038/mt.2014.210_bib36) 2008; 16 Glascock (10.1038/mt.2014.210_bib52) 2011 McAndrew (10.1038/mt.2014.210_bib13) 1997; 60 Dominguez (10.1038/mt.2014.210_bib17) 2011; 20 Foust (10.1038/mt.2014.210_bib40) 2013; 21 Pao (10.1038/mt.2014.210_bib46) 2014; 22 Monani (10.1038/mt.2014.210_bib9) 1999; 8 Hinderer (10.1038/mt.2014.210_bib47) 2014 Burnett (10.1038/mt.2014.210_bib11) 2009; 29 Federici (10.1038/mt.2014.210_bib32) 2012; 19 Benkhelifa-Ziyyat (10.1038/mt.2014.210_bib19) 2013; 21 Snyder (10.1038/mt.2014.210_bib29) 2011; 22 Setayesh (10.1038/mt.2014.210_bib42) 2001; 48 Nathwani (10.1038/mt.2014.210_bib22) 2011; 365 Pearn (10.1038/mt.2014.210_bib3) 1978; 15 Porensky (10.1038/mt.2014.210_bib51) 2012; 21 22149959 - N Engl J Med. 2011 Dec 22;365(25):2357-65 20234094 - J Clin Invest. 2010 Apr;120(4):1253-64 24781136 - Mol Ther. 2014 Jul;22(7):1299-309 7733848 - Arch Neurol. 1995 May;52(5):518-23 19103745 - Mol Cell Biol. 2009 Mar;29(5):1107-15 11839954 - Genet Med. 2002 Jan-Feb;4(1):20-6 25027660 - Mol Ther. 2014 Dec;22(12):2018-27 745211 - J Med Genet. 1978 Dec;15(6):409-13 23825679 - PLoS One. 2013;8(6):e67680 21118896 - Hum Mol Genet. 2011 Feb 15;20(4):681-93 23517473 - Hum Gene Ther. 2013 May;24(5):526-32 24617515 - Hum Gene Ther. 2014 Jul;25(7):619-30 9590291 - Nat Genet. 1998 May;19(1):63-6 24317636 - Mol Ther. 2014 Apr;22(4):854-61 9259265 - Hum Mol Genet. 1997 Aug;6(8):1205-14 23966684 - J Neurosci. 2013 Aug 21;33(34):13612-20 23808551 - Hum Gene Ther Methods. 2013 Aug;24(4):205-13 4245389 - Arch Dis Child. 1970 Feb;45(239):33-8 22186025 - Hum Mol Genet. 2012 Apr 1;21(7):1625-38 24191919 - Hum Gene Ther. 2014 Feb;25(2):109-20 23295949 - Mol Ther. 2013 Feb;21(2):282-90 21610699 - Mol Ther. 2011 Aug;19(8):1440-8 22705478 - Dev Biol. 2012 Aug 15;368(2):323-34 21918551 - Gene Ther. 2012 Aug;19(8):852-9 12768022 - J Virol. 2003 Jun;77(12):7034-40 24722206 - Hum Mol Genet. 2014 Sep 1;23(17):4559-68 9207792 - Nat Genet. 1997 Jul;16(3):265-9 24217521 - Nat Rev Neurol. 2013 Dec;9(12):708-14 21487395 - Mol Ther. 2011 Jun;19(6):1058-69 20190738 - Nat Biotechnol. 2010 Mar;28(3):271-4 21840928 - Hum Mol Genet. 2011 Nov 15;20(22):4334-44 20538619 - Sci Transl Med. 2010 Jun 9;2(35):35ra42 9199562 - Am J Hum Genet. 1997 Jun;60(6):1411-22 21443428 - Hum Gene Ther. 2011 Sep;22(9):1129-35 21988897 - J Vis Exp. 2011;(56). pii: 2968. doi: 10.3791/2968 24511555 - Ann Clin Transl Neurol. 2014 Jan 1;1(1):34-44 23303281 - Gene Ther. 2013 Apr;20(4):450-9 20578137 - Am J Med Genet A. 2010 Jul;152A(7):1608-16 9173917 - Neurobiol Dis. 1996 Apr;3(2):97-110 24008656 - Mol Ther. 2013 Dec;21(12):2148-59 19098898 - Nat Biotechnol. 2009 Jan;27(1):59-65 21811247 - Mol Ther. 2011 Nov;19(11):1971-80 10369862 - Hum Mol Genet. 1999 Jul;8(7):1177-83 22172949 - Biochem Biophys Res Commun. 2012 Jan 6;417(1):376-81 22031236 - Mol Ther. 2012 Jan;20(1):119-26 21476867 - Hum Gene Ther. 2011 Sep;22(9):1143-53 23939659 - Ann Neurol. 2013 Sep;74(3):348-62 22201473 - Hum Gene Ther. 2012 Apr;23(4):382-9 15703193 - Hum Mol Genet. 2005 Mar 15;14(6):845-57 17761648 - J Child Neurol. 2007 Aug;22(8):946-51 18714307 - Mol Ther. 2008 Oct;16(10):1710-8 11606347 - Can J Anaesth. 2001 Oct;48(9):890-3 |
References_xml | – volume: 8 start-page: 1177 year: 1999 end-page: 1183 ident: bib9 article-title: A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2 publication-title: Hum Mol Genet – volume: 29 start-page: 1107 year: 2009 end-page: 1115 ident: bib11 article-title: Regulation of SMN protein stability publication-title: Mol Cell Biol – volume: 22 start-page: 1299 year: 2014 end-page: 1309 ident: bib25 article-title: Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10 publication-title: Mol Ther – volume: 77 start-page: 7034 year: 2003 end-page: 7040 ident: bib35 article-title: Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice publication-title: J Virol – volume: 23 start-page: 382 year: 2012 end-page: 389 ident: bib33 article-title: Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates publication-title: Hum Gene Ther – volume: 25 start-page: 619 year: 2014 end-page: 630 ident: bib24 article-title: Translational fidelity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy publication-title: Hum Gene Ther – volume: 33 start-page: 13612 year: 2013 end-page: 13620 ident: bib43 article-title: Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome publication-title: J Neurosci – volume: 20 start-page: 119 year: 2012 end-page: 126 ident: bib45 article-title: Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy publication-title: Mol Ther – volume: 23 start-page: 4559 year: 2014 end-page: 4568 ident: bib23 article-title: Defining the therapeutic window in a severe animal model of spinal muscular atrophy publication-title: Hum Mol Genet – volume: 16 start-page: 265 year: 1997 end-page: 269 ident: bib7 article-title: Correlation between severity and SMN protein level in spinal muscular atrophy publication-title: Nat Genet – volume: 20 start-page: 450 year: 2013 end-page: 459 ident: bib31 article-title: Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates publication-title: Gene Ther – volume: 2 start-page: 35ra42 year: 2010 ident: bib16 article-title: Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy publication-title: Sci Transl Med – volume: 60 start-page: 1411 year: 1997 end-page: 1422 ident: bib13 article-title: Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number publication-title: Am J Hum Genet – volume: 22 start-page: 1129 year: 2011 end-page: 1135 ident: bib29 article-title: Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery publication-title: Hum Gene Ther – volume: 120 start-page: 1253 year: 2010 end-page: 1264 ident: bib20 article-title: CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy publication-title: J Clin Invest – volume: 25 start-page: 109 year: 2014 end-page: 120 ident: bib30 article-title: Intracerebroventricular injection of adeno-associated virus 6 and 9 vectors for cell type-specific transgene expression in the spinal cord publication-title: Hum Gene Ther – volume: 19 start-page: 1058 year: 2011 end-page: 1069 ident: bib26 article-title: Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates publication-title: Mol Ther – volume: 52 start-page: 518 year: 1995 end-page: 523 ident: bib5 article-title: Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications publication-title: Arch Neurol – volume: 27 start-page: 59 year: 2009 end-page: 65 ident: bib41 article-title: Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes publication-title: Nat Biotechnol – volume: 22 start-page: 1143 year: 2011 end-page: 1153 ident: bib48 article-title: Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors publication-title: Hum Gene Ther – volume: 365 start-page: 2357 year: 2011 end-page: 2365 ident: bib22 article-title: Adenovirus-associated virus vector-mediated gene transfer in hemophilia B publication-title: N Engl J Med – volume: 417 start-page: 376 year: 2012 end-page: 381 ident: bib18 article-title: Direct central nervous system delivery provides enhanced protection following vector mediated gene replacement in a severe model of spinal muscular atrophy publication-title: Biochem Biophys Res Commun – volume: 24 start-page: 526 year: 2013 end-page: 532 ident: bib34 article-title: Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates publication-title: Hum Gene Ther – volume: 74 start-page: 348 year: 2013 end-page: 362 ident: bib14 article-title: Spinal muscular atrophy: development and implementation of potential treatments publication-title: Ann Neurol – year: 2011 ident: bib52 article-title: Delivery of therapeutic agents through intracerebroventricular (ICV) and intravenous (IV) injection in mice publication-title: Journal of visualized experiments: JoVE – volume: 1 start-page: 34 year: 2014 end-page: 44 ident: bib39 article-title: Electrophysiological Biomarkers in Spinal Muscular Atrophy: Preclinical Proof of Concept publication-title: Ann Clin Transl Neurol – volume: 22 start-page: 854 year: 2014 end-page: 861 ident: bib46 article-title: Dual masking of specific negative splicing regulatory elements resulted in maximal exon 7 inclusion of SMN2 gene publication-title: Mol Ther – volume: 19 start-page: 1440 year: 2011 end-page: 1448 ident: bib37 article-title: Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system publication-title: Mol Ther – volume: 8 start-page: e67680 year: 2013 ident: bib27 article-title: Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain publication-title: PLoS One – volume: 21 start-page: 1625 year: 2012 end-page: 1638 ident: bib51 article-title: A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse publication-title: Hum Mol Genet – volume: 21 start-page: 282 year: 2013 end-page: 290 ident: bib19 article-title: Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice publication-title: Mol Ther – volume: 14 start-page: 845 year: 2005 end-page: 857 ident: bib38 article-title: SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN publication-title: Hum Mol Genet – volume: 368 start-page: 323 year: 2012 end-page: 334 ident: bib50 article-title: A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein publication-title: Dev Biol – volume: 6 start-page: 1205 year: 1997 end-page: 1214 ident: bib8 article-title: The survival motor neuron protein in spinal muscular atrophy publication-title: Hum Mol Genet – volume: 4 start-page: 20 year: 2002 end-page: 26 ident: bib12 article-title: Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2 publication-title: Genet Med – volume: 45 start-page: 33 year: 1970 end-page: 38 ident: bib2 article-title: The genetic component in child mortality publication-title: Arch Dis Child – year: 2014 ident: bib47 article-title: Intrathecal gene therapy corrects CNS pathology in a feline model of mucopolysaccharidosis I publication-title: Mol Ther – volume: 24 start-page: 205 year: 2013 end-page: 213 ident: bib28 article-title: Transduction of the central nervous system after intracerebroventricular injection of adeno-associated viral vectors in neonatal and juvenile mice publication-title: Hum Gene Ther Methods – volume: 15 start-page: 409 year: 1978 end-page: 413 ident: bib3 article-title: Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy publication-title: J Med Genet – volume: 20 start-page: 4334 year: 2011 end-page: 4344 ident: bib49 article-title: Reversible molecular pathology of skeletal muscle in spinal muscular atrophy publication-title: Hum Mol Genet – volume: 19 start-page: 1971 year: 2011 end-page: 1980 ident: bib21 article-title: Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders publication-title: Mol Ther – volume: 20 start-page: 681 year: 2011 end-page: 693 ident: bib17 article-title: Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice publication-title: Hum Mol Genet – volume: 28 start-page: 271 year: 2010 end-page: 274 ident: bib15 article-title: Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN publication-title: Nat Biotechnol – volume: 16 start-page: 1710 year: 2008 end-page: 1718 ident: bib36 article-title: Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain publication-title: Mol Ther – volume: 152A start-page: 1608 year: 2010 end-page: 1616 ident: bib4 article-title: Newborn and carrier screening for spinal muscular atrophy publication-title: Am J Med Genet A – volume: 22 start-page: 946 year: 2007 end-page: 951 ident: bib6 article-title: Spinal muscular atrophy: clinical classification and disease heterogeneity publication-title: J Child Neurol – volume: 19 start-page: 852 year: 2012 end-page: 859 ident: bib32 article-title: Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs publication-title: Gene Ther – volume: 3 start-page: 97 year: 1996 end-page: 110 ident: bib1 article-title: The neurobiology of childhood spinal muscular atrophy publication-title: Neurobiol Dis – volume: 48 start-page: 890 year: 2001 end-page: 893 ident: bib42 article-title: The Trendelenburg position increases the spread and accelerates the onset of epidural anesthesia for Cesarean section publication-title: Can J Anaesth – volume: 19 start-page: 63 year: 1998 end-page: 66 ident: bib10 article-title: SMN oligomerization defect correlates with spinal muscular atrophy severity publication-title: Nat Genet – volume: 9 start-page: 708 year: 2013 end-page: 714 ident: bib44 article-title: Amyotrophic lateral sclerosis–a model of corticofugal axonal spread publication-title: Nat Rev Neurol – volume: 21 start-page: 2148 year: 2013 end-page: 2159 ident: bib40 article-title: Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS publication-title: Mol Ther – volume: 20 start-page: 450 year: 2013 ident: 10.1038/mt.2014.210_bib31 article-title: Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates publication-title: Gene Ther doi: 10.1038/gt.2012.101 – volume: 77 start-page: 7034 year: 2003 ident: 10.1038/mt.2014.210_bib35 publication-title: J Virol doi: 10.1128/JVI.77.12.7034-7040.2003 – volume: 24 start-page: 205 year: 2013 ident: 10.1038/mt.2014.210_bib28 article-title: Transduction of the central nervous system after intracerebroventricular injection of adeno-associated viral vectors in neonatal and juvenile mice publication-title: Hum Gene Ther Methods doi: 10.1089/hgtb.2013.076 – volume: 19 start-page: 852 year: 2012 ident: 10.1038/mt.2014.210_bib32 article-title: Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs publication-title: Gene Ther doi: 10.1038/gt.2011.130 – volume: 45 start-page: 33 year: 1970 ident: 10.1038/mt.2014.210_bib2 article-title: The genetic component in child mortality publication-title: Arch Dis Child doi: 10.1136/adc.45.239.33 – volume: 23 start-page: 4559 year: 2014 ident: 10.1038/mt.2014.210_bib23 article-title: Defining the therapeutic window in a severe animal model of spinal muscular atrophy publication-title: Hum Mol Genet doi: 10.1093/hmg/ddu169 – volume: 74 start-page: 348 year: 2013 ident: 10.1038/mt.2014.210_bib14 article-title: Spinal muscular atrophy: development and implementation of potential treatments publication-title: Ann Neurol doi: 10.1002/ana.23995 – volume: 22 start-page: 1143 year: 2011 ident: 10.1038/mt.2014.210_bib48 article-title: Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors publication-title: Hum Gene Ther doi: 10.1089/hum.2010.245 – volume: 60 start-page: 1411 year: 1997 ident: 10.1038/mt.2014.210_bib13 article-title: Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number publication-title: Am J Hum Genet doi: 10.1086/515465 – volume: 48 start-page: 890 year: 2001 ident: 10.1038/mt.2014.210_bib42 article-title: The Trendelenburg position increases the spread and accelerates the onset of epidural anesthesia for Cesarean section publication-title: Can J Anaesth doi: 10.1007/BF03017356 – year: 2014 ident: 10.1038/mt.2014.210_bib47 article-title: Intrathecal gene therapy corrects CNS pathology in a feline model of mucopolysaccharidosis I publication-title: Mol Ther doi: 10.1038/mt.2014.135 – volume: 29 start-page: 1107 year: 2009 ident: 10.1038/mt.2014.210_bib11 article-title: Regulation of SMN protein stability publication-title: Mol Cell Biol doi: 10.1128/MCB.01262-08 – volume: 14 start-page: 845 year: 2005 ident: 10.1038/mt.2014.210_bib38 article-title: SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN publication-title: Hum Mol Genet doi: 10.1093/hmg/ddi078 – volume: 20 start-page: 681 year: 2011 ident: 10.1038/mt.2014.210_bib17 article-title: Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice publication-title: Hum Mol Genet doi: 10.1093/hmg/ddq514 – volume: 19 start-page: 1971 year: 2011 ident: 10.1038/mt.2014.210_bib21 article-title: Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders publication-title: Mol Ther doi: 10.1038/mt.2011.157 – volume: 33 start-page: 13612 year: 2013 ident: 10.1038/mt.2014.210_bib43 article-title: Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1854-13.2013 – volume: 22 start-page: 1299 year: 2014 ident: 10.1038/mt.2014.210_bib25 article-title: Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10 publication-title: Mol Ther doi: 10.1038/mt.2014.68 – volume: 22 start-page: 1129 year: 2011 ident: 10.1038/mt.2014.210_bib29 article-title: Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery publication-title: Hum Gene Ther doi: 10.1089/hum.2011.008 – volume: 152A start-page: 1608 year: 2010 ident: 10.1038/mt.2014.210_bib4 article-title: Newborn and carrier screening for spinal muscular atrophy publication-title: Am J Med Genet A doi: 10.1002/ajmg.a.33474 – volume: 365 start-page: 2357 year: 2011 ident: 10.1038/mt.2014.210_bib22 article-title: Adenovirus-associated virus vector-mediated gene transfer in hemophilia B publication-title: N Engl J Med doi: 10.1056/NEJMoa1108046 – volume: 24 start-page: 526 year: 2013 ident: 10.1038/mt.2014.210_bib34 article-title: Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates publication-title: Hum Gene Ther doi: 10.1089/hum.2013.005 – volume: 25 start-page: 619 year: 2014 ident: 10.1038/mt.2014.210_bib24 article-title: Translational fidelity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy publication-title: Hum Gene Ther doi: 10.1089/hum.2014.011 – volume: 21 start-page: 1625 year: 2012 ident: 10.1038/mt.2014.210_bib51 article-title: A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse publication-title: Hum Mol Genet doi: 10.1093/hmg/ddr600 – volume: 417 start-page: 376 year: 2012 ident: 10.1038/mt.2014.210_bib18 article-title: Direct central nervous system delivery provides enhanced protection following vector mediated gene replacement in a severe model of spinal muscular atrophy publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2011.11.121 – volume: 3 start-page: 97 year: 1996 ident: 10.1038/mt.2014.210_bib1 article-title: The neurobiology of childhood spinal muscular atrophy publication-title: Neurobiol Dis doi: 10.1006/nbdi.1996.0010 – volume: 20 start-page: 4334 year: 2011 ident: 10.1038/mt.2014.210_bib49 article-title: Reversible molecular pathology of skeletal muscle in spinal muscular atrophy publication-title: Hum Mol Genet doi: 10.1093/hmg/ddr360 – volume: 19 start-page: 63 year: 1998 ident: 10.1038/mt.2014.210_bib10 article-title: SMN oligomerization defect correlates with spinal muscular atrophy severity publication-title: Nat Genet doi: 10.1038/ng0598-63 – volume: 9 start-page: 708 year: 2013 ident: 10.1038/mt.2014.210_bib44 article-title: Amyotrophic lateral sclerosis–a model of corticofugal axonal spread publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2013.221 – volume: 20 start-page: 119 year: 2012 ident: 10.1038/mt.2014.210_bib45 article-title: Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy publication-title: Mol Ther doi: 10.1038/mt.2011.232 – volume: 21 start-page: 282 year: 2013 ident: 10.1038/mt.2014.210_bib19 article-title: Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice publication-title: Mol Ther doi: 10.1038/mt.2012.261 – volume: 2 start-page: 35ra42 year: 2010 ident: 10.1038/mt.2014.210_bib16 article-title: Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3000830 – volume: 15 start-page: 409 year: 1978 ident: 10.1038/mt.2014.210_bib3 article-title: Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy publication-title: J Med Genet doi: 10.1136/jmg.15.6.409 – volume: 4 start-page: 20 year: 2002 ident: 10.1038/mt.2014.210_bib12 article-title: Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2 publication-title: Genet Med doi: 10.1097/00125817-200201000-00004 – volume: 25 start-page: 109 year: 2014 ident: 10.1038/mt.2014.210_bib30 article-title: Intracerebroventricular injection of adeno-associated virus 6 and 9 vectors for cell type-specific transgene expression in the spinal cord publication-title: Hum Gene Ther doi: 10.1089/hum.2013.021 – volume: 28 start-page: 271 year: 2010 ident: 10.1038/mt.2014.210_bib15 article-title: Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN publication-title: Nat Biotechnol doi: 10.1038/nbt.1610 – volume: 21 start-page: 2148 year: 2013 ident: 10.1038/mt.2014.210_bib40 article-title: Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS publication-title: Mol Ther doi: 10.1038/mt.2013.211 – volume: 23 start-page: 382 year: 2012 ident: 10.1038/mt.2014.210_bib33 article-title: Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates publication-title: Hum Gene Ther doi: 10.1089/hum.2011.200 – volume: 16 start-page: 265 year: 1997 ident: 10.1038/mt.2014.210_bib7 article-title: Correlation between severity and SMN protein level in spinal muscular atrophy publication-title: Nat Genet doi: 10.1038/ng0797-265 – year: 2011 ident: 10.1038/mt.2014.210_bib52 article-title: Delivery of therapeutic agents through intracerebroventricular (ICV) and intravenous (IV) injection in mice publication-title: Journal of visualized experiments: JoVE doi: 10.3791/2968 – volume: 19 start-page: 1058 year: 2011 ident: 10.1038/mt.2014.210_bib26 article-title: Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates publication-title: Mol Ther doi: 10.1038/mt.2011.72 – volume: 52 start-page: 518 year: 1995 ident: 10.1038/mt.2014.210_bib5 article-title: Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications publication-title: Arch Neurol doi: 10.1001/archneur.1995.00540290108025 – volume: 27 start-page: 59 year: 2009 ident: 10.1038/mt.2014.210_bib41 article-title: Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes publication-title: Nat Biotechnol doi: 10.1038/nbt.1515 – volume: 120 start-page: 1253 year: 2010 ident: 10.1038/mt.2014.210_bib20 article-title: CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy publication-title: J Clin Invest doi: 10.1172/JCI41615 – volume: 6 start-page: 1205 year: 1997 ident: 10.1038/mt.2014.210_bib8 article-title: The survival motor neuron protein in spinal muscular atrophy publication-title: Hum Mol Genet doi: 10.1093/hmg/6.8.1205 – volume: 368 start-page: 323 year: 2012 ident: 10.1038/mt.2014.210_bib50 article-title: A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein publication-title: Dev Biol doi: 10.1016/j.ydbio.2012.05.037 – volume: 19 start-page: 1440 year: 2011 ident: 10.1038/mt.2014.210_bib37 article-title: Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system publication-title: Mol Ther doi: 10.1038/mt.2011.98 – volume: 1 start-page: 34 year: 2014 ident: 10.1038/mt.2014.210_bib39 article-title: Electrophysiological Biomarkers in Spinal Muscular Atrophy: Preclinical Proof of Concept publication-title: Ann Clin Transl Neurol doi: 10.1002/acn3.23 – volume: 22 start-page: 946 year: 2007 ident: 10.1038/mt.2014.210_bib6 article-title: Spinal muscular atrophy: clinical classification and disease heterogeneity publication-title: J Child Neurol doi: 10.1177/0883073807305673 – volume: 8 start-page: e67680 year: 2013 ident: 10.1038/mt.2014.210_bib27 article-title: Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain publication-title: PLoS One doi: 10.1371/journal.pone.0067680 – volume: 8 start-page: 1177 year: 1999 ident: 10.1038/mt.2014.210_bib9 article-title: A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2 publication-title: Hum Mol Genet doi: 10.1093/hmg/8.7.1177 – volume: 22 start-page: 854 year: 2014 ident: 10.1038/mt.2014.210_bib46 article-title: Dual masking of specific negative splicing regulatory elements resulted in maximal exon 7 inclusion of SMN2 gene publication-title: Mol Ther doi: 10.1038/mt.2013.276 – volume: 16 start-page: 1710 year: 2008 ident: 10.1038/mt.2014.210_bib36 article-title: Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain publication-title: Mol Ther doi: 10.1038/mt.2008.166 – reference: 22186025 - Hum Mol Genet. 2012 Apr 1;21(7):1625-38 – reference: 9199562 - Am J Hum Genet. 1997 Jun;60(6):1411-22 – reference: 24511555 - Ann Clin Transl Neurol. 2014 Jan 1;1(1):34-44 – reference: 21476867 - Hum Gene Ther. 2011 Sep;22(9):1143-53 – reference: 23825679 - PLoS One. 2013;8(6):e67680 – reference: 20234094 - J Clin Invest. 2010 Apr;120(4):1253-64 – reference: 7733848 - Arch Neurol. 1995 May;52(5):518-23 – reference: 9259265 - Hum Mol Genet. 1997 Aug;6(8):1205-14 – reference: 24617515 - Hum Gene Ther. 2014 Jul;25(7):619-30 – reference: 21988897 - J Vis Exp. 2011;(56). pii: 2968. doi: 10.3791/2968 – reference: 20578137 - Am J Med Genet A. 2010 Jul;152A(7):1608-16 – reference: 21118896 - Hum Mol Genet. 2011 Feb 15;20(4):681-93 – reference: 23939659 - Ann Neurol. 2013 Sep;74(3):348-62 – reference: 24008656 - Mol Ther. 2013 Dec;21(12):2148-59 – reference: 24722206 - Hum Mol Genet. 2014 Sep 1;23(17):4559-68 – reference: 23808551 - Hum Gene Ther Methods. 2013 Aug;24(4):205-13 – reference: 11606347 - Can J Anaesth. 2001 Oct;48(9):890-3 – reference: 4245389 - Arch Dis Child. 1970 Feb;45(239):33-8 – reference: 21443428 - Hum Gene Ther. 2011 Sep;22(9):1129-35 – reference: 22031236 - Mol Ther. 2012 Jan;20(1):119-26 – reference: 24781136 - Mol Ther. 2014 Jul;22(7):1299-309 – reference: 15703193 - Hum Mol Genet. 2005 Mar 15;14(6):845-57 – reference: 21918551 - Gene Ther. 2012 Aug;19(8):852-9 – reference: 9207792 - Nat Genet. 1997 Jul;16(3):265-9 – reference: 11839954 - Genet Med. 2002 Jan-Feb;4(1):20-6 – reference: 9173917 - Neurobiol Dis. 1996 Apr;3(2):97-110 – reference: 9590291 - Nat Genet. 1998 May;19(1):63-6 – reference: 22149959 - N Engl J Med. 2011 Dec 22;365(25):2357-65 – reference: 12768022 - J Virol. 2003 Jun;77(12):7034-40 – reference: 25027660 - Mol Ther. 2014 Dec;22(12):2018-27 – reference: 21610699 - Mol Ther. 2011 Aug;19(8):1440-8 – reference: 22172949 - Biochem Biophys Res Commun. 2012 Jan 6;417(1):376-81 – reference: 23966684 - J Neurosci. 2013 Aug 21;33(34):13612-20 – reference: 21811247 - Mol Ther. 2011 Nov;19(11):1971-80 – reference: 23517473 - Hum Gene Ther. 2013 May;24(5):526-32 – reference: 17761648 - J Child Neurol. 2007 Aug;22(8):946-51 – reference: 23295949 - Mol Ther. 2013 Feb;21(2):282-90 – reference: 24191919 - Hum Gene Ther. 2014 Feb;25(2):109-20 – reference: 21487395 - Mol Ther. 2011 Jun;19(6):1058-69 – reference: 745211 - J Med Genet. 1978 Dec;15(6):409-13 – reference: 23303281 - Gene Ther. 2013 Apr;20(4):450-9 – reference: 18714307 - Mol Ther. 2008 Oct;16(10):1710-8 – reference: 20190738 - Nat Biotechnol. 2010 Mar;28(3):271-4 – reference: 19103745 - Mol Cell Biol. 2009 Mar;29(5):1107-15 – reference: 20538619 - Sci Transl Med. 2010 Jun 9;2(35):35ra42 – reference: 21840928 - Hum Mol Genet. 2011 Nov 15;20(22):4334-44 – reference: 19098898 - Nat Biotechnol. 2009 Jan;27(1):59-65 – reference: 10369862 - Hum Mol Genet. 1999 Jul;8(7):1177-83 – reference: 22201473 - Hum Gene Ther. 2012 Apr;23(4):382-9 – reference: 24317636 - Mol Ther. 2014 Apr;22(4):854-61 – reference: 22705478 - Dev Biol. 2012 Aug 15;368(2):323-34 – reference: 24217521 - Nat Rev Neurol. 2013 Dec;9(12):708-14 |
SSID | ssj0011596 |
Score | 2.5713935 |
Snippet | Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 477 |
SubjectTerms | Animals Animals, Newborn Atrophy Brain research Brain Stem - metabolism Cerebral Cortex - metabolism Dependovirus - genetics Disease Models, Animal DNA, Complementary - administration & dosage DNA, Complementary - genetics DNA, Complementary - metabolism Dose-Response Relationship, Drug Gene Expression Gene therapy Genetic Therapy - methods Genetic Vectors - administration & dosage Genetic Vectors - pharmacokinetics Injections, Epidural Macaca fascicularis Mice Mice, Knockout Motor Neurons - metabolism Motor Neurons - pathology Muscular Atrophy, Spinal - genetics Muscular Atrophy, Spinal - metabolism Muscular Atrophy, Spinal - pathology Muscular Atrophy, Spinal - therapy Neurons Original Proteins Spinal cord Spinal Cord - metabolism Spinal Cord - pathology Survival of Motor Neuron 1 Protein - genetics Survival of Motor Neuron 1 Protein - metabolism Transduction, Genetic Transgenes |
Title | Improving Single Injection CSF Delivery of AAV9-mediated Gene Therapy for SMA: A Dose–response Study in Mice and Nonhuman Primates |
URI | https://dx.doi.org/10.1038/mt.2014.210 https://www.ncbi.nlm.nih.gov/pubmed/25358252 https://www.proquest.com/docview/1791387365 https://www.proquest.com/docview/1660028953 https://www.proquest.com/docview/1776654164 https://pubmed.ncbi.nlm.nih.gov/PMC4351452 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgE4gXBANGYEyHtCekbI0TOwkvqKyrNlCriRbUt8ixHTHUOWPtHvrKX85d4gYG1V4iRblESc4_Pvu-u4-xAy5sr1IqCnOi0CRS5mHOjQi1xLVzhHN-llPu8GgsT78mn2Zi5jfcFp5WuR4Tm4Ha1Jr2yI-ojGacpbEUH65-hqQaRdFVL6Fxn21HiERIuiGddQsuBDuNPhdJ_ISEbXx-Xi_Oji6JRxklh5xSZzfPSP8jzn-Jk3_NRMMn7LGHkNBvff6U3bNuhz1oRSVXO-zhyIfLn7Ff3ZYBTPAwt3DmfjTcKwfHkyEM7JxoGSuoK-j3v-Vhk0eCGBSoGjVM24oDgLgWJqP-e-jDoF7Y8Lrl1VogEuIKLhyMcLgB5QyMa9eo_sE5VbFAGPucTYcn0-PT0IsuoHt4sgy1jhTCCGlsqU2eSKETaTNlIotLnyoypeKmTHlFUE9WQmuelRUlwBqeahXHL9iWq519yQAtMpXn1uYKh2ObqgSfmFjbk2XUKysTsHfr_15oX5CcdDHmRRMYj7PiclmQkwp0UsAOOuOrtg7HZrPDtQMLDyFaaFDgDLH5hr21mwvfexfFn7YWsLfdZex3FExRztY3aCNlE6UV8R02aUrizrgiDdhu23K6l-eCcpQFD1h6q011BlT3-_YVd_G9qf-dUPaF4K_ufvXX7BF-pGj5cntsa3l9Y98ggFqW-00v2WfbH0_G51_wbHD2-TcLchxJ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqXhcEJRXoMAilQuS23jtXdtIFQpNo4Q2UUUC6m219q7VVqldmlQoV_4X_40Zv6AQ9dZLLp5EG8_uzrc73zcDsMWF7aRau05EFBpfysiJuBFOIvHs7GLMDyPSDo_GcvDV_3wsjtfgV62FIVplvScWG7XJE7oj36Eyml4YeFJ8vPjuUNcoyq7WLTR01VrB7BYlxiphx4Fd_sAj3Hx32EN_v-O8vz_dGzhVlwEcD_cXTpK4GuOmNDZOTORLkfjShtq4FrF-6ppYcxMHPCVsI1ORJDyMU1J8Gh4kmu5DMQKs-3R_0oL1T_vjoy9NGgOxQiFvElw4BK4qgWDHC3fOicjp-tuctLurQ-L_kPdf5uZfobD_EB5UGJZ1y0n3CNZstgF3yq6Wyw24O6ry9Y_hZ3NnwSb4MbNsmJ0V5K-M7U36rGdnxAtZsjxl3e63yCmELAiCGZXDZtOy5AFDYM0mo-4H1mW9fG6dy5LYaxmxIJfsNGMj3O-Yzgwb51nRdpAdURkNxNFPYHob_ngKrSzP7HNgaBHqKLI20hgPbKB9_EXf2o6M3U6cmja8r9-7SqqK6NSYY6aKzLwXqvOFIicpdFIbthrji7IQyGqz7dqBqsIwJTZRGKJWf2GzdrOqto-5-jPZ2_C2eYwLn7I5OrP5FdpIWaSJhXeDTRBQd2k8ErfhWTlzmsFzQSJpwdsQXJtTjQEVHr_-JDs9KQqQ-yT_EPzFzUN_A_cG09GhOhyOD17CffzDoiTvbUJrcXllXyGaW8SvqzXDQN3yKv0NdgJd8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Single+Injection+CSF+Delivery+of+AAV9-mediated+Gene+Therapy+for+SMA%3A+A+Dose-response+Study+in+Mice+and+Nonhuman+Primates&rft.jtitle=Molecular+therapy&rft.au=Meyer%2C+Kathrin&rft.au=Ferraiuolo%2C+Laura&rft.au=Schmelzer%2C+Leah&rft.au=Braun%2C+Lyndsey&rft.date=2015-03-01&rft.pub=Elsevier+Limited&rft.issn=1525-0016&rft.eissn=1525-0024&rft.volume=23&rft.issue=3&rft.spage=477&rft_id=info:doi/10.1038%2Fmt.2014.210&rft.externalDocID=4068158881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-0016&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-0016&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-0016&client=summon |