Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve head-centered SD-OCT volumes
•We present a multimodal approach for segmenting the surface of the optic nerve head.•A graph-based approach is extended to utilize gradient-vector-flow-based columns.•Issues related to the presence of blood vessels and deep cups are overcome.•The approach will enable more accurate computation of gl...
Saved in:
Published in | Computerized medical imaging and graphics Vol. 55; pp. 87 - 94 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.01.2017
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0895-6111 1879-0771 1879-0771 |
DOI | 10.1016/j.compmedimag.2016.06.007 |
Cover
Abstract | •We present a multimodal approach for segmenting the surface of the optic nerve head.•A graph-based approach is extended to utilize gradient-vector-flow-based columns.•Issues related to the presence of blood vessels and deep cups are overcome.•The approach will enable more accurate computation of glaucomatous measures.
The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches. |
---|---|
AbstractList | Highlights•We present a multimodal approach for segmenting the surface of the optic nerve head. •A graph-based approach is extended to utilize gradient-vector-flow-based columns. •Issues related to the presence of blood vessels and deep cups are overcome. •The approach will enable more accurate computation of glaucomatous measures. The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches.The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches. The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitre- ous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches. •We present a multimodal approach for segmenting the surface of the optic nerve head.•A graph-based approach is extended to utilize gradient-vector-flow-based columns.•Issues related to the presence of blood vessels and deep cups are overcome.•The approach will enable more accurate computation of glaucomatous measures. The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches. The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches. |
Author | Miri, Mohammad Saleh Robles, Victor A. Abràmoff, Michael D. Kwon, Young H. Garvin, Mona K. |
AuthorAffiliation | a Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 52242 d Iowa City VA Health Care System, Iowa City, IA, 52246 b Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, 52242 c Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, 52242 |
AuthorAffiliation_xml | – name: a Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 52242 – name: d Iowa City VA Health Care System, Iowa City, IA, 52246 – name: b Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, 52242 – name: c Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, 52242 |
Author_xml | – sequence: 1 givenname: Mohammad Saleh surname: Miri fullname: Miri, Mohammad Saleh email: mohammadsaleh-miri@uiowa.edu organization: Department of Electrical and Computer Engineering, The University of Iowa, Iowa City 52242, IA, United States – sequence: 2 givenname: Victor A. surname: Robles fullname: Robles, Victor A. organization: Department of Electrical and Computer Engineering, The University of Iowa, Iowa City 52242, IA, United States – sequence: 3 givenname: Michael D. surname: Abràmoff fullname: Abràmoff, Michael D. organization: Department of Electrical and Computer Engineering, The University of Iowa, Iowa City 52242, IA, United States – sequence: 4 givenname: Young H. surname: Kwon fullname: Kwon, Young H. organization: Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City 52242, IA, United States – sequence: 5 givenname: Mona K. surname: Garvin fullname: Garvin, Mona K. email: mona-garvin@uiowa.edu organization: Department of Electrical and Computer Engineering, The University of Iowa, Iowa City 52242, IA, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27507325$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1r2zAUhs3oWNNsf2Fo7GY3ziT5Q_ZNR8m-CoVetLsWinycKJMlT7Iz-uP233bctKULDAICg_y-j87He5acOO8gSd4xumCUlR-3C-27voPGdGq94Hi1oHioeJHMWCXqlArBTpIZreoiLRljp8lZjFtKKaeCvUpOuSioyHgxS_5cOu1D74MajHfEt2QdVGPADWQHevCBtNb_Jq0B2xDjiCLdaAfT-UbZSdpv0mEDPsBgNFF9H7zSG9KiL8K6Q4xxa4IK9A4QHJqs6cz9bQfdKigHpA2-I2urRuxKDX6MxPcTzkHYAdmAalINkx0acvM5vV7ekp23YwfxdfKyVTbCm4fvPPnx9cvt8nt6df3tcnlxleqS50MqVsCgFitRZZCzHGjWiqJqG8pywRRvIa8rnIyi-apWtKEla3E-eS5oxeu8rbN5cr7n9uMKxz5VE5SVfcAFhDvplZH__nFmI9d-JwvO6jqvEPDhARD8rxHiIDsTNViL_WPDklVZUZaMswyl7w-kWz9Ok4uS04znJRO8QNXb5xU9lfK4WRR82gt08DEGaKU2w_2SsUBjJaNyypLcymdZklOWJMWDkHlSHxAeHznGu9x7AbeyMxBk1BgqjdKAsZKNN0dRzg8o2hpntLI_4Q7i01yYjFxSeTPlfYo7KzNKi6JEwMX_AUcW8ReCGRtK |
CitedBy_id | crossref_primary_10_3389_fams_2023_1271296 crossref_primary_10_1007_s11390_017_1795_y crossref_primary_10_1364_BOE_9_006497 crossref_primary_10_3390_s22134956 crossref_primary_10_1155_2021_6904217 crossref_primary_10_1109_RBME_2021_3110958 crossref_primary_10_1007_s11760_019_01456_x crossref_primary_10_1007_s11771_018_3884_7 crossref_primary_10_1016_j_compmedimag_2018_01_001 crossref_primary_10_1097_IJG_0000000000002150 crossref_primary_10_1155_2022_2648659 |
Cites_doi | 10.1109/TMI.2009.2031324 10.1364/OE.18.021293 10.1109/TMI.2014.2304499 10.1109/TMI.2012.2227120 10.1016/j.ophtha.2012.09.055 10.1109/TMI.2015.2412881 10.1117/1.2772658 10.4103/2228-7477.114321 10.1364/BOE.2.001743 10.1109/TMI.2010.2087390 10.1109/TMI.2009.2016958 10.1109/83.661186 10.5405/jmbe.845 10.1167/iovs.13-13310 10.1364/OE.18.014730 |
ContentType | Journal Article |
Copyright | 2016 Published by Elsevier Ltd. Copyright Elsevier Science Ltd. Jan 2017 |
Copyright_xml | – notice: 2016 – notice: Published by Elsevier Ltd. – notice: Copyright Elsevier Science Ltd. Jan 2017 |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1016/j.compmedimag.2016.06.007 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Nursing & Allied Health Premium PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0771 |
EndPage | 94 |
ExternalDocumentID | PMC5219948 27507325 10_1016_j_compmedimag_2016_06_007 S0895611116300556 1_s2_0_S0895611116300556 |
Genre | Journal Article |
GrantInformation_xml | – fundername: RRD VA grantid: IK2 RX000728 – fundername: NIBIB NIH HHS grantid: R01 EB004640 – fundername: NEI NIH HHS grantid: R01 EY018853 – fundername: NEI NIH HHS grantid: R01 EY023279 |
GroupedDBID | --- --K --M .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEI HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LX9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K WUQ Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX ACLOT CITATION ~HD AGRNS NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c624t-7be1e97b783e414e03f758fd01471a2fe498207a04b9a0d061f50744708294f93 |
IEDL.DBID | .~1 |
ISSN | 0895-6111 1879-0771 |
IngestDate | Tue Sep 30 16:58:37 EDT 2025 Sun Sep 28 06:31:24 EDT 2025 Wed Aug 13 06:23:01 EDT 2025 Mon Jul 21 06:02:51 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Wed Oct 01 02:27:04 EDT 2025 Fri Feb 23 02:19:32 EST 2024 Tue Feb 25 19:59:05 EST 2025 Tue Aug 26 16:44:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Optic nerve head Gradient vector flow SD-OCT Fundus Segmentation Graph-based segmentation Multimodal segmentation Ophthalmology Internal limiting membrane |
Language | English |
License | Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c624t-7be1e97b783e414e03f758fd01471a2fe498207a04b9a0d061f50744708294f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5219948 |
PMID | 27507325 |
PQID | 2032461725 |
PQPubID | 2047475 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5219948 proquest_miscellaneous_1835661213 proquest_journals_2032461725 pubmed_primary_27507325 crossref_citationtrail_10_1016_j_compmedimag_2016_06_007 crossref_primary_10_1016_j_compmedimag_2016_06_007 elsevier_sciencedirect_doi_10_1016_j_compmedimag_2016_06_007 elsevier_clinicalkeyesjournals_1_s2_0_S0895611116300556 elsevier_clinicalkey_doi_10_1016_j_compmedimag_2016_06_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Computerized medical imaging and graphics |
PublicationTitleAlternate | Comput Med Imaging Graph |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Shah, Wang, Garvin, Sonka, Wu (bib0090) 2014 Shaarawy, Sherwood, Crowston, Hitchings (bib0085) 2009 Zawadzki, Fuller, Wiley, Hamann, Choi, Werner (bib0120) 2007; 12 Lee, Niemeijer, Garvin, Kwon, Sonka, Abràmoff (bib0045) 2010; 29 Chauhan, O’Leary, AlMobarak, Reis, Yang, Sharpe, Hutchison, Nicolela, Burgoyne (bib0015) 2013; 120 Kajić, Považay, Hermann, Hofer, Marshall, Rosin, Drexler (bib0035) 2010; 18 Yazdanpanah, Hamarneh, Smith, Sarunic (bib0115) 2011; 30 Garvin, Abràmoff, Wu, Russell, Burns, Sonka (bib0020) 2009; 28 Oguz, Sonka (bib0075) 2014; 33 Lang, Carass, Calabresi, Ying, Prince (bib0040) 2014 Vermeer, van der Schoot, Lemij, de Boer (bib0100) 2011; 2 Almobarak, O'Leary, Reis, Sharpe, Hutchison, Nicolela, Chauhan (bib0005) 2014; 55 Miri, Robles, Abràmoff, Kwon, Garvin (bib0060) 2015 Xu, Prince (bib0105) 1998; 7 Hu, Niemeijer, Abràmoff, Lee, Garvin (bib0025) 2010 Miri, Abràmoff, Lee, Niemeijer, Wang, Kwon, Garvin (bib0055) 2015; 34 Yang, Reisman, Wang, Fukuma, Hangai, Yoshimura, Tomidokoro, Araie, Raza, Hood, Chan (bib0110) 2010; 18 Antony, Miri, Abràmoff, Kwon, Garvin (bib0010) 2014 Rossant, Ghorbel, Bloch, Paques, Tick (bib0080) 2009 Miri, Lee, Niemeijer, Abràmoff, Kwon, Garvin (bib0065) 2013 Kafieh, Rabbani, Kermani (bib0030) 2013; 3 Niemeijer, Staal, van Ginneken, Loog, Abràmoff (bib0070) 2004 Lee, Young, Sarunic, Beg (bib0050) 2010; 31 Song, Bai, Garvin, Sonka, Buatti, Wu (bib0095) 2013; 32 Song (10.1016/j.compmedimag.2016.06.007_bib0095) 2013; 32 Zawadzki (10.1016/j.compmedimag.2016.06.007_bib0120) 2007; 12 Chauhan (10.1016/j.compmedimag.2016.06.007_bib0015) 2013; 120 Niemeijer (10.1016/j.compmedimag.2016.06.007_bib0070) 2004 Shah (10.1016/j.compmedimag.2016.06.007_bib0090) 2014 Hu (10.1016/j.compmedimag.2016.06.007_bib0025) 2010 Shaarawy (10.1016/j.compmedimag.2016.06.007_bib0085) 2009 Antony (10.1016/j.compmedimag.2016.06.007_bib0010) 2014 Kajić (10.1016/j.compmedimag.2016.06.007_bib0035) 2010; 18 Lee (10.1016/j.compmedimag.2016.06.007_bib0050) 2010; 31 Oguz (10.1016/j.compmedimag.2016.06.007_bib0075) 2014; 33 Rossant (10.1016/j.compmedimag.2016.06.007_bib0080) 2009 Garvin (10.1016/j.compmedimag.2016.06.007_bib0020) 2009; 28 Yazdanpanah (10.1016/j.compmedimag.2016.06.007_bib0115) 2011; 30 Miri (10.1016/j.compmedimag.2016.06.007_bib0065) 2013 Lang (10.1016/j.compmedimag.2016.06.007_bib0040) 2014 Lee (10.1016/j.compmedimag.2016.06.007_bib0045) 2010; 29 Yang (10.1016/j.compmedimag.2016.06.007_bib0110) 2010; 18 Miri (10.1016/j.compmedimag.2016.06.007_bib0055) 2015; 34 Kafieh (10.1016/j.compmedimag.2016.06.007_bib0030) 2013; 3 Miri (10.1016/j.compmedimag.2016.06.007_bib0060) 2015 Almobarak (10.1016/j.compmedimag.2016.06.007_bib0005) 2014; 55 Vermeer (10.1016/j.compmedimag.2016.06.007_bib0100) 2011; 2 Xu (10.1016/j.compmedimag.2016.06.007_bib0105) 1998; 7 19758857 - IEEE Trans Med Imaging. 2010 Jan;29(1):159-68 20941025 - Opt Express. 2010 Sep 27;18(20):21293-307 20879380 - Med Image Comput Comput Assist Interv. 2010;13(Pt 3):33-40 24083137 - J Med Signals Sens. 2013 Jan;3(1):45-60 23265804 - Ophthalmology. 2013 Mar;120(3):535-43 18276256 - IEEE Trans Image Process. 1998;7(3):359-69 19278927 - IEEE Trans Med Imaging. 2009 Sep;28(9):1436-47 20639959 - Opt Express. 2010 Jul 5;18(14):14730-44 27773959 - Proc SPIE Int Soc Opt Eng. 2014;9034 24474272 - Invest Ophthalmol Vis Sci. 2014 Feb 26;55(2):1161-8 23193309 - IEEE Trans Med Imaging. 2013 Feb;32(2):376-86 25781623 - IEEE Trans Med Imaging. 2015 Sep;34(9):1854-66 25333185 - Med Image Comput Comput Assist Interv. 2014;17(Pt 1):739-46 17867795 - J Biomed Opt. 2007 Jul-Aug;12(4):041206 20952331 - IEEE Trans Med Imaging. 2011 Feb;30(2):484-96 24760901 - IEEE Trans Med Imaging. 2014 Jun;33(6):1220-35 21698034 - Biomed Opt Express. 2011 Jun 1;2(6):1743-56 |
References_xml | – volume: 55 start-page: 1161 year: 2014 end-page: 1168 ident: bib0005 article-title: Automated segmentation of optic nerve head structures with optical coherence tomography publication-title: Invest. Ophthalmol. Vis. Sci. – year: 2014 ident: bib0040 article-title: An adaptive grid for graph-based segmentation in retinal OCT publication-title: Proc. SPIE, Med. Imag. 2014: Imag. Proc., vol. 9034, 90340 – volume: 30 start-page: 484 year: 2011 end-page: 496 ident: bib0115 article-title: Segmentation of intraretinal layers from optical coherence tomography images using an active contour approach publication-title: IEEE Trans. Med. Imaging – volume: 33 start-page: 1220 year: 2014 end-page: 1235 ident: bib0075 article-title: LOGISMOS-B: layered optimal graph image segmentation of multiple objects and surfaces for the brain publication-title: IEEE Trans. Med. Imaging – year: 2009 ident: bib0085 article-title: Glaucoma: Medical Diagnosis and Therapy – volume: 2 start-page: 1743 year: 2011 end-page: 1756 ident: bib0100 article-title: Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images publication-title: Biomed. Opt. Express – volume: 18 start-page: 14730 year: 2010 end-page: 14744 ident: bib0035 article-title: Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis publication-title: Opt. Express – volume: 29 start-page: 159 year: 2010 end-page: 168 ident: bib0045 article-title: Segmentation of the optic disc in 3-D OCT scans of the optic nerve head publication-title: IEEE Trans. Med. Imaging – start-page: 1370 year: 2009 end-page: 1373 ident: bib0080 article-title: Automated segmentation of retinal layers in OCT imaging and derived ophthalmic measures publication-title: 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI) – volume: 28 start-page: 1436 year: 2009 end-page: 1447 ident: bib0020 article-title: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images publication-title: IEEE Trans. Med. Imaging – start-page: 33 year: 2010 end-page: 40 ident: bib0025 article-title: Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression publication-title: Proc. MICCAI 2010, LNCS, 6363 – start-page: 648 year: 2004 end-page: 656 ident: bib0070 article-title: Comparative study of retinal vessel segmentation methods on a new publicly available database publication-title: Proc. SPIE, Med. Imag. 2004: Imag. Proc., vol. 5370 – volume: 3 start-page: 45 year: 2013 end-page: 60 ident: bib0030 article-title: A review of algorithms for segmentation of optical coherence tomography from retina publication-title: J. Med. Signals Sens. – volume: 31 start-page: 111 year: 2010 end-page: 119 ident: bib0050 article-title: End-to-end pipeline for spectral domain optical coherence tomography and morphometric analysis of human optic nerve head publication-title: J. Med. Biol. Eng. – volume: 120 start-page: 535 year: 2013 end-page: 543 ident: bib0015 article-title: Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter publication-title: Ophthalmology – volume: 7 start-page: 359 year: 1998 end-page: 369 ident: bib0105 article-title: Snakes, shapes, and gradient vector flow publication-title: IEEE Trans. Image Process. – start-page: 739 year: 2014 end-page: 746 ident: bib0010 article-title: Automated 3D segmentation of multiple surfaces with a shared hole: segmentation of the neural canal opening in SD-OCT volumes publication-title: Proc. MICCAI 2014, LNCS, Part I, vol. 8673 – start-page: 1405 year: 2014 end-page: 1408 ident: bib0090 article-title: Automated surface segmentation of internal limiting membrane in spectral-domain optical coherence tomography volumes with a deep cup using a 3-D range expansion approach publication-title: Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on – start-page: 57 year: 2015 end-page: 64 ident: bib0060 article-title: Multimodal graph-theoretic approach for segmentation of the internal limiting membrane at the optic nerve head publication-title: Ophthalmic Medical Image Analysis (OMIA) MICCAI Workshop – year: 2013 ident: bib0065 article-title: Multimodal segmentation of optic disc and cup from stereo fundus and SD-OCT images publication-title: Proc. SPIE, Med. Img. 2013: Img. Proc., vol. 8669 – volume: 12 start-page: 41206 year: 2007 ident: bib0120 article-title: Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets publication-title: J. Biomed. Opt. – volume: 18 start-page: 21293 year: 2010 end-page: 21307 ident: bib0110 article-title: Automated layer segmentation of macular OCT images using dual-scale gradient information publication-title: Opt. Express – volume: 32 start-page: 376 year: 2013 end-page: 386 ident: bib0095 article-title: Optimal multiple surface segmentation with shape and context priors publication-title: IEEE Trans. Med. Imaging – volume: 34 start-page: 1854 year: 2015 end-page: 1866 ident: bib0055 article-title: Multimodal segmentation of optic disc and cup from SD-OCT and color fundus photographs using a machine-learning graph-based approach publication-title: IEEE Trans. Med. Imaging – volume: 29 start-page: 159 issue: 1 year: 2010 ident: 10.1016/j.compmedimag.2016.06.007_bib0045 article-title: Segmentation of the optic disc in 3-D OCT scans of the optic nerve head publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2031324 – volume: 18 start-page: 21293 issue: 20 year: 2010 ident: 10.1016/j.compmedimag.2016.06.007_bib0110 article-title: Automated layer segmentation of macular OCT images using dual-scale gradient information publication-title: Opt. Express doi: 10.1364/OE.18.021293 – volume: 33 start-page: 1220 issue: 6 year: 2014 ident: 10.1016/j.compmedimag.2016.06.007_bib0075 article-title: LOGISMOS-B: layered optimal graph image segmentation of multiple objects and surfaces for the brain publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2304499 – start-page: 57 year: 2015 ident: 10.1016/j.compmedimag.2016.06.007_bib0060 article-title: Multimodal graph-theoretic approach for segmentation of the internal limiting membrane at the optic nerve head – volume: 32 start-page: 376 issue: 2 year: 2013 ident: 10.1016/j.compmedimag.2016.06.007_bib0095 article-title: Optimal multiple surface segmentation with shape and context priors publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2227120 – volume: 120 start-page: 535 issue: 3 year: 2013 ident: 10.1016/j.compmedimag.2016.06.007_bib0015 article-title: Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.09.055 – volume: 34 start-page: 1854 issue: 9 year: 2015 ident: 10.1016/j.compmedimag.2016.06.007_bib0055 article-title: Multimodal segmentation of optic disc and cup from SD-OCT and color fundus photographs using a machine-learning graph-based approach publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2412881 – start-page: 648 year: 2004 ident: 10.1016/j.compmedimag.2016.06.007_bib0070 article-title: Comparative study of retinal vessel segmentation methods on a new publicly available database – volume: 12 start-page: 41206 issue: 4 year: 2007 ident: 10.1016/j.compmedimag.2016.06.007_bib0120 article-title: Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets publication-title: J. Biomed. Opt. doi: 10.1117/1.2772658 – start-page: 739 year: 2014 ident: 10.1016/j.compmedimag.2016.06.007_bib0010 article-title: Automated 3D segmentation of multiple surfaces with a shared hole: segmentation of the neural canal opening in SD-OCT volumes – year: 2014 ident: 10.1016/j.compmedimag.2016.06.007_bib0040 article-title: An adaptive grid for graph-based segmentation in retinal OCT – year: 2013 ident: 10.1016/j.compmedimag.2016.06.007_bib0065 article-title: Multimodal segmentation of optic disc and cup from stereo fundus and SD-OCT images – volume: 3 start-page: 45 issue: 1 year: 2013 ident: 10.1016/j.compmedimag.2016.06.007_bib0030 article-title: A review of algorithms for segmentation of optical coherence tomography from retina publication-title: J. Med. Signals Sens. doi: 10.4103/2228-7477.114321 – volume: 2 start-page: 1743 issue: 6 year: 2011 ident: 10.1016/j.compmedimag.2016.06.007_bib0100 article-title: Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.001743 – start-page: 1370 year: 2009 ident: 10.1016/j.compmedimag.2016.06.007_bib0080 article-title: Automated segmentation of retinal layers in OCT imaging and derived ophthalmic measures – volume: 30 start-page: 484 issue: 2 year: 2011 ident: 10.1016/j.compmedimag.2016.06.007_bib0115 article-title: Segmentation of intraretinal layers from optical coherence tomography images using an active contour approach publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2087390 – volume: 28 start-page: 1436 issue: 9 year: 2009 ident: 10.1016/j.compmedimag.2016.06.007_bib0020 article-title: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2016958 – volume: 7 start-page: 359 issue: 3 year: 1998 ident: 10.1016/j.compmedimag.2016.06.007_bib0105 article-title: Snakes, shapes, and gradient vector flow publication-title: IEEE Trans. Image Process. doi: 10.1109/83.661186 – start-page: 1405 year: 2014 ident: 10.1016/j.compmedimag.2016.06.007_bib0090 article-title: Automated surface segmentation of internal limiting membrane in spectral-domain optical coherence tomography volumes with a deep cup using a 3-D range expansion approach – start-page: 33 year: 2010 ident: 10.1016/j.compmedimag.2016.06.007_bib0025 article-title: Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression – volume: 31 start-page: 111 issue: 2 year: 2010 ident: 10.1016/j.compmedimag.2016.06.007_bib0050 article-title: End-to-end pipeline for spectral domain optical coherence tomography and morphometric analysis of human optic nerve head publication-title: J. Med. Biol. Eng. doi: 10.5405/jmbe.845 – year: 2009 ident: 10.1016/j.compmedimag.2016.06.007_bib0085 – volume: 55 start-page: 1161 issue: 22 year: 2014 ident: 10.1016/j.compmedimag.2016.06.007_bib0005 article-title: Automated segmentation of optic nerve head structures with optical coherence tomography publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.13-13310 – volume: 18 start-page: 14730 issue: 14 year: 2010 ident: 10.1016/j.compmedimag.2016.06.007_bib0035 article-title: Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis publication-title: Opt. Express doi: 10.1364/OE.18.014730 – reference: 25333185 - Med Image Comput Comput Assist Interv. 2014;17(Pt 1):739-46 – reference: 24474272 - Invest Ophthalmol Vis Sci. 2014 Feb 26;55(2):1161-8 – reference: 20941025 - Opt Express. 2010 Sep 27;18(20):21293-307 – reference: 19278927 - IEEE Trans Med Imaging. 2009 Sep;28(9):1436-47 – reference: 25781623 - IEEE Trans Med Imaging. 2015 Sep;34(9):1854-66 – reference: 20952331 - IEEE Trans Med Imaging. 2011 Feb;30(2):484-96 – reference: 23265804 - Ophthalmology. 2013 Mar;120(3):535-43 – reference: 17867795 - J Biomed Opt. 2007 Jul-Aug;12(4):041206 – reference: 20879380 - Med Image Comput Comput Assist Interv. 2010;13(Pt 3):33-40 – reference: 24760901 - IEEE Trans Med Imaging. 2014 Jun;33(6):1220-35 – reference: 27773959 - Proc SPIE Int Soc Opt Eng. 2014;9034: – reference: 18276256 - IEEE Trans Image Process. 1998;7(3):359-69 – reference: 21698034 - Biomed Opt Express. 2011 Jun 1;2(6):1743-56 – reference: 24083137 - J Med Signals Sens. 2013 Jan;3(1):45-60 – reference: 23193309 - IEEE Trans Med Imaging. 2013 Feb;32(2):376-86 – reference: 20639959 - Opt Express. 2010 Jul 5;18(14):14730-44 – reference: 19758857 - IEEE Trans Med Imaging. 2010 Jan;29(1):159-68 |
SSID | ssj0002071 |
Score | 2.1908185 |
Snippet | •We present a multimodal approach for segmenting the surface of the optic nerve head.•A graph-based approach is extended to utilize gradient-vector-flow-based... Highlights•We present a multimodal approach for segmenting the surface of the optic nerve head. •A graph-based approach is extended to utilize... The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma... The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitre- ous. In the optical coherence tomography volumes of... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 87 |
SubjectTerms | Blood vessels Constraining Fundus Glaucoma Gradient vector flow Graph theory Graph-based segmentation Internal limiting membrane Internal Medicine Multimodal segmentation Ophthalmology Optic nerve Optic nerve head Optical Coherence Tomography Other Retina SD-OCT Segmentation Tomography |
Title | Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve head-centered SD-OCT volumes |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0895611116300556 https://www.clinicalkey.es/playcontent/1-s2.0-S0895611116300556 https://dx.doi.org/10.1016/j.compmedimag.2016.06.007 https://www.ncbi.nlm.nih.gov/pubmed/27507325 https://www.proquest.com/docview/2032461725 https://www.proquest.com/docview/1835661213 https://pubmed.ncbi.nlm.nih.gov/PMC5219948 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002071 issn: 0895-6111 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002071 issn: 0895-6111 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002071 issn: 0895-6111 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002071 issn: 0895-6111 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002071 issn: 0895-6111 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIlVcEG-WlmoqcQ2b2E6cIC7VQrUFtRzaSr1ZedhL0G6yarblxj_jvzHjPNqlPaxEjoknD3synrG_-Yax97HIuOURRicBz2ibMfRiXghP2sKGaRDHwtKO7slpNL2QXy_Dyy026XNhCFbZ2f7Wpjtr3Z0Zd705Xpbl-MyPKSkTD2KNCkOi3Sb2L9TpD79vYR7cd0EXNfao9Q47uMV4EWyb9rAX6YxQXpGj8qTKsg_PUfd90H-hlHfmpqOn7EnnVMJh-97P2JapnrOdk27b_AX7c0xslctutKG2MLtyUK8V3LhVe7Dz-hc4NBuUFaTgcIaLusC7Okprb0h4hJ6FHNDdhcbMHN6omgG2gLJdX5zDnPKm6OzCLDAerwxQHgugr36NvUF12Buol3S7iiCXgFNC4dHXUelQOPvsfZ-cQ2s5m5fs4ujL-WTqdXUbvDzicuWpzAQmUZmKhZGBNL6wGJXYAqMxFaTcGpmg36FSX2ZJ6hfoUVj0SqVUlOcrbSJese2qrswbBmEem8zKTPGikEKESZ5HMpVJnhqVYqw4YnE_UjrvSM2ptsZc9-i1n_rOIGsaZO2QfGrE-CC6bJk9NhH62KuD7lNX0dhqnH82EVYPCZumMxuNDnTDta_vqfaIfRok1_6OTR-812uuHp7FfUFcgoqHI3YwXEbjQjtGqBeoCBrtPbr7xPo3Yq9bRR_6igoDKEHSau0XGBoQcfn6lar84QjM0WVMEhm__b-v2mWPOflYbj1sj22vrq7NO_QQV9m-MwH77NHh8bfp6V-eD2xL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6VVCpcEG8CBaYSVyv2eu21EZcqUCW0CYemUm8rP3ZTo8SJ6hR-Hf-NmfWDhvYQCR_tHT92x7Mzu998w9jHyE-54SFGJx5PaZsxcCKe-44wuQkSL4p8Qzu6k2k4uhDfLoPLPTZsc2EIVtnY_tqmW2vdnBk0vTlYF8Xg3I0oKRMPYo0KgvAB2xcB2uQe2z8en46mnUHmro27qL1DAgfs6C_Mi5DbtI29TOYE9AotmycVl71_mrrrhv6Lprw1PZ08YY8bvxKO61d_yvZ0-YwdTJqd8-fs95gIK9fNgMPKwPzaor028NMu3INZrH6BBbRBUUICFmq4XOV4V8tq7XQ5j9ASkQN6vFDpuYUclXPAFlDUS4wLWFDqFJ1d6iWG5KUGSmUBdNdvsDeoFHsFqzXdriTUJeCskDv0dVQ9FM6_ON-HM6iNZ_WCXZx8nQ1HTlO6wclCLjaOTLWnY5nKyNfCE9r1DQYmJseATHoJN1rE6HrIxBVpnLg5OhUGHVMhJKX6ChP7L1mvXJX6NYMgi3RqRCp5ngvfD-IsC0Ui4izRMsFwsc-idqRU1vCaU3mNhWoBbD_UrUFWNMjKgvlkn_FOdF2Te-wi9KlVB9Vmr6K9VTgF7SIs7xPWVWM5KuWpiitX3dHuPvvcSW79ILs--LDVXNU9i7s-0QlKHvTZUXcZ7QttGqFeoCIoNPno8RPxX5-9qhW96yuqDSB9kpZbv0DXgLjLt6-UxZXlMEevMY5F9Ob_vuoDeziaTc7U2Xh6-pY94uRy2eWxQ9bbXN_od-gwbtL3jUH4A7h0bvY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporation+of+gradient+vector+flow+field+in+a+multimodal+graph-theoretic+approach+for+segmenting+the+internal+limiting+membrane+from+glaucomatous+optic+nerve+head-centered+SD-OCT+volumes&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Miri%2C+Mohammad+Saleh&rft.au=Robles%2C+Victor+A&rft.au=Abr%C3%A0moff%2C+Michael+D&rft.au=Kwon%2C+Young+H&rft.date=2017-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0895-6111&rft.eissn=1879-0771&rft.volume=55&rft.spage=87&rft_id=info:doi/10.1016%2Fj.compmedimag.2016.06.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2FS0895611116X00092%2Fcov150h.gif |