Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve head-centered SD-OCT volumes

•We present a multimodal approach for segmenting the surface of the optic nerve head.•A graph-based approach is extended to utilize gradient-vector-flow-based columns.•Issues related to the presence of blood vessels and deep cups are overcome.•The approach will enable more accurate computation of gl...

Full description

Saved in:
Bibliographic Details
Published inComputerized medical imaging and graphics Vol. 55; pp. 87 - 94
Main Authors Miri, Mohammad Saleh, Robles, Victor A., Abràmoff, Michael D., Kwon, Young H., Garvin, Mona K.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0895-6111
1879-0771
1879-0771
DOI10.1016/j.compmedimag.2016.06.007

Cover

Abstract •We present a multimodal approach for segmenting the surface of the optic nerve head.•A graph-based approach is extended to utilize gradient-vector-flow-based columns.•Issues related to the presence of blood vessels and deep cups are overcome.•The approach will enable more accurate computation of glaucomatous measures. The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches.
AbstractList Highlights•We present a multimodal approach for segmenting the surface of the optic nerve head. •A graph-based approach is extended to utilize gradient-vector-flow-based columns. •Issues related to the presence of blood vessels and deep cups are overcome. •The approach will enable more accurate computation of glaucomatous measures.
The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches.The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches.
The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitre- ous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches.
•We present a multimodal approach for segmenting the surface of the optic nerve head.•A graph-based approach is extended to utilize gradient-vector-flow-based columns.•Issues related to the presence of blood vessels and deep cups are overcome.•The approach will enable more accurate computation of glaucomatous measures. The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches.
The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma patients, while current approaches for the segmentation of the ILM in the peripapillary and macular regions are considered robust, current approaches commonly produce ILM segmentation errors at the ONH due to the presence of blood vessels and/or characteristic glaucomatous deep cupping. Because a precise segmentation of the ILM surface at the ONH is required for computing several newer structural measurements including Bruch's membrane opening-minimum rim width (BMO-MRW) and cup volume, in this study, we propose a multimodal multiresolution graph-based method to precisely segment the ILM surface within ONH-centered spectral-domain optical coherence tomography (SD-OCT) volumes. In particular, the gradient vector flow (GVF) field, which is computed from a multiresolution initial segmentation, is employed for calculating a set of non-overlapping GVF-based columns perpendicular to the initial segmentation. The GVF columns are utilized to resample the volume and also serve as the columns to the graph construction. The ILM surface in the resampled volume is fairly smooth and does not contain the steep slopes. This prior shape knowledge along with the blood vessel information, obtained from registered fundus photographs, are incorporated in a graph-theoretic approach in order to identify the location of the ILM surface. The proposed method is tested on the SD-OCT volumes of 44 subjects with various stages of glaucoma and significantly smaller segmentation errors were obtained than that of current approaches.
Author Miri, Mohammad Saleh
Robles, Victor A.
Abràmoff, Michael D.
Kwon, Young H.
Garvin, Mona K.
AuthorAffiliation a Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 52242
d Iowa City VA Health Care System, Iowa City, IA, 52246
b Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, 52242
c Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, 52242
AuthorAffiliation_xml – name: a Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, 52242
– name: d Iowa City VA Health Care System, Iowa City, IA, 52246
– name: b Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, 52242
– name: c Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, 52242
Author_xml – sequence: 1
  givenname: Mohammad Saleh
  surname: Miri
  fullname: Miri, Mohammad Saleh
  email: mohammadsaleh-miri@uiowa.edu
  organization: Department of Electrical and Computer Engineering, The University of Iowa, Iowa City 52242, IA, United States
– sequence: 2
  givenname: Victor A.
  surname: Robles
  fullname: Robles, Victor A.
  organization: Department of Electrical and Computer Engineering, The University of Iowa, Iowa City 52242, IA, United States
– sequence: 3
  givenname: Michael D.
  surname: Abràmoff
  fullname: Abràmoff, Michael D.
  organization: Department of Electrical and Computer Engineering, The University of Iowa, Iowa City 52242, IA, United States
– sequence: 4
  givenname: Young H.
  surname: Kwon
  fullname: Kwon, Young H.
  organization: Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City 52242, IA, United States
– sequence: 5
  givenname: Mona K.
  surname: Garvin
  fullname: Garvin, Mona K.
  email: mona-garvin@uiowa.edu
  organization: Department of Electrical and Computer Engineering, The University of Iowa, Iowa City 52242, IA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27507325$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1r2zAUhs3oWNNsf2Fo7GY3ziT5Q_ZNR8m-CoVetLsWinycKJMlT7Iz-uP233bctKULDAICg_y-j87He5acOO8gSd4xumCUlR-3C-27voPGdGq94Hi1oHioeJHMWCXqlArBTpIZreoiLRljp8lZjFtKKaeCvUpOuSioyHgxS_5cOu1D74MajHfEt2QdVGPADWQHevCBtNb_Jq0B2xDjiCLdaAfT-UbZSdpv0mEDPsBgNFF9H7zSG9KiL8K6Q4xxa4IK9A4QHJqs6cz9bQfdKigHpA2-I2urRuxKDX6MxPcTzkHYAdmAalINkx0acvM5vV7ekp23YwfxdfKyVTbCm4fvPPnx9cvt8nt6df3tcnlxleqS50MqVsCgFitRZZCzHGjWiqJqG8pywRRvIa8rnIyi-apWtKEla3E-eS5oxeu8rbN5cr7n9uMKxz5VE5SVfcAFhDvplZH__nFmI9d-JwvO6jqvEPDhARD8rxHiIDsTNViL_WPDklVZUZaMswyl7w-kWz9Ok4uS04znJRO8QNXb5xU9lfK4WRR82gt08DEGaKU2w_2SsUBjJaNyypLcymdZklOWJMWDkHlSHxAeHznGu9x7AbeyMxBk1BgqjdKAsZKNN0dRzg8o2hpntLI_4Q7i01yYjFxSeTPlfYo7KzNKi6JEwMX_AUcW8ReCGRtK
CitedBy_id crossref_primary_10_3389_fams_2023_1271296
crossref_primary_10_1007_s11390_017_1795_y
crossref_primary_10_1364_BOE_9_006497
crossref_primary_10_3390_s22134956
crossref_primary_10_1155_2021_6904217
crossref_primary_10_1109_RBME_2021_3110958
crossref_primary_10_1007_s11760_019_01456_x
crossref_primary_10_1007_s11771_018_3884_7
crossref_primary_10_1016_j_compmedimag_2018_01_001
crossref_primary_10_1097_IJG_0000000000002150
crossref_primary_10_1155_2022_2648659
Cites_doi 10.1109/TMI.2009.2031324
10.1364/OE.18.021293
10.1109/TMI.2014.2304499
10.1109/TMI.2012.2227120
10.1016/j.ophtha.2012.09.055
10.1109/TMI.2015.2412881
10.1117/1.2772658
10.4103/2228-7477.114321
10.1364/BOE.2.001743
10.1109/TMI.2010.2087390
10.1109/TMI.2009.2016958
10.1109/83.661186
10.5405/jmbe.845
10.1167/iovs.13-13310
10.1364/OE.18.014730
ContentType Journal Article
Copyright 2016
Published by Elsevier Ltd.
Copyright Elsevier Science Ltd. Jan 2017
Copyright_xml – notice: 2016
– notice: Published by Elsevier Ltd.
– notice: Copyright Elsevier Science Ltd. Jan 2017
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.compmedimag.2016.06.007
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Nursing & Allied Health Premium


PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0771
EndPage 94
ExternalDocumentID PMC5219948
27507325
10_1016_j_compmedimag_2016_06_007
S0895611116300556
1_s2_0_S0895611116300556
Genre Journal Article
GrantInformation_xml – fundername: RRD VA
  grantid: IK2 RX000728
– fundername: NIBIB NIH HHS
  grantid: R01 EB004640
– fundername: NEI NIH HHS
  grantid: R01 EY018853
– fundername: NEI NIH HHS
  grantid: R01 EY023279
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEI
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LX9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
WUQ
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
ACLOT
CITATION
~HD
AGRNS
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c624t-7be1e97b783e414e03f758fd01471a2fe498207a04b9a0d061f50744708294f93
IEDL.DBID .~1
ISSN 0895-6111
1879-0771
IngestDate Tue Sep 30 16:58:37 EDT 2025
Sun Sep 28 06:31:24 EDT 2025
Wed Aug 13 06:23:01 EDT 2025
Mon Jul 21 06:02:51 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Wed Oct 01 02:27:04 EDT 2025
Fri Feb 23 02:19:32 EST 2024
Tue Feb 25 19:59:05 EST 2025
Tue Aug 26 16:44:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Optic nerve head
Gradient vector flow
SD-OCT
Fundus
Segmentation
Graph-based segmentation
Multimodal segmentation
Ophthalmology
Internal limiting membrane
Language English
License Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-7be1e97b783e414e03f758fd01471a2fe498207a04b9a0d061f50744708294f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5219948
PMID 27507325
PQID 2032461725
PQPubID 2047475
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5219948
proquest_miscellaneous_1835661213
proquest_journals_2032461725
pubmed_primary_27507325
crossref_citationtrail_10_1016_j_compmedimag_2016_06_007
crossref_primary_10_1016_j_compmedimag_2016_06_007
elsevier_sciencedirect_doi_10_1016_j_compmedimag_2016_06_007
elsevier_clinicalkeyesjournals_1_s2_0_S0895611116300556
elsevier_clinicalkey_doi_10_1016_j_compmedimag_2016_06_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computerized medical imaging and graphics
PublicationTitleAlternate Comput Med Imaging Graph
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Shah, Wang, Garvin, Sonka, Wu (bib0090) 2014
Shaarawy, Sherwood, Crowston, Hitchings (bib0085) 2009
Zawadzki, Fuller, Wiley, Hamann, Choi, Werner (bib0120) 2007; 12
Lee, Niemeijer, Garvin, Kwon, Sonka, Abràmoff (bib0045) 2010; 29
Chauhan, O’Leary, AlMobarak, Reis, Yang, Sharpe, Hutchison, Nicolela, Burgoyne (bib0015) 2013; 120
Kajić, Považay, Hermann, Hofer, Marshall, Rosin, Drexler (bib0035) 2010; 18
Yazdanpanah, Hamarneh, Smith, Sarunic (bib0115) 2011; 30
Garvin, Abràmoff, Wu, Russell, Burns, Sonka (bib0020) 2009; 28
Oguz, Sonka (bib0075) 2014; 33
Lang, Carass, Calabresi, Ying, Prince (bib0040) 2014
Vermeer, van der Schoot, Lemij, de Boer (bib0100) 2011; 2
Almobarak, O'Leary, Reis, Sharpe, Hutchison, Nicolela, Chauhan (bib0005) 2014; 55
Miri, Robles, Abràmoff, Kwon, Garvin (bib0060) 2015
Xu, Prince (bib0105) 1998; 7
Hu, Niemeijer, Abràmoff, Lee, Garvin (bib0025) 2010
Miri, Abràmoff, Lee, Niemeijer, Wang, Kwon, Garvin (bib0055) 2015; 34
Yang, Reisman, Wang, Fukuma, Hangai, Yoshimura, Tomidokoro, Araie, Raza, Hood, Chan (bib0110) 2010; 18
Antony, Miri, Abràmoff, Kwon, Garvin (bib0010) 2014
Rossant, Ghorbel, Bloch, Paques, Tick (bib0080) 2009
Miri, Lee, Niemeijer, Abràmoff, Kwon, Garvin (bib0065) 2013
Kafieh, Rabbani, Kermani (bib0030) 2013; 3
Niemeijer, Staal, van Ginneken, Loog, Abràmoff (bib0070) 2004
Lee, Young, Sarunic, Beg (bib0050) 2010; 31
Song, Bai, Garvin, Sonka, Buatti, Wu (bib0095) 2013; 32
Song (10.1016/j.compmedimag.2016.06.007_bib0095) 2013; 32
Zawadzki (10.1016/j.compmedimag.2016.06.007_bib0120) 2007; 12
Chauhan (10.1016/j.compmedimag.2016.06.007_bib0015) 2013; 120
Niemeijer (10.1016/j.compmedimag.2016.06.007_bib0070) 2004
Shah (10.1016/j.compmedimag.2016.06.007_bib0090) 2014
Hu (10.1016/j.compmedimag.2016.06.007_bib0025) 2010
Shaarawy (10.1016/j.compmedimag.2016.06.007_bib0085) 2009
Antony (10.1016/j.compmedimag.2016.06.007_bib0010) 2014
Kajić (10.1016/j.compmedimag.2016.06.007_bib0035) 2010; 18
Lee (10.1016/j.compmedimag.2016.06.007_bib0050) 2010; 31
Oguz (10.1016/j.compmedimag.2016.06.007_bib0075) 2014; 33
Rossant (10.1016/j.compmedimag.2016.06.007_bib0080) 2009
Garvin (10.1016/j.compmedimag.2016.06.007_bib0020) 2009; 28
Yazdanpanah (10.1016/j.compmedimag.2016.06.007_bib0115) 2011; 30
Miri (10.1016/j.compmedimag.2016.06.007_bib0065) 2013
Lang (10.1016/j.compmedimag.2016.06.007_bib0040) 2014
Lee (10.1016/j.compmedimag.2016.06.007_bib0045) 2010; 29
Yang (10.1016/j.compmedimag.2016.06.007_bib0110) 2010; 18
Miri (10.1016/j.compmedimag.2016.06.007_bib0055) 2015; 34
Kafieh (10.1016/j.compmedimag.2016.06.007_bib0030) 2013; 3
Miri (10.1016/j.compmedimag.2016.06.007_bib0060) 2015
Almobarak (10.1016/j.compmedimag.2016.06.007_bib0005) 2014; 55
Vermeer (10.1016/j.compmedimag.2016.06.007_bib0100) 2011; 2
Xu (10.1016/j.compmedimag.2016.06.007_bib0105) 1998; 7
19758857 - IEEE Trans Med Imaging. 2010 Jan;29(1):159-68
20941025 - Opt Express. 2010 Sep 27;18(20):21293-307
20879380 - Med Image Comput Comput Assist Interv. 2010;13(Pt 3):33-40
24083137 - J Med Signals Sens. 2013 Jan;3(1):45-60
23265804 - Ophthalmology. 2013 Mar;120(3):535-43
18276256 - IEEE Trans Image Process. 1998;7(3):359-69
19278927 - IEEE Trans Med Imaging. 2009 Sep;28(9):1436-47
20639959 - Opt Express. 2010 Jul 5;18(14):14730-44
27773959 - Proc SPIE Int Soc Opt Eng. 2014;9034
24474272 - Invest Ophthalmol Vis Sci. 2014 Feb 26;55(2):1161-8
23193309 - IEEE Trans Med Imaging. 2013 Feb;32(2):376-86
25781623 - IEEE Trans Med Imaging. 2015 Sep;34(9):1854-66
25333185 - Med Image Comput Comput Assist Interv. 2014;17(Pt 1):739-46
17867795 - J Biomed Opt. 2007 Jul-Aug;12(4):041206
20952331 - IEEE Trans Med Imaging. 2011 Feb;30(2):484-96
24760901 - IEEE Trans Med Imaging. 2014 Jun;33(6):1220-35
21698034 - Biomed Opt Express. 2011 Jun 1;2(6):1743-56
References_xml – volume: 55
  start-page: 1161
  year: 2014
  end-page: 1168
  ident: bib0005
  article-title: Automated segmentation of optic nerve head structures with optical coherence tomography
  publication-title: Invest. Ophthalmol. Vis. Sci.
– year: 2014
  ident: bib0040
  article-title: An adaptive grid for graph-based segmentation in retinal OCT
  publication-title: Proc. SPIE, Med. Imag. 2014: Imag. Proc., vol. 9034, 90340
– volume: 30
  start-page: 484
  year: 2011
  end-page: 496
  ident: bib0115
  article-title: Segmentation of intraretinal layers from optical coherence tomography images using an active contour approach
  publication-title: IEEE Trans. Med. Imaging
– volume: 33
  start-page: 1220
  year: 2014
  end-page: 1235
  ident: bib0075
  article-title: LOGISMOS-B: layered optimal graph image segmentation of multiple objects and surfaces for the brain
  publication-title: IEEE Trans. Med. Imaging
– year: 2009
  ident: bib0085
  article-title: Glaucoma: Medical Diagnosis and Therapy
– volume: 2
  start-page: 1743
  year: 2011
  end-page: 1756
  ident: bib0100
  article-title: Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images
  publication-title: Biomed. Opt. Express
– volume: 18
  start-page: 14730
  year: 2010
  end-page: 14744
  ident: bib0035
  article-title: Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis
  publication-title: Opt. Express
– volume: 29
  start-page: 159
  year: 2010
  end-page: 168
  ident: bib0045
  article-title: Segmentation of the optic disc in 3-D OCT scans of the optic nerve head
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1370
  year: 2009
  end-page: 1373
  ident: bib0080
  article-title: Automated segmentation of retinal layers in OCT imaging and derived ophthalmic measures
  publication-title: 2009 IEEE 6th International Symposium on Biomedical Imaging (ISBI)
– volume: 28
  start-page: 1436
  year: 2009
  end-page: 1447
  ident: bib0020
  article-title: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images
  publication-title: IEEE Trans. Med. Imaging
– start-page: 33
  year: 2010
  end-page: 40
  ident: bib0025
  article-title: Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression
  publication-title: Proc. MICCAI 2010, LNCS, 6363
– start-page: 648
  year: 2004
  end-page: 656
  ident: bib0070
  article-title: Comparative study of retinal vessel segmentation methods on a new publicly available database
  publication-title: Proc. SPIE, Med. Imag. 2004: Imag. Proc., vol. 5370
– volume: 3
  start-page: 45
  year: 2013
  end-page: 60
  ident: bib0030
  article-title: A review of algorithms for segmentation of optical coherence tomography from retina
  publication-title: J. Med. Signals Sens.
– volume: 31
  start-page: 111
  year: 2010
  end-page: 119
  ident: bib0050
  article-title: End-to-end pipeline for spectral domain optical coherence tomography and morphometric analysis of human optic nerve head
  publication-title: J. Med. Biol. Eng.
– volume: 120
  start-page: 535
  year: 2013
  end-page: 543
  ident: bib0015
  article-title: Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter
  publication-title: Ophthalmology
– volume: 7
  start-page: 359
  year: 1998
  end-page: 369
  ident: bib0105
  article-title: Snakes, shapes, and gradient vector flow
  publication-title: IEEE Trans. Image Process.
– start-page: 739
  year: 2014
  end-page: 746
  ident: bib0010
  article-title: Automated 3D segmentation of multiple surfaces with a shared hole: segmentation of the neural canal opening in SD-OCT volumes
  publication-title: Proc. MICCAI 2014, LNCS, Part I, vol. 8673
– start-page: 1405
  year: 2014
  end-page: 1408
  ident: bib0090
  article-title: Automated surface segmentation of internal limiting membrane in spectral-domain optical coherence tomography volumes with a deep cup using a 3-D range expansion approach
  publication-title: Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on
– start-page: 57
  year: 2015
  end-page: 64
  ident: bib0060
  article-title: Multimodal graph-theoretic approach for segmentation of the internal limiting membrane at the optic nerve head
  publication-title: Ophthalmic Medical Image Analysis (OMIA) MICCAI Workshop
– year: 2013
  ident: bib0065
  article-title: Multimodal segmentation of optic disc and cup from stereo fundus and SD-OCT images
  publication-title: Proc. SPIE, Med. Img. 2013: Img. Proc., vol. 8669
– volume: 12
  start-page: 41206
  year: 2007
  ident: bib0120
  article-title: Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets
  publication-title: J. Biomed. Opt.
– volume: 18
  start-page: 21293
  year: 2010
  end-page: 21307
  ident: bib0110
  article-title: Automated layer segmentation of macular OCT images using dual-scale gradient information
  publication-title: Opt. Express
– volume: 32
  start-page: 376
  year: 2013
  end-page: 386
  ident: bib0095
  article-title: Optimal multiple surface segmentation with shape and context priors
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 1854
  year: 2015
  end-page: 1866
  ident: bib0055
  article-title: Multimodal segmentation of optic disc and cup from SD-OCT and color fundus photographs using a machine-learning graph-based approach
  publication-title: IEEE Trans. Med. Imaging
– volume: 29
  start-page: 159
  issue: 1
  year: 2010
  ident: 10.1016/j.compmedimag.2016.06.007_bib0045
  article-title: Segmentation of the optic disc in 3-D OCT scans of the optic nerve head
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2031324
– volume: 18
  start-page: 21293
  issue: 20
  year: 2010
  ident: 10.1016/j.compmedimag.2016.06.007_bib0110
  article-title: Automated layer segmentation of macular OCT images using dual-scale gradient information
  publication-title: Opt. Express
  doi: 10.1364/OE.18.021293
– volume: 33
  start-page: 1220
  issue: 6
  year: 2014
  ident: 10.1016/j.compmedimag.2016.06.007_bib0075
  article-title: LOGISMOS-B: layered optimal graph image segmentation of multiple objects and surfaces for the brain
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2304499
– start-page: 57
  year: 2015
  ident: 10.1016/j.compmedimag.2016.06.007_bib0060
  article-title: Multimodal graph-theoretic approach for segmentation of the internal limiting membrane at the optic nerve head
– volume: 32
  start-page: 376
  issue: 2
  year: 2013
  ident: 10.1016/j.compmedimag.2016.06.007_bib0095
  article-title: Optimal multiple surface segmentation with shape and context priors
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2227120
– volume: 120
  start-page: 535
  issue: 3
  year: 2013
  ident: 10.1016/j.compmedimag.2016.06.007_bib0015
  article-title: Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.09.055
– volume: 34
  start-page: 1854
  issue: 9
  year: 2015
  ident: 10.1016/j.compmedimag.2016.06.007_bib0055
  article-title: Multimodal segmentation of optic disc and cup from SD-OCT and color fundus photographs using a machine-learning graph-based approach
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2412881
– start-page: 648
  year: 2004
  ident: 10.1016/j.compmedimag.2016.06.007_bib0070
  article-title: Comparative study of retinal vessel segmentation methods on a new publicly available database
– volume: 12
  start-page: 41206
  issue: 4
  year: 2007
  ident: 10.1016/j.compmedimag.2016.06.007_bib0120
  article-title: Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.2772658
– start-page: 739
  year: 2014
  ident: 10.1016/j.compmedimag.2016.06.007_bib0010
  article-title: Automated 3D segmentation of multiple surfaces with a shared hole: segmentation of the neural canal opening in SD-OCT volumes
– year: 2014
  ident: 10.1016/j.compmedimag.2016.06.007_bib0040
  article-title: An adaptive grid for graph-based segmentation in retinal OCT
– year: 2013
  ident: 10.1016/j.compmedimag.2016.06.007_bib0065
  article-title: Multimodal segmentation of optic disc and cup from stereo fundus and SD-OCT images
– volume: 3
  start-page: 45
  issue: 1
  year: 2013
  ident: 10.1016/j.compmedimag.2016.06.007_bib0030
  article-title: A review of algorithms for segmentation of optical coherence tomography from retina
  publication-title: J. Med. Signals Sens.
  doi: 10.4103/2228-7477.114321
– volume: 2
  start-page: 1743
  issue: 6
  year: 2011
  ident: 10.1016/j.compmedimag.2016.06.007_bib0100
  article-title: Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.2.001743
– start-page: 1370
  year: 2009
  ident: 10.1016/j.compmedimag.2016.06.007_bib0080
  article-title: Automated segmentation of retinal layers in OCT imaging and derived ophthalmic measures
– volume: 30
  start-page: 484
  issue: 2
  year: 2011
  ident: 10.1016/j.compmedimag.2016.06.007_bib0115
  article-title: Segmentation of intraretinal layers from optical coherence tomography images using an active contour approach
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2087390
– volume: 28
  start-page: 1436
  issue: 9
  year: 2009
  ident: 10.1016/j.compmedimag.2016.06.007_bib0020
  article-title: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2016958
– volume: 7
  start-page: 359
  issue: 3
  year: 1998
  ident: 10.1016/j.compmedimag.2016.06.007_bib0105
  article-title: Snakes, shapes, and gradient vector flow
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.661186
– start-page: 1405
  year: 2014
  ident: 10.1016/j.compmedimag.2016.06.007_bib0090
  article-title: Automated surface segmentation of internal limiting membrane in spectral-domain optical coherence tomography volumes with a deep cup using a 3-D range expansion approach
– start-page: 33
  year: 2010
  ident: 10.1016/j.compmedimag.2016.06.007_bib0025
  article-title: Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression
– volume: 31
  start-page: 111
  issue: 2
  year: 2010
  ident: 10.1016/j.compmedimag.2016.06.007_bib0050
  article-title: End-to-end pipeline for spectral domain optical coherence tomography and morphometric analysis of human optic nerve head
  publication-title: J. Med. Biol. Eng.
  doi: 10.5405/jmbe.845
– year: 2009
  ident: 10.1016/j.compmedimag.2016.06.007_bib0085
– volume: 55
  start-page: 1161
  issue: 22
  year: 2014
  ident: 10.1016/j.compmedimag.2016.06.007_bib0005
  article-title: Automated segmentation of optic nerve head structures with optical coherence tomography
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.13-13310
– volume: 18
  start-page: 14730
  issue: 14
  year: 2010
  ident: 10.1016/j.compmedimag.2016.06.007_bib0035
  article-title: Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis
  publication-title: Opt. Express
  doi: 10.1364/OE.18.014730
– reference: 25333185 - Med Image Comput Comput Assist Interv. 2014;17(Pt 1):739-46
– reference: 24474272 - Invest Ophthalmol Vis Sci. 2014 Feb 26;55(2):1161-8
– reference: 20941025 - Opt Express. 2010 Sep 27;18(20):21293-307
– reference: 19278927 - IEEE Trans Med Imaging. 2009 Sep;28(9):1436-47
– reference: 25781623 - IEEE Trans Med Imaging. 2015 Sep;34(9):1854-66
– reference: 20952331 - IEEE Trans Med Imaging. 2011 Feb;30(2):484-96
– reference: 23265804 - Ophthalmology. 2013 Mar;120(3):535-43
– reference: 17867795 - J Biomed Opt. 2007 Jul-Aug;12(4):041206
– reference: 20879380 - Med Image Comput Comput Assist Interv. 2010;13(Pt 3):33-40
– reference: 24760901 - IEEE Trans Med Imaging. 2014 Jun;33(6):1220-35
– reference: 27773959 - Proc SPIE Int Soc Opt Eng. 2014;9034:
– reference: 18276256 - IEEE Trans Image Process. 1998;7(3):359-69
– reference: 21698034 - Biomed Opt Express. 2011 Jun 1;2(6):1743-56
– reference: 24083137 - J Med Signals Sens. 2013 Jan;3(1):45-60
– reference: 23193309 - IEEE Trans Med Imaging. 2013 Feb;32(2):376-86
– reference: 20639959 - Opt Express. 2010 Jul 5;18(14):14730-44
– reference: 19758857 - IEEE Trans Med Imaging. 2010 Jan;29(1):159-68
SSID ssj0002071
Score 2.1908185
Snippet •We present a multimodal approach for segmenting the surface of the optic nerve head.•A graph-based approach is extended to utilize gradient-vector-flow-based...
Highlights•We present a multimodal approach for segmenting the surface of the optic nerve head. •A graph-based approach is extended to utilize...
The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitreous. In the optical coherence tomography volumes of glaucoma...
The internal limiting membrane (ILM) separates the retina and optic nerve head (ONH) from the vitre- ous. In the optical coherence tomography volumes of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 87
SubjectTerms Blood vessels
Constraining
Fundus
Glaucoma
Gradient vector flow
Graph theory
Graph-based segmentation
Internal limiting membrane
Internal Medicine
Multimodal segmentation
Ophthalmology
Optic nerve
Optic nerve head
Optical Coherence Tomography
Other
Retina
SD-OCT
Segmentation
Tomography
Title Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve head-centered SD-OCT volumes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895611116300556
https://www.clinicalkey.es/playcontent/1-s2.0-S0895611116300556
https://dx.doi.org/10.1016/j.compmedimag.2016.06.007
https://www.ncbi.nlm.nih.gov/pubmed/27507325
https://www.proquest.com/docview/2032461725
https://www.proquest.com/docview/1835661213
https://pubmed.ncbi.nlm.nih.gov/PMC5219948
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 0895-6111
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 0895-6111
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 0895-6111
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 0895-6111
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 0895-6111
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIlVcEG-WlmoqcQ2b2E6cIC7VQrUFtRzaSr1ZedhL0G6yarblxj_jvzHjPNqlPaxEjoknD3synrG_-Yax97HIuOURRicBz2ibMfRiXghP2sKGaRDHwtKO7slpNL2QXy_Dyy026XNhCFbZ2f7Wpjtr3Z0Zd705Xpbl-MyPKSkTD2KNCkOi3Sb2L9TpD79vYR7cd0EXNfao9Q47uMV4EWyb9rAX6YxQXpGj8qTKsg_PUfd90H-hlHfmpqOn7EnnVMJh-97P2JapnrOdk27b_AX7c0xslctutKG2MLtyUK8V3LhVe7Dz-hc4NBuUFaTgcIaLusC7Okprb0h4hJ6FHNDdhcbMHN6omgG2gLJdX5zDnPKm6OzCLDAerwxQHgugr36NvUF12Buol3S7iiCXgFNC4dHXUelQOPvsfZ-cQ2s5m5fs4ujL-WTqdXUbvDzicuWpzAQmUZmKhZGBNL6wGJXYAqMxFaTcGpmg36FSX2ZJ6hfoUVj0SqVUlOcrbSJese2qrswbBmEem8zKTPGikEKESZ5HMpVJnhqVYqw4YnE_UjrvSM2ptsZc9-i1n_rOIGsaZO2QfGrE-CC6bJk9NhH62KuD7lNX0dhqnH82EVYPCZumMxuNDnTDta_vqfaIfRok1_6OTR-812uuHp7FfUFcgoqHI3YwXEbjQjtGqBeoCBrtPbr7xPo3Yq9bRR_6igoDKEHSau0XGBoQcfn6lar84QjM0WVMEhm__b-v2mWPOflYbj1sj22vrq7NO_QQV9m-MwH77NHh8bfp6V-eD2xL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6VVCpcEG8CBaYSVyv2eu21EZcqUCW0CYemUm8rP3ZTo8SJ6hR-Hf-NmfWDhvYQCR_tHT92x7Mzu998w9jHyE-54SFGJx5PaZsxcCKe-44wuQkSL4p8Qzu6k2k4uhDfLoPLPTZsc2EIVtnY_tqmW2vdnBk0vTlYF8Xg3I0oKRMPYo0KgvAB2xcB2uQe2z8en46mnUHmro27qL1DAgfs6C_Mi5DbtI29TOYE9AotmycVl71_mrrrhv6Lprw1PZ08YY8bvxKO61d_yvZ0-YwdTJqd8-fs95gIK9fNgMPKwPzaor028NMu3INZrH6BBbRBUUICFmq4XOV4V8tq7XQ5j9ASkQN6vFDpuYUclXPAFlDUS4wLWFDqFJ1d6iWG5KUGSmUBdNdvsDeoFHsFqzXdriTUJeCskDv0dVQ9FM6_ON-HM6iNZ_WCXZx8nQ1HTlO6wclCLjaOTLWnY5nKyNfCE9r1DQYmJseATHoJN1rE6HrIxBVpnLg5OhUGHVMhJKX6ChP7L1mvXJX6NYMgi3RqRCp5ngvfD-IsC0Ui4izRMsFwsc-idqRU1vCaU3mNhWoBbD_UrUFWNMjKgvlkn_FOdF2Te-wi9KlVB9Vmr6K9VTgF7SIs7xPWVWM5KuWpiitX3dHuPvvcSW79ILs--LDVXNU9i7s-0QlKHvTZUXcZ7QttGqFeoCIoNPno8RPxX5-9qhW96yuqDSB9kpZbv0DXgLjLt6-UxZXlMEevMY5F9Ob_vuoDeziaTc7U2Xh6-pY94uRy2eWxQ9bbXN_od-gwbtL3jUH4A7h0bvY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporation+of+gradient+vector+flow+field+in+a+multimodal+graph-theoretic+approach+for+segmenting+the+internal+limiting+membrane+from+glaucomatous+optic+nerve+head-centered+SD-OCT+volumes&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Miri%2C+Mohammad+Saleh&rft.au=Robles%2C+Victor+A&rft.au=Abr%C3%A0moff%2C+Michael+D&rft.au=Kwon%2C+Young+H&rft.date=2017-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0895-6111&rft.eissn=1879-0771&rft.volume=55&rft.spage=87&rft_id=info:doi/10.1016%2Fj.compmedimag.2016.06.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2FS0895611116X00092%2Fcov150h.gif