Joint spatiotemporal modelling reveals seasonally dynamic patterns of Japanese encephalitis vector abundance across India

Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases...

Full description

Saved in:
Bibliographic Details
Published inPLoS neglected tropical diseases Vol. 16; no. 2; p. e0010218
Main Authors Franklinos, Lydia H. V., Redding, David W., Lucas, Tim C. D., Gibb, Rory, Abubakar, Ibrahim, Jones, Kate E.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1935-2735
1935-2727
1935-2735
DOI10.1371/journal.pntd.0010218

Cover

Abstract Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C . tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52–4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance–a key component of JE hazard–over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts.
AbstractList Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C. tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52-4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance-a key component of JE hazard-over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts.Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C. tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52-4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance-a key component of JE hazard-over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts.
Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C. tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52-4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance-a key component of JE hazard-over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts.
Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C . tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52–4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance–a key component of JE hazard–over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts. Japanese encephalitis (JE) is the leading cause of viral encephalopathy in Asia with an estimated 100,000 annual cases and 25,000 deaths. However, insufficient data on the predominant mosquito vector Culex tritaeniorhynchus –a key component of JE hazard–precludes hazard estimation required to target public health interventions. Previous studies have provided limited estimates of JE hazard, often predicting geographic distributions of potential vector occurrence without accounting for vector abundance, seasonality, or uncertainty in predictions. This study details a novel approach to predict spatiotemporal patterns in JE vector abundance using a joint-likelihood modelling technique that leverages information from sparse vector surveillance data. We showed that patterns in JE vector abundance were driven by seasonality and environmental factors and so demonstrated the limitations of previously available static vector distribution maps in estimating the vector population component of JE hazard. One-month lagged vector abundance predictions showed a positive relationship with JE outbreaks, signalling the potential use of vector abundance as a proxy for JE hazard. While vector surveillance data are limited, joint-likelihood models offer a useful approach to inform vector abundance predictions. This study provides decision-makers with a more complete picture of the distribution of JE vector abundance and can be used to target vector surveillance and control efforts and enhance the allocation of resources.
Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C . tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52–4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance–a key component of JE hazard–over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts.
Audience Academic
Author Abubakar, Ibrahim
Redding, David W.
Jones, Kate E.
Franklinos, Lydia H. V.
Lucas, Tim C. D.
Gibb, Rory
AuthorAffiliation 3 Institute of Zoology, Zoological Society of London, London, United Kingdom
1 Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
4 School of Public Health, Imperial College London, London, United Kingdom
6 Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
5 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
2 Institute for Global Health, University College London, London, United Kingdom
Johns Hopkins University Bloomberg School of Public Health, UNITED STATES
AuthorAffiliation_xml – name: 1 Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
– name: 3 Institute of Zoology, Zoological Society of London, London, United Kingdom
– name: 6 Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
– name: Johns Hopkins University Bloomberg School of Public Health, UNITED STATES
– name: 2 Institute for Global Health, University College London, London, United Kingdom
– name: 4 School of Public Health, Imperial College London, London, United Kingdom
– name: 5 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
Author_xml – sequence: 1
  givenname: Lydia H. V.
  orcidid: 0000-0002-5766-3986
  surname: Franklinos
  fullname: Franklinos, Lydia H. V.
– sequence: 2
  givenname: David W.
  orcidid: 0000-0001-8615-1798
  surname: Redding
  fullname: Redding, David W.
– sequence: 3
  givenname: Tim C. D.
  orcidid: 0000-0003-4694-8107
  surname: Lucas
  fullname: Lucas, Tim C. D.
– sequence: 4
  givenname: Rory
  orcidid: 0000-0002-0965-1649
  surname: Gibb
  fullname: Gibb, Rory
– sequence: 5
  givenname: Ibrahim
  surname: Abubakar
  fullname: Abubakar, Ibrahim
– sequence: 6
  givenname: Kate E.
  orcidid: 0000-0001-5231-3293
  surname: Jones
  fullname: Jones, Kate E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35192626$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul2L3CAUDWVL96P9B6UVCqUvM9UkGt2HwrL0Y5aFvrTPcqNmxiXRNJqB-fc1O5kysyzFB-V6zrne47nMzpx3JsveErwkRUU-P_hxcNAuexf1EmOCc8JfZBdEFHSRVwU9OzqfZ5chPGBMBeXkVXZeUCJylrOLbHfnrYso9BCtj6br_QAt6rw2bWvdGg1ma6ANKBgIPrVrd0jvHHRWoUSJZnAB-QbdQQ_OBIOMU6bfQGujDWhrVPQDgnp0GtIFAjX4ENDKaQuvs5dNUjZv5v0q-_3t66_bH4v7n99Xtzf3C8XyMi4Yz6FmhaKaF5QpUTDBNK6qEoygSuSiJsAFyQ0tGqMaWgGpRdmIOocKK1oUV9n7vW7f-iBn14LMWYkJ4ZSWCbHaI7SHB9kPtoNhJz1Y-Vjww1rCEK1qjQTKqSAliKbAJZRM8LrSDVeqKXWtmElaX-ZuY90ZrYyLydAT0dMbZzdy7beSc8EYm577aRYY_J_RhCg7G1T6jeSvH6d3FzmhuKIiQT88gT4_3YxaQxrAusanvmoSlTfJS8wpx3lCLZ9BpaVN-uuUvMam-gnh4xFhk0ISN8G3Y4qRC6fAd8eO_LPikMEEuN4DHsMxmEYqG6c4TgbZVhIsp8AfhpNT4OUc-EQun5AP-v-l_QW6lgh7
CitedBy_id crossref_primary_10_1038_s41579_024_01026_0
crossref_primary_10_3389_fimmu_2024_1505612
Cites_doi 10.1038/s41586-018-0411-9
10.1890/14-0661.1
10.1007/s12520-019-00795-7
10.1111/ddi.12359
10.1371/journal.pntd.0001678
10.1111/j.2517-6161.1990.tb01780.x
10.1089/vbz.2014.1757
10.1007/BF00116466
10.1038/sdata.2017.74
10.1111/j.1365-2486.2011.02522.x
10.1016/S1473-3099(19)30161-6
10.1093/jmedent/34.6.651
10.1016/j.pneurobio.2010.01.008
10.1016/j.ecolmodel.2013.10.019
10.1098/rstb.2013.0551
10.1371/journal.ppat.1005548
10.1186/s13071-016-1788-7
10.1016/j.phrp.2014.04.004
10.1038/sdata.2017.191
10.1111/j.1467-9868.2008.00700.x
10.1111/ddi.12960
10.1111/biom.13142
10.1016/j.pt.2015.09.006
10.1007/s11027-015-9677-5
10.18637/jss.v063.i19
10.1111/2041-210X.12523
10.4081/gh.2010.186
10.1214/16-STS576
10.1111/ele.13335
10.1186/s13071-017-2086-8
10.1080/15481603.2018.1423725
10.1186/s13071-017-2097-5
10.1098/rstb.2016.0165
10.15585/mmwr.mm6622a3
10.1186/1476-072X-9-32
10.1136/jnnp.68.4.405
10.1007/s10336-015-1194-5
10.1038/s41598-019-43437-7
10.1016/j.tree.2019.03.004
10.2471/BLT.10.085233
10.1371/journal.pntd.0000247
10.2174/1874421400802010059
10.1016/j.pt.2017.11.006
10.1016/j.jtbi.2017.03.024
10.2149/tmh1973.9.37
10.1093/jtm/tay006
10.1093/oxfordjournals.epirev.a036087
10.1201/9780429029608
10.1111/j.0307-6962.2004.00411.x
10.2987/18-6781.1
10.1109/JSTARS.2014.2334332
10.7601/mez.41.247
10.1371/journal.pbio.0020368
10.1089/vbz.2008.0063
10.1093/jtm/tay009
10.1111/ecog.02881
10.1002/sim.1403
10.1080/20477724.2016.1179862
10.1186/1475-2875-10-190
10.1146/annurev.ecolsys.110308.120159
10.1016/j.actatropica.2018.08.014
10.1038/s41590-020-0648-y
10.1098/rstb.2016.0129
10.4103/2224-3151.207040
10.1016/j.actatropica.2005.04.012
10.1016/S0304-3800(02)00202-8
10.1016/j.envint.2015.03.002
10.1007/978-3-540-92874-4_2
10.3354/cr030079
10.1371/journal.pntd.0002208
10.1111/j.1365-2915.2012.01045.x
10.1186/s13071-019-3321-2
10.7554/eLife.51027
10.1089/vbz.2017.2250
10.1111/2041-210X.12221
10.1038/s41564-019-0476-8
10.1007/s10651-007-0056-6
10.1093/jmedent/34.3.257
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Franklinos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Franklinos et al 2022 Franklinos et al
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Franklinos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Franklinos et al 2022 Franklinos et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SS
7T2
7T7
7U9
7X7
7XB
88E
8C1
8FD
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
F1W
FR3
FYUFA
GHDGH
H94
H95
H97
K9.
L.G
M0S
M1P
M7N
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1371/journal.pntd.0010218
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Entomology Abstracts (Full archive)
Health and Safety Science Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
Health & Safety Science Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Publicly Available Content Database


MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
DocumentTitleAlternate Predicting Japanese encephalitis vector abundance in India
EISSN 1935-2735
ExternalDocumentID 2640118554
oai_doaj_org_article_a585914a9f304a4698b7df8ccf4dbc6e
PMC8896663
A696085802
35192626
10_1371_journal_pntd_0010218
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations India
Asia
GeographicLocations_xml – name: India
– name: Asia
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/R02491X/2
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: MR/T502613/1
– fundername: ;
– fundername: ;
  grantid: MR/R02491X/2
– fundername: ;
  grantid: MR/T502613/1
– fundername: ;
  grantid: NF-SI-0616–10037
– fundername: ;
  grantid: NE-J001570-1
– fundername: ;
  grantid: 220179/Z/20/Z
– fundername: ;
  grantid: NE/L002485/1
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8C1
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
ECGQY
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
ITC
KQ8
M1P
M48
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
3V.
ADRAZ
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
RIG
WOQ
PMFND
7QL
7SS
7T2
7T7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
F1W
FR3
H94
H95
H97
K9.
L.G
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
AAPBV
ABPTK
ID FETCH-LOGICAL-c624t-682ab63c5d8356c93696d0774ae95c929b1a8912e53fecf57a1b94f9b2a70c533
IEDL.DBID M48
ISSN 1935-2735
1935-2727
IngestDate Sun Jul 02 11:04:22 EDT 2023
Wed Aug 27 01:29:14 EDT 2025
Thu Aug 21 18:06:35 EDT 2025
Fri Sep 05 09:35:48 EDT 2025
Fri Jul 25 05:51:32 EDT 2025
Tue Jun 17 21:44:08 EDT 2025
Tue Jun 10 20:25:58 EDT 2025
Thu May 22 20:50:34 EDT 2025
Wed Feb 19 02:26:57 EST 2025
Thu Apr 24 22:56:08 EDT 2025
Tue Jul 01 00:57:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-682ab63c5d8356c93696d0774ae95c929b1a8912e53fecf57a1b94f9b2a70c533
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0003-4694-8107
0000-0002-5766-3986
0000-0001-8615-1798
0000-0001-5231-3293
0000-0002-0965-1649
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pntd.0010218
PMID 35192626
PQID 2640118554
PQPubID 1436337
ParticipantIDs plos_journals_2640118554
doaj_primary_oai_doaj_org_article_a585914a9f304a4698b7df8ccf4dbc6e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8896663
proquest_miscellaneous_2632150759
proquest_journals_2640118554
gale_infotracmisc_A696085802
gale_infotracacademiconefile_A696085802
gale_healthsolutions_A696085802
pubmed_primary_35192626
crossref_citationtrail_10_1371_journal_pntd_0010218
crossref_primary_10_1371_journal_pntd_0010218
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS neglected tropical diseases
PublicationTitleAlternate PLoS Negl Trop Dis
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References I Vythilingam (pntd.0010218.ref043) 1997; 34
B Amoah (pntd.0010218.ref058) 2020; 76
HE Beck (pntd.0010218.ref088) 2018; 5
PE Parham (pntd.0010218.ref098) 2015; 370
J Pagel (pntd.0010218.ref055) 2014; 5
H Rue (pntd.0010218.ref071) 2009; 71
N-H Kim (pntd.0010218.ref034) 2014; 5
PR Trawinski (pntd.0010218.ref065) 2010; 10
JP Messina (pntd.0010218.ref017) 2019; 4
C Willmott (pntd.0010218.ref079) 2005; 30
DR Roberts (pntd.0010218.ref078) 2017; 40
EE Richards (pntd.0010218.ref046) 2010; 9
L Lindquist (pntd.0010218.ref028) 2018; 25
TW Kibuthu (pntd.0010218.ref091) 2016; 9
U Suryanarayana Murty (pntd.0010218.ref037) 2010
S Sabesan (pntd.0010218.ref039) 2008; 2
N Alexandratos (pntd.0010218.ref094) 2012
European Centre for Disease Prevention and Control and European Food Safety Authority. (pntd.0010218.ref008) 2018
G Campbell (pntd.0010218.ref024) 2011; 89
DP Simpson (pntd.0010218.ref075) 2017; 32
L Kehoe (pntd.0010218.ref066) 2015; 21
MUG Kraemer (pntd.0010218.ref007) 2016; 32
RJ Hijmans (pntd.0010218.ref068) 2014
LI Pettit (pntd.0010218.ref080) 1990; 52
A Baeza (pntd.0010218.ref049) 2011; 10
World Health Organization (pntd.0010218.ref004) 2017
PC Kanojia (pntd.0010218.ref090) 2003; 117
N Becker (pntd.0010218.ref014) 2010
U Suryanarayana Murty (pntd.0010218.ref036) 2002; 18
PK Rajagopalan (pntd.0010218.ref047) 1978; 68
A Cliff (pntd.0010218.ref077) 1973
CC Lord (pntd.0010218.ref051) 2004; 29
DW Vaughn (pntd.0010218.ref059) 1992; 14
S Niaz (pntd.0010218.ref062) 1981; 9
LHV Franklinos (pntd.0010218.ref002) 2019; 19
TM Quan (pntd.0010218.ref025) 2020; 9
F Lindgren (pntd.0010218.ref084) 2015; 63
Y Wada (pntd.0010218.ref032) 1975; 17
SM White (pntd.0010218.ref010) 2017; 10
AD LaBeaud (pntd.0010218.ref023) 2008; 2
UK Misra (pntd.0010218.ref060) 2010; 91
SSC Rund (pntd.0010218.ref011) 2019; 35
JC Pearce (pntd.0010218.ref031) 2018; 25
R Kumari (pntd.0010218.ref085) 2012; 1
Ministry of Health & Family Welfare, Government of India (pntd.0010218.ref069) 2020
NP Devi (pntd.0010218.ref061) 2004; 41
R Core Team (pntd.0010218.ref083) 2020
WHO (pntd.0010218.ref001) 2017
EA Mordecai (pntd.0010218.ref019) 2019; 22
LD Valdez (pntd.0010218.ref064) 2017; 421
J Rocklöv (pntd.0010218.ref099) 2020; 21
J Keiser (pntd.0010218.ref038) 2005; 95
R Shukla (pntd.0010218.ref087) 2017; 22
Government of India (pntd.0010218.ref096) 2014
PR Hosseini (pntd.0010218.ref005) 2017; 372
HK Raju (pntd.0010218.ref040) 2016; 16
EE Johnson (pntd.0010218.ref012) 2019; 34
DA Ewing (pntd.0010218.ref018) 2019; 12
E Kingwell-Banham (pntd.0010218.ref082) 2019; 11
N Golding (pntd.0010218.ref016) 2016; 7
HY Tian (pntd.0010218.ref030) 2015; 79
S. Matsuzaki (pntd.0010218.ref033) 1990; 41
pntd.0010218.ref045
J Huang (pntd.0010218.ref100) 2014; 7
DL Smith (pntd.0010218.ref003) 2004; 2
Y Jian (pntd.0010218.ref022) 2014; 272
J Besag (pntd.0010218.ref073) 1991; 43
CS Elphick (pntd.0010218.ref093) 2015; 156
J Longbottom (pntd.0010218.ref035) 2017; 10
DW Redding (pntd.0010218.ref072) 2017; 372
AG Laborte (pntd.0010218.ref067) 2017; 4
JT Abatzoglou (pntd.0010218.ref063) 2018; 5
EC Marshall (pntd.0010218.ref081) 2003; 22
X-P Song (pntd.0010218.ref095) 2018; 560
JD Heffelfinger (pntd.0010218.ref027) 2017; 66
P Masuoka (pntd.0010218.ref053) 2010
AS Walsh (pntd.0010218.ref020) 2008; 15
MB Hooten (pntd.0010218.ref076) 2015; 85
RH Miller (pntd.0010218.ref052) 2012; 6
M Mukhtar (pntd.0010218.ref048) 2003; 34
AM Samy (pntd.0010218.ref054) 2018; 188
JM Humphreys (pntd.0010218.ref056) 2019; 25
G Le Flohic (pntd.0010218.ref029) 2013; 7
HK Raju (pntd.0010218.ref041) 2018; 18
J Elith (pntd.0010218.ref013) 2009; 40
R Balasubramanian (pntd.0010218.ref044) 2015; 36
J Elith (pntd.0010218.ref015) 2002; 157
NB Tjaden (pntd.0010218.ref006) 2018; 34
A Gajanana (pntd.0010218.ref089) 1997; 34
J Liu-Helmersson (pntd.0010218.ref009) 2019; 7
TCD Lucas (pntd.0010218.ref057) 2021; 00
S Baig (pntd.0010218.ref026) 2013; 62
W Reisen (pntd.0010218.ref042) 1976; 7
R Das Bhowmik (pntd.0010218.ref086) 2019; 9
LF Chaves (pntd.0010218.ref021) 2012; 18
R. McElreath (pntd.0010218.ref074) 2020
SY Ohba (pntd.0010218.ref092) 2013; 27
K Bashar (pntd.0010218.ref050) 2016; 110
T Solomon (pntd.0010218.ref070) 2000; 68
S Lequime (pntd.0010218.ref097) 2016; 12
AO Onojeghuo (pntd.0010218.ref101) 2018; 55
References_xml – volume: 00
  start-page: 1
  year: 2021
  ident: pntd.0010218.ref057
  article-title: Mapping malaria by sharing spatial information between incidence and prevalence data sets.
  publication-title: J R Stat Soc Ser C Appl Stat
– volume: 560
  start-page: 639
  issue: 7720
  year: 2018
  ident: pntd.0010218.ref095
  article-title: Global land change from 1982 to 2016
  publication-title: Nature
  doi: 10.1038/s41586-018-0411-9
– volume: 85
  start-page: 3
  issue: 1
  year: 2015
  ident: pntd.0010218.ref076
  article-title: A guide to Bayesian model selection for ecologists
  publication-title: Ecol Monogr
  doi: 10.1890/14-0661.1
– volume: 11
  start-page: 6485
  issue: 12
  year: 2019
  ident: pntd.0010218.ref082
  article-title: Dry, rainfed or irrigated? Re-evaluating the role and development of rice agriculture in Iron Age-Early Historic South India using archaeobotanical approaches
  publication-title: Archaeol Anthropol Sci
  doi: 10.1007/s12520-019-00795-7
– volume: 21
  start-page: 1308
  issue: 11
  year: 2015
  ident: pntd.0010218.ref066
  article-title: Global patterns of agricultural land-use intensity and vertebrate diversity.
  publication-title: Divers Distrib
  doi: 10.1111/ddi.12359
– volume: 6
  issue: 6
  year: 2012
  ident: pntd.0010218.ref052
  article-title: Ecological niche modeling to estimate the distribution of Japanese encephalitis virus in Asia.
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0001678
– volume: 52
  start-page: 175
  issue: 1
  year: 1990
  ident: pntd.0010218.ref080
  article-title: The conditional predictive ordinate for the normal distribution.
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1990.tb01780.x
– volume: 16
  start-page: 117
  issue: 2
  year: 2016
  ident: pntd.0010218.ref040
  article-title: A preliminary study to forecast Japanese Encephalitis vector abundance in paddy growing area, with the aid of radar satellite images.
  publication-title: Vector-Borne Zoonotic Dis
  doi: 10.1089/vbz.2014.1757
– volume: 62
  start-page: 658
  issue: 33
  year: 2013
  ident: pntd.0010218.ref026
  article-title: Japanese encephalitis surveillance and immunization—Asia and the Western Pacific, 2012.
  publication-title: MMWR Morb Mortal Wkly Rep
– volume: 43
  start-page: 1
  issue: 1
  year: 1991
  ident: pntd.0010218.ref073
  article-title: Bayesian image restoration, with two applications in spatial statistics.
  publication-title: Ann Inst Stat Math
  doi: 10.1007/BF00116466
– volume: 4
  start-page: 1
  year: 2017
  ident: pntd.0010218.ref067
  article-title: Data Descriptor: RiceAtlas, a spatial database of global rice calendars and production.
  publication-title: Sci Data
  doi: 10.1038/sdata.2017.74
– volume: 36
  start-page: 1325
  issue: 6
  year: 2015
  ident: pntd.0010218.ref044
  article-title: Effects of rainfall and salinity increase on prevalence of vector mosquitoes in coastal areas of Alappuzha district, Kerala
  publication-title: J Environ Biol
– volume: 18
  start-page: 457
  issue: 2
  year: 2012
  ident: pntd.0010218.ref021
  article-title: Nonlinear impacts of climatic variability on the density-dependent regulation of an insect vector of disease.
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2011.02522.x
– start-page: 26
  issue: 47
  year: 2010
  ident: pntd.0010218.ref037
  article-title: The effects of climatic factors on the distribution and abundance of Japanese encephalitis vectors in Kurnool district of Andhra Pradesh, India.
  publication-title: J Vector Borne Dis
– volume: 19
  start-page: e302
  issue: 9
  year: 2019
  ident: pntd.0010218.ref002
  article-title: The effect of global change on mosquito-borne disease
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(19)30161-6
– volume: 34
  start-page: 651
  issue: 6
  year: 1997
  ident: pntd.0010218.ref089
  article-title: Japanese encephalitis in south Arcot district, Tamil Nadu, India: a three-year longitudinal study of vector abundance and infection frequency
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/34.6.651
– volume: 91
  start-page: 108
  issue: 2
  year: 2010
  ident: pntd.0010218.ref060
  article-title: Overview: Japanese encephalitis.
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2010.01.008
– volume: 272
  start-page: 301
  year: 2014
  ident: pntd.0010218.ref022
  article-title: Environmental forcing and density-dependent controls of Culex pipiens abundance in a temperate climate (Northeastern Italy).
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2013.10.019
– start-page: 114
  volume-title: Operational Guidelines: National Programme for Prevention and Control of Japanese Encephalitis/Acute Encephalitis Syndrome.
  year: 2014
  ident: pntd.0010218.ref096
– volume: 370
  start-page: 20130551
  issue: 1665
  year: 2015
  ident: pntd.0010218.ref098
  article-title: Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission.
  publication-title: Philos Trans R Soc B Biol Sci.
  doi: 10.1098/rstb.2013.0551
– volume: 68
  start-page: 3938
  year: 1978
  ident: pntd.0010218.ref047
  article-title: A note on the 1976 epidemic of Japanese encephalitis in Burdwan district, West Bengal
  publication-title: Indian J Med Res
– volume: 12
  start-page: e1005548
  issue: 5
  year: 2016
  ident: pntd.0010218.ref097
  article-title: Determinants of arbovirus vertical transmission in mosquitoes.
  publication-title: PLOS Pathog
  doi: 10.1371/journal.ppat.1005548
– volume: 9
  start-page: 500
  issue: 1
  year: 2016
  ident: pntd.0010218.ref091
  article-title: Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes?
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-016-1788-7
– volume: 5
  start-page: 131
  issue: 3
  year: 2014
  ident: pntd.0010218.ref034
  article-title: Prediction forecast for Culex tritaeniorhynchus populations in Korea.
  publication-title: Osong Public Health Res PerspectJun
  doi: 10.1016/j.phrp.2014.04.004
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: pntd.0010218.ref063
  article-title: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015.
  publication-title: Sci Data.
  doi: 10.1038/sdata.2017.191
– volume: 71
  start-page: 319
  issue: 2
  year: 2009
  ident: pntd.0010218.ref071
  article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations.
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2008.00700.x
– volume: 25
  start-page: 1497
  issue: 9
  year: 2019
  ident: pntd.0010218.ref056
  article-title: Seasonal occurrence and abundance of dabbling ducks across the continental United States: Joint spatio-temporal modelling for the Genus Anas.
  publication-title: Divers Distrib
  doi: 10.1111/ddi.12960
– volume: 76
  start-page: 158
  issue: 1
  year: 2020
  ident: pntd.0010218.ref058
  article-title: A geostatistical framework for combining spatially referenced disease prevalence data from multiple diagnostics
  publication-title: Biometrics
  doi: 10.1111/biom.13142
– volume: 32
  start-page: 19
  issue: 1
  year: 2016
  ident: pntd.0010218.ref007
  article-title: Progress and challenges in infectious disease cartography
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2015.09.006
– volume: 22
  start-page: 399
  issue: 3
  year: 2017
  ident: pntd.0010218.ref087
  article-title: Vulnerability of agro-ecological zones in India under the earth system climate model scenarios.
  publication-title: Mitig Adapt Strateg Glob Change Dordr.
  doi: 10.1007/s11027-015-9677-5
– volume: 63
  issue: 19
  year: 2015
  ident: pntd.0010218.ref084
  article-title: Bayesian spatial modelling with R-INLA.
  publication-title: J Stat Softw
  doi: 10.18637/jss.v063.i19
– volume: 7
  start-page: 598
  issue: 5
  year: 2016
  ident: pntd.0010218.ref016
  article-title: Fast and flexible Bayesian species distribution modelling using Gaussian processes.
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12523
– volume: 7
  issue: 61–71
  year: 1976
  ident: pntd.0010218.ref042
  article-title: The effects of climatic patterns and agricultural practices on the population dynamics of Culex tritaeniorhynchus in Asia
  publication-title: Southeast Asian J Trop Med Public Health
– start-page: 45
  year: 2010
  ident: pntd.0010218.ref053
  article-title: Modeling the distribution of Culex tritaeniorhynchus to predict Japanese encephalitis distribution in the Republic of Korea.
  publication-title: Geospatial Health
  doi: 10.4081/gh.2010.186
– volume: 32
  start-page: 1
  issue: 1
  year: 2017
  ident: pntd.0010218.ref075
  article-title: Penalising model component complexity: A principled, practical approach to constructing priors.
  publication-title: Stat Sci
  doi: 10.1214/16-STS576
– volume: 22
  start-page: 1690
  issue: 10
  year: 2019
  ident: pntd.0010218.ref019
  article-title: Thermal biology of mosquito-borne disease
  publication-title: Ecol Lett
  doi: 10.1111/ele.13335
– volume: 10
  start-page: 148
  issue: 1
  year: 2017
  ident: pntd.0010218.ref035
  article-title: Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk.
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-017-2086-8
– volume: 55
  start-page: 659
  issue: 5
  year: 2018
  ident: pntd.0010218.ref101
  article-title: Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series.
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2018.1423725
– volume: 10
  start-page: 162
  issue: 1
  year: 2017
  ident: pntd.0010218.ref010
  article-title: Mechanistic model for predicting the seasonal abundance of Culicoides biting midges and the impacts of insecticide control.
  publication-title: Parasit Vectors
  doi: 10.1186/s13071-017-2097-5
– volume: 372
  start-page: 20160165
  issue: 1725
  year: 2017
  ident: pntd.0010218.ref072
  article-title: Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa.
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/rstb.2016.0165
– volume: 66
  start-page: 579
  issue: 22
  year: 2017
  ident: pntd.0010218.ref027
  article-title: Japanese encephalitis surveillance and immunization—Asia and Western Pacific Regions, 2016.
  publication-title: MMWR Morb Mortal Wkly Rep
  doi: 10.15585/mmwr.mm6622a3
– volume-title: Spatial Autocorrelation.:
  year: 1973
  ident: pntd.0010218.ref077
– volume: 9
  start-page: 32
  issue: 1
  year: 2010
  ident: pntd.0010218.ref046
  article-title: The relationship between mosquito abundance and rice field density in the Republic of Korea.
  publication-title: Int J Health Geogr
  doi: 10.1186/1476-072X-9-32
– volume: 68
  start-page: 405
  year: 2000
  ident: pntd.0010218.ref070
  article-title: Japanese encephalitis.
  publication-title: J Neurosurg Psychiatry
  doi: 10.1136/jnnp.68.4.405
– volume: 156
  start-page: 239
  issue: 1
  year: 2015
  ident: pntd.0010218.ref093
  article-title: A history of ecological studies of birds in rice fields.
  publication-title: J Ornithol
  doi: 10.1007/s10336-015-1194-5
– volume: 9
  year: 2019
  ident: pntd.0010218.ref086
  article-title: Shower effect of a rainfall onset on the heat accumulated during a preceding dry spell.
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-43437-7
– volume: 34
  start-page: 72
  issue: 1
  year: 2003
  ident: pntd.0010218.ref048
  article-title: Role of wastewater irrigation in mosquito breeding in south Punjab, Pakistan.
  publication-title: Southeast Asian J Trop Med Public Health
– volume: 34
  start-page: 655
  issue: 7
  year: 2019
  ident: pntd.0010218.ref012
  article-title: An ecological framework for modeling the geography of disease transmission
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2019.03.004
– volume: 89
  start-page: 766
  issue: 10
  year: 2011
  ident: pntd.0010218.ref024
  article-title: Estimated global incidence of Japanese encephalitis
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.10.085233
– volume: 2
  issue: 6
  year: 2008
  ident: pntd.0010218.ref023
  article-title: Why Arboviruses Can Be Neglected Tropical Diseases.
  publication-title: PLOS Negl Trop Dis
  doi: 10.1371/journal.pntd.0000247
– volume: 2
  start-page: 59
  issue: 1
  year: 2008
  ident: pntd.0010218.ref039
  article-title: Spatial Delimitation, Forecasting and Control of Japanese Encephalitis: India—A Case Study.
  publication-title: Open Parasitol J
  doi: 10.2174/1874421400802010059
– volume: 34
  start-page: 227
  issue: 3
  year: 2018
  ident: pntd.0010218.ref006
  article-title: Mosquito-borne diseases: advances in modelling climate-change impacts
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2017.11.006
– volume: 421
  start-page: 28
  year: 2017
  ident: pntd.0010218.ref064
  article-title: Effects of rainfall on Culex mosquito population dynamics
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2017.03.024
– volume: 9
  start-page: 37
  issue: 1
  year: 1981
  ident: pntd.0010218.ref062
  article-title: Culex tritaeniorhynchus Giles: some effects of temperature and photoperiod on larval development and selected adult attributes
  publication-title: Jpn J Med Hyg
  doi: 10.2149/tmh1973.9.37
– volume: 25
  start-page: S3
  issue: Suppl 1
  year: 2018
  ident: pntd.0010218.ref028
  article-title: Recent and historical trends in the epidemiology of Japanese encephalitis and its implication for risk assessment in travellers.
  publication-title: J Travel Med
  doi: 10.1093/jtm/tay006
– volume: 41
  start-page: 17
  year: 2004
  ident: pntd.0010218.ref061
  article-title: Altitudinal distribution of mosquitoes in mountainous area of Garhwal region: Part–I.
  publication-title: J Vector Borne Dis
– volume: 14
  start-page: 197
  issue: 1
  year: 1992
  ident: pntd.0010218.ref059
  article-title: The epidemiology of Japanese encephalitis: prospects for prevention.
  publication-title: Epidemiol Rev.
  doi: 10.1093/oxfordjournals.epirev.a036087
– year: 2014
  ident: pntd.0010218.ref068
  article-title: raster: Geographic data analysis and modeling (R package).
– start-page: 195
  volume-title: Statistical Rethinking: A Bayesian Course with Examples in R and STAN
  year: 2020
  ident: pntd.0010218.ref074
  doi: 10.1201/9780429029608
– volume: 29
  start-page: 214
  issue: 3
  year: 2004
  ident: pntd.0010218.ref051
  article-title: Seasonal population dynamics and behaviour of insects in models of vector-borne pathogens
  publication-title: Physiol Entomol
  doi: 10.1111/j.0307-6962.2004.00411.x
– volume: 35
  start-page: 75
  issue: 1
  year: 2019
  ident: pntd.0010218.ref011
  article-title: Rescuing troves of hidden ecological data to tackle emerging mosquito-borne diseases
  publication-title: J Am Mosq Control Assoc
  doi: 10.2987/18-6781.1
– volume: 17
  start-page: 111
  issue: 3
  year: 1975
  ident: pntd.0010218.ref032
  article-title: Ecology of Japanese encephalitis virus in Japan. II. The population of vector mosquitoes and the epidemic of Japanese encephalitis
  publication-title: Trop Med
– volume: 7
  start-page: 4374
  issue: 11
  year: 2014
  ident: pntd.0010218.ref100
  article-title: Analysis of NDVI data for crop identification and yield estimation
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2014.2334332
– volume: 41
  start-page: 247
  issue: 3
  year: 1990
  ident: pntd.0010218.ref033
  article-title: Population dynamics of Culex tritaeniorhynchus in relation to the epidemics of Japanese encephalitis in Kochi Prefecture, Japan
  publication-title: Jpn J Sanit Zool
  doi: 10.7601/mez.41.247
– volume: 2
  start-page: e368
  issue: 11
  year: 2004
  ident: pntd.0010218.ref003
  article-title: The risk of a mosquito-borne infection in a heterogeneous environment
  publication-title: PLOS Biol
  doi: 10.1371/journal.pbio.0020368
– volume: 10
  start-page: 515
  issue: 5
  year: 2010
  ident: pntd.0010218.ref065
  article-title: Identification of environmental covariates of West Nile virus vector mosquito population abundance.
  publication-title: Vector-Borne Zoonotic Dis
  doi: 10.1089/vbz.2008.0063
– volume: 25
  start-page: S16
  issue: suppl_1
  year: 2018
  ident: pntd.0010218.ref031
  article-title: Japanese encephalitis: the vectors, ecology and potential for expansion
  publication-title: J Travel Med
  doi: 10.1093/jtm/tay009
– volume-title: The importance of vector abundance and seasonality—Results from an expert consultation
  year: 2018
  ident: pntd.0010218.ref008
– volume: 40
  start-page: 913
  issue: 8
  year: 2017
  ident: pntd.0010218.ref078
  article-title: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure
  publication-title: Ecography
  doi: 10.1111/ecog.02881
– volume: 22
  start-page: 1649
  issue: 10
  year: 2003
  ident: pntd.0010218.ref081
  article-title: Approximate cross-validatory predictive checks in disease mapping models.
  publication-title: Stat Med
  doi: 10.1002/sim.1403
– volume-title: R: A language and environment for statistical computing.
  year: 2020
  ident: pntd.0010218.ref083
– volume: 110
  start-page: 48
  issue: 2
  year: 2016
  ident: pntd.0010218.ref050
  article-title: Species composition and habitat characterization of mosquito (Diptera: Culicidae) larvae in semi-urban areas of Dhaka, Bangladesh.
  publication-title: Pathog Glob Health
  doi: 10.1080/20477724.2016.1179862
– volume: 10
  start-page: 190
  issue: 1
  year: 2011
  ident: pntd.0010218.ref049
  article-title: Climate forcing and desert malaria: the effect of irrigation.
  publication-title: Malar J
  doi: 10.1186/1475-2875-10-190
– year: 2020
  ident: pntd.0010218.ref069
  publication-title: Weekly Outbreaks. Integrated Disease Surveillance Programme
– volume: 40
  start-page: 677
  issue: 1
  year: 2009
  ident: pntd.0010218.ref013
  article-title: Species distribution models: ecological explanation and prediction across space and time.
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev.ecolsys.110308.120159
– volume: 188
  start-page: 108
  year: 2018
  ident: pntd.0010218.ref054
  article-title: Mapping the potential distributions of etiological agent, vectors, and reservoirs of Japanese Encephalitis in Asia and Australia
  publication-title: Acta Trop
  doi: 10.1016/j.actatropica.2018.08.014
– volume-title: Global vector control response 2017–2030
  year: 2017
  ident: pntd.0010218.ref001
– volume: 21
  start-page: 479
  issue: 5
  year: 2020
  ident: pntd.0010218.ref099
  article-title: Climate change: an enduring challenge for vector-borne disease prevention and control
  publication-title: Nat Immunol
  doi: 10.1038/s41590-020-0648-y
– volume: 18
  start-page: 290
  issue: 4
  year: 2002
  ident: pntd.0010218.ref036
  article-title: Seasonal prevalence of Culex vishnui subgroup, the major vectors of Japanese encephalitis virus in an endemic district of Andhra Pradesh, India
  publication-title: J Am Mosq Control Assoc
– volume: 372
  start-page: 20160129
  issue: 1722
  year: 2017
  ident: pntd.0010218.ref005
  article-title: Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk.
  publication-title: Philos Trans R Soc B Biol Sci.
  doi: 10.1098/rstb.2016.0129
– volume: 1
  start-page: 374
  issue: 4
  year: 2012
  ident: pntd.0010218.ref085
  article-title: A review of Japanese encephalitis in Uttar Pradesh, India.
  publication-title: WHO South-East Asia J Public Health.
  doi: 10.4103/2224-3151.207040
– volume: 95
  start-page: 40
  issue: 1
  year: 2005
  ident: pntd.0010218.ref038
  article-title: Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management
  publication-title: Acta Trop
  doi: 10.1016/j.actatropica.2005.04.012
– volume: 157
  start-page: 313
  issue: 2
  year: 2002
  ident: pntd.0010218.ref015
  article-title: Mapping epistemic uncertainties and vague concepts in predictions of species distribution.
  publication-title: Ecol Model.
  doi: 10.1016/S0304-3800(02)00202-8
– ident: pntd.0010218.ref045
– volume: 79
  start-page: 17
  year: 2015
  ident: pntd.0010218.ref030
  article-title: How environmental conditions impact mosquito ecology and Japanese encephalitis: An eco-epidemiological approach
  publication-title: Environ Int
  doi: 10.1016/j.envint.2015.03.002
– start-page: 9
  volume-title: Mosquitoes and Their Control
  year: 2010
  ident: pntd.0010218.ref014
  doi: 10.1007/978-3-540-92874-4_2
– volume: 30
  start-page: 79
  year: 2005
  ident: pntd.0010218.ref079
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance.
  publication-title: Clim Res
  doi: 10.3354/cr030079
– volume: 7
  start-page: 5
  issue: 9
  year: 2013
  ident: pntd.0010218.ref029
  article-title: Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus ecology
  publication-title: PLOS Negl Trop Dis
  doi: 10.1371/journal.pntd.0002208
– volume: 7
  issue: 148
  year: 2019
  ident: pntd.0010218.ref009
  article-title: Estimating past, present, and future trends in the global distribution and abundance of the arbovirus vector Aedes aegypti under climate change scenarios.
  publication-title: Front Public Health
– volume: 27
  start-page: 96
  issue: 1
  year: 2013
  ident: pntd.0010218.ref092
  article-title: Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields
  publication-title: Med Vet Entomol
  doi: 10.1111/j.1365-2915.2012.01045.x
– volume: 117
  start-page: 104
  year: 2003
  ident: pntd.0010218.ref090
  article-title: A long-term study on vector abundance & seasonal prevalence in relation to the occurrence of Japanese encephalitis in Gorakhpur district, Uttar Pradesh
  publication-title: Indian J Med Res
– year: 2017
  ident: pntd.0010218.ref004
  publication-title: Integrating neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases
– volume: 12
  start-page: 74
  issue: 1
  year: 2019
  ident: pntd.0010218.ref018
  article-title: Uncovering mechanisms behind mosquito seasonality by integrating mathematical models and daily empirical population data: Culex pipiens in the UK.
  publication-title: Parasit Vectors.
  doi: 10.1186/s13071-019-3321-2
– volume: 9
  start-page: e51027
  year: 2020
  ident: pntd.0010218.ref025
  article-title: Estimates of the global burden of Japanese encephalitis and the impact of vaccination from 2000–2015.
  publication-title: eLife
  doi: 10.7554/eLife.51027
– volume: 18
  start-page: 560
  issue: 10
  year: 2018
  ident: pntd.0010218.ref041
  article-title: Validating the association of Japanese encephalitis vector abundance with paddy growth, using MODIS data.
  publication-title: Vector-Borne Zoonotic Dis
  doi: 10.1089/vbz.2017.2250
– volume: 5
  start-page: 751
  issue: 8
  year: 2014
  ident: pntd.0010218.ref055
  article-title: Quantifying range-wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records.
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12221
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: pntd.0010218.ref088
  article-title: Present and future Köppen-Geiger climate classification maps at 1-km resolution.
  publication-title: Sci Data.
– volume: 4
  start-page: 1508
  issue: 9
  year: 2019
  ident: pntd.0010218.ref017
  article-title: The current and future global distribution and population at risk of dengue.
  publication-title: Nat Microbiol.
  doi: 10.1038/s41564-019-0476-8
– year: 2012
  ident: pntd.0010218.ref094
  article-title: World agriculture towards 2030/2050: the 2012 revision.
– volume: 15
  start-page: 279
  issue: 3
  year: 2008
  ident: pntd.0010218.ref020
  article-title: Predicting seasonal abundance of mosquitoes based on off-season meteorological conditions.
  publication-title: Environ Ecol Stat
  doi: 10.1007/s10651-007-0056-6
– volume: 34
  start-page: 257
  issue: 3
  year: 1997
  ident: pntd.0010218.ref043
  article-title: Abundance, parity, and Japanese encephalitis virus infection of mosquitoes (Diptera: Culicidae) in Sepang District, Malaysia.
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/34.3.257
SSID ssj0059581
Score 2.3613484
Snippet Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0010218
SubjectTerms Abundance
Animals
Aquatic insects
Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Cereal crops
Confidence intervals
Consortia
Councils
Culex
Cultivation
Decision making
Diagnosis
Disease
Disease hot spots
Distribution
Earth Sciences
Encephalitis
Encephalitis Virus, Japanese
Encephalitis, Japanese - epidemiology
Encephalopathy
Environmental conditions
Environmental factors
Epidemics
Epidemiology
Funding
Grain cultivation
Hazards
India - epidemiology
Japanese encephalitis
Land use
Medicine and Health Sciences
Model accuracy
Mosquito Vectors
Mosquitoes
Pathogens
People and Places
Probability theory
Public health
Research and Analysis Methods
Risk factors
Seasonal variations
Seasonality
Seasons
Social Sciences
Spatial variations
Surveillance
Tropical diseases
Vector-borne diseases
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF7kHcSLqK02Wu0WBE9pk012s3usYqkP9GSht7DZH_TBIwlNKvS_d2azL7xIoRevmUlgZyez3yQz3xDyWVieMedEyrRQaSlLleqKuVR5D6eDZLmzocr3l7i6Ltc3_GZv1BfWhE30wJPhzjVHhrVSKw-Jt8Z5h01lvTTGl7YxwmH0zVS2S6amGMwVD-NJAZ1gxxWrYtNcUeXncY_O-na0Z4FSDQd-7B1Kgbt_jtCrftsNj8HPf6so946ly1fkZcST9GJax2vyzLVvyPOf8Y_5AXlYd5t2pEMonI48VFsa5t9gIzpFBifwQIrfChGUbx-onYbU0z5Qb7YD7Txdw5mKsyopBoL-FsH7ZqB_wid_qhtsJwEB1WF99EcLXndIri-___52lcZxC6kRrBxTIZluRGG4BVQmTJj0ZzOAh9opbgBGNbmWKmeOF94ZzyudN6r0qmG6ygzAxrdk1XatOyIUUlMB2EQzLovSZ7IpIevKlMwrmwvAjAkpdvauTeQix5EY2zr8YKsgJ5nMV-Mu1XGXEpLOd_UTF8cT-l9xK2ddZNIOF8C_6uhf9VP-lZATdIR6akud40F9AdYBuCozlpAvQQMjAizC6NjYAKZAbq2F5vFCE95ksxAfobPt1jLUAFaxMRgQH9y5c8DHxaezGB-KhXOt6-5Rp2CI-TnY_N3kr7M9cDYjg4Q2IdXCkxcGW0razW2gIJcS0mRRvP8fFv5AXjDsKQml8MdkNd7du4-A9MbmU3ip_wI3u1I3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Health Database
  dbid: 8C1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF_0BBFEtH70atUVBJ_SJpvsZvdJarHUA32y0Lew2Q97cCSxSYX-953Z7MVGir7eTsJldnbmt7sz8yPkg7A8Zc6JhGmhkkIWKtElc4nyHqKDZJmzIcv3uzg9K1bn_DweuPUxrXLrE4Ojtq3BM_JDCNxYJAnR71P3K0HWKLxdjRQa98mDDHwwLkx5PKV4cMUDSSlgFKy7YmUsncvL7DDO1EHXDPYgNFZD2o9boSl08J_89KLbtP1dIPTvXMpbwenkKXkSUSU9Gs3gGbnnmh3y8Fu8N98hj8fTOToWHT0n16t23Qy0D-nUsTvVhgZWHCxPp9jXCeyS4gkiQvXNNbUjdT3tQkPOpqetpyuItMhgSdE9dBcI6dc9_R0uAqiuscgEBqgO30u_NmCLL8jZyZcfx6dJJGFIjGDFkAjJdC1ywy1gNWEC_59NATRqp7gBcFVnWqqMOZ57ZzwvdVarwqua6TI1ACZfkkXTNm6XUNiwCkAsmnGZFz6VdQF7sVTJrLSZACS5JPlW_5WJHcqRKGNThWu3EnYqozornLUqztqSJNNT3dih4z_yn3FqJ1nsrx1-aC9_VnG5VppjX79CK5-nhUaWzbq0XhrjC1sb4ZbkHRpGNRarTl6iOgLtAIiVKVuSj0EC_QR8hNGx3AFUgR23ZpL7M0lY32Y2vIvGt_2WvvqzEuDJrUHePfx-GsaXYjpd49orlMkZ7gQ46PzVaL-TPpCxkcE2d0nKmWXPFDYfadYXoTG5lLB5Fvnev__Wa_KIYQ1JSH3fJ4vh8sq9AWQ31G_D8r0BtnxNZQ
  priority: 102
  providerName: ProQuest
Title Joint spatiotemporal modelling reveals seasonally dynamic patterns of Japanese encephalitis vector abundance across India
URI https://www.ncbi.nlm.nih.gov/pubmed/35192626
https://www.proquest.com/docview/2640118554
https://www.proquest.com/docview/2632150759
https://pubmed.ncbi.nlm.nih.gov/PMC8896663
https://doaj.org/article/a585914a9f304a4698b7df8ccf4dbc6e
http://dx.doi.org/10.1371/journal.pntd.0010218
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fa9swEBZtCmMvY7-brcs0GOzJwZb1yw9jtKWlC7SMsUDejCzLbSDYXpyO5b_fneyYeWTbSx6ik0Gnk_Wdpfs-Qt7LXITMORkwI5OAa54ERjEXJEUBu4Nmkcv9Ld8beTXns4VYHJCdZmvnwGZvaod6UvP1avrz-_YTLPiPXrVBRbtO07rc5FNPkhbpQ3IEe5PEdOya9-cKIhFethRQC1ZiMdUV0_3tKYPNynP692_uUb2qmn2w9M_blb9tV5ePyaMOZ9LTNjCekANXPiUPrruT9GdkO6uW5YY2_kJ1x0-1ol4XBwvUKTI7gYcofkNEsL7a0rwVr6e1p-QsG1oVdAZ7LWpYUnxB1HcI6pcN_eGPAqjJsMwEGqjx46OfS4jG52R-efHt_CroZBgCKxnfBFIzk8nYihzQmrReATAPATYalwgL8CqLjE4i5kRcOFsIZaIs4UWSMaNCC3DyBRmVVemOCYWUVQJmMUzomBehzjhkY2GiI5VHErDkmMQ7f6e24yhHqYxV6g_eFOQqrftSnKW0m6UxCfpedcvR8R_7M5zK3hYZtv0f1fo27RZsagQy-3GTFHHIDepsZiovtLUFzzMr3Zi8xUBI23LV_j2RnoJ3AMbqkI3JB2-BsQuDsKYreABXIOfWwPJkYAkr3A6ajzHYdmNpUgCxWDAMSBB67gJwf_O7vhkfihfqSlfdo03MMBcQ4POXbbz2_kDNRgaJ7pioQSQPHDZsKZd3nppca0ifZfzq3wN6TR4yrCLxl99PyGizvndvANttsgk5VAsFv_o8mpCjs4ubL18n_jvJxC_kXyshUo0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqRQIkhKBAu1CokUCc0iaO7TgHhEqh2t0-Tq3UW3Ach660JKHZgvZP8RuZcR40qIJTr_Ekisfjedgz8xHyRmbCZ9ZKj2kZe1zx2NMRs16c52AdFAts5rJ8T-TkjM_Oxfka-dXVwmBaZacTnaLOSoNn5LtguLFIEqzfh-q7h6hReLvaQWg0YnFoVz8hZKvfTz_B-r5l7ODz6f7Ea1EFPCMZX3pSMZ3K0IgMnA9pHKBd5oMXpG0sDHgLaaBVHDArwtyaXEQ6SGOexynTkW8EHoCCyr_Dw1BiCpna71NKRCwcKCr4RFjnxaK2VC-Mgt1WMnaqYpntuEZuCDNyzRQ6xIDeLoyqRVnf5PT-nbt5zRgePCIPWy-W7jVi95is2WKd3D1u7-nXyYPmNJA2RU5PyGpWzoslrV36dtsNa0EdCg-Ww1PsIwX7gOKJJYYGixXNVoX-Bp-oXAPQoqZlTmdg2RExk6I6qi4whJjX9Ie7eKA6xaIWGKDazZdOC5D9p-TsVpbnGRkVZWE3CYUAWYKHpJlQIc99lXKI_fxYBVEWSPBcxyTs-J-YtiM6AnMsEnfNF0Fk1LAzwVVL2lUbE69_q2o6gvyH_iMubU-L_bzdg_Lya9Kqh0QL7CPIdZyHPteI6plGWa6MyXmWGmnHZBsFI2mKY3utlOwBd8BpVj4bk3eOAvUSTMLotrwCWIEdvgaUWwNK0CdmMLyJwtfNpU7-7Dx4sxPIm4df98P4UUzfK2x5hTQhw8hDAM83Gvnt-YEIkQzC6jGJBpI9YNhwpJhfuEboSkGwLsPn__6tbXJvcnp8lBxNTw5fkPsM61dc2v0WGS0vr-xL8CqX6Su3lSn5ctu64zd3m4mT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTpqQEILxscJgRgLxlDVxYid5mNDGVq0dVBNi0t6C4zhbpZKEpQP1X-Sv4s5xwoImeNprfIni8_k-7Lv7EfJGZNxlWguHSRE7QRTEjgyZduI8B-sQMU9nJst3Jo7Pguk5P18jv9paGEyrbHWiUdRZqfCMfASGG4skwfqNcpsWcXo4fl99dxBBCm9aWzgNaWEWsj3TbswWeZzo1U8I5-q9ySGs_VvGxkdfPhw7FnHAUYIFS0dETKbCVzwDx0QoA3aXueAhSR1zBZ5E6sko9pjmfq5VzkPppXGQxymToas4Ho6COVgPwUqyAVk_OJqdfm7tAo-5gUwFjwmrwFhoC_n80BtZudmtimW2a9q8IQjJDUNp8AQ6qzGoFmV9m0v8d2bnDVM5fkgeWB-X7jdC-Yis6WKTbHyyt_ib5H5zVkibEqjHZDUt58WS1ia52_bKWlCD0YPF8hS7TMEuoXieiYHDYkWzVSG_wScq0x60qGmZ0ynYfcTTpKisqksMMOY1_WGuJahMseQFBqg086WTAnbGE3J2Jwv0lAyKstBbhEL4LMB_koxHfpC7URpAZOjGkRdmngC_dkj8lv-Jsv3SEbZjkZhLwBDipoadCa5aYldtSJzurarpF_If-gNc2o4Wu32bB-XVRWKVRyI5dhkMZJz7biAR8zMNszxSKg-yVAk9JDsoGElTOtvprGQfuAMudeSyIXlnKFBrwSSUtMUXwArs_9Wj3O5RgrZRveEtFL52LnXyZ1_Cm61A3j78uhvGj2JyX6HLa6TxGcYlHHj-rJHfjh-IH8kg6B6SsCfZPYb1R4r5pWmTHkUQygv_-b9_a4dsgB5JPk5mJy_IPYbFLSYnf5sMllfX-iW4nMv0ld3LlHy9a_XxG_BElIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+spatiotemporal+modelling+reveals+seasonally+dynamic+patterns+of+Japanese+encephalitis+vector+abundance+across+India&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Franklinos%2C+Lydia+H.+V&rft.au=Redding%2C+David+W&rft.au=Lucas%2C+Tim+C.+D&rft.au=Gibb%2C+Rory&rft.date=2022-02-01&rft.pub=Public+Library+of+Science&rft.issn=1935-2727&rft.volume=16&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pntd.0010218&rft.externalDocID=A696085802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon