Joint spatiotemporal modelling reveals seasonally dynamic patterns of Japanese encephalitis vector abundance across India
Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases...
Saved in:
Published in | PLoS neglected tropical diseases Vol. 16; no. 2; p. e0010218 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.02.2022
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1935-2735 1935-2727 1935-2735 |
DOI | 10.1371/journal.pntd.0010218 |
Cover
Abstract | Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector
Culex tritaeniorhynchus
is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for
C
.
tritaeniorhynchus
(a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52–4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance–a key component of JE hazard–over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts. |
---|---|
AbstractList | Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C. tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52-4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance-a key component of JE hazard-over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts.Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C. tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52-4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance-a key component of JE hazard-over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts. Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C. tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52-4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance-a key component of JE hazard-over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts. Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C . tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52–4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance–a key component of JE hazard–over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts. Japanese encephalitis (JE) is the leading cause of viral encephalopathy in Asia with an estimated 100,000 annual cases and 25,000 deaths. However, insufficient data on the predominant mosquito vector Culex tritaeniorhynchus –a key component of JE hazard–precludes hazard estimation required to target public health interventions. Previous studies have provided limited estimates of JE hazard, often predicting geographic distributions of potential vector occurrence without accounting for vector abundance, seasonality, or uncertainty in predictions. This study details a novel approach to predict spatiotemporal patterns in JE vector abundance using a joint-likelihood modelling technique that leverages information from sparse vector surveillance data. We showed that patterns in JE vector abundance were driven by seasonality and environmental factors and so demonstrated the limitations of previously available static vector distribution maps in estimating the vector population component of JE hazard. One-month lagged vector abundance predictions showed a positive relationship with JE outbreaks, signalling the potential use of vector abundance as a proxy for JE hazard. While vector surveillance data are limited, joint-likelihood models offer a useful approach to inform vector abundance predictions. This study provides decision-makers with a more complete picture of the distribution of JE vector abundance and can be used to target vector surveillance and control efforts and enhance the allocation of resources. Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C . tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52–4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance–a key component of JE hazard–over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts. |
Audience | Academic |
Author | Abubakar, Ibrahim Redding, David W. Jones, Kate E. Franklinos, Lydia H. V. Lucas, Tim C. D. Gibb, Rory |
AuthorAffiliation | 3 Institute of Zoology, Zoological Society of London, London, United Kingdom 1 Centre for Biodiversity and Environment Research, University College London, London, United Kingdom 4 School of Public Health, Imperial College London, London, United Kingdom 6 Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom 5 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom 2 Institute for Global Health, University College London, London, United Kingdom Johns Hopkins University Bloomberg School of Public Health, UNITED STATES |
AuthorAffiliation_xml | – name: 1 Centre for Biodiversity and Environment Research, University College London, London, United Kingdom – name: 3 Institute of Zoology, Zoological Society of London, London, United Kingdom – name: 6 Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom – name: Johns Hopkins University Bloomberg School of Public Health, UNITED STATES – name: 2 Institute for Global Health, University College London, London, United Kingdom – name: 4 School of Public Health, Imperial College London, London, United Kingdom – name: 5 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom |
Author_xml | – sequence: 1 givenname: Lydia H. V. orcidid: 0000-0002-5766-3986 surname: Franklinos fullname: Franklinos, Lydia H. V. – sequence: 2 givenname: David W. orcidid: 0000-0001-8615-1798 surname: Redding fullname: Redding, David W. – sequence: 3 givenname: Tim C. D. orcidid: 0000-0003-4694-8107 surname: Lucas fullname: Lucas, Tim C. D. – sequence: 4 givenname: Rory orcidid: 0000-0002-0965-1649 surname: Gibb fullname: Gibb, Rory – sequence: 5 givenname: Ibrahim surname: Abubakar fullname: Abubakar, Ibrahim – sequence: 6 givenname: Kate E. orcidid: 0000-0001-5231-3293 surname: Jones fullname: Jones, Kate E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35192626$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ul2L3CAUDWVL96P9B6UVCqUvM9UkGt2HwrL0Y5aFvrTPcqNmxiXRNJqB-fc1O5kysyzFB-V6zrne47nMzpx3JsveErwkRUU-P_hxcNAuexf1EmOCc8JfZBdEFHSRVwU9OzqfZ5chPGBMBeXkVXZeUCJylrOLbHfnrYso9BCtj6br_QAt6rw2bWvdGg1ma6ANKBgIPrVrd0jvHHRWoUSJZnAB-QbdQQ_OBIOMU6bfQGujDWhrVPQDgnp0GtIFAjX4ENDKaQuvs5dNUjZv5v0q-_3t66_bH4v7n99Xtzf3C8XyMi4Yz6FmhaKaF5QpUTDBNK6qEoygSuSiJsAFyQ0tGqMaWgGpRdmIOocKK1oUV9n7vW7f-iBn14LMWYkJ4ZSWCbHaI7SHB9kPtoNhJz1Y-Vjww1rCEK1qjQTKqSAliKbAJZRM8LrSDVeqKXWtmElaX-ZuY90ZrYyLydAT0dMbZzdy7beSc8EYm577aRYY_J_RhCg7G1T6jeSvH6d3FzmhuKIiQT88gT4_3YxaQxrAusanvmoSlTfJS8wpx3lCLZ9BpaVN-uuUvMam-gnh4xFhk0ISN8G3Y4qRC6fAd8eO_LPikMEEuN4DHsMxmEYqG6c4TgbZVhIsp8AfhpNT4OUc-EQun5AP-v-l_QW6lgh7 |
CitedBy_id | crossref_primary_10_1038_s41579_024_01026_0 crossref_primary_10_3389_fimmu_2024_1505612 |
Cites_doi | 10.1038/s41586-018-0411-9 10.1890/14-0661.1 10.1007/s12520-019-00795-7 10.1111/ddi.12359 10.1371/journal.pntd.0001678 10.1111/j.2517-6161.1990.tb01780.x 10.1089/vbz.2014.1757 10.1007/BF00116466 10.1038/sdata.2017.74 10.1111/j.1365-2486.2011.02522.x 10.1016/S1473-3099(19)30161-6 10.1093/jmedent/34.6.651 10.1016/j.pneurobio.2010.01.008 10.1016/j.ecolmodel.2013.10.019 10.1098/rstb.2013.0551 10.1371/journal.ppat.1005548 10.1186/s13071-016-1788-7 10.1016/j.phrp.2014.04.004 10.1038/sdata.2017.191 10.1111/j.1467-9868.2008.00700.x 10.1111/ddi.12960 10.1111/biom.13142 10.1016/j.pt.2015.09.006 10.1007/s11027-015-9677-5 10.18637/jss.v063.i19 10.1111/2041-210X.12523 10.4081/gh.2010.186 10.1214/16-STS576 10.1111/ele.13335 10.1186/s13071-017-2086-8 10.1080/15481603.2018.1423725 10.1186/s13071-017-2097-5 10.1098/rstb.2016.0165 10.15585/mmwr.mm6622a3 10.1186/1476-072X-9-32 10.1136/jnnp.68.4.405 10.1007/s10336-015-1194-5 10.1038/s41598-019-43437-7 10.1016/j.tree.2019.03.004 10.2471/BLT.10.085233 10.1371/journal.pntd.0000247 10.2174/1874421400802010059 10.1016/j.pt.2017.11.006 10.1016/j.jtbi.2017.03.024 10.2149/tmh1973.9.37 10.1093/jtm/tay006 10.1093/oxfordjournals.epirev.a036087 10.1201/9780429029608 10.1111/j.0307-6962.2004.00411.x 10.2987/18-6781.1 10.1109/JSTARS.2014.2334332 10.7601/mez.41.247 10.1371/journal.pbio.0020368 10.1089/vbz.2008.0063 10.1093/jtm/tay009 10.1111/ecog.02881 10.1002/sim.1403 10.1080/20477724.2016.1179862 10.1186/1475-2875-10-190 10.1146/annurev.ecolsys.110308.120159 10.1016/j.actatropica.2018.08.014 10.1038/s41590-020-0648-y 10.1098/rstb.2016.0129 10.4103/2224-3151.207040 10.1016/j.actatropica.2005.04.012 10.1016/S0304-3800(02)00202-8 10.1016/j.envint.2015.03.002 10.1007/978-3-540-92874-4_2 10.3354/cr030079 10.1371/journal.pntd.0002208 10.1111/j.1365-2915.2012.01045.x 10.1186/s13071-019-3321-2 10.7554/eLife.51027 10.1089/vbz.2017.2250 10.1111/2041-210X.12221 10.1038/s41564-019-0476-8 10.1007/s10651-007-0056-6 10.1093/jmedent/34.3.257 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Public Library of Science 2022 Franklinos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Franklinos et al 2022 Franklinos et al |
Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Franklinos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Franklinos et al 2022 Franklinos et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SS 7T2 7T7 7U9 7X7 7XB 88E 8C1 8FD 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BENPR C1K CCPQU DWQXO F1W FR3 FYUFA GHDGH H94 H95 H97 K9. L.G M0S M1P M7N P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1371/journal.pntd.0010218 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Entomology Abstracts (Full archive) Health and Safety Science Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials - QC ProQuest Central Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts Health & Safety Science Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
DocumentTitleAlternate | Predicting Japanese encephalitis vector abundance in India |
EISSN | 1935-2735 |
ExternalDocumentID | 2640118554 oai_doaj_org_article_a585914a9f304a4698b7df8ccf4dbc6e PMC8896663 A696085802 35192626 10_1371_journal_pntd_0010218 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | India Asia |
GeographicLocations_xml | – name: India – name: Asia |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/R02491X/2 – fundername: Wellcome Trust – fundername: Medical Research Council grantid: MR/T502613/1 – fundername: ; – fundername: ; grantid: MR/R02491X/2 – fundername: ; grantid: MR/T502613/1 – fundername: ; grantid: NF-SI-0616–10037 – fundername: ; grantid: NE-J001570-1 – fundername: ; grantid: 220179/Z/20/Z – fundername: ; grantid: NE/L002485/1 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8C1 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD ECGQY EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW ITC KQ8 M1P M48 O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP 3V. ADRAZ CGR CUY CVF ECM EIF H13 IPNFZ M~E NPM RIG WOQ PMFND 7QL 7SS 7T2 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO F1W FR3 H94 H95 H97 K9. L.G M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM AAPBV ABPTK |
ID | FETCH-LOGICAL-c624t-682ab63c5d8356c93696d0774ae95c929b1a8912e53fecf57a1b94f9b2a70c533 |
IEDL.DBID | M48 |
ISSN | 1935-2735 1935-2727 |
IngestDate | Sun Jul 02 11:04:22 EDT 2023 Wed Aug 27 01:29:14 EDT 2025 Thu Aug 21 18:06:35 EDT 2025 Fri Sep 05 09:35:48 EDT 2025 Fri Jul 25 05:51:32 EDT 2025 Tue Jun 17 21:44:08 EDT 2025 Tue Jun 10 20:25:58 EDT 2025 Thu May 22 20:50:34 EDT 2025 Wed Feb 19 02:26:57 EST 2025 Thu Apr 24 22:56:08 EDT 2025 Tue Jul 01 00:57:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c624t-682ab63c5d8356c93696d0774ae95c929b1a8912e53fecf57a1b94f9b2a70c533 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0003-4694-8107 0000-0002-5766-3986 0000-0001-8615-1798 0000-0001-5231-3293 0000-0002-0965-1649 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pntd.0010218 |
PMID | 35192626 |
PQID | 2640118554 |
PQPubID | 1436337 |
ParticipantIDs | plos_journals_2640118554 doaj_primary_oai_doaj_org_article_a585914a9f304a4698b7df8ccf4dbc6e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8896663 proquest_miscellaneous_2632150759 proquest_journals_2640118554 gale_infotracmisc_A696085802 gale_infotracacademiconefile_A696085802 gale_healthsolutions_A696085802 pubmed_primary_35192626 crossref_citationtrail_10_1371_journal_pntd_0010218 crossref_primary_10_1371_journal_pntd_0010218 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS neglected tropical diseases |
PublicationTitleAlternate | PLoS Negl Trop Dis |
PublicationYear | 2022 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | I Vythilingam (pntd.0010218.ref043) 1997; 34 B Amoah (pntd.0010218.ref058) 2020; 76 HE Beck (pntd.0010218.ref088) 2018; 5 PE Parham (pntd.0010218.ref098) 2015; 370 J Pagel (pntd.0010218.ref055) 2014; 5 H Rue (pntd.0010218.ref071) 2009; 71 N-H Kim (pntd.0010218.ref034) 2014; 5 PR Trawinski (pntd.0010218.ref065) 2010; 10 JP Messina (pntd.0010218.ref017) 2019; 4 C Willmott (pntd.0010218.ref079) 2005; 30 DR Roberts (pntd.0010218.ref078) 2017; 40 EE Richards (pntd.0010218.ref046) 2010; 9 L Lindquist (pntd.0010218.ref028) 2018; 25 TW Kibuthu (pntd.0010218.ref091) 2016; 9 U Suryanarayana Murty (pntd.0010218.ref037) 2010 S Sabesan (pntd.0010218.ref039) 2008; 2 N Alexandratos (pntd.0010218.ref094) 2012 European Centre for Disease Prevention and Control and European Food Safety Authority. (pntd.0010218.ref008) 2018 G Campbell (pntd.0010218.ref024) 2011; 89 DP Simpson (pntd.0010218.ref075) 2017; 32 L Kehoe (pntd.0010218.ref066) 2015; 21 MUG Kraemer (pntd.0010218.ref007) 2016; 32 RJ Hijmans (pntd.0010218.ref068) 2014 LI Pettit (pntd.0010218.ref080) 1990; 52 A Baeza (pntd.0010218.ref049) 2011; 10 World Health Organization (pntd.0010218.ref004) 2017 PC Kanojia (pntd.0010218.ref090) 2003; 117 N Becker (pntd.0010218.ref014) 2010 U Suryanarayana Murty (pntd.0010218.ref036) 2002; 18 PK Rajagopalan (pntd.0010218.ref047) 1978; 68 A Cliff (pntd.0010218.ref077) 1973 CC Lord (pntd.0010218.ref051) 2004; 29 DW Vaughn (pntd.0010218.ref059) 1992; 14 S Niaz (pntd.0010218.ref062) 1981; 9 LHV Franklinos (pntd.0010218.ref002) 2019; 19 TM Quan (pntd.0010218.ref025) 2020; 9 F Lindgren (pntd.0010218.ref084) 2015; 63 Y Wada (pntd.0010218.ref032) 1975; 17 SM White (pntd.0010218.ref010) 2017; 10 AD LaBeaud (pntd.0010218.ref023) 2008; 2 UK Misra (pntd.0010218.ref060) 2010; 91 SSC Rund (pntd.0010218.ref011) 2019; 35 JC Pearce (pntd.0010218.ref031) 2018; 25 R Kumari (pntd.0010218.ref085) 2012; 1 Ministry of Health & Family Welfare, Government of India (pntd.0010218.ref069) 2020 NP Devi (pntd.0010218.ref061) 2004; 41 R Core Team (pntd.0010218.ref083) 2020 WHO (pntd.0010218.ref001) 2017 EA Mordecai (pntd.0010218.ref019) 2019; 22 LD Valdez (pntd.0010218.ref064) 2017; 421 J Rocklöv (pntd.0010218.ref099) 2020; 21 J Keiser (pntd.0010218.ref038) 2005; 95 R Shukla (pntd.0010218.ref087) 2017; 22 Government of India (pntd.0010218.ref096) 2014 PR Hosseini (pntd.0010218.ref005) 2017; 372 HK Raju (pntd.0010218.ref040) 2016; 16 EE Johnson (pntd.0010218.ref012) 2019; 34 DA Ewing (pntd.0010218.ref018) 2019; 12 E Kingwell-Banham (pntd.0010218.ref082) 2019; 11 N Golding (pntd.0010218.ref016) 2016; 7 HY Tian (pntd.0010218.ref030) 2015; 79 S. Matsuzaki (pntd.0010218.ref033) 1990; 41 pntd.0010218.ref045 J Huang (pntd.0010218.ref100) 2014; 7 DL Smith (pntd.0010218.ref003) 2004; 2 Y Jian (pntd.0010218.ref022) 2014; 272 J Besag (pntd.0010218.ref073) 1991; 43 CS Elphick (pntd.0010218.ref093) 2015; 156 J Longbottom (pntd.0010218.ref035) 2017; 10 DW Redding (pntd.0010218.ref072) 2017; 372 AG Laborte (pntd.0010218.ref067) 2017; 4 JT Abatzoglou (pntd.0010218.ref063) 2018; 5 EC Marshall (pntd.0010218.ref081) 2003; 22 X-P Song (pntd.0010218.ref095) 2018; 560 JD Heffelfinger (pntd.0010218.ref027) 2017; 66 P Masuoka (pntd.0010218.ref053) 2010 AS Walsh (pntd.0010218.ref020) 2008; 15 MB Hooten (pntd.0010218.ref076) 2015; 85 RH Miller (pntd.0010218.ref052) 2012; 6 M Mukhtar (pntd.0010218.ref048) 2003; 34 AM Samy (pntd.0010218.ref054) 2018; 188 JM Humphreys (pntd.0010218.ref056) 2019; 25 G Le Flohic (pntd.0010218.ref029) 2013; 7 HK Raju (pntd.0010218.ref041) 2018; 18 J Elith (pntd.0010218.ref013) 2009; 40 R Balasubramanian (pntd.0010218.ref044) 2015; 36 J Elith (pntd.0010218.ref015) 2002; 157 NB Tjaden (pntd.0010218.ref006) 2018; 34 A Gajanana (pntd.0010218.ref089) 1997; 34 J Liu-Helmersson (pntd.0010218.ref009) 2019; 7 TCD Lucas (pntd.0010218.ref057) 2021; 00 S Baig (pntd.0010218.ref026) 2013; 62 W Reisen (pntd.0010218.ref042) 1976; 7 R Das Bhowmik (pntd.0010218.ref086) 2019; 9 LF Chaves (pntd.0010218.ref021) 2012; 18 R. McElreath (pntd.0010218.ref074) 2020 SY Ohba (pntd.0010218.ref092) 2013; 27 K Bashar (pntd.0010218.ref050) 2016; 110 T Solomon (pntd.0010218.ref070) 2000; 68 S Lequime (pntd.0010218.ref097) 2016; 12 AO Onojeghuo (pntd.0010218.ref101) 2018; 55 |
References_xml | – volume: 00 start-page: 1 year: 2021 ident: pntd.0010218.ref057 article-title: Mapping malaria by sharing spatial information between incidence and prevalence data sets. publication-title: J R Stat Soc Ser C Appl Stat – volume: 560 start-page: 639 issue: 7720 year: 2018 ident: pntd.0010218.ref095 article-title: Global land change from 1982 to 2016 publication-title: Nature doi: 10.1038/s41586-018-0411-9 – volume: 85 start-page: 3 issue: 1 year: 2015 ident: pntd.0010218.ref076 article-title: A guide to Bayesian model selection for ecologists publication-title: Ecol Monogr doi: 10.1890/14-0661.1 – volume: 11 start-page: 6485 issue: 12 year: 2019 ident: pntd.0010218.ref082 article-title: Dry, rainfed or irrigated? Re-evaluating the role and development of rice agriculture in Iron Age-Early Historic South India using archaeobotanical approaches publication-title: Archaeol Anthropol Sci doi: 10.1007/s12520-019-00795-7 – volume: 21 start-page: 1308 issue: 11 year: 2015 ident: pntd.0010218.ref066 article-title: Global patterns of agricultural land-use intensity and vertebrate diversity. publication-title: Divers Distrib doi: 10.1111/ddi.12359 – volume: 6 issue: 6 year: 2012 ident: pntd.0010218.ref052 article-title: Ecological niche modeling to estimate the distribution of Japanese encephalitis virus in Asia. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0001678 – volume: 52 start-page: 175 issue: 1 year: 1990 ident: pntd.0010218.ref080 article-title: The conditional predictive ordinate for the normal distribution. publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1990.tb01780.x – volume: 16 start-page: 117 issue: 2 year: 2016 ident: pntd.0010218.ref040 article-title: A preliminary study to forecast Japanese Encephalitis vector abundance in paddy growing area, with the aid of radar satellite images. publication-title: Vector-Borne Zoonotic Dis doi: 10.1089/vbz.2014.1757 – volume: 62 start-page: 658 issue: 33 year: 2013 ident: pntd.0010218.ref026 article-title: Japanese encephalitis surveillance and immunization—Asia and the Western Pacific, 2012. publication-title: MMWR Morb Mortal Wkly Rep – volume: 43 start-page: 1 issue: 1 year: 1991 ident: pntd.0010218.ref073 article-title: Bayesian image restoration, with two applications in spatial statistics. publication-title: Ann Inst Stat Math doi: 10.1007/BF00116466 – volume: 4 start-page: 1 year: 2017 ident: pntd.0010218.ref067 article-title: Data Descriptor: RiceAtlas, a spatial database of global rice calendars and production. publication-title: Sci Data doi: 10.1038/sdata.2017.74 – volume: 36 start-page: 1325 issue: 6 year: 2015 ident: pntd.0010218.ref044 article-title: Effects of rainfall and salinity increase on prevalence of vector mosquitoes in coastal areas of Alappuzha district, Kerala publication-title: J Environ Biol – volume: 18 start-page: 457 issue: 2 year: 2012 ident: pntd.0010218.ref021 article-title: Nonlinear impacts of climatic variability on the density-dependent regulation of an insect vector of disease. publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2011.02522.x – start-page: 26 issue: 47 year: 2010 ident: pntd.0010218.ref037 article-title: The effects of climatic factors on the distribution and abundance of Japanese encephalitis vectors in Kurnool district of Andhra Pradesh, India. publication-title: J Vector Borne Dis – volume: 19 start-page: e302 issue: 9 year: 2019 ident: pntd.0010218.ref002 article-title: The effect of global change on mosquito-borne disease publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(19)30161-6 – volume: 34 start-page: 651 issue: 6 year: 1997 ident: pntd.0010218.ref089 article-title: Japanese encephalitis in south Arcot district, Tamil Nadu, India: a three-year longitudinal study of vector abundance and infection frequency publication-title: J Med Entomol doi: 10.1093/jmedent/34.6.651 – volume: 91 start-page: 108 issue: 2 year: 2010 ident: pntd.0010218.ref060 article-title: Overview: Japanese encephalitis. publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2010.01.008 – volume: 272 start-page: 301 year: 2014 ident: pntd.0010218.ref022 article-title: Environmental forcing and density-dependent controls of Culex pipiens abundance in a temperate climate (Northeastern Italy). publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2013.10.019 – start-page: 114 volume-title: Operational Guidelines: National Programme for Prevention and Control of Japanese Encephalitis/Acute Encephalitis Syndrome. year: 2014 ident: pntd.0010218.ref096 – volume: 370 start-page: 20130551 issue: 1665 year: 2015 ident: pntd.0010218.ref098 article-title: Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. publication-title: Philos Trans R Soc B Biol Sci. doi: 10.1098/rstb.2013.0551 – volume: 68 start-page: 3938 year: 1978 ident: pntd.0010218.ref047 article-title: A note on the 1976 epidemic of Japanese encephalitis in Burdwan district, West Bengal publication-title: Indian J Med Res – volume: 12 start-page: e1005548 issue: 5 year: 2016 ident: pntd.0010218.ref097 article-title: Determinants of arbovirus vertical transmission in mosquitoes. publication-title: PLOS Pathog doi: 10.1371/journal.ppat.1005548 – volume: 9 start-page: 500 issue: 1 year: 2016 ident: pntd.0010218.ref091 article-title: Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes? publication-title: Parasit Vectors doi: 10.1186/s13071-016-1788-7 – volume: 5 start-page: 131 issue: 3 year: 2014 ident: pntd.0010218.ref034 article-title: Prediction forecast for Culex tritaeniorhynchus populations in Korea. publication-title: Osong Public Health Res PerspectJun doi: 10.1016/j.phrp.2014.04.004 – volume: 5 start-page: 1 issue: 1 year: 2018 ident: pntd.0010218.ref063 article-title: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. publication-title: Sci Data. doi: 10.1038/sdata.2017.191 – volume: 71 start-page: 319 issue: 2 year: 2009 ident: pntd.0010218.ref071 article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.1467-9868.2008.00700.x – volume: 25 start-page: 1497 issue: 9 year: 2019 ident: pntd.0010218.ref056 article-title: Seasonal occurrence and abundance of dabbling ducks across the continental United States: Joint spatio-temporal modelling for the Genus Anas. publication-title: Divers Distrib doi: 10.1111/ddi.12960 – volume: 76 start-page: 158 issue: 1 year: 2020 ident: pntd.0010218.ref058 article-title: A geostatistical framework for combining spatially referenced disease prevalence data from multiple diagnostics publication-title: Biometrics doi: 10.1111/biom.13142 – volume: 32 start-page: 19 issue: 1 year: 2016 ident: pntd.0010218.ref007 article-title: Progress and challenges in infectious disease cartography publication-title: Trends Parasitol doi: 10.1016/j.pt.2015.09.006 – volume: 22 start-page: 399 issue: 3 year: 2017 ident: pntd.0010218.ref087 article-title: Vulnerability of agro-ecological zones in India under the earth system climate model scenarios. publication-title: Mitig Adapt Strateg Glob Change Dordr. doi: 10.1007/s11027-015-9677-5 – volume: 63 issue: 19 year: 2015 ident: pntd.0010218.ref084 article-title: Bayesian spatial modelling with R-INLA. publication-title: J Stat Softw doi: 10.18637/jss.v063.i19 – volume: 7 start-page: 598 issue: 5 year: 2016 ident: pntd.0010218.ref016 article-title: Fast and flexible Bayesian species distribution modelling using Gaussian processes. publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12523 – volume: 7 issue: 61–71 year: 1976 ident: pntd.0010218.ref042 article-title: The effects of climatic patterns and agricultural practices on the population dynamics of Culex tritaeniorhynchus in Asia publication-title: Southeast Asian J Trop Med Public Health – start-page: 45 year: 2010 ident: pntd.0010218.ref053 article-title: Modeling the distribution of Culex tritaeniorhynchus to predict Japanese encephalitis distribution in the Republic of Korea. publication-title: Geospatial Health doi: 10.4081/gh.2010.186 – volume: 32 start-page: 1 issue: 1 year: 2017 ident: pntd.0010218.ref075 article-title: Penalising model component complexity: A principled, practical approach to constructing priors. publication-title: Stat Sci doi: 10.1214/16-STS576 – volume: 22 start-page: 1690 issue: 10 year: 2019 ident: pntd.0010218.ref019 article-title: Thermal biology of mosquito-borne disease publication-title: Ecol Lett doi: 10.1111/ele.13335 – volume: 10 start-page: 148 issue: 1 year: 2017 ident: pntd.0010218.ref035 article-title: Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk. publication-title: Parasit Vectors doi: 10.1186/s13071-017-2086-8 – volume: 55 start-page: 659 issue: 5 year: 2018 ident: pntd.0010218.ref101 article-title: Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series. publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2018.1423725 – volume: 10 start-page: 162 issue: 1 year: 2017 ident: pntd.0010218.ref010 article-title: Mechanistic model for predicting the seasonal abundance of Culicoides biting midges and the impacts of insecticide control. publication-title: Parasit Vectors doi: 10.1186/s13071-017-2097-5 – volume: 372 start-page: 20160165 issue: 1725 year: 2017 ident: pntd.0010218.ref072 article-title: Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa. publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2016.0165 – volume: 66 start-page: 579 issue: 22 year: 2017 ident: pntd.0010218.ref027 article-title: Japanese encephalitis surveillance and immunization—Asia and Western Pacific Regions, 2016. publication-title: MMWR Morb Mortal Wkly Rep doi: 10.15585/mmwr.mm6622a3 – volume-title: Spatial Autocorrelation.: year: 1973 ident: pntd.0010218.ref077 – volume: 9 start-page: 32 issue: 1 year: 2010 ident: pntd.0010218.ref046 article-title: The relationship between mosquito abundance and rice field density in the Republic of Korea. publication-title: Int J Health Geogr doi: 10.1186/1476-072X-9-32 – volume: 68 start-page: 405 year: 2000 ident: pntd.0010218.ref070 article-title: Japanese encephalitis. publication-title: J Neurosurg Psychiatry doi: 10.1136/jnnp.68.4.405 – volume: 156 start-page: 239 issue: 1 year: 2015 ident: pntd.0010218.ref093 article-title: A history of ecological studies of birds in rice fields. publication-title: J Ornithol doi: 10.1007/s10336-015-1194-5 – volume: 9 year: 2019 ident: pntd.0010218.ref086 article-title: Shower effect of a rainfall onset on the heat accumulated during a preceding dry spell. publication-title: Sci Rep doi: 10.1038/s41598-019-43437-7 – volume: 34 start-page: 72 issue: 1 year: 2003 ident: pntd.0010218.ref048 article-title: Role of wastewater irrigation in mosquito breeding in south Punjab, Pakistan. publication-title: Southeast Asian J Trop Med Public Health – volume: 34 start-page: 655 issue: 7 year: 2019 ident: pntd.0010218.ref012 article-title: An ecological framework for modeling the geography of disease transmission publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2019.03.004 – volume: 89 start-page: 766 issue: 10 year: 2011 ident: pntd.0010218.ref024 article-title: Estimated global incidence of Japanese encephalitis publication-title: Bull World Health Organ doi: 10.2471/BLT.10.085233 – volume: 2 issue: 6 year: 2008 ident: pntd.0010218.ref023 article-title: Why Arboviruses Can Be Neglected Tropical Diseases. publication-title: PLOS Negl Trop Dis doi: 10.1371/journal.pntd.0000247 – volume: 2 start-page: 59 issue: 1 year: 2008 ident: pntd.0010218.ref039 article-title: Spatial Delimitation, Forecasting and Control of Japanese Encephalitis: India—A Case Study. publication-title: Open Parasitol J doi: 10.2174/1874421400802010059 – volume: 34 start-page: 227 issue: 3 year: 2018 ident: pntd.0010218.ref006 article-title: Mosquito-borne diseases: advances in modelling climate-change impacts publication-title: Trends Parasitol doi: 10.1016/j.pt.2017.11.006 – volume: 421 start-page: 28 year: 2017 ident: pntd.0010218.ref064 article-title: Effects of rainfall on Culex mosquito population dynamics publication-title: J Theor Biol doi: 10.1016/j.jtbi.2017.03.024 – volume: 9 start-page: 37 issue: 1 year: 1981 ident: pntd.0010218.ref062 article-title: Culex tritaeniorhynchus Giles: some effects of temperature and photoperiod on larval development and selected adult attributes publication-title: Jpn J Med Hyg doi: 10.2149/tmh1973.9.37 – volume: 25 start-page: S3 issue: Suppl 1 year: 2018 ident: pntd.0010218.ref028 article-title: Recent and historical trends in the epidemiology of Japanese encephalitis and its implication for risk assessment in travellers. publication-title: J Travel Med doi: 10.1093/jtm/tay006 – volume: 41 start-page: 17 year: 2004 ident: pntd.0010218.ref061 article-title: Altitudinal distribution of mosquitoes in mountainous area of Garhwal region: Part–I. publication-title: J Vector Borne Dis – volume: 14 start-page: 197 issue: 1 year: 1992 ident: pntd.0010218.ref059 article-title: The epidemiology of Japanese encephalitis: prospects for prevention. publication-title: Epidemiol Rev. doi: 10.1093/oxfordjournals.epirev.a036087 – year: 2014 ident: pntd.0010218.ref068 article-title: raster: Geographic data analysis and modeling (R package). – start-page: 195 volume-title: Statistical Rethinking: A Bayesian Course with Examples in R and STAN year: 2020 ident: pntd.0010218.ref074 doi: 10.1201/9780429029608 – volume: 29 start-page: 214 issue: 3 year: 2004 ident: pntd.0010218.ref051 article-title: Seasonal population dynamics and behaviour of insects in models of vector-borne pathogens publication-title: Physiol Entomol doi: 10.1111/j.0307-6962.2004.00411.x – volume: 35 start-page: 75 issue: 1 year: 2019 ident: pntd.0010218.ref011 article-title: Rescuing troves of hidden ecological data to tackle emerging mosquito-borne diseases publication-title: J Am Mosq Control Assoc doi: 10.2987/18-6781.1 – volume: 17 start-page: 111 issue: 3 year: 1975 ident: pntd.0010218.ref032 article-title: Ecology of Japanese encephalitis virus in Japan. II. The population of vector mosquitoes and the epidemic of Japanese encephalitis publication-title: Trop Med – volume: 7 start-page: 4374 issue: 11 year: 2014 ident: pntd.0010218.ref100 article-title: Analysis of NDVI data for crop identification and yield estimation publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2014.2334332 – volume: 41 start-page: 247 issue: 3 year: 1990 ident: pntd.0010218.ref033 article-title: Population dynamics of Culex tritaeniorhynchus in relation to the epidemics of Japanese encephalitis in Kochi Prefecture, Japan publication-title: Jpn J Sanit Zool doi: 10.7601/mez.41.247 – volume: 2 start-page: e368 issue: 11 year: 2004 ident: pntd.0010218.ref003 article-title: The risk of a mosquito-borne infection in a heterogeneous environment publication-title: PLOS Biol doi: 10.1371/journal.pbio.0020368 – volume: 10 start-page: 515 issue: 5 year: 2010 ident: pntd.0010218.ref065 article-title: Identification of environmental covariates of West Nile virus vector mosquito population abundance. publication-title: Vector-Borne Zoonotic Dis doi: 10.1089/vbz.2008.0063 – volume: 25 start-page: S16 issue: suppl_1 year: 2018 ident: pntd.0010218.ref031 article-title: Japanese encephalitis: the vectors, ecology and potential for expansion publication-title: J Travel Med doi: 10.1093/jtm/tay009 – volume-title: The importance of vector abundance and seasonality—Results from an expert consultation year: 2018 ident: pntd.0010218.ref008 – volume: 40 start-page: 913 issue: 8 year: 2017 ident: pntd.0010218.ref078 article-title: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure publication-title: Ecography doi: 10.1111/ecog.02881 – volume: 22 start-page: 1649 issue: 10 year: 2003 ident: pntd.0010218.ref081 article-title: Approximate cross-validatory predictive checks in disease mapping models. publication-title: Stat Med doi: 10.1002/sim.1403 – volume-title: R: A language and environment for statistical computing. year: 2020 ident: pntd.0010218.ref083 – volume: 110 start-page: 48 issue: 2 year: 2016 ident: pntd.0010218.ref050 article-title: Species composition and habitat characterization of mosquito (Diptera: Culicidae) larvae in semi-urban areas of Dhaka, Bangladesh. publication-title: Pathog Glob Health doi: 10.1080/20477724.2016.1179862 – volume: 10 start-page: 190 issue: 1 year: 2011 ident: pntd.0010218.ref049 article-title: Climate forcing and desert malaria: the effect of irrigation. publication-title: Malar J doi: 10.1186/1475-2875-10-190 – year: 2020 ident: pntd.0010218.ref069 publication-title: Weekly Outbreaks. Integrated Disease Surveillance Programme – volume: 40 start-page: 677 issue: 1 year: 2009 ident: pntd.0010218.ref013 article-title: Species distribution models: ecological explanation and prediction across space and time. publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev.ecolsys.110308.120159 – volume: 188 start-page: 108 year: 2018 ident: pntd.0010218.ref054 article-title: Mapping the potential distributions of etiological agent, vectors, and reservoirs of Japanese Encephalitis in Asia and Australia publication-title: Acta Trop doi: 10.1016/j.actatropica.2018.08.014 – volume-title: Global vector control response 2017–2030 year: 2017 ident: pntd.0010218.ref001 – volume: 21 start-page: 479 issue: 5 year: 2020 ident: pntd.0010218.ref099 article-title: Climate change: an enduring challenge for vector-borne disease prevention and control publication-title: Nat Immunol doi: 10.1038/s41590-020-0648-y – volume: 18 start-page: 290 issue: 4 year: 2002 ident: pntd.0010218.ref036 article-title: Seasonal prevalence of Culex vishnui subgroup, the major vectors of Japanese encephalitis virus in an endemic district of Andhra Pradesh, India publication-title: J Am Mosq Control Assoc – volume: 372 start-page: 20160129 issue: 1722 year: 2017 ident: pntd.0010218.ref005 article-title: Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. publication-title: Philos Trans R Soc B Biol Sci. doi: 10.1098/rstb.2016.0129 – volume: 1 start-page: 374 issue: 4 year: 2012 ident: pntd.0010218.ref085 article-title: A review of Japanese encephalitis in Uttar Pradesh, India. publication-title: WHO South-East Asia J Public Health. doi: 10.4103/2224-3151.207040 – volume: 95 start-page: 40 issue: 1 year: 2005 ident: pntd.0010218.ref038 article-title: Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management publication-title: Acta Trop doi: 10.1016/j.actatropica.2005.04.012 – volume: 157 start-page: 313 issue: 2 year: 2002 ident: pntd.0010218.ref015 article-title: Mapping epistemic uncertainties and vague concepts in predictions of species distribution. publication-title: Ecol Model. doi: 10.1016/S0304-3800(02)00202-8 – ident: pntd.0010218.ref045 – volume: 79 start-page: 17 year: 2015 ident: pntd.0010218.ref030 article-title: How environmental conditions impact mosquito ecology and Japanese encephalitis: An eco-epidemiological approach publication-title: Environ Int doi: 10.1016/j.envint.2015.03.002 – start-page: 9 volume-title: Mosquitoes and Their Control year: 2010 ident: pntd.0010218.ref014 doi: 10.1007/978-3-540-92874-4_2 – volume: 30 start-page: 79 year: 2005 ident: pntd.0010218.ref079 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. publication-title: Clim Res doi: 10.3354/cr030079 – volume: 7 start-page: 5 issue: 9 year: 2013 ident: pntd.0010218.ref029 article-title: Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus ecology publication-title: PLOS Negl Trop Dis doi: 10.1371/journal.pntd.0002208 – volume: 7 issue: 148 year: 2019 ident: pntd.0010218.ref009 article-title: Estimating past, present, and future trends in the global distribution and abundance of the arbovirus vector Aedes aegypti under climate change scenarios. publication-title: Front Public Health – volume: 27 start-page: 96 issue: 1 year: 2013 ident: pntd.0010218.ref092 article-title: Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields publication-title: Med Vet Entomol doi: 10.1111/j.1365-2915.2012.01045.x – volume: 117 start-page: 104 year: 2003 ident: pntd.0010218.ref090 article-title: A long-term study on vector abundance & seasonal prevalence in relation to the occurrence of Japanese encephalitis in Gorakhpur district, Uttar Pradesh publication-title: Indian J Med Res – year: 2017 ident: pntd.0010218.ref004 publication-title: Integrating neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases – volume: 12 start-page: 74 issue: 1 year: 2019 ident: pntd.0010218.ref018 article-title: Uncovering mechanisms behind mosquito seasonality by integrating mathematical models and daily empirical population data: Culex pipiens in the UK. publication-title: Parasit Vectors. doi: 10.1186/s13071-019-3321-2 – volume: 9 start-page: e51027 year: 2020 ident: pntd.0010218.ref025 article-title: Estimates of the global burden of Japanese encephalitis and the impact of vaccination from 2000–2015. publication-title: eLife doi: 10.7554/eLife.51027 – volume: 18 start-page: 560 issue: 10 year: 2018 ident: pntd.0010218.ref041 article-title: Validating the association of Japanese encephalitis vector abundance with paddy growth, using MODIS data. publication-title: Vector-Borne Zoonotic Dis doi: 10.1089/vbz.2017.2250 – volume: 5 start-page: 751 issue: 8 year: 2014 ident: pntd.0010218.ref055 article-title: Quantifying range-wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records. publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12221 – volume: 5 start-page: 1 issue: 1 year: 2018 ident: pntd.0010218.ref088 article-title: Present and future Köppen-Geiger climate classification maps at 1-km resolution. publication-title: Sci Data. – volume: 4 start-page: 1508 issue: 9 year: 2019 ident: pntd.0010218.ref017 article-title: The current and future global distribution and population at risk of dengue. publication-title: Nat Microbiol. doi: 10.1038/s41564-019-0476-8 – year: 2012 ident: pntd.0010218.ref094 article-title: World agriculture towards 2030/2050: the 2012 revision. – volume: 15 start-page: 279 issue: 3 year: 2008 ident: pntd.0010218.ref020 article-title: Predicting seasonal abundance of mosquitoes based on off-season meteorological conditions. publication-title: Environ Ecol Stat doi: 10.1007/s10651-007-0056-6 – volume: 34 start-page: 257 issue: 3 year: 1997 ident: pntd.0010218.ref043 article-title: Abundance, parity, and Japanese encephalitis virus infection of mosquitoes (Diptera: Culicidae) in Sepang District, Malaysia. publication-title: J Med Entomol doi: 10.1093/jmedent/34.3.257 |
SSID | ssj0059581 |
Score | 2.3613484 |
Snippet | Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0010218 |
SubjectTerms | Abundance Animals Aquatic insects Bayes Theorem Bayesian analysis Biology and Life Sciences Cereal crops Confidence intervals Consortia Councils Culex Cultivation Decision making Diagnosis Disease Disease hot spots Distribution Earth Sciences Encephalitis Encephalitis Virus, Japanese Encephalitis, Japanese - epidemiology Encephalopathy Environmental conditions Environmental factors Epidemics Epidemiology Funding Grain cultivation Hazards India - epidemiology Japanese encephalitis Land use Medicine and Health Sciences Model accuracy Mosquito Vectors Mosquitoes Pathogens People and Places Probability theory Public health Research and Analysis Methods Risk factors Seasonal variations Seasonality Seasons Social Sciences Spatial variations Surveillance Tropical diseases Vector-borne diseases |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF7kHcSLqK02Wu0WBE9pk012s3usYqkP9GSht7DZH_TBIwlNKvS_d2azL7xIoRevmUlgZyez3yQz3xDyWVieMedEyrRQaSlLleqKuVR5D6eDZLmzocr3l7i6Ltc3_GZv1BfWhE30wJPhzjVHhrVSKw-Jt8Z5h01lvTTGl7YxwmH0zVS2S6amGMwVD-NJAZ1gxxWrYtNcUeXncY_O-na0Z4FSDQd-7B1Kgbt_jtCrftsNj8HPf6so946ly1fkZcST9GJax2vyzLVvyPOf8Y_5AXlYd5t2pEMonI48VFsa5t9gIzpFBifwQIrfChGUbx-onYbU0z5Qb7YD7Txdw5mKsyopBoL-FsH7ZqB_wid_qhtsJwEB1WF99EcLXndIri-___52lcZxC6kRrBxTIZluRGG4BVQmTJj0ZzOAh9opbgBGNbmWKmeOF94ZzyudN6r0qmG6ygzAxrdk1XatOyIUUlMB2EQzLovSZ7IpIevKlMwrmwvAjAkpdvauTeQix5EY2zr8YKsgJ5nMV-Mu1XGXEpLOd_UTF8cT-l9xK2ddZNIOF8C_6uhf9VP-lZATdIR6akud40F9AdYBuCozlpAvQQMjAizC6NjYAKZAbq2F5vFCE95ksxAfobPt1jLUAFaxMRgQH9y5c8DHxaezGB-KhXOt6-5Rp2CI-TnY_N3kr7M9cDYjg4Q2IdXCkxcGW0razW2gIJcS0mRRvP8fFv5AXjDsKQml8MdkNd7du4-A9MbmU3ip_wI3u1I3 priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Health Database dbid: 8C1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF_0BBFEtH70atUVBJ_SJpvsZvdJarHUA32y0Lew2Q97cCSxSYX-953Z7MVGir7eTsJldnbmt7sz8yPkg7A8Zc6JhGmhkkIWKtElc4nyHqKDZJmzIcv3uzg9K1bn_DweuPUxrXLrE4Ojtq3BM_JDCNxYJAnR71P3K0HWKLxdjRQa98mDDHwwLkx5PKV4cMUDSSlgFKy7YmUsncvL7DDO1EHXDPYgNFZD2o9boSl08J_89KLbtP1dIPTvXMpbwenkKXkSUSU9Gs3gGbnnmh3y8Fu8N98hj8fTOToWHT0n16t23Qy0D-nUsTvVhgZWHCxPp9jXCeyS4gkiQvXNNbUjdT3tQkPOpqetpyuItMhgSdE9dBcI6dc9_R0uAqiuscgEBqgO30u_NmCLL8jZyZcfx6dJJGFIjGDFkAjJdC1ywy1gNWEC_59NATRqp7gBcFVnWqqMOZ57ZzwvdVarwqua6TI1ACZfkkXTNm6XUNiwCkAsmnGZFz6VdQF7sVTJrLSZACS5JPlW_5WJHcqRKGNThWu3EnYqozornLUqztqSJNNT3dih4z_yn3FqJ1nsrx1-aC9_VnG5VppjX79CK5-nhUaWzbq0XhrjC1sb4ZbkHRpGNRarTl6iOgLtAIiVKVuSj0EC_QR8hNGx3AFUgR23ZpL7M0lY32Y2vIvGt_2WvvqzEuDJrUHePfx-GsaXYjpd49orlMkZ7gQ46PzVaL-TPpCxkcE2d0nKmWXPFDYfadYXoTG5lLB5Fvnev__Wa_KIYQ1JSH3fJ4vh8sq9AWQ31G_D8r0BtnxNZQ priority: 102 providerName: ProQuest |
Title | Joint spatiotemporal modelling reveals seasonally dynamic patterns of Japanese encephalitis vector abundance across India |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35192626 https://www.proquest.com/docview/2640118554 https://www.proquest.com/docview/2632150759 https://pubmed.ncbi.nlm.nih.gov/PMC8896663 https://doaj.org/article/a585914a9f304a4698b7df8ccf4dbc6e http://dx.doi.org/10.1371/journal.pntd.0010218 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fa9swEBZtCmMvY7-brcs0GOzJwZb1yw9jtKWlC7SMsUDejCzLbSDYXpyO5b_fneyYeWTbSx6ik0Gnk_Wdpfs-Qt7LXITMORkwI5OAa54ERjEXJEUBu4Nmkcv9Ld8beTXns4VYHJCdZmvnwGZvaod6UvP1avrz-_YTLPiPXrVBRbtO07rc5FNPkhbpQ3IEe5PEdOya9-cKIhFethRQC1ZiMdUV0_3tKYPNynP692_uUb2qmn2w9M_blb9tV5ePyaMOZ9LTNjCekANXPiUPrruT9GdkO6uW5YY2_kJ1x0-1ol4XBwvUKTI7gYcofkNEsL7a0rwVr6e1p-QsG1oVdAZ7LWpYUnxB1HcI6pcN_eGPAqjJsMwEGqjx46OfS4jG52R-efHt_CroZBgCKxnfBFIzk8nYihzQmrReATAPATYalwgL8CqLjE4i5kRcOFsIZaIs4UWSMaNCC3DyBRmVVemOCYWUVQJmMUzomBehzjhkY2GiI5VHErDkmMQ7f6e24yhHqYxV6g_eFOQqrftSnKW0m6UxCfpedcvR8R_7M5zK3hYZtv0f1fo27RZsagQy-3GTFHHIDepsZiovtLUFzzMr3Zi8xUBI23LV_j2RnoJ3AMbqkI3JB2-BsQuDsKYreABXIOfWwPJkYAkr3A6ajzHYdmNpUgCxWDAMSBB67gJwf_O7vhkfihfqSlfdo03MMBcQ4POXbbz2_kDNRgaJ7pioQSQPHDZsKZd3nppca0ifZfzq3wN6TR4yrCLxl99PyGizvndvANttsgk5VAsFv_o8mpCjs4ubL18n_jvJxC_kXyshUo0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqRQIkhKBAu1CokUCc0iaO7TgHhEqh2t0-Tq3UW3Ach660JKHZgvZP8RuZcR40qIJTr_Ekisfjedgz8xHyRmbCZ9ZKj2kZe1zx2NMRs16c52AdFAts5rJ8T-TkjM_Oxfka-dXVwmBaZacTnaLOSoNn5LtguLFIEqzfh-q7h6hReLvaQWg0YnFoVz8hZKvfTz_B-r5l7ODz6f7Ea1EFPCMZX3pSMZ3K0IgMnA9pHKBd5oMXpG0sDHgLaaBVHDArwtyaXEQ6SGOexynTkW8EHoCCyr_Dw1BiCpna71NKRCwcKCr4RFjnxaK2VC-Mgt1WMnaqYpntuEZuCDNyzRQ6xIDeLoyqRVnf5PT-nbt5zRgePCIPWy-W7jVi95is2WKd3D1u7-nXyYPmNJA2RU5PyGpWzoslrV36dtsNa0EdCg-Ww1PsIwX7gOKJJYYGixXNVoX-Bp-oXAPQoqZlTmdg2RExk6I6qi4whJjX9Ie7eKA6xaIWGKDazZdOC5D9p-TsVpbnGRkVZWE3CYUAWYKHpJlQIc99lXKI_fxYBVEWSPBcxyTs-J-YtiM6AnMsEnfNF0Fk1LAzwVVL2lUbE69_q2o6gvyH_iMubU-L_bzdg_Lya9Kqh0QL7CPIdZyHPteI6plGWa6MyXmWGmnHZBsFI2mKY3utlOwBd8BpVj4bk3eOAvUSTMLotrwCWIEdvgaUWwNK0CdmMLyJwtfNpU7-7Dx4sxPIm4df98P4UUzfK2x5hTQhw8hDAM83Gvnt-YEIkQzC6jGJBpI9YNhwpJhfuEboSkGwLsPn__6tbXJvcnp8lBxNTw5fkPsM61dc2v0WGS0vr-xL8CqX6Su3lSn5ctu64zd3m4mT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTpqQEILxscJgRgLxlDVxYid5mNDGVq0dVBNi0t6C4zhbpZKEpQP1X-Sv4s5xwoImeNprfIni8_k-7Lv7EfJGZNxlWguHSRE7QRTEjgyZduI8B-sQMU9nJst3Jo7Pguk5P18jv9paGEyrbHWiUdRZqfCMfASGG4skwfqNcpsWcXo4fl99dxBBCm9aWzgNaWEWsj3TbswWeZzo1U8I5-q9ySGs_VvGxkdfPhw7FnHAUYIFS0dETKbCVzwDx0QoA3aXueAhSR1zBZ5E6sko9pjmfq5VzkPppXGQxymToas4Ho6COVgPwUqyAVk_OJqdfm7tAo-5gUwFjwmrwFhoC_n80BtZudmtimW2a9q8IQjJDUNp8AQ6qzGoFmV9m0v8d2bnDVM5fkgeWB-X7jdC-Yis6WKTbHyyt_ib5H5zVkibEqjHZDUt58WS1ia52_bKWlCD0YPF8hS7TMEuoXieiYHDYkWzVSG_wScq0x60qGmZ0ynYfcTTpKisqksMMOY1_WGuJahMseQFBqg086WTAnbGE3J2Jwv0lAyKstBbhEL4LMB_koxHfpC7URpAZOjGkRdmngC_dkj8lv-Jsv3SEbZjkZhLwBDipoadCa5aYldtSJzurarpF_If-gNc2o4Wu32bB-XVRWKVRyI5dhkMZJz7biAR8zMNszxSKg-yVAk9JDsoGElTOtvprGQfuAMudeSyIXlnKFBrwSSUtMUXwArs_9Wj3O5RgrZRveEtFL52LnXyZ1_Cm61A3j78uhvGj2JyX6HLa6TxGcYlHHj-rJHfjh-IH8kg6B6SsCfZPYb1R4r5pWmTHkUQygv_-b9_a4dsgB5JPk5mJy_IPYbFLSYnf5sMllfX-iW4nMv0ld3LlHy9a_XxG_BElIo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+spatiotemporal+modelling+reveals+seasonally+dynamic+patterns+of+Japanese+encephalitis+vector+abundance+across+India&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Franklinos%2C+Lydia+H.+V&rft.au=Redding%2C+David+W&rft.au=Lucas%2C+Tim+C.+D&rft.au=Gibb%2C+Rory&rft.date=2022-02-01&rft.pub=Public+Library+of+Science&rft.issn=1935-2727&rft.volume=16&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pntd.0010218&rft.externalDocID=A696085802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon |