A two-step automatic sleep stage classification method with dubious range detection

The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects׳ variability. Several studies have already identified the situations with the highest likelihood of misclassif...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 59; no. C; pp. 42 - 53
Main Authors Sousa, Teresa, Cruz, Aniana, Khalighi, Sirvan, Pires, Gabriel, Nunes, Urbano
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.04.2015
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2015.01.017

Cover

Abstract The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects׳ variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects׳ variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep – N1, N2 and N3, and rapid eye movement (REM) sleep. The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. This approach provides reliable sleep staging results for non-dubious epochs. •A two-step classifier for automatic sleep staging is proposed.•The system provides two outputs: non-dubious and dubious classification.•The dubious epochs are tagged and re-assigned according to a post-processing step.•The system indicates to an expert physician which results need revision.•The accuracy of non-dubious classification for wake and REM is around 97%.
AbstractList The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects׳ variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects׳ variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep – N1, N2 and N3, and rapid eye movement (REM) sleep. The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. This approach provides reliable sleep staging results for non-dubious epochs. •A two-step classifier for automatic sleep staging is proposed.•The system provides two outputs: non-dubious and dubious classification.•The dubious epochs are tagged and re-assigned according to a post-processing step.•The system indicates to an expert physician which results need revision.•The accuracy of non-dubious classification for wake and REM is around 97%.
The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules.BACKGROUNDThe limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules.An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep.METHODSAn ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep.The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages.RESULTSThe proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages.This approach provides reliable sleep staging results for non-dubious epochs.CONCLUSIONSThis approach provides reliable sleep staging results for non-dubious epochs.
Abstract Background The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects׳ variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects׳ variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. Methods An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep – N1, N2 and N3, and rapid eye movement (REM) sleep. Results The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. Conclusions This approach provides reliable sleep staging results for non-dubious epochs.
The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep. The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. This approach provides reliable sleep staging results for non-dubious epochs.
Background The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. Methods An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep - N1, N2 and N3, and rapid eye movement (REM) sleep. Results The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. Conclusions This approach provides reliable sleep staging results for non-dubious epochs.
Author Khalighi, Sirvan
Cruz, Aniana
Nunes, Urbano
Sousa, Teresa
Pires, Gabriel
Author_xml – sequence: 1
  givenname: Teresa
  orcidid: 0000-0003-2652-3152
  surname: Sousa
  fullname: Sousa, Teresa
  email: tsousa@isr.uc.pt
– sequence: 2
  givenname: Aniana
  surname: Cruz
  fullname: Cruz, Aniana
  email: anianabrito@isr.uc.pt
– sequence: 3
  givenname: Sirvan
  surname: Khalighi
  fullname: Khalighi, Sirvan
  email: skhalighi@isr.uc.pt
– sequence: 4
  givenname: Gabriel
  surname: Pires
  fullname: Pires, Gabriel
  email: gpires@isr.uc.pt
– sequence: 5
  givenname: Urbano
  surname: Nunes
  fullname: Nunes, Urbano
  email: urbano@deec.uc.pt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25677576$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2279971$$D View this record in Osti.gov
BookMark eNqVkl9rFDEUxYNU7Lb6FWTQF19mvclmJpmXYi3-g4IP1eeQSe64WWeSdZJx2W9vxm0pLAgrBELI7x7uOfdekDMfPBJSUFhSoPXbzdKEYdu6MKBdMqDVEmg-4glZUCmaEqoVPyMLAAoll6w6JxcxbgCAwwqekXNW1UJUol6Qu-si7UIZE24LPaUw6ORMEXvM75j0DyxMr2N0nTP5J_hiwLQOtti5tC7slFuYYjFqn0GLCc3MPCdPO91HfHF_X5LvHz98u_lc3n799OXm-rY0NeOp5CC4bFtraWWsbmXTCmq5rK3oJBhEDqzjzFJpOrNqGOM1oxJAsI7WFdN8dUmag-7kt3q_032vtqMb9LhXFNQclNqox6DUHJQCmo_Ita8OtSEmp6Jxufe1Cd5nC4ox0TSCZujNAdqO4deEManBRYN9rz1m34rWtWQ1Z4KdgnLOhWAyo6-P0E2YRp-TUlRQJnlFq9ncy3tqaufmH5w9jC4DVwfAjCHGETuVTfydURq160-JQB4J_Ed67w-lmMf72-E4J4jeoHXjHKAN7hSRqyMR0zuf96z_iXuMj6GoyBSou3mb52WmVV7kFZ8F3v1b4LQe_gC-hAeM
CODEN CBMDAW
CitedBy_id crossref_primary_10_1088_1741_2552_ac6829
crossref_primary_10_2139_ssrn_4064793
crossref_primary_10_1109_TNSRE_2021_3079505
crossref_primary_10_1109_TIM_2022_3154838
crossref_primary_10_1016_j_cmpb_2019_105116
crossref_primary_10_1016_j_knosys_2019_105367
crossref_primary_10_1016_j_clinph_2019_01_011
crossref_primary_10_1016_j_eswa_2018_07_023
crossref_primary_10_1016_j_smrv_2020_101377
crossref_primary_10_1016_j_compbiomed_2018_03_001
crossref_primary_10_1007_s00500_021_06218_x
crossref_primary_10_1016_j_jneumeth_2019_01_013
crossref_primary_10_1016_j_bbe_2017_01_005
crossref_primary_10_1109_TNNLS_2019_2899781
crossref_primary_10_4015_S1016237218500412
crossref_primary_10_1016_j_heliyon_2024_e41147
crossref_primary_10_3389_fnhum_2016_00605
crossref_primary_10_1109_TIM_2023_3298639
crossref_primary_10_4028_p_svwo5k
crossref_primary_10_1007_s11042_022_13195_2
crossref_primary_10_1007_s42979_021_00528_5
crossref_primary_10_1016_j_bspc_2024_107436
crossref_primary_10_1016_j_cmpb_2015_10_013
crossref_primary_10_1016_j_eswa_2017_06_017
crossref_primary_10_1080_03772063_2020_1782273
crossref_primary_10_1109_TBME_2019_2903987
crossref_primary_10_1109_TNSRE_2023_3323892
crossref_primary_10_1049_cit2_12042
crossref_primary_10_3390_e18090272
crossref_primary_10_4018_IJIRR_299941
crossref_primary_10_1109_TNSRE_2019_2896659
crossref_primary_10_1016_j_clinph_2017_12_039
crossref_primary_10_1109_TBME_2018_2872652
crossref_primary_10_2147_NSS_S355702
crossref_primary_10_1088_1741_2552_aa70ac
crossref_primary_10_1016_j_cmpb_2019_04_004
Cites_doi 10.1016/j.eswa.2010.04.043
10.1016/j.artmed.2011.06.004
10.1016/j.compbiomed.2007.03.001
10.1016/S0167-8655(00)00112-4
10.1016/j.cmpb.2013.07.006
10.1007/978-0-387-98135-2
10.1002/acs.1147
10.1007/s10527-007-0006-5
10.1016/j.neucom.2012.11.003
10.1016/j.compbiomed.2012.09.012
10.1088/0967-3334/35/1/R1
10.1016/j.smrv.2011.06.003
10.1016/j.compbiomed.2010.04.007
10.5664/jcsm.26814
10.1016/j.jneumeth.2011.12.022
10.1109/ICPR.2010.764
10.1109/EMBC.2012.6346412
10.1109/IEMBS.2011.6090897
10.1145/1961189.1961199
10.1016/j.eswa.2013.06.023
10.1142/S1793536910000483
10.1109/10.966600
10.1016/j.bspc.2007.05.005
10.1093/brain/awl241
10.5220/0003792304230428
10.1016/j.compbiomed.2011.04.001
10.1016/S0165-0270(98)00065-X
10.5665/SLEEP.1256
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Apr 2015
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Apr 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
OTOTI
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2015.01.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
MEDLINE - Academic


MEDLINE
Engineering Research Database
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 53
ExternalDocumentID oai:osti.gov:2279971
2279971
3809282531
25677576
10_1016_j_compbiomed_2015_01_017
S0010482515000347
1_s2_0_S0010482515000347
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
UKHRP
WOW
Z5R
~G-
~HD
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
AGQPQ
AIGII
APXCP
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
ABPIF
ABPTK
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c624t-40748bbdd15cdab89b71d486d7f80cee402f42d18cfc3922462180072f1652a43
IEDL.DBID UNPAY
ISSN 0010-4825
1879-0534
IngestDate Sun Oct 26 03:47:11 EDT 2025
Mon Jan 15 05:22:36 EST 2024
Tue Oct 07 09:25:20 EDT 2025
Sun Sep 28 05:46:52 EDT 2025
Tue Oct 07 06:36:38 EDT 2025
Thu Apr 03 07:05:15 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Wed Oct 01 05:21:56 EDT 2025
Fri Feb 23 02:24:56 EST 2024
Sun Feb 23 10:19:16 EST 2025
Tue Oct 14 19:33:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Automatic sleep scoring
Dubious range
Clinical applications
Subjects׳ variability
Misclassifications detection
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c624t-40748bbdd15cdab89b71d486d7f80cee402f42d18cfc3922462180072f1652a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0003-2652-3152
0000000326523152
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/2279971
PMID 25677576
PQID 1712845154
PQPubID 1226355
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2015_01_017
osti_scitechconnect_2279971
proquest_miscellaneous_1668264272
proquest_miscellaneous_1664447728
proquest_journals_1712845154
pubmed_primary_25677576
crossref_citationtrail_10_1016_j_compbiomed_2015_01_017
crossref_primary_10_1016_j_compbiomed_2015_01_017
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2015_01_017
elsevier_clinicalkeyesjournals_1_s2_0_S0010482515000347
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2015_01_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
– name: Elsevier
References Kryger, Roth, Dement (bib37) 2005
American Academy of Sleep Medicine (bib5) 2007
Charbonnier, Zoubek, Lesecq, Chapotot (bib18) 2011; 41
Krakovská, Mezeiová (bib22) 2011; 53
Becq, Charbonnier, Chapotot, Buguet, Bourdon, Baconnier (bib33) 2005
Mazzotti, Guindalini, Moraes, Andersen, Cendoroglo, Ramos, Tufik (bib38) 2014; 6
K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann, The balanced accuracy and its posterior distribution, in: Proceedings of the Pattern Recognition (ICPR), 2010, pp. 3121–3124.
Koley, Dey (bib17) 2012; 42
Khalighi, Sousa, Pires, Nunes (bib26) 2013; 40
Liang, Kuo, Hu, Cheng (bib25) 2012; 205
Malmivuo, Plonsey (bib28) 1995
Doroshenkov, Konyshev, Selishchev (bib14) 2007; 41
Helland, Gapelyuk, Suhrbier, Riedl, Penzel, Kurths, Wessel (bib10) 2010; 4
Silber, Ancoli-Israel, Bonnet (bib6) 2007; 3
Fraiwan, Khaswaneh, Lweesy (bib9) 2009; 54
Dong, Liu (bib15) 2010; 2
Muthuswamy, Thakor (bib29) 1998; 83
Ronzhina, Janoušek, Kolářová, Nováková, Honzík, Provazník (bib11) 2012; 16
T. Sousa, D. Oliveira, S. Khalighi, G. Pires, U. Nunes, Neurophysiologic and statistical analysis of failures in automatic sleep stage classification, in: Proceedings of the BIOSIGNALS – International Conference on Bio-inspired Systems and Signal Processing, 2012, pp. 423–428.
Bajaj, Pachori (bib23) 2013; 112
Cristianini, Shawe-Taylor (bib36) 2000
Chang, Lin (bib41) 2011
S. Khalighi, T. Sousa, U. Nunes, Adaptive sleep stage classification under covariate shift, in: Proceedings of the IEEE 34th Annual International EMBS Conference (EMBC 2012), 2012.
Clarke, Fokoue, Zhang (bib39) 2009
Chapotot, Becq (bib4) 2010; 24
Mormann, Andrzejak, Elger, Lehnertz (bib31) 2007; 130
Agarwal, Gotman (bib7) 2001; 48
Duda, Hart, Stork (bib35) 2000
Günes, Polat, Yosunkaya (bib13) 2010; 37
Garg, Singh, Grover, Gupta (bib16) 2011; 2
S. Khalighi, T. Sousa, D. Oliveira, G. Pires, U. Nunes, Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM, in: Proceedings of the 33rd Annual International IEEE EMBS Conference (EMBC11), 2011.
Zoubek, Charbonnier, Lesecq, Buguet, Chapotot (bib8) 2007; 2
Tang, Lu, Tsai, Kao, Lee (bib32) 2007
Asyali, Berry, Khoo, Altinok (bib42) 2007; 37
Santamaria, Högl, Trenkwalder, Bliwise (bib2) 2011; 34
American Academy of Sleep Medicine (bib27) 2001
Percival, Walden (bib30) 2000
Han, Park, Lee (bib12) 2010; 40
Hsu, Yang, Wang, Hsu (bib20) 2013; 104
Roebuck, Monasterio, Gederi, Osipov, Behar, Malhotra, Penzel, Clifford (bib1) 2014; 35
Aksoy, Haralick (bib34) 2001; 22
Helland (10.1016/j.compbiomed.2015.01.017_bib10) 2010; 4
Zoubek (10.1016/j.compbiomed.2015.01.017_bib8) 2007; 2
Fraiwan (10.1016/j.compbiomed.2015.01.017_bib9) 2009; 54
Ronzhina (10.1016/j.compbiomed.2015.01.017_bib11) 2012; 16
Krakovská (10.1016/j.compbiomed.2015.01.017_bib22) 2011; 53
Muthuswamy (10.1016/j.compbiomed.2015.01.017_bib29) 1998; 83
Asyali (10.1016/j.compbiomed.2015.01.017_bib42) 2007; 37
Malmivuo (10.1016/j.compbiomed.2015.01.017_bib28) 1995
10.1016/j.compbiomed.2015.01.017_bib19
Agarwal (10.1016/j.compbiomed.2015.01.017_bib7) 2001; 48
American Academy of Sleep Medicine (10.1016/j.compbiomed.2015.01.017_bib5) 2007
Duda (10.1016/j.compbiomed.2015.01.017_bib35) 2000
Kryger (10.1016/j.compbiomed.2015.01.017_bib37) 2005
Liang (10.1016/j.compbiomed.2015.01.017_bib25) 2012; 205
Han (10.1016/j.compbiomed.2015.01.017_bib12) 2010; 40
Khalighi (10.1016/j.compbiomed.2015.01.017_bib26) 2013; 40
Becq (10.1016/j.compbiomed.2015.01.017_bib33) 2005
Tang (10.1016/j.compbiomed.2015.01.017_bib32) 2007
Koley (10.1016/j.compbiomed.2015.01.017_bib17) 2012; 42
Günes (10.1016/j.compbiomed.2015.01.017_bib13) 2010; 37
Bajaj (10.1016/j.compbiomed.2015.01.017_bib23) 2013; 112
Cristianini (10.1016/j.compbiomed.2015.01.017_bib36) 2000
Chang (10.1016/j.compbiomed.2015.01.017_bib41) 2011
Garg (10.1016/j.compbiomed.2015.01.017_bib16) 2011; 2
Charbonnier (10.1016/j.compbiomed.2015.01.017_bib18) 2011; 41
Aksoy (10.1016/j.compbiomed.2015.01.017_bib34) 2001; 22
10.1016/j.compbiomed.2015.01.017_bib40
Dong (10.1016/j.compbiomed.2015.01.017_bib15) 2010; 2
10.1016/j.compbiomed.2015.01.017_bib21
Doroshenkov (10.1016/j.compbiomed.2015.01.017_bib14) 2007; 41
10.1016/j.compbiomed.2015.01.017_bib24
Hsu (10.1016/j.compbiomed.2015.01.017_bib20) 2013; 104
American Academy of Sleep Medicine (10.1016/j.compbiomed.2015.01.017_bib27) 2001
Percival (10.1016/j.compbiomed.2015.01.017_bib30) 2000
Clarke (10.1016/j.compbiomed.2015.01.017_bib39) 2009
Santamaria (10.1016/j.compbiomed.2015.01.017_bib2) 2011; 34
Roebuck (10.1016/j.compbiomed.2015.01.017_bib1) 2014; 35
Chapotot (10.1016/j.compbiomed.2015.01.017_bib4) 2010; 24
Mazzotti (10.1016/j.compbiomed.2015.01.017_bib38) 2014; 6
Silber (10.1016/j.compbiomed.2015.01.017_bib6) 2007; 3
Mormann (10.1016/j.compbiomed.2015.01.017_bib31) 2007; 130
References_xml – year: 2001
  ident: bib27
  article-title: International Classification of Sleep Disorders, Revised: Diagnostic and Coding Manual
– volume: 22
  start-page: 563
  year: 2001
  end-page: 582
  ident: bib34
  article-title: Feature normalization and likelihood based similarity measures for image retrieval
  publication-title: Pattern Recognit. Lett.
– volume: 3
  start-page: 121
  year: 2007
  end-page: 131
  ident: bib6
  article-title: The visual scoring of sleep in adults
  publication-title: J. Clin. Sleep Med.
– volume: 34
  start-page: 1283
  year: 2011
  end-page: 1284
  ident: bib2
  article-title: Scoring sleep in neurological patients: the need for specific considerations
  publication-title: Sleep
– year: 2000
  ident: bib36
  article-title: An Introduction to Support Vector Machines (and Other Kernel-Based Learning Methods)
– volume: 2
  start-page: 1220
  year: 2011
  end-page: 1225
  ident: bib16
  article-title: Optimal Kernel learning for EEG based sleep scoring system
  publication-title: Int. J. Biol. Med. Res.
– reference: S. Khalighi, T. Sousa, D. Oliveira, G. Pires, U. Nunes, Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM, in: Proceedings of the 33rd Annual International IEEE EMBS Conference (EMBC11), 2011.
– volume: 35
  start-page: R1
  year: 2014
  end-page: 57
  ident: bib1
  article-title: A review of signals used in sleep analysis
  publication-title: Physiol. Meas.
– volume: 40
  start-page: 629
  year: 2010
  end-page: 634
  ident: bib12
  article-title: Genetic fuzzy classifier for sleep stage identification
  publication-title: Comput. Biol. Med.
– volume: 40
  start-page: 7046
  year: 2013
  end-page: 7059
  ident: bib26
  article-title: Automatic sleep staging: a computer assisted approach for optimal combination of features and polysomnographic channels
  publication-title: Expert Syst. Appl.
– start-page: 414
  year: 2007
  end-page: 417
  ident: bib32
  article-title: Harmonic parameters with HHT and wavelet transform for automatic sleep stages scoring
  publication-title: Proc. World Acad. Sci., Eng. Technol.
– volume: 37
  start-page: 7922
  year: 2010
  end-page: 7928
  ident: bib13
  article-title: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting
  publication-title: Expert Syst. Appl.
– year: 2007
  ident: bib5
  article-title: AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications
– volume: 24
  start-page: 409
  year: 2010
  end-page: 423
  ident: bib4
  article-title: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules
  publication-title: Int. J. Adapt. Control Signal Process.
– volume: 54
  start-page: 485
  year: 2009
  end-page: 488
  ident: bib9
  article-title: Automatic sleep stage scoring with wavelet packets based on single EEG recording
  publication-title: Proc. World Acad. Sci., Eng. Technol.
– volume: 104
  start-page: 105
  year: 2013
  end-page: 114
  ident: bib20
  article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals
  publication-title: Neurocomputing
– start-page: 113
  year: 2005
  end-page: 127
  ident: bib33
  article-title: Comparison between five classifiers for automatic scoring of human sleep recordings
  publication-title: Studies in Computational Intelligence (SCI), Classification and Clustering for Knowledge Discovery
– reference: T. Sousa, D. Oliveira, S. Khalighi, G. Pires, U. Nunes, Neurophysiologic and statistical analysis of failures in automatic sleep stage classification, in: Proceedings of the BIOSIGNALS – International Conference on Bio-inspired Systems and Signal Processing, 2012, pp. 423–428.
– year: 1995
  ident: bib28
  article-title: Bioelectromagnetism – Principles and Applications of Bioelectric and Biomagnetic Fields
– volume: 16
  start-page: 251
  year: 2012
  end-page: 263
  ident: bib11
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med. Rev.
– reference: S. Khalighi, T. Sousa, U. Nunes, Adaptive sleep stage classification under covariate shift, in: Proceedings of the IEEE 34th Annual International EMBS Conference (EMBC 2012), 2012.
– year: 2000
  ident: bib30
  article-title: Wavelet Methods for Time Series Analysis
– volume: 2
  start-page: 267
  year: 2010
  end-page: 276
  ident: bib15
  article-title: Automated sleep staging technique based on the empirical mode decomposition algorithm: a preliminary study
  publication-title: Adv. Adapt. Data Anal.
– year: 2000
  ident: bib35
  article-title: Pattern Classification
– volume: 41
  start-page: 380
  year: 2011
  end-page: 389
  ident: bib18
  article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging
  publication-title: Comput. Biol. Med.
– volume: 42
  start-page: 1186
  year: 2012
  end-page: 1195
  ident: bib17
  article-title: An ensemble system for automatic sleep stage classification using single channel EEG signal
  publication-title: Comput. Biol. Med.
– volume: 53
  start-page: 25
  year: 2011
  end-page: 33
  ident: bib22
  article-title: Automatic sleep scoring: a search for an optimal combination of measures
  publication-title: Artif. Intell. Med.
– year: 2009
  ident: bib39
  article-title: Principles and Theory for Data Mining and Machine Learning, in Springer Series in Statistics
– volume: 2
  start-page: 171
  year: 2007
  end-page: 179
  ident: bib8
  article-title: Feature selection for sleep/wake stages classification using data driven methods
  publication-title: Biomed. Signal Process. Control
– volume: 37
  start-page: 1600
  year: 2007
  end-page: 1609
  ident: bib42
  article-title: Determining a continuous marker for sleep depth
  publication-title: Comput. Biol. Med.
– volume: 48
  start-page: 1412
  year: 2001
  end-page: 1423
  ident: bib7
  article-title: Computer-assisted sleep staging
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 205
  start-page: 169
  year: 2012
  end-page: 176
  ident: bib25
  article-title: A rule-based automatic sleep staging method
  publication-title: J. Neurosci. Methods
– volume: 41
  start-page: 25
  year: 2007
  end-page: 28
  ident: bib14
  article-title: Classification of human sleep stages based on EEG processing using hidden Markov models
  publication-title: Biomed. Eng.
– volume: 112
  start-page: 320
  year: 2013
  end-page: 328
  ident: bib23
  article-title: Automatic classification of sleep stages based on the time-frequency image of EEG signals
  publication-title: Comput. Methods Programs Biomed.
– volume: 130
  start-page: 314
  year: 2007
  end-page: 333
  ident: bib31
  article-title: Seizure prediction: the long and winding road
  publication-title: Brain
– volume: 4
  start-page: 1
  year: 2010
  end-page: 6
  ident: bib10
  article-title: Investigation of an automatic sleep stage classification by means of multiscorer hypnogram
  publication-title: Methods Inf. Med.
– reference: K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann, The balanced accuracy and its posterior distribution, in: Proceedings of the Pattern Recognition (ICPR), 2010, pp. 3121–3124.
– start-page: 1
  year: 2011
  end-page: 39
  ident: bib41
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– year: 2005
  ident: bib37
  article-title: Principles and Practice of Sleep Medicine
– volume: 83
  start-page: 1
  year: 1998
  end-page: 14
  ident: bib29
  article-title: Spectral analysis method for neurological signals
  publication-title: J. Neurosci. Methods
– volume: 6
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib38
  article-title: Human longevity is associated with regular sleep patterns, maintenance of slow wave sleep, and favorable lipid profile
  publication-title: Front. Aging Neurosci.
– volume: 37
  start-page: 7922
  year: 2010
  ident: 10.1016/j.compbiomed.2015.01.017_bib13
  article-title: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.04.043
– volume: 53
  start-page: 25
  year: 2011
  ident: 10.1016/j.compbiomed.2015.01.017_bib22
  article-title: Automatic sleep scoring: a search for an optimal combination of measures
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2011.06.004
– volume: 6
  start-page: 1
  issue: 134
  year: 2014
  ident: 10.1016/j.compbiomed.2015.01.017_bib38
  article-title: Human longevity is associated with regular sleep patterns, maintenance of slow wave sleep, and favorable lipid profile
  publication-title: Front. Aging Neurosci.
– volume: 37
  start-page: 1600
  issue: 11
  year: 2007
  ident: 10.1016/j.compbiomed.2015.01.017_bib42
  article-title: Determining a continuous marker for sleep depth
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.03.001
– volume: 22
  start-page: 563
  year: 2001
  ident: 10.1016/j.compbiomed.2015.01.017_bib34
  article-title: Feature normalization and likelihood based similarity measures for image retrieval
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(00)00112-4
– year: 2000
  ident: 10.1016/j.compbiomed.2015.01.017_bib36
– volume: 112
  start-page: 320
  year: 2013
  ident: 10.1016/j.compbiomed.2015.01.017_bib23
  article-title: Automatic classification of sleep stages based on the time-frequency image of EEG signals
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.07.006
– year: 2009
  ident: 10.1016/j.compbiomed.2015.01.017_bib39
  doi: 10.1007/978-0-387-98135-2
– volume: 24
  start-page: 409
  year: 2010
  ident: 10.1016/j.compbiomed.2015.01.017_bib4
  article-title: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.1147
– volume: 2
  start-page: 1220
  year: 2011
  ident: 10.1016/j.compbiomed.2015.01.017_bib16
  article-title: Optimal Kernel learning for EEG based sleep scoring system
  publication-title: Int. J. Biol. Med. Res.
– volume: 41
  start-page: 25
  year: 2007
  ident: 10.1016/j.compbiomed.2015.01.017_bib14
  article-title: Classification of human sleep stages based on EEG processing using hidden Markov models
  publication-title: Biomed. Eng.
  doi: 10.1007/s10527-007-0006-5
– year: 2001
  ident: 10.1016/j.compbiomed.2015.01.017_bib27
– start-page: 414
  year: 2007
  ident: 10.1016/j.compbiomed.2015.01.017_bib32
  article-title: Harmonic parameters with HHT and wavelet transform for automatic sleep stages scoring
  publication-title: Proc. World Acad. Sci., Eng. Technol.
– volume: 104
  start-page: 105
  year: 2013
  ident: 10.1016/j.compbiomed.2015.01.017_bib20
  article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.003
– start-page: 113
  year: 2005
  ident: 10.1016/j.compbiomed.2015.01.017_bib33
  article-title: Comparison between five classifiers for automatic scoring of human sleep recordings
– year: 2007
  ident: 10.1016/j.compbiomed.2015.01.017_bib5
– volume: 4
  start-page: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2015.01.017_bib10
  article-title: Investigation of an automatic sleep stage classification by means of multiscorer hypnogram
  publication-title: Methods Inf. Med.
– volume: 42
  start-page: 1186
  year: 2012
  ident: 10.1016/j.compbiomed.2015.01.017_bib17
  article-title: An ensemble system for automatic sleep stage classification using single channel EEG signal
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2012.09.012
– year: 2000
  ident: 10.1016/j.compbiomed.2015.01.017_bib30
– volume: 35
  start-page: R1
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2015.01.017_bib1
  article-title: A review of signals used in sleep analysis
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/35/1/R1
– volume: 16
  start-page: 251
  year: 2012
  ident: 10.1016/j.compbiomed.2015.01.017_bib11
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2011.06.003
– volume: 40
  start-page: 629
  year: 2010
  ident: 10.1016/j.compbiomed.2015.01.017_bib12
  article-title: Genetic fuzzy classifier for sleep stage identification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2010.04.007
– volume: 3
  start-page: 121
  issue: 2
  year: 2007
  ident: 10.1016/j.compbiomed.2015.01.017_bib6
  article-title: The visual scoring of sleep in adults
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.26814
– volume: 205
  start-page: 169
  year: 2012
  ident: 10.1016/j.compbiomed.2015.01.017_bib25
  article-title: A rule-based automatic sleep staging method
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.12.022
– ident: 10.1016/j.compbiomed.2015.01.017_bib40
  doi: 10.1109/ICPR.2010.764
– year: 1995
  ident: 10.1016/j.compbiomed.2015.01.017_bib28
– ident: 10.1016/j.compbiomed.2015.01.017_bib24
  doi: 10.1109/EMBC.2012.6346412
– volume: 54
  start-page: 485
  year: 2009
  ident: 10.1016/j.compbiomed.2015.01.017_bib9
  article-title: Automatic sleep stage scoring with wavelet packets based on single EEG recording
  publication-title: Proc. World Acad. Sci., Eng. Technol.
– ident: 10.1016/j.compbiomed.2015.01.017_bib21
  doi: 10.1109/IEMBS.2011.6090897
– start-page: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2015.01.017_bib41
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 40
  start-page: 7046
  year: 2013
  ident: 10.1016/j.compbiomed.2015.01.017_bib26
  article-title: Automatic sleep staging: a computer assisted approach for optimal combination of features and polysomnographic channels
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.06.023
– volume: 2
  start-page: 267
  year: 2010
  ident: 10.1016/j.compbiomed.2015.01.017_bib15
  article-title: Automated sleep staging technique based on the empirical mode decomposition algorithm: a preliminary study
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536910000483
– volume: 48
  start-page: 1412
  year: 2001
  ident: 10.1016/j.compbiomed.2015.01.017_bib7
  article-title: Computer-assisted sleep staging
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.966600
– volume: 2
  start-page: 171
  year: 2007
  ident: 10.1016/j.compbiomed.2015.01.017_bib8
  article-title: Feature selection for sleep/wake stages classification using data driven methods
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.05.005
– volume: 130
  start-page: 314
  year: 2007
  ident: 10.1016/j.compbiomed.2015.01.017_bib31
  article-title: Seizure prediction: the long and winding road
  publication-title: Brain
  doi: 10.1093/brain/awl241
– year: 2005
  ident: 10.1016/j.compbiomed.2015.01.017_bib37
– ident: 10.1016/j.compbiomed.2015.01.017_bib19
  doi: 10.5220/0003792304230428
– volume: 41
  start-page: 380
  issue: 6
  year: 2011
  ident: 10.1016/j.compbiomed.2015.01.017_bib18
  article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2011.04.001
– volume: 83
  start-page: 1
  year: 1998
  ident: 10.1016/j.compbiomed.2015.01.017_bib29
  article-title: Spectral analysis method for neurological signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(98)00065-X
– year: 2000
  ident: 10.1016/j.compbiomed.2015.01.017_bib35
– volume: 34
  start-page: 1283
  issue: 10
  year: 2011
  ident: 10.1016/j.compbiomed.2015.01.017_bib2
  article-title: Scoring sleep in neurological patients: the need for specific considerations
  publication-title: Sleep
  doi: 10.5665/SLEEP.1256
SSID ssj0004030
Score 2.3261442
Snippet The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different...
Abstract Background The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between...
Background The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs...
SourceID unpaywall
osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42
SubjectTerms Accuracy
Adult
Aged
Art exhibits
Automatic sleep scoring
Classification
Clinical applications
Decision Trees
Dubious range
Electroencephalography
Electrooculography
Experts
Eye movements
Feature extraction
Female
Humans
Internal Medicine
Male
Methods
Middle Aged
Misclassifications detection
Neural networks
Other
Polysomnography - methods
Signal Processing, Computer-Assisted
Sleep disorders
Sleep Stages - physiology
Sleep Wake Disorders - physiopathology
Studies
Subjects׳ variability
Support Vector Machine
Young Adult
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB6CD30cSt9Rk5Yt9KpGu1pp1_QUQkMopJc2kNuyL5UUI5tYJvTS394ZrSS31BRDQRfJGiRmZ-dhffMNwLvKSSL95nlThjqXlde5xsCeR1lGEUrnRUMNzpef64sr-em6uj6As7EXhmCVg-9PPr331sOVk0GbJ6ubG-rxxVKCOi-rnmWFOsqlVDTF4P3PLcxDFmVqQ0F_Q3cPaJ6E8SLYdmpzJ5BXIvDsR5ftDFGzJe66XZnoQ7i_aVf2x51dLH6LTueP4dGQVrLT9OZP4CC2T-He5fDh_Bl8OWXd3TLHJV0xu-mWPVErWy8inmN--C0yT2k04Yb6pWJpsjSjv2lZ2DhCyrJbakRgIXY9fKt9DlfnH7-eXeTDPIXc10J2WCoqqZ0LgVc-WKfnTvEgdR1UowsMllhKNlIErn3jMW0Sssb4T9TiDa8rYWX5Ambtso2HwEIVhC0qJ5SV0sfGBWLdqbVrCmGVnWegRhUaP5CN08yLhRlRZd_NVvmGlG8KjofKgE-Sq0S4sYfMfFwlMzaUogs0GBX2kFW7ZON62Mtrw81amML8ZW8ZfJgk_zDZPZ97ROZEksTW6wnWhKJE6DhXPIPj0crM9kUUJRP4fJnB2-lndAf0jce2ES3B8BoTXIklk_7nPVhUSqFEBi-TBU-qxgxYKaxBMxCTSe-9Dq_-SyNH8IDOEizqGGbd7Sa-xoyvc2_6Lf0LZ_5TiQ
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9tAEB1SB9r0UPodNWnZQq-i2vVKK1NKSUtCKMSUpoHclv1SoBjJjWVC_31ntJLcgwkGX4w1WOzOzryR3rwB-JBbSaLfPK2mvkhl7sq0xMSeBjkNwk-tExU1OF_Mi_Mr-f06v96D-dALQ7TKISZ2gdo3jp6Rf-SKIilmX_ll-SelqVH0dnUYoWH60Qr-cycx9gD2BSljTWD_6-n8x89Np2Q2jU0pGH0kFkc9tycyvojEHZveifIV5Ty7QWZbE9akwTO4DZc-hkfremn-3pnF4r9cdfYUnvQgk51Er3gGe6F-Dg8v-tfoL-DyhLV3TYobvGRm3TadbCtbLQJ-R7R4E5gjUE0som7jWJwzzeihLfNrS7xZdkttCcyHtiNz1S_h6uz017fztJ-ukLpCyBYLRyVLa73nufPGljOruJdl4VVVZpg6sbCspPC8dJVDECVkgWiAhMYrXuTCyOkrmNRNHQ6B-dwLk-VWKCOlC5X1pMFTlLbKhFFmloAallC7XnqcJmAs9MAx-603i69p8XXG8aMS4KPlMspv7GAzG3ZJD-2lGBA15ogdbNU227DqT_ZKc70SOtOXnbAR9f3mncYPWn4aLXvwEkHJjv97RO5ElqTd64jkhKYk7zhTPIHjwcv05kbGA5HA-_FnDA70xsfUAT1B8wLhrsQCqrz3GiwxpVAigdfRg8elRjysFFakCYjRpXfehzf33_URHNDFkQV1DJP2dh3eIsBr7bv-1P4DjhdOyg
  priority: 102
  providerName: ProQuest
Title A two-step automatic sleep stage classification method with dubious range detection
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482515000347
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482515000347
https://dx.doi.org/10.1016/j.compbiomed.2015.01.017
https://www.ncbi.nlm.nih.gov/pubmed/25677576
https://www.proquest.com/docview/1712845154
https://www.proquest.com/docview/1664447728
https://www.proquest.com/docview/1668264272
https://www.osti.gov/biblio/2279971
UnpaywallVersion submittedVersion
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250901
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_OFvx48Psj3lki-poz2W6yW3yqerUqVw7PQn1ash-R05KWa8qhD_7tzmSTnkjRIpSU0A6bdmZ3fpv85jcAz1PNSfQ7iYq-zSKeGhlJTOyR433HbF8bVlCB8_EkG0_5-1k624NnbS0M0SoXGNw1p1Kf6fnZ4gWJ3A2oTrybpQi4O9CdTk6Gn_0aG0dc1q1VqW12hCHFG76OZ3ERMdsXshONy0t01s3JtiahDg29DWvegGvrcpl_v8jn89_yz-gWvGmv3NNOvh2uK31ofvwh6viPn3Ybbjb4Mxz6gLkDe668C1ePmyfs9-B0GFYXiwh9vwzzdbWoFV3D1dzhOQLJLy40hLeJYFT7NPQtqEO6nxvatSZKbXhOFQuhdVXN8yrvw3R09On1OGoaL0QmY7zCPaXgUmtrk9TYXMuBFonlMrOikDFmVdxzFpzZRJrCIL5iPEOgQBrkRZKlLOf9B9ApF6V7BKFNLcvjVDORc25coS3J82RSFzHLRT4IQLSeUKZRJafmGHPV0s--qksfKvKhihN8iQCSjeXSK3PsYDNona3aylNcKxWmjx1sxTZbt2om_UolasVUrE5rzSMqCU5r-R-0fLmxbHCNxys7jrtPUUOWJOtriP-Epk3kBHDQBqu6vBBBqAPH5wE83XyM6wY9DMpLh5GgkgyRMMe9lfzrd3D3yZlgATz0E2HzVyNUFgI3qwGwzczY2Q-P_8doH67TmadNHUCnOl-7J4gIK92DK4c_EzyKmcCjHL3tQXf47sN4gu-vjiYnH3vNmvELe2Nkog
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVKJwQLwxLbBIcLTwrtdeW6hCBVqltIkQbaXeln0ZCUVOaBxF_XP8Nmb8CoeoyqVSLlEytjU7Ow_vN98Q8i4xAkm_WVjELg1FYrMwg8AeehF77mJjeYENzqNxOrwQ3y6Tyy3yt-uFQVhl5xNrR-2mFt-Rf2ASPSlEX_Fp9ifEqVF4utqN0NDtaAW3X1OMtY0dJ_56CSXcfP_4K6z3e86PDs-_DMN2ykBoUy4qKKCkyIxxjiXWaZPlRjInstTJIosghECBVQjuWGYLC8kEFylERSTcLliacC1iuO4dsi1ikUPxt_35cPz9x6ozM4qbJhjwdgKKsRZL1CDMEDTeNNkjxKyhD60Hp60NkIMp7Pl1efB9srMoZ_p6qSeT_2Lj0UPyoE1q6UFjhY_Ili8fk7uj9tj-CTk7oNVyGoJBzaheVNOaJpbOJx6-Q3b6y1OLSTyilmpDoc1ca4ovialbGMTp0itsg6DOVzV4rHxKLm5Fz8_IoJyW_gWhLnFcR4nhUgthfWEccv6kmSkirqXOAyI7FSrbUp3jxI2J6jBtv9VK-QqVryIGHxkQ1kvOGrqPDWTybpVU184KDlhBTNpAVq6T9fPWk8wVU3OuInVWEylhn3FScwqB5Mdesk2WmiRow_vuojmhJHIFWwRVgSjSSeaSBWSvszK1epB-Awbkbf8zOCM8YdKlB0tQLIX0WkDBlt34HyhpBZc8IM8bC-5VDfm3lFABB4T3Jr3xOry8-anfkJ3h-ehUnR6PT3bJPRRsEFh7ZFBdLfwrSC4r87rdwZT8vG2n8Q8eeIq2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED-6DLr1Yeyrm9du02B7NLVk2XIYY5R1oV3XMugKedNsSR6M4GSNQ-i_1r9ud5bt7CGUvBTyEpKzzel0H9bvfgfwPikkkX7zsIxtGsrEZGGGgT10MnbCxoURJTU4n52nx5fy2zgZb8FN1wtDsMrOJzaO2k4NvSM_4Io8KUZfeVC2sIgfR6PPs78hTZCik9ZunIY3kVN3vcTybf7p5AjX-oMQo68_vxyH7YSB0KRC1lg8KZkVhbU8MTYvsmGhuJVZalWZRRg-sLgqpbA8M6XBRELIFCMikW2XPE1ELmO87j24r-J4SHBCNVarnswo9u0v6OcklmEtishjywgu7tvrCVzmiUObkWlrQ-Ngirt9XQa8Aw8W1Sy_XuaTyX9RcfQYHrXpLDv09vcEtlz1FLbP2gP7Z3BxyOrlNERTmrF8UU8bglg2nzj8jnnpb8cMpe-EV2pMhPmJ1oxeDzO7KAihy66oAYJZVzewseo5XN6JlndhUE0r9xKYTazIo6QQKpfSuLKwxPaTZkUZiVzlwwBUp0JtWpJzmrUx0R2a7Y9eKV-T8nXE8aMC4L3kzBN9bCAz7FZJd42s6Ho1RqMNZNU6WTdvfchccz0XOtIXDYUSdRgnDZsQSn7sJds0yac_G953j8yJJIkl2BCcCkWJSHKoeAD7nZXp1YP0Wy-Ad_3P6IbobCmvHFqC5ikm1hJLtezW_2AxK4USAbzwFtyrGjNvpbD2DUD0Jr3xOry6_anfwja6Cv395Px0Dx6SnIde7cOgvlq415hV1sWbZvsy-HXX_uIfSSmIUA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_KFfx48FsbW2VFX1OTvU02h0-HWorQItSD-rTsV6QakqOXUOpf70w2uYocegj3Eu6Gzd3M7vzm8pvfALzJjCDR7zQupy6PRWaLuMDEHnsx9dxNjeUlNTifnObHC_HpPDvfgddjLwzRKhsM7p5TaS5MddG8JZG7GfWJ7-YZAu4J7C5OP8-_hjM2iUXRj1alsdkxhpQY-DqBxUXE7NDITjSuINHZDyfbmIQmtPQmrHkXbnf1Ul9f6ar6Lf8c3YcP450H2smPw641h_bnH6KO__hqD-DegD_ZPATMQ9jx9SO4dTI8YX8MZ3PWXjUx-n7JdNc2vaIrW1UerxFIfvPMEt4mglHvUxZGUDP6P5e5zhClll1SxwJzvu15XvUTWBx9_PL-OB4GL8Q256LFmlKKwhjn0sw6bYqZkakTRe5kWSSYVbHmLAV3aWFLi_iKixyBAmmQl2mecS2mT2FSN7XfA-Yyx3WSGS61ENaXxpE8T16YMuFa6lkEcvSEsoMqOQ3HqNRIP_uubnyoyIcqSfElI0jXlsugzLGFzWx0tho7T_GsVJg-trCVm2z9atj0K5WqFVeJOus1j6glOOvlf9Dy3dpywDUBr2y57j5FDVmSrK8l_hOaDpETwcEYrOrmRiShDlxfRPBq_TaeG_QwSNceI0GlOSJhgbVV8dfPYPUpuOQRPAsbYf1TI1SWEovVCPh6Z2zth-f_Y7QPd-gq0KYOYNJedv4FIsLWvBxOhF-VPF6v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-step+automatic+sleep+stage+classification+method+with+dubious+range+detection&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Sousa%2C+Teresa&rft.au=Cruz%2C+Aniana&rft.au=Khalighi%2C+Sirvan&rft.au=Pires%2C+Gabriel&rft.date=2015-04-01&rft.issn=0010-4825&rft.volume=59&rft.spage=42&rft.epage=53&rft_id=info:doi/10.1016%2Fj.compbiomed.2015.01.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2015_01_017
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482515X00035%2Fcov150h.gif