A two-step automatic sleep stage classification method with dubious range detection
The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects׳ variability. Several studies have already identified the situations with the highest likelihood of misclassif...
Saved in:
| Published in | Computers in biology and medicine Vol. 59; no. C; pp. 42 - 53 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.04.2015
Elsevier Limited Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2015.01.017 |
Cover
| Abstract | The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects׳ variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects׳ variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules.
An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep – N1, N2 and N3, and rapid eye movement (REM) sleep.
The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages.
This approach provides reliable sleep staging results for non-dubious epochs.
•A two-step classifier for automatic sleep staging is proposed.•The system provides two outputs: non-dubious and dubious classification.•The dubious epochs are tagged and re-assigned according to a post-processing step.•The system indicates to an expert physician which results need revision.•The accuracy of non-dubious classification for wake and REM is around 97%. |
|---|---|
| AbstractList | The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects׳ variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects׳ variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules.
An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep – N1, N2 and N3, and rapid eye movement (REM) sleep.
The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages.
This approach provides reliable sleep staging results for non-dubious epochs.
•A two-step classifier for automatic sleep staging is proposed.•The system provides two outputs: non-dubious and dubious classification.•The dubious epochs are tagged and re-assigned according to a post-processing step.•The system indicates to an expert physician which results need revision.•The accuracy of non-dubious classification for wake and REM is around 97%. The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules.BACKGROUNDThe limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules.An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep.METHODSAn ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep.The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages.RESULTSThe proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages.This approach provides reliable sleep staging results for non-dubious epochs.CONCLUSIONSThis approach provides reliable sleep staging results for non-dubious epochs. Abstract Background The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects׳ variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects׳ variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. Methods An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep – N1, N2 and N3, and rapid eye movement (REM) sleep. Results The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. Conclusions This approach provides reliable sleep staging results for non-dubious epochs. The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep. The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. This approach provides reliable sleep staging results for non-dubious epochs. Background The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. Methods An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep - N1, N2 and N3, and rapid eye movement (REM) sleep. Results The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. Conclusions This approach provides reliable sleep staging results for non-dubious epochs. |
| Author | Khalighi, Sirvan Cruz, Aniana Nunes, Urbano Sousa, Teresa Pires, Gabriel |
| Author_xml | – sequence: 1 givenname: Teresa orcidid: 0000-0003-2652-3152 surname: Sousa fullname: Sousa, Teresa email: tsousa@isr.uc.pt – sequence: 2 givenname: Aniana surname: Cruz fullname: Cruz, Aniana email: anianabrito@isr.uc.pt – sequence: 3 givenname: Sirvan surname: Khalighi fullname: Khalighi, Sirvan email: skhalighi@isr.uc.pt – sequence: 4 givenname: Gabriel surname: Pires fullname: Pires, Gabriel email: gpires@isr.uc.pt – sequence: 5 givenname: Urbano surname: Nunes fullname: Nunes, Urbano email: urbano@deec.uc.pt |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25677576$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2279971$$D View this record in Osti.gov |
| BookMark | eNqVkl9rFDEUxYNU7Lb6FWTQF19mvclmJpmXYi3-g4IP1eeQSe64WWeSdZJx2W9vxm0pLAgrBELI7x7uOfdekDMfPBJSUFhSoPXbzdKEYdu6MKBdMqDVEmg-4glZUCmaEqoVPyMLAAoll6w6JxcxbgCAwwqekXNW1UJUol6Qu-si7UIZE24LPaUw6ORMEXvM75j0DyxMr2N0nTP5J_hiwLQOtti5tC7slFuYYjFqn0GLCc3MPCdPO91HfHF_X5LvHz98u_lc3n799OXm-rY0NeOp5CC4bFtraWWsbmXTCmq5rK3oJBhEDqzjzFJpOrNqGOM1oxJAsI7WFdN8dUmag-7kt3q_032vtqMb9LhXFNQclNqox6DUHJQCmo_Ita8OtSEmp6Jxufe1Cd5nC4ox0TSCZujNAdqO4deEManBRYN9rz1m34rWtWQ1Z4KdgnLOhWAyo6-P0E2YRp-TUlRQJnlFq9ncy3tqaufmH5w9jC4DVwfAjCHGETuVTfydURq160-JQB4J_Ed67w-lmMf72-E4J4jeoHXjHKAN7hSRqyMR0zuf96z_iXuMj6GoyBSou3mb52WmVV7kFZ8F3v1b4LQe_gC-hAeM |
| CODEN | CBMDAW |
| CitedBy_id | crossref_primary_10_1088_1741_2552_ac6829 crossref_primary_10_2139_ssrn_4064793 crossref_primary_10_1109_TNSRE_2021_3079505 crossref_primary_10_1109_TIM_2022_3154838 crossref_primary_10_1016_j_cmpb_2019_105116 crossref_primary_10_1016_j_knosys_2019_105367 crossref_primary_10_1016_j_clinph_2019_01_011 crossref_primary_10_1016_j_eswa_2018_07_023 crossref_primary_10_1016_j_smrv_2020_101377 crossref_primary_10_1016_j_compbiomed_2018_03_001 crossref_primary_10_1007_s00500_021_06218_x crossref_primary_10_1016_j_jneumeth_2019_01_013 crossref_primary_10_1016_j_bbe_2017_01_005 crossref_primary_10_1109_TNNLS_2019_2899781 crossref_primary_10_4015_S1016237218500412 crossref_primary_10_1016_j_heliyon_2024_e41147 crossref_primary_10_3389_fnhum_2016_00605 crossref_primary_10_1109_TIM_2023_3298639 crossref_primary_10_4028_p_svwo5k crossref_primary_10_1007_s11042_022_13195_2 crossref_primary_10_1007_s42979_021_00528_5 crossref_primary_10_1016_j_bspc_2024_107436 crossref_primary_10_1016_j_cmpb_2015_10_013 crossref_primary_10_1016_j_eswa_2017_06_017 crossref_primary_10_1080_03772063_2020_1782273 crossref_primary_10_1109_TBME_2019_2903987 crossref_primary_10_1109_TNSRE_2023_3323892 crossref_primary_10_1049_cit2_12042 crossref_primary_10_3390_e18090272 crossref_primary_10_4018_IJIRR_299941 crossref_primary_10_1109_TNSRE_2019_2896659 crossref_primary_10_1016_j_clinph_2017_12_039 crossref_primary_10_1109_TBME_2018_2872652 crossref_primary_10_2147_NSS_S355702 crossref_primary_10_1088_1741_2552_aa70ac crossref_primary_10_1016_j_cmpb_2019_04_004 |
| Cites_doi | 10.1016/j.eswa.2010.04.043 10.1016/j.artmed.2011.06.004 10.1016/j.compbiomed.2007.03.001 10.1016/S0167-8655(00)00112-4 10.1016/j.cmpb.2013.07.006 10.1007/978-0-387-98135-2 10.1002/acs.1147 10.1007/s10527-007-0006-5 10.1016/j.neucom.2012.11.003 10.1016/j.compbiomed.2012.09.012 10.1088/0967-3334/35/1/R1 10.1016/j.smrv.2011.06.003 10.1016/j.compbiomed.2010.04.007 10.5664/jcsm.26814 10.1016/j.jneumeth.2011.12.022 10.1109/ICPR.2010.764 10.1109/EMBC.2012.6346412 10.1109/IEMBS.2011.6090897 10.1145/1961189.1961199 10.1016/j.eswa.2013.06.023 10.1142/S1793536910000483 10.1109/10.966600 10.1016/j.bspc.2007.05.005 10.1093/brain/awl241 10.5220/0003792304230428 10.1016/j.compbiomed.2011.04.001 10.1016/S0165-0270(98)00065-X 10.5665/SLEEP.1256 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Apr 2015 |
| Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Apr 2015 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7QO OTOTI ADTOC UNPAY |
| DOI | 10.1016/j.compbiomed.2015.01.017 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 53 |
| ExternalDocumentID | oai:osti.gov:2279971 2279971 3809282531 25677576 10_1016_j_compbiomed_2015_01_017 S0010482515000347 1_s2_0_S0010482515000347 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ SV3 T5K UKHRP WOW Z5R ~G- ~HD .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX AGQPQ AIGII APXCP CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7QO ABPIF ABPTK OTOTI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c624t-40748bbdd15cdab89b71d486d7f80cee402f42d18cfc3922462180072f1652a43 |
| IEDL.DBID | UNPAY |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Oct 26 03:47:11 EDT 2025 Mon Jan 15 05:22:36 EST 2024 Tue Oct 07 09:25:20 EDT 2025 Sun Sep 28 05:46:52 EDT 2025 Tue Oct 07 06:36:38 EDT 2025 Thu Apr 03 07:05:15 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Wed Oct 01 05:21:56 EDT 2025 Fri Feb 23 02:24:56 EST 2024 Sun Feb 23 10:19:16 EST 2025 Tue Oct 14 19:33:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Automatic sleep scoring Dubious range Clinical applications Subjects׳ variability Misclassifications detection |
| Language | English |
| License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c624t-40748bbdd15cdab89b71d486d7f80cee402f42d18cfc3922462180072f1652a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
| ORCID | 0000-0003-2652-3152 0000000326523152 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/2279971 |
| PMID | 25677576 |
| PQID | 1712845154 |
| PQPubID | 1226355 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1016_j_compbiomed_2015_01_017 osti_scitechconnect_2279971 proquest_miscellaneous_1668264272 proquest_miscellaneous_1664447728 proquest_journals_1712845154 pubmed_primary_25677576 crossref_citationtrail_10_1016_j_compbiomed_2015_01_017 crossref_primary_10_1016_j_compbiomed_2015_01_017 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2015_01_017 elsevier_clinicalkeyesjournals_1_s2_0_S0010482515000347 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2015_01_017 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-04-01 |
| PublicationDateYYYYMMDD | 2015-04-01 |
| PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited – name: Elsevier |
| References | Kryger, Roth, Dement (bib37) 2005 American Academy of Sleep Medicine (bib5) 2007 Charbonnier, Zoubek, Lesecq, Chapotot (bib18) 2011; 41 Krakovská, Mezeiová (bib22) 2011; 53 Becq, Charbonnier, Chapotot, Buguet, Bourdon, Baconnier (bib33) 2005 Mazzotti, Guindalini, Moraes, Andersen, Cendoroglo, Ramos, Tufik (bib38) 2014; 6 K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann, The balanced accuracy and its posterior distribution, in: Proceedings of the Pattern Recognition (ICPR), 2010, pp. 3121–3124. Koley, Dey (bib17) 2012; 42 Khalighi, Sousa, Pires, Nunes (bib26) 2013; 40 Liang, Kuo, Hu, Cheng (bib25) 2012; 205 Malmivuo, Plonsey (bib28) 1995 Doroshenkov, Konyshev, Selishchev (bib14) 2007; 41 Helland, Gapelyuk, Suhrbier, Riedl, Penzel, Kurths, Wessel (bib10) 2010; 4 Silber, Ancoli-Israel, Bonnet (bib6) 2007; 3 Fraiwan, Khaswaneh, Lweesy (bib9) 2009; 54 Dong, Liu (bib15) 2010; 2 Muthuswamy, Thakor (bib29) 1998; 83 Ronzhina, Janoušek, Kolářová, Nováková, Honzík, Provazník (bib11) 2012; 16 T. Sousa, D. Oliveira, S. Khalighi, G. Pires, U. Nunes, Neurophysiologic and statistical analysis of failures in automatic sleep stage classification, in: Proceedings of the BIOSIGNALS – International Conference on Bio-inspired Systems and Signal Processing, 2012, pp. 423–428. Bajaj, Pachori (bib23) 2013; 112 Cristianini, Shawe-Taylor (bib36) 2000 Chang, Lin (bib41) 2011 S. Khalighi, T. Sousa, U. Nunes, Adaptive sleep stage classification under covariate shift, in: Proceedings of the IEEE 34th Annual International EMBS Conference (EMBC 2012), 2012. Clarke, Fokoue, Zhang (bib39) 2009 Chapotot, Becq (bib4) 2010; 24 Mormann, Andrzejak, Elger, Lehnertz (bib31) 2007; 130 Agarwal, Gotman (bib7) 2001; 48 Duda, Hart, Stork (bib35) 2000 Günes, Polat, Yosunkaya (bib13) 2010; 37 Garg, Singh, Grover, Gupta (bib16) 2011; 2 S. Khalighi, T. Sousa, D. Oliveira, G. Pires, U. Nunes, Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM, in: Proceedings of the 33rd Annual International IEEE EMBS Conference (EMBC11), 2011. Zoubek, Charbonnier, Lesecq, Buguet, Chapotot (bib8) 2007; 2 Tang, Lu, Tsai, Kao, Lee (bib32) 2007 Asyali, Berry, Khoo, Altinok (bib42) 2007; 37 Santamaria, Högl, Trenkwalder, Bliwise (bib2) 2011; 34 American Academy of Sleep Medicine (bib27) 2001 Percival, Walden (bib30) 2000 Han, Park, Lee (bib12) 2010; 40 Hsu, Yang, Wang, Hsu (bib20) 2013; 104 Roebuck, Monasterio, Gederi, Osipov, Behar, Malhotra, Penzel, Clifford (bib1) 2014; 35 Aksoy, Haralick (bib34) 2001; 22 Helland (10.1016/j.compbiomed.2015.01.017_bib10) 2010; 4 Zoubek (10.1016/j.compbiomed.2015.01.017_bib8) 2007; 2 Fraiwan (10.1016/j.compbiomed.2015.01.017_bib9) 2009; 54 Ronzhina (10.1016/j.compbiomed.2015.01.017_bib11) 2012; 16 Krakovská (10.1016/j.compbiomed.2015.01.017_bib22) 2011; 53 Muthuswamy (10.1016/j.compbiomed.2015.01.017_bib29) 1998; 83 Asyali (10.1016/j.compbiomed.2015.01.017_bib42) 2007; 37 Malmivuo (10.1016/j.compbiomed.2015.01.017_bib28) 1995 10.1016/j.compbiomed.2015.01.017_bib19 Agarwal (10.1016/j.compbiomed.2015.01.017_bib7) 2001; 48 American Academy of Sleep Medicine (10.1016/j.compbiomed.2015.01.017_bib5) 2007 Duda (10.1016/j.compbiomed.2015.01.017_bib35) 2000 Kryger (10.1016/j.compbiomed.2015.01.017_bib37) 2005 Liang (10.1016/j.compbiomed.2015.01.017_bib25) 2012; 205 Han (10.1016/j.compbiomed.2015.01.017_bib12) 2010; 40 Khalighi (10.1016/j.compbiomed.2015.01.017_bib26) 2013; 40 Becq (10.1016/j.compbiomed.2015.01.017_bib33) 2005 Tang (10.1016/j.compbiomed.2015.01.017_bib32) 2007 Koley (10.1016/j.compbiomed.2015.01.017_bib17) 2012; 42 Günes (10.1016/j.compbiomed.2015.01.017_bib13) 2010; 37 Bajaj (10.1016/j.compbiomed.2015.01.017_bib23) 2013; 112 Cristianini (10.1016/j.compbiomed.2015.01.017_bib36) 2000 Chang (10.1016/j.compbiomed.2015.01.017_bib41) 2011 Garg (10.1016/j.compbiomed.2015.01.017_bib16) 2011; 2 Charbonnier (10.1016/j.compbiomed.2015.01.017_bib18) 2011; 41 Aksoy (10.1016/j.compbiomed.2015.01.017_bib34) 2001; 22 10.1016/j.compbiomed.2015.01.017_bib40 Dong (10.1016/j.compbiomed.2015.01.017_bib15) 2010; 2 10.1016/j.compbiomed.2015.01.017_bib21 Doroshenkov (10.1016/j.compbiomed.2015.01.017_bib14) 2007; 41 10.1016/j.compbiomed.2015.01.017_bib24 Hsu (10.1016/j.compbiomed.2015.01.017_bib20) 2013; 104 American Academy of Sleep Medicine (10.1016/j.compbiomed.2015.01.017_bib27) 2001 Percival (10.1016/j.compbiomed.2015.01.017_bib30) 2000 Clarke (10.1016/j.compbiomed.2015.01.017_bib39) 2009 Santamaria (10.1016/j.compbiomed.2015.01.017_bib2) 2011; 34 Roebuck (10.1016/j.compbiomed.2015.01.017_bib1) 2014; 35 Chapotot (10.1016/j.compbiomed.2015.01.017_bib4) 2010; 24 Mazzotti (10.1016/j.compbiomed.2015.01.017_bib38) 2014; 6 Silber (10.1016/j.compbiomed.2015.01.017_bib6) 2007; 3 Mormann (10.1016/j.compbiomed.2015.01.017_bib31) 2007; 130 |
| References_xml | – year: 2001 ident: bib27 article-title: International Classification of Sleep Disorders, Revised: Diagnostic and Coding Manual – volume: 22 start-page: 563 year: 2001 end-page: 582 ident: bib34 article-title: Feature normalization and likelihood based similarity measures for image retrieval publication-title: Pattern Recognit. Lett. – volume: 3 start-page: 121 year: 2007 end-page: 131 ident: bib6 article-title: The visual scoring of sleep in adults publication-title: J. Clin. Sleep Med. – volume: 34 start-page: 1283 year: 2011 end-page: 1284 ident: bib2 article-title: Scoring sleep in neurological patients: the need for specific considerations publication-title: Sleep – year: 2000 ident: bib36 article-title: An Introduction to Support Vector Machines (and Other Kernel-Based Learning Methods) – volume: 2 start-page: 1220 year: 2011 end-page: 1225 ident: bib16 article-title: Optimal Kernel learning for EEG based sleep scoring system publication-title: Int. J. Biol. Med. Res. – reference: S. Khalighi, T. Sousa, D. Oliveira, G. Pires, U. Nunes, Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM, in: Proceedings of the 33rd Annual International IEEE EMBS Conference (EMBC11), 2011. – volume: 35 start-page: R1 year: 2014 end-page: 57 ident: bib1 article-title: A review of signals used in sleep analysis publication-title: Physiol. Meas. – volume: 40 start-page: 629 year: 2010 end-page: 634 ident: bib12 article-title: Genetic fuzzy classifier for sleep stage identification publication-title: Comput. Biol. Med. – volume: 40 start-page: 7046 year: 2013 end-page: 7059 ident: bib26 article-title: Automatic sleep staging: a computer assisted approach for optimal combination of features and polysomnographic channels publication-title: Expert Syst. Appl. – start-page: 414 year: 2007 end-page: 417 ident: bib32 article-title: Harmonic parameters with HHT and wavelet transform for automatic sleep stages scoring publication-title: Proc. World Acad. Sci., Eng. Technol. – volume: 37 start-page: 7922 year: 2010 end-page: 7928 ident: bib13 article-title: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting publication-title: Expert Syst. Appl. – year: 2007 ident: bib5 article-title: AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications – volume: 24 start-page: 409 year: 2010 end-page: 423 ident: bib4 article-title: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules publication-title: Int. J. Adapt. Control Signal Process. – volume: 54 start-page: 485 year: 2009 end-page: 488 ident: bib9 article-title: Automatic sleep stage scoring with wavelet packets based on single EEG recording publication-title: Proc. World Acad. Sci., Eng. Technol. – volume: 104 start-page: 105 year: 2013 end-page: 114 ident: bib20 article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals publication-title: Neurocomputing – start-page: 113 year: 2005 end-page: 127 ident: bib33 article-title: Comparison between five classifiers for automatic scoring of human sleep recordings publication-title: Studies in Computational Intelligence (SCI), Classification and Clustering for Knowledge Discovery – reference: T. Sousa, D. Oliveira, S. Khalighi, G. Pires, U. Nunes, Neurophysiologic and statistical analysis of failures in automatic sleep stage classification, in: Proceedings of the BIOSIGNALS – International Conference on Bio-inspired Systems and Signal Processing, 2012, pp. 423–428. – year: 1995 ident: bib28 article-title: Bioelectromagnetism – Principles and Applications of Bioelectric and Biomagnetic Fields – volume: 16 start-page: 251 year: 2012 end-page: 263 ident: bib11 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Med. Rev. – reference: S. Khalighi, T. Sousa, U. Nunes, Adaptive sleep stage classification under covariate shift, in: Proceedings of the IEEE 34th Annual International EMBS Conference (EMBC 2012), 2012. – year: 2000 ident: bib30 article-title: Wavelet Methods for Time Series Analysis – volume: 2 start-page: 267 year: 2010 end-page: 276 ident: bib15 article-title: Automated sleep staging technique based on the empirical mode decomposition algorithm: a preliminary study publication-title: Adv. Adapt. Data Anal. – year: 2000 ident: bib35 article-title: Pattern Classification – volume: 41 start-page: 380 year: 2011 end-page: 389 ident: bib18 article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging publication-title: Comput. Biol. Med. – volume: 42 start-page: 1186 year: 2012 end-page: 1195 ident: bib17 article-title: An ensemble system for automatic sleep stage classification using single channel EEG signal publication-title: Comput. Biol. Med. – volume: 53 start-page: 25 year: 2011 end-page: 33 ident: bib22 article-title: Automatic sleep scoring: a search for an optimal combination of measures publication-title: Artif. Intell. Med. – year: 2009 ident: bib39 article-title: Principles and Theory for Data Mining and Machine Learning, in Springer Series in Statistics – volume: 2 start-page: 171 year: 2007 end-page: 179 ident: bib8 article-title: Feature selection for sleep/wake stages classification using data driven methods publication-title: Biomed. Signal Process. Control – volume: 37 start-page: 1600 year: 2007 end-page: 1609 ident: bib42 article-title: Determining a continuous marker for sleep depth publication-title: Comput. Biol. Med. – volume: 48 start-page: 1412 year: 2001 end-page: 1423 ident: bib7 article-title: Computer-assisted sleep staging publication-title: IEEE Trans. Biomed. Eng. – volume: 205 start-page: 169 year: 2012 end-page: 176 ident: bib25 article-title: A rule-based automatic sleep staging method publication-title: J. Neurosci. Methods – volume: 41 start-page: 25 year: 2007 end-page: 28 ident: bib14 article-title: Classification of human sleep stages based on EEG processing using hidden Markov models publication-title: Biomed. Eng. – volume: 112 start-page: 320 year: 2013 end-page: 328 ident: bib23 article-title: Automatic classification of sleep stages based on the time-frequency image of EEG signals publication-title: Comput. Methods Programs Biomed. – volume: 130 start-page: 314 year: 2007 end-page: 333 ident: bib31 article-title: Seizure prediction: the long and winding road publication-title: Brain – volume: 4 start-page: 1 year: 2010 end-page: 6 ident: bib10 article-title: Investigation of an automatic sleep stage classification by means of multiscorer hypnogram publication-title: Methods Inf. Med. – reference: K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann, The balanced accuracy and its posterior distribution, in: Proceedings of the Pattern Recognition (ICPR), 2010, pp. 3121–3124. – start-page: 1 year: 2011 end-page: 39 ident: bib41 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – year: 2005 ident: bib37 article-title: Principles and Practice of Sleep Medicine – volume: 83 start-page: 1 year: 1998 end-page: 14 ident: bib29 article-title: Spectral analysis method for neurological signals publication-title: J. Neurosci. Methods – volume: 6 start-page: 1 year: 2014 end-page: 9 ident: bib38 article-title: Human longevity is associated with regular sleep patterns, maintenance of slow wave sleep, and favorable lipid profile publication-title: Front. Aging Neurosci. – volume: 37 start-page: 7922 year: 2010 ident: 10.1016/j.compbiomed.2015.01.017_bib13 article-title: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.04.043 – volume: 53 start-page: 25 year: 2011 ident: 10.1016/j.compbiomed.2015.01.017_bib22 article-title: Automatic sleep scoring: a search for an optimal combination of measures publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2011.06.004 – volume: 6 start-page: 1 issue: 134 year: 2014 ident: 10.1016/j.compbiomed.2015.01.017_bib38 article-title: Human longevity is associated with regular sleep patterns, maintenance of slow wave sleep, and favorable lipid profile publication-title: Front. Aging Neurosci. – volume: 37 start-page: 1600 issue: 11 year: 2007 ident: 10.1016/j.compbiomed.2015.01.017_bib42 article-title: Determining a continuous marker for sleep depth publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.03.001 – volume: 22 start-page: 563 year: 2001 ident: 10.1016/j.compbiomed.2015.01.017_bib34 article-title: Feature normalization and likelihood based similarity measures for image retrieval publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(00)00112-4 – year: 2000 ident: 10.1016/j.compbiomed.2015.01.017_bib36 – volume: 112 start-page: 320 year: 2013 ident: 10.1016/j.compbiomed.2015.01.017_bib23 article-title: Automatic classification of sleep stages based on the time-frequency image of EEG signals publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2013.07.006 – year: 2009 ident: 10.1016/j.compbiomed.2015.01.017_bib39 doi: 10.1007/978-0-387-98135-2 – volume: 24 start-page: 409 year: 2010 ident: 10.1016/j.compbiomed.2015.01.017_bib4 article-title: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.1147 – volume: 2 start-page: 1220 year: 2011 ident: 10.1016/j.compbiomed.2015.01.017_bib16 article-title: Optimal Kernel learning for EEG based sleep scoring system publication-title: Int. J. Biol. Med. Res. – volume: 41 start-page: 25 year: 2007 ident: 10.1016/j.compbiomed.2015.01.017_bib14 article-title: Classification of human sleep stages based on EEG processing using hidden Markov models publication-title: Biomed. Eng. doi: 10.1007/s10527-007-0006-5 – year: 2001 ident: 10.1016/j.compbiomed.2015.01.017_bib27 – start-page: 414 year: 2007 ident: 10.1016/j.compbiomed.2015.01.017_bib32 article-title: Harmonic parameters with HHT and wavelet transform for automatic sleep stages scoring publication-title: Proc. World Acad. Sci., Eng. Technol. – volume: 104 start-page: 105 year: 2013 ident: 10.1016/j.compbiomed.2015.01.017_bib20 article-title: Automatic sleep stage recurrent neural classifier using energy features of EEG signals publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.003 – start-page: 113 year: 2005 ident: 10.1016/j.compbiomed.2015.01.017_bib33 article-title: Comparison between five classifiers for automatic scoring of human sleep recordings – year: 2007 ident: 10.1016/j.compbiomed.2015.01.017_bib5 – volume: 4 start-page: 1 year: 2010 ident: 10.1016/j.compbiomed.2015.01.017_bib10 article-title: Investigation of an automatic sleep stage classification by means of multiscorer hypnogram publication-title: Methods Inf. Med. – volume: 42 start-page: 1186 year: 2012 ident: 10.1016/j.compbiomed.2015.01.017_bib17 article-title: An ensemble system for automatic sleep stage classification using single channel EEG signal publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2012.09.012 – year: 2000 ident: 10.1016/j.compbiomed.2015.01.017_bib30 – volume: 35 start-page: R1 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2015.01.017_bib1 article-title: A review of signals used in sleep analysis publication-title: Physiol. Meas. doi: 10.1088/0967-3334/35/1/R1 – volume: 16 start-page: 251 year: 2012 ident: 10.1016/j.compbiomed.2015.01.017_bib11 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2011.06.003 – volume: 40 start-page: 629 year: 2010 ident: 10.1016/j.compbiomed.2015.01.017_bib12 article-title: Genetic fuzzy classifier for sleep stage identification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2010.04.007 – volume: 3 start-page: 121 issue: 2 year: 2007 ident: 10.1016/j.compbiomed.2015.01.017_bib6 article-title: The visual scoring of sleep in adults publication-title: J. Clin. Sleep Med. doi: 10.5664/jcsm.26814 – volume: 205 start-page: 169 year: 2012 ident: 10.1016/j.compbiomed.2015.01.017_bib25 article-title: A rule-based automatic sleep staging method publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.12.022 – ident: 10.1016/j.compbiomed.2015.01.017_bib40 doi: 10.1109/ICPR.2010.764 – year: 1995 ident: 10.1016/j.compbiomed.2015.01.017_bib28 – ident: 10.1016/j.compbiomed.2015.01.017_bib24 doi: 10.1109/EMBC.2012.6346412 – volume: 54 start-page: 485 year: 2009 ident: 10.1016/j.compbiomed.2015.01.017_bib9 article-title: Automatic sleep stage scoring with wavelet packets based on single EEG recording publication-title: Proc. World Acad. Sci., Eng. Technol. – ident: 10.1016/j.compbiomed.2015.01.017_bib21 doi: 10.1109/IEMBS.2011.6090897 – start-page: 1 year: 2011 ident: 10.1016/j.compbiomed.2015.01.017_bib41 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 40 start-page: 7046 year: 2013 ident: 10.1016/j.compbiomed.2015.01.017_bib26 article-title: Automatic sleep staging: a computer assisted approach for optimal combination of features and polysomnographic channels publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.06.023 – volume: 2 start-page: 267 year: 2010 ident: 10.1016/j.compbiomed.2015.01.017_bib15 article-title: Automated sleep staging technique based on the empirical mode decomposition algorithm: a preliminary study publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536910000483 – volume: 48 start-page: 1412 year: 2001 ident: 10.1016/j.compbiomed.2015.01.017_bib7 article-title: Computer-assisted sleep staging publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.966600 – volume: 2 start-page: 171 year: 2007 ident: 10.1016/j.compbiomed.2015.01.017_bib8 article-title: Feature selection for sleep/wake stages classification using data driven methods publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.05.005 – volume: 130 start-page: 314 year: 2007 ident: 10.1016/j.compbiomed.2015.01.017_bib31 article-title: Seizure prediction: the long and winding road publication-title: Brain doi: 10.1093/brain/awl241 – year: 2005 ident: 10.1016/j.compbiomed.2015.01.017_bib37 – ident: 10.1016/j.compbiomed.2015.01.017_bib19 doi: 10.5220/0003792304230428 – volume: 41 start-page: 380 issue: 6 year: 2011 ident: 10.1016/j.compbiomed.2015.01.017_bib18 article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2011.04.001 – volume: 83 start-page: 1 year: 1998 ident: 10.1016/j.compbiomed.2015.01.017_bib29 article-title: Spectral analysis method for neurological signals publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(98)00065-X – year: 2000 ident: 10.1016/j.compbiomed.2015.01.017_bib35 – volume: 34 start-page: 1283 issue: 10 year: 2011 ident: 10.1016/j.compbiomed.2015.01.017_bib2 article-title: Scoring sleep in neurological patients: the need for specific considerations publication-title: Sleep doi: 10.5665/SLEEP.1256 |
| SSID | ssj0004030 |
| Score | 2.3261442 |
| Snippet | The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different... Abstract Background The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between... Background The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs... |
| SourceID | unpaywall osti proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 42 |
| SubjectTerms | Accuracy Adult Aged Art exhibits Automatic sleep scoring Classification Clinical applications Decision Trees Dubious range Electroencephalography Electrooculography Experts Eye movements Feature extraction Female Humans Internal Medicine Male Methods Middle Aged Misclassifications detection Neural networks Other Polysomnography - methods Signal Processing, Computer-Assisted Sleep disorders Sleep Stages - physiology Sleep Wake Disorders - physiopathology Studies Subjects׳ variability Support Vector Machine Young Adult |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB6CD30cSt9Rk5Yt9KpGu1pp1_QUQkMopJc2kNuyL5UUI5tYJvTS394ZrSS31BRDQRfJGiRmZ-dhffMNwLvKSSL95nlThjqXlde5xsCeR1lGEUrnRUMNzpef64sr-em6uj6As7EXhmCVg-9PPr331sOVk0GbJ6ubG-rxxVKCOi-rnmWFOsqlVDTF4P3PLcxDFmVqQ0F_Q3cPaJ6E8SLYdmpzJ5BXIvDsR5ftDFGzJe66XZnoQ7i_aVf2x51dLH6LTueP4dGQVrLT9OZP4CC2T-He5fDh_Bl8OWXd3TLHJV0xu-mWPVErWy8inmN--C0yT2k04Yb6pWJpsjSjv2lZ2DhCyrJbakRgIXY9fKt9DlfnH7-eXeTDPIXc10J2WCoqqZ0LgVc-WKfnTvEgdR1UowsMllhKNlIErn3jMW0Sssb4T9TiDa8rYWX5Ambtso2HwEIVhC0qJ5SV0sfGBWLdqbVrCmGVnWegRhUaP5CN08yLhRlRZd_NVvmGlG8KjofKgE-Sq0S4sYfMfFwlMzaUogs0GBX2kFW7ZON62Mtrw81amML8ZW8ZfJgk_zDZPZ97ROZEksTW6wnWhKJE6DhXPIPj0crM9kUUJRP4fJnB2-lndAf0jce2ES3B8BoTXIklk_7nPVhUSqFEBi-TBU-qxgxYKaxBMxCTSe-9Dq_-SyNH8IDOEizqGGbd7Sa-xoyvc2_6Lf0LZ_5TiQ priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9tAEB1SB9r0UPodNWnZQq-i2vVKK1NKSUtCKMSUpoHclv1SoBjJjWVC_31ntJLcgwkGX4w1WOzOzryR3rwB-JBbSaLfPK2mvkhl7sq0xMSeBjkNwk-tExU1OF_Mi_Mr-f06v96D-dALQ7TKISZ2gdo3jp6Rf-SKIilmX_ll-SelqVH0dnUYoWH60Qr-cycx9gD2BSljTWD_6-n8x89Np2Q2jU0pGH0kFkc9tycyvojEHZveifIV5Ty7QWZbE9akwTO4DZc-hkfremn-3pnF4r9cdfYUnvQgk51Er3gGe6F-Dg8v-tfoL-DyhLV3TYobvGRm3TadbCtbLQJ-R7R4E5gjUE0som7jWJwzzeihLfNrS7xZdkttCcyHtiNz1S_h6uz017fztJ-ukLpCyBYLRyVLa73nufPGljOruJdl4VVVZpg6sbCspPC8dJVDECVkgWiAhMYrXuTCyOkrmNRNHQ6B-dwLk-VWKCOlC5X1pMFTlLbKhFFmloAallC7XnqcJmAs9MAx-603i69p8XXG8aMS4KPlMspv7GAzG3ZJD-2lGBA15ogdbNU227DqT_ZKc70SOtOXnbAR9f3mncYPWn4aLXvwEkHJjv97RO5ElqTd64jkhKYk7zhTPIHjwcv05kbGA5HA-_FnDA70xsfUAT1B8wLhrsQCqrz3GiwxpVAigdfRg8elRjysFFakCYjRpXfehzf33_URHNDFkQV1DJP2dh3eIsBr7bv-1P4DjhdOyg priority: 102 providerName: ProQuest |
| Title | A two-step automatic sleep stage classification method with dubious range detection |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482515000347 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482515000347 https://dx.doi.org/10.1016/j.compbiomed.2015.01.017 https://www.ncbi.nlm.nih.gov/pubmed/25677576 https://www.proquest.com/docview/1712845154 https://www.proquest.com/docview/1664447728 https://www.proquest.com/docview/1668264272 https://www.osti.gov/biblio/2279971 |
| UnpaywallVersion | submittedVersion |
| Volume | 59 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250901 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_OFvx48Psj3lki-poz2W6yW3yqerUqVw7PQn1ash-R05KWa8qhD_7tzmSTnkjRIpSU0A6bdmZ3fpv85jcAz1PNSfQ7iYq-zSKeGhlJTOyR433HbF8bVlCB8_EkG0_5-1k624NnbS0M0SoXGNw1p1Kf6fnZ4gWJ3A2oTrybpQi4O9CdTk6Gn_0aG0dc1q1VqW12hCHFG76OZ3ERMdsXshONy0t01s3JtiahDg29DWvegGvrcpl_v8jn89_yz-gWvGmv3NNOvh2uK31ofvwh6viPn3Ybbjb4Mxz6gLkDe668C1ePmyfs9-B0GFYXiwh9vwzzdbWoFV3D1dzhOQLJLy40hLeJYFT7NPQtqEO6nxvatSZKbXhOFQuhdVXN8yrvw3R09On1OGoaL0QmY7zCPaXgUmtrk9TYXMuBFonlMrOikDFmVdxzFpzZRJrCIL5iPEOgQBrkRZKlLOf9B9ApF6V7BKFNLcvjVDORc25coS3J82RSFzHLRT4IQLSeUKZRJafmGHPV0s--qksfKvKhihN8iQCSjeXSK3PsYDNona3aylNcKxWmjx1sxTZbt2om_UolasVUrE5rzSMqCU5r-R-0fLmxbHCNxys7jrtPUUOWJOtriP-Epk3kBHDQBqu6vBBBqAPH5wE83XyM6wY9DMpLh5GgkgyRMMe9lfzrd3D3yZlgATz0E2HzVyNUFgI3qwGwzczY2Q-P_8doH67TmadNHUCnOl-7J4gIK92DK4c_EzyKmcCjHL3tQXf47sN4gu-vjiYnH3vNmvELe2Nkog |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVKJwQLwxLbBIcLTwrtdeW6hCBVqltIkQbaXeln0ZCUVOaBxF_XP8Nmb8CoeoyqVSLlEytjU7Ow_vN98Q8i4xAkm_WVjELg1FYrMwg8AeehF77mJjeYENzqNxOrwQ3y6Tyy3yt-uFQVhl5xNrR-2mFt-Rf2ASPSlEX_Fp9ifEqVF4utqN0NDtaAW3X1OMtY0dJ_56CSXcfP_4K6z3e86PDs-_DMN2ykBoUy4qKKCkyIxxjiXWaZPlRjInstTJIosghECBVQjuWGYLC8kEFylERSTcLliacC1iuO4dsi1ikUPxt_35cPz9x6ozM4qbJhjwdgKKsRZL1CDMEDTeNNkjxKyhD60Hp60NkIMp7Pl1efB9srMoZ_p6qSeT_2Lj0UPyoE1q6UFjhY_Ili8fk7uj9tj-CTk7oNVyGoJBzaheVNOaJpbOJx6-Q3b6y1OLSTyilmpDoc1ca4ovialbGMTp0itsg6DOVzV4rHxKLm5Fz8_IoJyW_gWhLnFcR4nhUgthfWEccv6kmSkirqXOAyI7FSrbUp3jxI2J6jBtv9VK-QqVryIGHxkQ1kvOGrqPDWTybpVU184KDlhBTNpAVq6T9fPWk8wVU3OuInVWEylhn3FScwqB5Mdesk2WmiRow_vuojmhJHIFWwRVgSjSSeaSBWSvszK1epB-Awbkbf8zOCM8YdKlB0tQLIX0WkDBlt34HyhpBZc8IM8bC-5VDfm3lFABB4T3Jr3xOry8-anfkJ3h-ehUnR6PT3bJPRRsEFh7ZFBdLfwrSC4r87rdwZT8vG2n8Q8eeIq2 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED-6DLr1Yeyrm9du02B7NLVk2XIYY5R1oV3XMugKedNsSR6M4GSNQ-i_1r9ud5bt7CGUvBTyEpKzzel0H9bvfgfwPikkkX7zsIxtGsrEZGGGgT10MnbCxoURJTU4n52nx5fy2zgZb8FN1wtDsMrOJzaO2k4NvSM_4Io8KUZfeVC2sIgfR6PPs78hTZCik9ZunIY3kVN3vcTybf7p5AjX-oMQo68_vxyH7YSB0KRC1lg8KZkVhbU8MTYvsmGhuJVZalWZRRg-sLgqpbA8M6XBRELIFCMikW2XPE1ELmO87j24r-J4SHBCNVarnswo9u0v6OcklmEtishjywgu7tvrCVzmiUObkWlrQ-Ngirt9XQa8Aw8W1Sy_XuaTyX9RcfQYHrXpLDv09vcEtlz1FLbP2gP7Z3BxyOrlNERTmrF8UU8bglg2nzj8jnnpb8cMpe-EV2pMhPmJ1oxeDzO7KAihy66oAYJZVzewseo5XN6JlndhUE0r9xKYTazIo6QQKpfSuLKwxPaTZkUZiVzlwwBUp0JtWpJzmrUx0R2a7Y9eKV-T8nXE8aMC4L3kzBN9bCAz7FZJd42s6Ho1RqMNZNU6WTdvfchccz0XOtIXDYUSdRgnDZsQSn7sJds0yac_G953j8yJJIkl2BCcCkWJSHKoeAD7nZXp1YP0Wy-Ad_3P6IbobCmvHFqC5ikm1hJLtezW_2AxK4USAbzwFtyrGjNvpbD2DUD0Jr3xOry6_anfwja6Cv395Px0Dx6SnIde7cOgvlq415hV1sWbZvsy-HXX_uIfSSmIUA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_KFfx48FsbW2VFX1OTvU02h0-HWorQItSD-rTsV6QakqOXUOpf70w2uYocegj3Eu6Gzd3M7vzm8pvfALzJjCDR7zQupy6PRWaLuMDEHnsx9dxNjeUlNTifnObHC_HpPDvfgddjLwzRKhsM7p5TaS5MddG8JZG7GfWJ7-YZAu4J7C5OP8-_hjM2iUXRj1alsdkxhpQY-DqBxUXE7NDITjSuINHZDyfbmIQmtPQmrHkXbnf1Ul9f6ar6Lf8c3YcP450H2smPw641h_bnH6KO__hqD-DegD_ZPATMQ9jx9SO4dTI8YX8MZ3PWXjUx-n7JdNc2vaIrW1UerxFIfvPMEt4mglHvUxZGUDP6P5e5zhClll1SxwJzvu15XvUTWBx9_PL-OB4GL8Q256LFmlKKwhjn0sw6bYqZkakTRe5kWSSYVbHmLAV3aWFLi_iKixyBAmmQl2mecS2mT2FSN7XfA-Yyx3WSGS61ENaXxpE8T16YMuFa6lkEcvSEsoMqOQ3HqNRIP_uubnyoyIcqSfElI0jXlsugzLGFzWx0tho7T_GsVJg-trCVm2z9atj0K5WqFVeJOus1j6glOOvlf9Dy3dpywDUBr2y57j5FDVmSrK8l_hOaDpETwcEYrOrmRiShDlxfRPBq_TaeG_QwSNceI0GlOSJhgbVV8dfPYPUpuOQRPAsbYf1TI1SWEovVCPh6Z2zth-f_Y7QPd-gq0KYOYNJedv4FIsLWvBxOhF-VPF6v |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-step+automatic+sleep+stage+classification+method+with+dubious+range+detection&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Sousa%2C+Teresa&rft.au=Cruz%2C+Aniana&rft.au=Khalighi%2C+Sirvan&rft.au=Pires%2C+Gabriel&rft.date=2015-04-01&rft.issn=0010-4825&rft.volume=59&rft.spage=42&rft.epage=53&rft_id=info:doi/10.1016%2Fj.compbiomed.2015.01.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2015_01_017 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482515X00035%2Fcov150h.gif |