Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data
Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis ( Ct ) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in...
Saved in:
| Published in | PLoS neglected tropical diseases Vol. 16; no. 3; p. e0010273 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
01.03.2022
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1935-2735 1935-2727 1935-2735 |
| DOI | 10.1371/journal.pntd.0010273 |
Cover
| Abstract | Trachoma is an infectious disease characterized by repeated exposures to
Chlamydia trachomatis
(
Ct
) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular
Ct
infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median
Ct
infection prevalence among children 0–5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and
Ct
infection was stronger among children 0–5 years old (ρ = 0.77) than children 6–9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and
Ct
infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0–5 years old (cross-validated R
2
= 0.75, 95% CI: 0.58–0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0–5 years old may be an objective tool for identifying communities with high levels of ocular
Ct
infections, but accurate, future prediction in the context of changing transmission remains an open challenge. |
|---|---|
| AbstractList | Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0–5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0–5 years old (ρ = 0.77) than children 6–9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0–5 years old (cross-validated R2 = 0.75, 95% CI: 0.58–0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0–5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge. Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0-5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0-5 years old ([rho] = 0.77) than children 6-9 years old ([rho] = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y [rho] = 0.56; 6-9y [rho] = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0-5 years old (cross-validated R.sup.2 = 0.75, 95% CI: 0.58-0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0-5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge. Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis ( Ct ) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0–5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0–5 years old (ρ = 0.77) than children 6–9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0–5 years old (cross-validated R 2 = 0.75, 95% CI: 0.58–0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0–5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge. Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0-5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0-5 years old (ρ = 0.77) than children 6-9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0-5 years old (cross-validated R2 = 0.75, 95% CI: 0.58-0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0-5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge.Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0-5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0-5 years old (ρ = 0.77) than children 6-9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0-5 years old (cross-validated R2 = 0.75, 95% CI: 0.58-0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0-5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge. Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities with high infection burden could help target more intensive control efforts. We hypothesized that IgG seroprevalence in combination with geospatial layers, machine learning, and model-based geostatistics would be able to accurately predict future community-level ocular Ct infections detected by PCR. We used measurements from 40 communities in the hyperendemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection prevalence among children 0–5 years old increased from 6% at enrollment, in the context of recent mass drug administration (MDA), to 29% by month 36, following three years without MDA. At baseline, correlation between seroprevalence and Ct infection was stronger among children 0–5 years old (ρ = 0.77) than children 6–9 years old (ρ = 0.48), and stronger than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40). Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 among children 0–5 years old (cross-validated R2 = 0.75, 95% CI: 0.58–0.85), though predictive performance declined substantially with increasing temporal lag between predictor and outcome measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble machine learning did not meaningfully improve predictions. Serological markers among children 0–5 years old may be an objective tool for identifying communities with high levels of ocular Ct infections, but accurate, future prediction in the context of changing transmission remains an open challenge. Trachoma, one of the leading infectious causes of blindness globally, is targeted for elimination as a public health problem by 2030. District-level estimates of active trachoma among children 1–9 years old are currently used to guide control programs and assess elimination. However, active trachoma, based on diagnosis of clinical signs, is a subjective indicator. Serological markers present an objective, scalable alternative that could be measured in integrated platforms. In a hyperendemic region, community-level seroprevalence aligned more closely with concurrent infection prevalence than active trachoma. The correlation between seroprevalence and infection prevalence was stronger among 0–5-year-olds compared to 6–9-year-olds and was consistent over a three-year period of increasing transmission. Serosurveillance among children 0–5 years old may be a promising monitoring strategy to identify communities with the highest burdens of ocular chlamydial infection. |
| Audience | Academic |
| Author | Wittberg, Dionna M. Gwyn, Sarah Tedijanto, Christine Sturrock, Hugh J. W. Zeru, Taye Nash, Scott D. Martin, Diana L. Lietman, Thomas M. Arnold, Benjamin F. Tadesse, Zerihun Haile, Mahteme Keenan, Jeremy D. Aragie, Solomon |
| AuthorAffiliation | King Saud University College of Medicine, SAUDI ARABIA 1 Francis I. Proctor Foundation, University of California, San Francisco, California, United States of America 3 Amhara Public Health Institute, Bahir Dar, Ethiopia 4 The Carter Center, Atlanta, Georgia, United States of America 5 Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America 7 Department of Ophthalmology, University of California, San Francisco, California, United States of America 6 Locational, Poole, United Kingdom 9 Institute for Global Health Sciences, University of California, San Francisco, California, United States of America 2 The Carter Center Ethiopia, Addis Ababa, Ethiopia 8 Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America |
| AuthorAffiliation_xml | – name: 8 Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America – name: 9 Institute for Global Health Sciences, University of California, San Francisco, California, United States of America – name: 5 Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America – name: 4 The Carter Center, Atlanta, Georgia, United States of America – name: 6 Locational, Poole, United Kingdom – name: 1 Francis I. Proctor Foundation, University of California, San Francisco, California, United States of America – name: 2 The Carter Center Ethiopia, Addis Ababa, Ethiopia – name: 3 Amhara Public Health Institute, Bahir Dar, Ethiopia – name: King Saud University College of Medicine, SAUDI ARABIA – name: 7 Department of Ophthalmology, University of California, San Francisco, California, United States of America |
| Author_xml | – sequence: 1 givenname: Christine orcidid: 0000-0003-3403-5765 surname: Tedijanto fullname: Tedijanto, Christine – sequence: 2 givenname: Solomon orcidid: 0000-0003-4967-9627 surname: Aragie fullname: Aragie, Solomon – sequence: 3 givenname: Zerihun surname: Tadesse fullname: Tadesse, Zerihun – sequence: 4 givenname: Mahteme orcidid: 0000-0001-9996-6742 surname: Haile fullname: Haile, Mahteme – sequence: 5 givenname: Taye surname: Zeru fullname: Zeru, Taye – sequence: 6 givenname: Scott D. orcidid: 0000-0001-5741-8537 surname: Nash fullname: Nash, Scott D. – sequence: 7 givenname: Dionna M. surname: Wittberg fullname: Wittberg, Dionna M. – sequence: 8 givenname: Sarah surname: Gwyn fullname: Gwyn, Sarah – sequence: 9 givenname: Diana L. surname: Martin fullname: Martin, Diana L. – sequence: 10 givenname: Hugh J. W. surname: Sturrock fullname: Sturrock, Hugh J. W. – sequence: 11 givenname: Thomas M. surname: Lietman fullname: Lietman, Thomas M. – sequence: 12 givenname: Jeremy D. orcidid: 0000-0002-7118-1457 surname: Keenan fullname: Keenan, Jeremy D. – sequence: 13 givenname: Benjamin F. orcidid: 0000-0001-6105-7295 surname: Arnold fullname: Arnold, Benjamin F. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35275911$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUtuK2zAQNWVL99L-QWkNhdKHTSpZVmT1obCEXhYW2of2WYzlcaIgS6lkp-Qr-suVN9klWZZS_KBBPufM6Jw5z06cd5hlLymZUibo-5UfggM7Xbu-mRJCSSHYk-yMSsYnqeQnB_Vpdh7jihAueUWfZaeMF4JLSs-yP98DNkb3xi3yduiHgLn2XTc4028nFjdoc68HCyGfLy1028ZA3gfQS99Bb2JuXIuJ7V2-DrgBi05jPsRRLmLw1i-MBnuZa2vcruq8xVvFyxxcky_Qx3WSAps30MPz7GkLNuKL_XmR_fz86cf86-Tm25fr-dXNRM-Ksp_QpqalELQCAUy2GsqiFtjUhEFRlcAZZWxWlRoFEgmcA2ul0FyUtahJIyi7yF7vdNfWR7X3MqpixinlhLEqIa53iMbDSq2D6SBslQejbi98WCgIvdEWFeWiTW1ZalSUQOuKtK2UnAiejrIUSYvvtAa3hu1vsPZekBI1xnk3ghrjVPs4E-_jfsqh7rDR6JL39miY4z_OLNXCb1QlyyK9JQm82wsE_2vA2KvORI3WgkM_jO9llSgqRsZebx5AH3dlj1qkrFVK34_bMIqqq5mUksgZHbWmj6DS12BndNrj1qT7I8LbA8ISwfbL6O0wblY8Br46dOTeiruNToByB9DBxxiw_V-nPzygadPD2D5Nbuy_yX8BPT4hqg |
| CitedBy_id | crossref_primary_10_1038_s41467_023_38940_5 crossref_primary_10_1371_journal_pone_0287464 crossref_primary_10_1093_infdis_jiad602 |
| Cites_doi | 10.1038/540189a 10.1016/j.trstmh.2008.02.014 10.1093/aje/152.3.204 10.1001/jamaophthalmol.2017.3062 10.1371/journal.pntd.0005230 10.1128/JCM.01446-09 10.1016/S1473-3099(18)30444-4 10.1214/aos/1013203451 10.1080/09286586.2019.1597129 10.1371/journal.pntd.0008422 10.1038/s41467-020-18321-y 10.4269/ajtmh.2010.09-0315 10.1371/journal.pntd.0005378 10.1371/journal.pntd.0000861 10.1371/journal.pone.0040421 10.1371/journal.pntd.0001548 10.1111/ecog.00566 10.1093/ije/31.1.194 10.1371/journal.pntd.0005080 10.1080/09286586.2017.1298823 10.1186/s13071-019-3790-3 10.1016/j.epidem.2017.01.007 10.1007/978-0-387-48536-2 10.1016/j.jinf.2020.01.015 10.1080/09286580600611427 10.1001/archophthalmol.2011.46 10.1038/s41598-020-71833-x 10.1111/2041-210X.13107 10.1016/j.trstmh.2005.06.013 10.1016/S0035-9203(03)90025-3 10.1038/s41598-017-15056-7 10.1016/j.trstmh.2004.06.010 10.3109/09286586.2014.884600 10.1038/nature20584 10.1093/femspd/ftx050 10.1111/j.1467-9469.2005.00469.x 10.1080/02255189.2011.622590 10.1371/journal.pntd.0005863 10.1371/journal.pntd.0008316 10.1515/ijb-2015-0013 10.1111/j.1365-3156.2008.02034.x 10.18637/jss.v033.i01 10.2202/1544-6115.1309 10.1111/ecog.02881 10.1007/BF00117832 10.3201/eid2407.171928 10.1080/01431161.2017.1342050 10.1080/09286586.2016.1243717 10.1371/journal.pntd.0003555 10.1371/journal.pntd.0004000 10.1371/journal.pntd.0004352 10.1111/j.1365-3156.2009.02436.x 10.1167/iovs.05-0326 10.1038/sdata.2017.191 10.1016/S0140-6736(13)62182-0 10.1371/journal.pntd.0000583 10.4269/ajtmh.20-1365 10.1093/infdis/jiz529 10.1111/j.1365-3156.2005.01553.x 10.1016/S1473-3099(18)30159-2 10.1167/iovs.14-14148 10.1017/CBO9780511802843 10.1016/S2214-109X(21)00409-5 10.1371/journal.pntd.0009343 10.1186/1471-2334-14-216 10.1136/bjo.2006.099507 10.1371/journal.pntd.0000799 10.1128/JCM.02595-10 10.3390/rs11091057 10.1136/bmjopen-2020-039529 10.1371/journal.pntd.0002900 10.1038/sdata.2015.66 10.3109/09286586.2015.1035792 10.1371/journal.pntd.0001873 10.1016/S0893-6080(05)80023-1 10.1093/ije/18.4.944 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Public Library of Science This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SS 7T2 7T7 7U9 7X7 7XB 88E 8C1 8FD 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BENPR C1K CCPQU DWQXO F1W FR3 FYUFA GHDGH H94 H95 H97 K9. L.G M0S M1P M7N P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pntd.0010273 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Entomology Abstracts (Full archive) Health and Safety Science Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts Health & Safety Science Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| DocumentTitleAlternate | Prediction of ocular Chlamydia trachomatis infection prevalence |
| EISSN | 1935-2735 |
| ExternalDocumentID | 2651150338 oai_doaj_org_article_157f2843a5524a1b80ff995075f99447 10.1371/journal.pntd.0010273 PMC8942265 A699909613 35275911 10_1371_journal_pntd_0010273 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | Ethiopia Africa |
| GeographicLocations_xml | – name: Ethiopia – name: Africa |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R03 AI147128 – fundername: NEI NIH HHS grantid: U10 EY023939 – fundername: NEI NIH HHS grantid: UG1 EY023939 – fundername: ; grantid: U10 EY023939 – fundername: ; grantid: R03 AI147128 – fundername: ; grantid: Unrestricted Grant |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8C1 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD ECGQY EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW ITC KQ8 M1P M48 O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP ADRAZ ALIPV CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ 3V. 7QL 7SS 7T2 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO F1W FR3 H94 H95 H97 K9. L.G M7N P64 PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY - AAPBV ABPTK ADACO BBAFP M~E |
| ID | FETCH-LOGICAL-c624t-1db147718a7a39fca42b7edb03a284a53133684ce7e09a55a3f97c574b7b0d713 |
| IEDL.DBID | UNPAY |
| ISSN | 1935-2735 1935-2727 |
| IngestDate | Sun Jul 31 00:44:55 EDT 2022 Fri Oct 03 12:53:01 EDT 2025 Sun Oct 26 04:16:54 EDT 2025 Tue Sep 30 16:42:08 EDT 2025 Fri Sep 05 14:41:22 EDT 2025 Mon Oct 20 03:06:08 EDT 2025 Mon Oct 20 21:54:03 EDT 2025 Mon Oct 20 16:19:59 EDT 2025 Thu May 22 21:21:40 EDT 2025 Mon Jul 21 06:05:03 EDT 2025 Wed Oct 01 01:44:54 EDT 2025 Thu Apr 24 23:03:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. cc-by Creative Commons CC0 public domain |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c624t-1db147718a7a39fca42b7edb03a284a53133684ce7e09a55a3f97c574b7b0d713 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-3403-5765 0000-0003-4967-9627 0000-0001-5741-8537 0000-0002-7118-1457 0000-0001-9996-6742 0000-0001-6105-7295 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1371/journal.pntd.0010273 |
| PMID | 35275911 |
| PQID | 2651150338 |
| PQPubID | 1436337 |
| ParticipantIDs | plos_journals_2651150338 doaj_primary_oai_doaj_org_article_157f2843a5524a1b80ff995075f99447 unpaywall_primary_10_1371_journal_pntd_0010273 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8942265 proquest_miscellaneous_2638728303 proquest_journals_2651150338 gale_infotracmisc_A699909613 gale_infotracacademiconefile_A699909613 gale_healthsolutions_A699909613 pubmed_primary_35275911 crossref_primary_10_1371_journal_pntd_0010273 crossref_citationtrail_10_1371_journal_pntd_0010273 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS neglected tropical diseases |
| PublicationTitleAlternate | PLoS Negl Trop Dis |
| PublicationYear | 2022 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | EB Goodhew (pntd.0010273.ref014) 2012; 6 SR Polack (pntd.0010273.ref076) 2005; 99 J-F Schémann (pntd.0010273.ref078) 2002 A Pinsent (pntd.0010273.ref018) 2017; 18 JT Abatzoglou (pntd.0010273.ref032) 2018; 5 MJ van der Laan (pntd.0010273.ref044) 2007 A Cama (pntd.0010273.ref062) 2017; 11 CD Elvidge (pntd.0010273.ref038) 2017; 38 F Liu (pntd.0010273.ref017) 2015; 9 A Davison (pntd.0010273.ref027) 1997 F Rousset (pntd.0010273.ref102) 2014; 37 PJ Diggle (pntd.0010273.ref030) 2007 MM Mesfin (pntd.0010273.ref086) 2006; 13 E Sata (pntd.0010273.ref003) 2021; 104 A Jarvis (pntd.0010273.ref034) 2008 SJ Migchelsen (pntd.0010273.ref068) 2017; 7 A Last (pntd.0010273.ref009) 2017; 75 JD Keenan (pntd.0010273.ref055) 2011; 129 ACA Clements (pntd.0010273.ref075) 2010; 4 C Mpyet (pntd.0010273.ref087) 2012; 7 AR Last (pntd.0010273.ref093) 2014; 8 D Benkeser (pntd.0010273.ref053) 2020 ES Nightingale (pntd.0010273.ref060) 2020; 14 JD Keenan (pntd.0010273.ref070) 2010; 82 B Thylefors (pntd.0010273.ref021) 1987; 65 KS O’Brien (pntd.0010273.ref012) 2019; 19 SJ Migchelsen (pntd.0010273.ref026) 2017; 11 AT Broman (pntd.0010273.ref006) 2006; 47 AM Ramadhani (pntd.0010273.ref072) 2016; 10 DH Wolpert (pntd.0010273.ref043) 1992; 5 S Aragie (pntd.0010273.ref020) 2022; 10 A Abdou (pntd.0010273.ref092) 2007; 91 K. Didan (pntd.0010273.ref033) 2015 HR Taylor (pntd.0010273.ref001) 2014; 384 A Pinsent (pntd.0010273.ref058) 2017; 11 J Friedman (pntd.0010273.ref101) 2010; 33 S Hulley (pntd.0010273.ref054) 2013 SK West (pntd.0010273.ref065) 2020; 10 I Phiri (pntd.0010273.ref081) 2018; 25 T Edwards (pntd.0010273.ref091) 2008; 13 FM Altherr (pntd.0010273.ref010) 2019; 12 SD Nash (pntd.0010273.ref061) 2020 A Amza (pntd.0010273.ref071) 2019; 26 M-G Basáñez (pntd.0010273.ref057) 2012; 6 Y Shen (pntd.0010273.ref059) 2020; 221 R Bailey (pntd.0010273.ref005) 1989; 18 J-F Pekel (pntd.0010273.ref035) 2016; 540 J Yohannan (pntd.0010273.ref008) 2014; 55 World Health Organization (pntd.0010273.ref002) 2019 L. Breiman (pntd.0010273.ref042) 1996; 24 C Funk (pntd.0010273.ref031) 2015; 2 JR Coyle (pntd.0010273.ref103) 2021 (pntd.0010273.ref095) 2018 PH Hiemstra (pntd.0010273.ref099) 2008 A Cheng (pntd.0010273.ref023) 2011; 49 C Mpyet (pntd.0010273.ref088) 2010; 15 JS Kim (pntd.0010273.ref064) 2019; 13 DL Martin (pntd.0010273.ref056) 2020; 14 JH Friedman (pntd.0010273.ref047) 2001; 29 DR Roberts (pntd.0010273.ref049) 2017; 40 BF Arnold (pntd.0010273.ref016) 2018; 24 B Amoah (pntd.0010273.ref097) 2021 C Vinke (pntd.0010273.ref090) 2011; 32 CRC Press (pntd.0010273.ref028) 2017 CE Rasmussen (pntd.0010273.ref041) 2006 World Health Organization (pntd.0010273.ref004) 2016 SK West (pntd.0010273.ref069) 2017; 135 DM Wittberg (pntd.0010273.ref019) 2021; 11 SC Woodhall (pntd.0010273.ref025) 2018; 18 P Diggle (pntd.0010273.ref077) 2006; 33 R Valavi (pntd.0010273.ref104) 2019; 10 KJ Ray (pntd.0010273.ref024) 2014; 21 T Hastie (pntd.0010273.ref045) 1986; 1 TO Kvålseth (pntd.0010273.ref051) 1985; 39 EB Goodhew (pntd.0010273.ref015) 2014; 14 R Core Team (pntd.0010273.ref098) 2020 SF Dowell (pntd.0010273.ref011) 2016; 540 B Bero (pntd.0010273.ref079) 2016; 23 SK West (pntd.0010273.ref067) 2016; 10 W Alemayehu (pntd.0010273.ref082) 2005; 99 N Gorelick (pntd.0010273.ref040) 2017 J Ngondi (pntd.0010273.ref084) 2008; 102 M Odonkor (pntd.0010273.ref074) 2021; 15 C Aybar (pntd.0010273.ref100) 2020 DL Martin (pntd.0010273.ref066) 2015; 9 P Ploton (pntd.0010273.ref050) 2020; 11 pntd.0010273.ref046 pntd.0010273.ref037 AW Solomon (pntd.0010273.ref096) 2019; 31 X Chen (pntd.0010273.ref094) 2019; 11 EM Harding-Esch (pntd.0010273.ref085) 2010; 4 S Gebresillasie (pntd.0010273.ref013) 2015; 22 Y-H Hsieh (pntd.0010273.ref080) 2000; 152 AE Hubbard (pntd.0010273.ref052) 2016; 12 M Hägi (pntd.0010273.ref007) 2010; 4 JH Friedman (pntd.0010273.ref048) 1991; 19 pntd.0010273.ref029 RF Baggaley (pntd.0010273.ref083) 2006; 11 TG Tiecke (pntd.0010273.ref036) 2017 SD Nash (pntd.0010273.ref073) 2018; 67 R Butcher (pntd.0010273.ref063) 2020; 80 JK Møller (pntd.0010273.ref022) 2010; 48 J-F Schémann (pntd.0010273.ref089) 2003; 97 DJ Weiss (pntd.0010273.ref039) 2020 |
| References_xml | – volume: 540 start-page: 189 issue: 7632 year: 2016 ident: pntd.0010273.ref011 article-title: Four steps to precision public health publication-title: Nature doi: 10.1038/540189a – volume: 65 start-page: 477 issue: 4 year: 1987 ident: pntd.0010273.ref021 article-title: A simple system for the assessment of trachoma and its complications publication-title: Bull World Health Organ – volume: 102 start-page: 432 issue: 5 year: 2008 ident: pntd.0010273.ref084 article-title: Risk factors for active trachoma in children and trichiasis in adults: a household survey in Amhara Regional State, Ethiopia publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/j.trstmh.2008.02.014 – volume: 152 start-page: 204 issue: 3 year: 2000 ident: pntd.0010273.ref080 article-title: Risk Factors for Trachoma: 6-Year Follow-up of Children Aged 1 and 2 Years publication-title: Am J Epidemiol doi: 10.1093/aje/152.3.204 – ident: pntd.0010273.ref029 – year: 2020 ident: pntd.0010273.ref039 article-title: Global maps of travel time to healthcare facilities publication-title: Nat Med – volume: 135 start-page: 1141 issue: 11 year: 2017 ident: pntd.0010273.ref069 article-title: Surveillance Surveys for Reemergent Trachoma in Formerly Endemic Districts in Nepal From 2 to 10 Years After Mass Drug Administration Cessation publication-title: JAMA Ophthalmol doi: 10.1001/jamaophthalmol.2017.3062 – volume: 11 start-page: e0005230 issue: 1 year: 2017 ident: pntd.0010273.ref026 article-title: Defining Seropositivity Thresholds for Use in Trachoma Elimination Studies. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0005230 – year: 2008 ident: pntd.0010273.ref034 article-title: Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m – volume: 48 start-page: 440 issue: 2 year: 2010 ident: pntd.0010273.ref022 article-title: Comparison of the Abbott RealTime CT New Formulation Assay with Two Other Commercial Assays for Detection of Wild-Type and New Variant Strains of Chlamydia trachomatis publication-title: J Clin Microbiol doi: 10.1128/JCM.01446-09 – volume: 19 start-page: e14 issue: 1 year: 2019 ident: pntd.0010273.ref012 article-title: Antimicrobial resistance following mass azithromycin distribution for trachoma: a systematic review publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(18)30444-4 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: pntd.0010273.ref047 article-title: Greedy Function Approximation: A Gradient Boosting Machine. publication-title: Ann Stat doi: 10.1214/aos/1013203451 – year: 2008 ident: pntd.0010273.ref099 article-title: Real-time automatic interpolation of ambient gamma dose rates from the Dutch Radioactivity Monitoring Network. publication-title: Comput Geosci. – volume: 26 start-page: 231 issue: 4 year: 2019 ident: pntd.0010273.ref071 article-title: Community-level Association between Clinical Trachoma and Ocular Chlamydia Infection after MASS Azithromycin Distribution in a Mesoendemic Region of Niger. publication-title: Ophthalmic Epidemiol doi: 10.1080/09286586.2019.1597129 – year: 2021 ident: pntd.0010273.ref103 article-title: sl3: Modern Pipelines for Machine Learning and Super Learning [ – volume: 14 start-page: e0008422 issue: 7 year: 2020 ident: pntd.0010273.ref060 article-title: A spatio-temporal approach to short-term prediction of visceral leishmaniasis diagnoses in India. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0008422 – volume: 11 start-page: 4540 issue: 1 year: 2020 ident: pntd.0010273.ref050 article-title: Spatial validation reveals poor predictive performance of large-scale ecological mapping models. publication-title: Nat Commun. doi: 10.1038/s41467-020-18321-y – volume: 82 start-page: 482 issue: 3 year: 2010 ident: pntd.0010273.ref070 article-title: Clinical Activity and Polymerase Chain Reaction Evidence of Chlamydial Infection after Repeated Mass Antibiotic Treatments for Trachoma publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2010.09-0315 – volume: 11 start-page: e0005378 issue: 2 year: 2017 ident: pntd.0010273.ref058 article-title: Improving our forecasts for trachoma elimination: What else do we need to know? publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0005378 – volume: 4 start-page: e861 issue: 11 year: 2010 ident: pntd.0010273.ref085 article-title: Trachoma Prevalence and Associated Risk Factors in The Gambia and Tanzania: Baseline Results of a Cluster Randomised Controlled Trial. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000861 – volume: 7 start-page: e40421 issue: 7 year: 2012 ident: pntd.0010273.ref087 article-title: Prevalence of and Risk Factors for Trachoma in Kano State, Nigeria. publication-title: PLOS ONE. doi: 10.1371/journal.pone.0040421 – volume: 6 start-page: e1548 issue: 4 year: 2012 ident: pntd.0010273.ref057 article-title: A Research Agenda for Helminth Diseases of Humans: Modelling for Control and Elimination. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0001548 – volume: 37 start-page: 781 issue: 8 year: 2014 ident: pntd.0010273.ref102 article-title: Testing environmental and genetic effects in the presence of spatial autocorrelation. publication-title: Ecography. doi: 10.1111/ecog.00566 – start-page: 194 issue: 31 year: 2002 ident: pntd.0010273.ref078 article-title: Risk factors for trachoma in Mali. publication-title: Int J Epidemiol doi: 10.1093/ije/31.1.194 – volume: 10 start-page: e0005080 issue: 10 year: 2016 ident: pntd.0010273.ref072 article-title: The Relationship between Active Trachoma and Ocular Chlamydia trachomatis Infection before and after Mass Antibiotic Treatment. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0005080 – volume: 25 start-page: 181 issue: sup1 year: 2018 ident: pntd.0010273.ref081 article-title: The Burden of and Risk Factors for Trachoma in Selected Districts of Zimbabwe: Results of 16 Population-Based Prevalence Surveys. publication-title: Ophthalmic Epidemiol doi: 10.1080/09286586.2017.1298823 – volume: 12 start-page: 540 issue: 1 year: 2019 ident: pntd.0010273.ref010 article-title: Associations between Water, Sanitation and Hygiene (WASH) and trachoma clustering at aggregate spatial scales, Amhara, Ethiopia. publication-title: Parasit Vectors. doi: 10.1186/s13071-019-3790-3 – volume: 18 start-page: 48 year: 2017 ident: pntd.0010273.ref018 article-title: Probabilistic forecasts of trachoma transmission at the district level: A statistical model comparison. publication-title: Epidemics. doi: 10.1016/j.epidem.2017.01.007 – volume-title: Model-Based Geostatistics. year: 2007 ident: pntd.0010273.ref030 doi: 10.1007/978-0-387-48536-2 – volume: 80 start-page: 454 issue: 4 year: 2020 ident: pntd.0010273.ref063 article-title: Ocular Chlamydia trachomatis infection, anti-Pgp3 antibodies and conjunctival scarring in Vanuatu and Tarawa, Kiribati before antibiotic treatment for trachoma. publication-title: J Infect doi: 10.1016/j.jinf.2020.01.015 – volume: 13 start-page: 173 issue: 3 year: 2006 ident: pntd.0010273.ref086 article-title: A Community-Based Trachoma Survey: Prevalence and Risk Factors in the Tigray Region of Northern Ethiopia. publication-title: Ophthalmic Epidemiol. doi: 10.1080/09286580600611427 – volume: 129 start-page: 512 issue: 4 year: 2011 ident: pntd.0010273.ref055 article-title: Slow resolution of clinically active trachoma following successful mass antibiotic treatments publication-title: Arch Ophthalmol Chic Ill 1960 doi: 10.1001/archophthalmol.2011.46 – volume-title: Design parameters for population-based trachoma prevalence surveys year: 2018 ident: pntd.0010273.ref095 – volume: 10 start-page: 15225 issue: 1 year: 2020 ident: pntd.0010273.ref065 article-title: The effect of Mass Drug Administration for trachoma on antibodies to Chlamydia trachomatis pgp3 in children. publication-title: Sci Rep doi: 10.1038/s41598-020-71833-x – volume: 10 start-page: 225 issue: 2 year: 2019 ident: pntd.0010273.ref104 article-title: blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13107 – year: 2020 ident: pntd.0010273.ref053 article-title: A machine learning-based approach for estimating and testing associations with multivariate outcomes. publication-title: Int J Biostat – volume: 99 start-page: 840 issue: 11 year: 2005 ident: pntd.0010273.ref082 article-title: Active trachoma in children in central Ethiopia: association with altitude publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/j.trstmh.2005.06.013 – ident: pntd.0010273.ref037 – volume-title: Cluster Randomised Trials year: 2017 ident: pntd.0010273.ref028 – volume: 97 start-page: 63 issue: 1 year: 2003 ident: pntd.0010273.ref089 article-title: Trachoma, flies and environmental factors in Burkina Faso publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/S0035-9203(03)90025-3 – volume: 7 start-page: 15040 issue: 1 year: 2017 ident: pntd.0010273.ref068 article-title: Serology reflects a decline in the prevalence of trachoma in two regions of The Gambia. publication-title: Sci Rep doi: 10.1038/s41598-017-15056-7 – volume: 99 start-page: 218 issue: 3 year: 2005 ident: pntd.0010273.ref076 article-title: The household distribution of trachoma in a Tanzanian village: an application of GIS to the study of trachoma publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/j.trstmh.2004.06.010 – volume: 21 start-page: 86 issue: 2 year: 2014 ident: pntd.0010273.ref024 article-title: Estimating Community Prevalence of Ocular Chlamydia trachomatis Infection using Pooled Polymerase Chain Reaction Testing. publication-title: Ophthalmic Epidemiol doi: 10.3109/09286586.2014.884600 – volume: 540 start-page: 418 issue: 7633 year: 2016 ident: pntd.0010273.ref035 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature doi: 10.1038/nature20584 – volume: 75 issue: 5 year: 2017 ident: pntd.0010273.ref009 article-title: Spatial clustering of high load ocular Chlamydia trachomatis infection in trachoma: a cross-sectional population-based study. publication-title: Pathog Dis doi: 10.1093/femspd/ftx050 – ident: pntd.0010273.ref046 – volume: 33 start-page: 53 issue: 1 year: 2006 ident: pntd.0010273.ref077 article-title: Bayesian Geostatistical Design. publication-title: Scand J Stat doi: 10.1111/j.1467-9469.2005.00469.x – volume: 32 start-page: 254 issue: 3 year: 2011 ident: pntd.0010273.ref090 article-title: Social and environmental risk factors for trachoma: a mixed methods approach in the Kembata Zone of southern Ethiopia publication-title: Can J Dev Stud Can Détudes Dév doi: 10.1080/02255189.2011.622590 – volume: 19 start-page: 1 issue: 1 year: 1991 ident: pntd.0010273.ref048 article-title: Multivariate Adaptive Regression Splines. publication-title: Ann Stat. – volume: 11 start-page: e0005863 issue: 9 year: 2017 ident: pntd.0010273.ref062 article-title: Prevalence of signs of trachoma, ocular Chlamydia trachomatis infection and antibodies to Pgp3 in residents of Kiritimati Island, Kiribati. publication-title: PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0005863 – start-page: 349 volume-title: WHO Alliance for the Global Elimination of Trachoma by 2020: progress report year: 2019 ident: pntd.0010273.ref002 – volume: 14 start-page: e0008316 issue: 9 year: 2020 ident: pntd.0010273.ref056 article-title: The use of serology for trachoma surveillance: Current status and priorities for future investigation. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0008316 – volume: 31 start-page: S5 issue: 104 year: 2019 ident: pntd.0010273.ref096 article-title: How much trachomatous trichiasis is there? A guide to calculating district-level estimates. publication-title: Community Eye Health – volume: 12 start-page: 3 issue: 1 year: 2016 ident: pntd.0010273.ref052 article-title: Statistical Inference for Data Adaptive Target Parameters. publication-title: Int J Biostat doi: 10.1515/ijb-2015-0013 – volume: 13 start-page: 556 issue: 4 year: 2008 ident: pntd.0010273.ref091 article-title: Risk factors for active trachoma and Chlamydia trachomatis infection in rural Ethiopia after mass treatment with azithromycin publication-title: Trop Med Int Health doi: 10.1111/j.1365-3156.2008.02034.x – year: 2015 ident: pntd.0010273.ref033 article-title: MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set] publication-title: Internet]. NASA EOSDIS Land Processes DAAC – volume: 33 start-page: 1 issue: 1 year: 2010 ident: pntd.0010273.ref101 article-title: Regularization Paths for Generalized Linear Models via Coordinate Descent. publication-title: J Stat Softw doi: 10.18637/jss.v033.i01 – year: 2007 ident: pntd.0010273.ref044 article-title: Super Learner. doi: 10.2202/1544-6115.1309 – volume: 1 start-page: 297 issue: 3 year: 1986 ident: pntd.0010273.ref045 article-title: Generalized Additive Models. publication-title: Stat Sci. – volume: 40 start-page: 913 issue: 8 year: 2017 ident: pntd.0010273.ref049 article-title: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure publication-title: Ecography doi: 10.1111/ecog.02881 – year: 2017 ident: pntd.0010273.ref040 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone. publication-title: Remote Sens Environ – volume: 24 start-page: 49 issue: 1 year: 1996 ident: pntd.0010273.ref042 article-title: Stacked regressions publication-title: Mach Learn doi: 10.1007/BF00117832 – volume: 24 start-page: 1188 issue: 7 year: 2018 ident: pntd.0010273.ref016 article-title: Integrated Serologic Surveillance of Population Immunity and Disease Transmission publication-title: Emerg Infect Dis doi: 10.3201/eid2407.171928 – volume: 38 start-page: 5860 issue: 21 year: 2017 ident: pntd.0010273.ref038 article-title: VIIRS night-time lights publication-title: Int J Remote Sens doi: 10.1080/01431161.2017.1342050 – volume: 23 start-page: 392 issue: 6 year: 2016 ident: pntd.0010273.ref079 article-title: Prevalence of and Risk Factors for Trachoma in Oromia Regional State of Ethiopia: Results of 79 Population-Based Prevalence Surveys Conducted with the Global Trachoma Mapping Project. publication-title: Ophthalmic Epidemiol doi: 10.1080/09286586.2016.1243717 – volume: 67 start-page: 1840 issue: 12 year: 2018 ident: pntd.0010273.ref073 article-title: Ocular Chlamydia trachomatis Infection Under the Surgery, Antibiotics, Facial Cleanliness, and Environmental Improvement Strategy in Amhara, Ethiopia, 2011–2015. publication-title: Clin Infect Dis – volume: 9 start-page: e0003555 issue: 2 year: 2015 ident: pntd.0010273.ref066 article-title: Serology for Trachoma Surveillance after Cessation of Mass Drug Administration. publication-title: PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0003555 – volume: 9 start-page: e0004000 issue: 8 year: 2015 ident: pntd.0010273.ref017 article-title: Short-term Forecasting of the Prevalence of Trachoma: Expert Opinion, Statistical Regression, versus Transmission Models. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0004000 – volume: 10 start-page: e0004352 issue: 1 year: 2016 ident: pntd.0010273.ref067 article-title: Can We Use Antibodies to Chlamydia trachomatis as a Surveillance Tool for National Trachoma Control Programs? Results from a District Survey. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0004352 – year: 2021 ident: pntd.0010273.ref097 article-title: Model-based geostatistics enables more precise estimates of neglected tropical-disease prevalence in elimination settings: mapping trachoma prevalence in Ethiopia. publication-title: Int J Epidemiol – start-page: 79 volume-title: Designing clinical research: an epidemiologic approach year: 2013 ident: pntd.0010273.ref054 – volume: 15 start-page: 168 issue: 2 year: 2010 ident: pntd.0010273.ref088 article-title: Personal and environmental risk factors for active trachoma in children in Yobe state, north-eastern Nigeria publication-title: Trop Med Int Health doi: 10.1111/j.1365-3156.2009.02436.x – volume: 47 start-page: 99 issue: 1 year: 2006 ident: pntd.0010273.ref006 article-title: Spatial Clustering of Ocular Chlamydial Infection over Time following Treatment, among Households in a Village in Tanzania publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.05-0326 – volume: 5 start-page: 170191 issue: 1 year: 2018 ident: pntd.0010273.ref032 article-title: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. publication-title: Sci Data. doi: 10.1038/sdata.2017.191 – volume: 384 start-page: 2142 issue: 9960 year: 2014 ident: pntd.0010273.ref001 article-title: Trachoma. publication-title: The Lancet doi: 10.1016/S0140-6736(13)62182-0 – volume: 4 start-page: e583 issue: 1 year: 2010 ident: pntd.0010273.ref007 article-title: Active Trachoma among Children in Mali: Clustering and Environmental Risk Factors. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000583 – volume: 104 start-page: 1278 issue: 4 year: 2021 ident: pntd.0010273.ref003 article-title: Twelve-Year Longitudinal Trends in Trachoma Prevalence among Children Aged 1–9 Years in Amhara, Ethiopia, 2007–2019. publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.20-1365 – volume: 221 start-page: 796 issue: 5 year: 2020 ident: pntd.0010273.ref059 article-title: Modeling Approaches to Predicting Persistent Hotspots in SCORE Studies for Gaining Control of Schistosomiasis Mansoni in Kenya and Tanzania publication-title: J Infect Dis doi: 10.1093/infdis/jiz529 – volume: 13 issue: 1 year: 2019 ident: pntd.0010273.ref064 article-title: Community-level chlamydial serology for assessing trachoma elimination in trachoma-endemic Niger. publication-title: PLoS Negl Trop Dis – volume: 11 start-page: 220 issue: 2 year: 2006 ident: pntd.0010273.ref083 article-title: Distance to water source and altitude in relation to active trachoma in Rombo district, Tanzania. publication-title: Trop Med Int Health TM IH doi: 10.1111/j.1365-3156.2005.01553.x – volume: 18 start-page: e399 issue: 12 year: 2018 ident: pntd.0010273.ref025 article-title: Advancing the public health applications of Chlamydia trachomatis serology publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(18)30159-2 – volume: 55 start-page: 4144 issue: 7 year: 2014 ident: pntd.0010273.ref008 article-title: Geospatial Distribution and Clustering of Chlamydia trachomatis in Communities Undergoing Mass Azithromycin Treatment publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.14-14148 – start-page: 100 volume-title: Bootstrap Methods and their Application year: 1997 ident: pntd.0010273.ref027 doi: 10.1017/CBO9780511802843 – volume: 10 start-page: e87 issue: 1 year: 2022 ident: pntd.0010273.ref020 article-title: Water, sanitation, and hygiene for control of trachoma in Ethiopia (WUHA): a two-arm, parallel-group, cluster-randomised trial. publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(21)00409-5 – volume-title: Validation of elimination of trachoma as a public health problem year: 2016 ident: pntd.0010273.ref004 – year: 2006 ident: pntd.0010273.ref041 – volume: 15 start-page: e0009343 issue: 4 year: 2021 ident: pntd.0010273.ref074 article-title: Serology, infection, and clinical trachoma as tools in prevalence surveys for re-emergence of trachoma in a formerly hyperendemic district. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0009343 – year: 2020 ident: pntd.0010273.ref100 article-title: rgee: An R package for interacting with Google Earth Engine. publication-title: J Open Source Softw. – volume: 39 start-page: 279 issue: 4 year: 1985 ident: pntd.0010273.ref051 article-title: Cautionary Note about R 2. publication-title: Am Stat – volume: 14 start-page: 3154 issue: 1 year: 2014 ident: pntd.0010273.ref015 article-title: Longitudinal analysis of antibody responses to trachoma antigens before and after mass drug administration. publication-title: BMC Infect Dis doi: 10.1186/1471-2334-14-216 – volume: 91 start-page: 13 issue: 1 year: 2007 ident: pntd.0010273.ref092 article-title: Prevalence and risk factors for trachoma and ocular Chlamydia trachomatis infection in Niger publication-title: Br J Ophthalmol doi: 10.1136/bjo.2006.099507 – volume: 4 start-page: e799 issue: 8 year: 2010 ident: pntd.0010273.ref075 article-title: Targeting Trachoma Control through Risk Mapping: The Example of Southern Sudan. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000799 – volume: 49 start-page: 1294 issue: 4 year: 2011 ident: pntd.0010273.ref023 article-title: Evaluation of the Abbott RealTime CT/NG Assay in Comparison to the Roche Cobas Amplicor CT/NG Assay publication-title: J Clin Microbiol doi: 10.1128/JCM.02595-10 – volume: 11 start-page: 1057 issue: 9 year: 2019 ident: pntd.0010273.ref094 article-title: VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP. publication-title: Remote Sens. doi: 10.3390/rs11091057 – volume: 11 start-page: e039529 issue: 2 year: 2021 ident: pntd.0010273.ref019 article-title: WASH Upgrades for Health in Amhara (WUHA): study protocol for a cluster-randomised trial in Ethiopia. publication-title: BMJ Open doi: 10.1136/bmjopen-2020-039529 – volume: 8 start-page: e2900 issue: 6 year: 2014 ident: pntd.0010273.ref093 article-title: Risk Factors for Active Trachoma and Ocular Chlamydia trachomatis Infection in Treatment-Naïve Trachoma-Hyperendemic Communities of the Bijagós Archipelago, Guinea Bissau. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0002900 – volume: 2 start-page: 150066 issue: 1 year: 2015 ident: pntd.0010273.ref031 article-title: The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. publication-title: Sci Data. doi: 10.1038/sdata.2015.66 – volume: 22 start-page: 162 issue: 3 year: 2015 ident: pntd.0010273.ref013 article-title: Inter-Rater Agreement between Trachoma Graders: Comparison of Grades Given in Field Conditions versus Grades from Photographic Review. publication-title: Ophthalmic Epidemiol. doi: 10.3109/09286586.2015.1035792 – volume: 6 start-page: e1873 issue: 11 year: 2012 ident: pntd.0010273.ref014 article-title: CT694 and pgp3 as Serological Tools for Monitoring Trachoma Programs. publication-title: PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0001873 – volume-title: R: A language and environment for statistical computing. year: 2020 ident: pntd.0010273.ref098 – volume: 5 start-page: 241 issue: 2 year: 1992 ident: pntd.0010273.ref043 article-title: Stacked generalization. publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80023-1 – year: 2020 ident: pntd.0010273.ref061 article-title: Population-Based Prevalence of Chlamydia trachomatis Infection and Antibodies in four Districts with Varying Levels of Trachoma Endemicity in Amhara, Ethiopia publication-title: Am J Trop Med Hyg – year: 2017 ident: pntd.0010273.ref036 article-title: Mapping the world population one building at a time. publication-title: ArXiv171205839 Cs – volume: 18 start-page: 944 issue: 4 year: 1989 ident: pntd.0010273.ref005 article-title: Analysis of the Household Distribution of Trachoma in a Gambian Village Using a Monte Carlo Simulation Procedure. publication-title: Int J Epidemiol. doi: 10.1093/ije/18.4.944 |
| SSID | ssj0059581 |
| Score | 2.3853817 |
| Snippet | Trachoma is an infectious disease characterized by repeated exposures to
Chlamydia trachomatis
(
Ct
) that may ultimately lead to blindness. Efficient... Trachoma is an infectious disease characterized by repeated exposures to Chlamydia trachomatis (Ct) that may ultimately lead to blindness. Efficient... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0010273 |
| SubjectTerms | Age groups Analysis Anti-Bacterial Agents - therapeutic use Antibiotics Antigens Azithromycin Biology and Life Sciences Blindness Care and treatment Child Child, Preschool Children Chlamydia Chlamydia trachomatis Complications and side effects Computer and Information Sciences Context Correlation Development and progression Disease transmission Ethiopia - epidemiology Gaussian process Geospatial data Geostatistics Humans Immunoglobulin G Infant Infant, Newborn Infections Infectious diseases Inflammation Learning algorithms Machine learning Medicine and Health Sciences Methods Nucleotide sequence PCR People and Places Performance prediction Physical Sciences Prevalence Prevention Public health Research and Analysis Methods Risk factors Sanitation Seroepidemiologic Studies Serology Sexually transmitted diseases Spatial data STD Trachoma Trachoma - prevention & control Transmission Tropical diseases |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQHoAL4t1AASMhcdlsk_gVH0tFVSEVcaBSb5HjOC3SkkS7WaH9FfxlZuwkakSlcuC0q_Uk2cw3Ho-TmW8I-WBVba3QMpamkjHXMo9zqZK4NFZmzrIq888hz7_Kswv-5VJc3mj1hTlhgR44KO4oFaoGF8qMEBk3aZknda01RDECPjj3deRJrsfNVPDBQgvfnhSiE6y4ytRQNMdUejRgtOqavlp5SjXFZouS5-6fPPSiW7fb28LPv7MoH-yazux_mfX6xhJ1-pg8GmJLehzu6Qm555qn5P758Pb8Gfn9bYPfMdGZBi4RakN9SL-P15g9RFuflkpPrsFQ9mA6FK6J7VSwBoKOiVsN7TbIEo5OgWLi_BUFQx696JKO1ZZL-nNsvrukpqnolWu3mMENfxIzU5-Ti9PP30_O4qEhQwzA8T5OqzLlClYzowzTtTU8K5WryoQZgMjAdGZM5tw65RINgBlWa2WF4qUqkwq2wy_Iomkbd0Co4C5LZQXRDzNcW6PLTNrKpUZY4yCGjAgbESnswFaOTTPWhX8Fp2DXEpRaII7FgGNE4umoLrB13CH_CcGeZJFr2_8AFlgMFljcZYEReYemUoTC1cljFMcSgm_sqAOX-egl0GcgbGYofQBVIPvWTPJwJglz3c6GD9Acx3vZFpkUGNIzlsORo4nePvx-GsaTYmpd49odyrBcIQ0cnP1lsOhJHxCdKwHLYUTUzNZnCpuPND-uPUl5rrFGW0RkNc2Kf4Lk1f-A5DV5mGGZis8VPCSLfrNzbyB47Mu33k_8AdXfbPY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_qFVQootXa06orCL5crpfsV_Ig0paWIvQoYqFvYbO7uQpnkt4Hcn-F_7Izmw8NFvXpIDvJ7e7MzszuzvyGkHdG5caIRAZSWxnwRMZBLNUkyLSRkTPMRv4c8mIqz6_4p2txvUWmbS4MhlW2OtEralsaPCM_jKRA5wV2VB-r2wCrRuHtaltCQzelFewHDzF2j2xHiIw1INvHp9PLz61uFonwZUvBa8FMrEg1yXRMhYcN78ZVsbJjD7WmWM9YeUz_TnMPqnm5vMst_TO68sG6qPTmu57PfzNdZ4_Jo8bnpEe1kDwhW67YJfcvmlv1XbJTn93ROiXpKflxucA2DIimNeYINXUeyWoTzDHKiJY-fJWe3IBAbUDEKPQBy65grgRtA7wKWi0QTRyVB8UA-xkFgW-17Yi2WZkj-q0t0juiurB05solRnpDpzGC9Rm5Ojv9cnIeNIUbAmAwXwWhzUKuwOpppVmSG82jTDmbTZgGa6hh2TMmY26ccpNEC6FZnigjFM9UNrGwbd4jg6Is3D6hgrsolBa8JKZ5YnSSRdJYF2phtANfc0hYy6HUNKjmWFxjnvqrOgW7m3qSU-Rr2vB1SILurapG9fgH_TEyv6NFTG7_oFzM0maJp6FQOQyPwYAirsMsnuR5koC_LeCHc-jqGxSdtE5w7TRLeiTBScfKO_A37z0F6hZkm25SJGAqEKWrR3nQowSdYHrN-yie7ViW6a_VA2-2Int389uuGT-KIXiFK9dIw2KFcHHw9ee1hHfzAV68EmA2h0T1ZL83Yf2W4uuNBzOPE8zlFkMy7lbJf7Hkxd_H8ZI8jDBRxUcLHpDBarF2r8B9XGWvG53wE7PRcXo priority: 102 providerName: ProQuest – databaseName: Scholars Portal: Open Access Journals [open access] dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1di9QwMJwrqC_i962eGkHwZbtsm6_mQeQ8PA5hxQcX7q2kabon1HbtdtH9Ff5lZ9IPLK54Ty3NJG1mJjOTZj4IeW1Vbq3QMpAmkwHXMg5iqRZBaqyMnGVZ5P9DLj_JixX_eCkuj0hfs7VD4Pbg1g7rSa3qYv7z-_4dLPi3vmqDCvtO803ZZHOfJE2xG-Qm6CqNxRyWfDhXEFr4sqVgtWAkVqS6YLp_jTJSVj6n_yC5J5ui2h4yS__2rry9Kzdm_8MUxR-q6_weudvZnPS0ZZL75MiVD8itZXeq_pD8-lzjPTpA0zbHCLVt3EizDwr0KqKVd1elZ1fAQHtgKQrvxDIrGBtBe4eukm5qzB6OwoKiQ_2aAoP30nVG-yjMGf3WF-WdUVNmdO2qLXp2w0eix-ojsjr_8OXsIugKNQRAUN4EYZaGXIGWM8ownVvDo1S5LF0wA9rPwDJnTMbcOuUW2ghhWK6VFYqnKl1ksE1-TCZlVbpjQgV3USgzsIqY4doanUbSZi40whoHtuWUsJ4iie2ymGMxjSLxR3MKdjMtUhOkY9LRcUqCodemzeLxH_j3SOwBFnNw-wdVvU66JZ2EQuUwPQYTirgJ03iR51qDfS3gwjl86ktklaQNaB0kSXIqwSjHSjvwmjceArkbyWa6kAhABWblGkGejCBBBthR8zGyYz-XbRJJgaY-YzH07Fn0cPOroRkHRZe70lU7hGGxwvRwMPqTlqMHfIDVrgSoySlRI14fIWzcUn698snLY42x22JK5sOquBZJnl4bV8_InQhjVLyj4AmZNPXOPQfLsUlfeGHwGyEpcAU priority: 102 providerName: Scholars Portal |
| Title | Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35275911 https://www.proquest.com/docview/2651150338 https://www.proquest.com/docview/2638728303 https://pubmed.ncbi.nlm.nih.gov/PMC8942265 https://doi.org/10.1371/journal.pntd.0010273 https://doaj.org/article/157f2843a5524a1b80ff995075f99447 http://dx.doi.org/10.1371/journal.pntd.0010273 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: KQ8 dateStart: 20070830 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: ABDBF dateStart: 20090401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: 7X7 dateStart: 20071001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: BENPR dateStart: 20071001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1935-2735 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: 8C1 dateStart: 20071001 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1935-2735 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0059581 issn: 1935-2727 databaseCode: M48 dateStart: 20071001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw0NpaCXjhm60wipGQeGlKEn8lj121aUJqVSEqlafIcZwN0aVVmwqVP8Ff5i5fWmCI8ZJG9dnJnc935_g-CHlnVGqMCKUjdSIdHsrACaRynVgb6VvDEr_4DjmZyos5_7gQiwMyqGNhbp7fM-V9qCg6XGd5MiwSoCl2SLoShnc7pDufzkZfyoNjDK0qKrRW90xUkXJ_G6aliYqE_Y1Y7qyXq-1tNuefrpP3d9la77_r5fKGXjp_RCY1RqU7yrfhLo-H5sdvyR7vivJj8rAyUOmo5Kgn5MBmT8m9SXUE_4z8nG3wHr2laZmQhJoyyCTfO0t0QaKrwreVjq-A2_bAfxRwwJosGEhBa--vjK43mGocJQtF7_tLCquhFsUDWodsDuh1XcF3QHWW0Eu72qIbOLwkurc-J_Pzs8_jC6eq6uDA7PPc8ZLY4wpUolaahanR3I-VTWKXaVCVGmQCYzLgxirrhloIzdJQGaF4rGI3gT31C9LJVpk9JlRw63syAROKaR4aHca-NIn1tDDagiHaI6ye4chUKc-x8sYyKs7xFGx9SqJGSOuoonWPOE2vdZny4x_wp8g8DSwm7C7-gEmNqvUfeUKlgB4DhHyuvThw0zQMwRgX8MM5vOobZL2ojH5txE40kmDBY1keeMz7AgIFD06bruIngBSYwqsFedKCBIFhWs3HyN41LtvIlwL3BYwF0LNm-dub3zbNOCj652V2tUMYFijMJQejH5UrpKEHmPhKgE7tEdVaOy2CtVuyr1dFpvMgxEBv0SPDZpXdaUpe_m-HV-SBj3EthXPhCenkm519DdZmHvfJoVoouAZjr0-6p2fT2ad-8eUGrhMe9Csh9AusTYQa |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkRgSQjAuKwxmJBAvTdfEt-QBoTGYOrZOPGxS34LjOB1SSUovmvor-Cf8Rs5xLhAxAS97qlSfJLbP8edz7HMh5KVRmTEikp7UqfR4JEMvlGrgJdrIwBqWBu4ccnQqh-f841iMN8iPOhYG3SprTHRAnRYGz8j3AilQeQGL6u3sm4dVo_B2tS6hUYrFsV1fgsm2eHP0Hvj7KggOP5wdDL2qqoAHX-dLz08TnyuAZK00izKjeZAomyYDpgGqNcgkYzLkxio7iLQQmmWRMkLxRCWDFGw6eO8NcpMzwBJYP2rcGHgiEq4oKuhEGOcVqCpUjyl_r5KM_ixfpn2XyE2x1lboKgY0-0JnNi0WVym9f_pubq7ymV5f6un0t43x8B65W2m0dL8Uwftkw-Zb5NaourPfInfKk0FaBjw9IN8_zbEN3a1pmdGEmjJKZbn2pujDRAvnHEsPLkBc1yDAFPqARV0wEoPW7mM5nc0xVzlCE0X3_QmF5VRjeY_WMZ89-rUuAdyjOk_pxBYL9COHTqN_7ENyfi0MfEQ6eZHbbUIFt4EvU9DBmOaR0VESSJNaXwujLWiyXcJqDsWmypmOpTumsbsIVGA7lZMcI1_jiq9d4jVPzcqcIf-gf4fMb2gx47f7o5hP4gpAYl-oDIbHYEAB134SDrIsikCbF_DDOXR1F0UnLsNnG9yK9yWYAFjXBz7z2lEgciHbdBWAAVOBOcBalDstSkAc02reRvGsx7KIf61NeLIW2aubXzTN-FJ08MttsUIaFipMRgdvf1xKeDMfYCMoAZtyl6iW7LcmrN2Sf7lwqdLDCCPFRZf0m1XyXyx58vdx7JLN4dnoJD45Oj1-Sm4HGBLj_BJ3SGc5X9lnoKguk-cOHSj5fN1w9BPmmqcd |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkQYSQjA-VhjMSCBemraJYzt-QGhsVBtj0x6Y1LfgOE6HVJLSD039K_h_-Ou4cz4gYgJe9lQpdlLbd_n5zvndHSEvjcyM4Up4QqfCC5WIvEjIoZdoIwJrWBq4c8iTU3F4Hn4Y8_EG-VHHwiCtssZEB9RpYfCMfBAIjsYLeFSDrKJFnB2M3s6-eVhBCr-01uU0ShU5tutLcN8Wb44OQNavgmD0_tP-oVdVGPBgJOHS89PEDyXAs5aaqczoMEikTZMh0wDbGvSTMRGFxko7VJpzzTIlDZdhIpNhCv4dPPcGuSkZU0gnlOPG2eOKuwKpYB9hzFcgq7A9Jv1BpSX9Wb5M-y6pm2StbdFVD2j2iM5sWiyuMoD_5HHeWuUzvb7U0-lvm-ToHrlbWbd0r1TH-2TD5ltk86T6fr9F7pSnhLQMfnpAvp_NsQ2p17TMbkJNGbGyXHtT5DPRwhFl6f4FqO4alJnCGLDAC0Zl0JpKltPZHPOWI0xRpPJPKLxaNa73aB3_2aNf63LAParzlE5ssUBOOQwaubIPyfm1CPAR6eRFbrcJ5aENfJGCPcZ0qIxWSSBMan3NjbZg1XYJqyUUmyp_OpbxmMbuo6AEP6pc5BjlGldy7RKvuWtW5g_5R_93KPymL2b_dheK-SSuwCT2ucxgegwmFITaT6JhlikFlj2HnzCEoe6i6sRlKG2DYfGeAHcAa_zA37x2PRDFUGy6CsaApcB8YK2eO62egD6m1byN6lnPZRH_ek_hzlplr25-0TTjQ5Hsl9tihX1YJDExHTz9canhzXqAvyA5bNBdIlu631qwdkv-5cKlTY8URo3zLuk3b8l_ieTJ3-exSzYBiOKPR6fHT8ntAKNjHEVxh3SW85V9BjbrMnnuwIGSz9eNRj8B_4KrYA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwEvfMMKA4yExEsTkvgreSwT04TUaQ9UGk-R4zjbtC6p2lSo_BP8y9wlTrTAEOOpUX12c-fz-Vzf_Y6Q90YVxohEelLn0uOJjL1YqsDLtJGRNSyPmv8hZ8fyaM6_nIrTHTLpcmGu398zFX50EvWXZZ37DQCaYnfIroThgxHZnR-fTL-1F8eYWtVUaHXPTLhMub8NM9iJGsD-3iyPlotqfZPP-Wfo5L1NudTb73qxuLYvHT4ks46jNhzl0t_UmW9-_Ab2eFuWH5EHzkGl01ajHpMdWz4hd2fuCv4p-XmywmeMlqYtIAk1bZJJvfUWGIJEqya2lR6cg7ZtQf8o8IA1WTCRgnbRXyVdrhBqHC0Lxej7MwqroTPFE9qlbE7oVVfBd0J1mdMzW60xDBxeEsNbn5H54eevB0eeq-rgwezz2gvzLOQKtkStNEsKo3mUKZtnAdOwVWqwCYzJmBurbJBoITQrEmWE4pnKghzO1M_JqKxKu0eo4DYKZQ4uFNM8MTrJImlyG2phtAVHdExYN8OpcZDnWHljkTb3eAqOPq1QU5R16mQ9Jl7fa9lCfvyD_hMqT0-LgN3NFzCpqVv_aShUAewxYCjiOszioCiSBJxxAR-cw6u-RdVL2-zX3uykUwkePJblgZ_50FCg4cFp0y5_AkSBEF4Dyv0BJRgMM2jeQ_XueFmnkRR4LmAshp6dyt_c_K5vxkExPq-01QZpWKwQSw5Gf9GukF4e4OIrAXvqmKjB2hkIbNhSXpw3SOdxgoneYkz8fpXdakpe_m-HV-R-hHktTXDhPhnVq419Dd5mnb1xRuYXigB-_Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+future+community-level+ocular+Chlamydia+trachomatis+infection+prevalence+using+serological%2C+clinical%2C+molecular%2C+and+geospatial+data&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Tedijanto%2C+Christine&rft.au=Aragie%2C+Solomon&rft.au=Tadesse%2C+Zerihun&rft.au=Haile%2C+Mahteme&rft.date=2022-03-01&rft.pub=Public+Library+of+Science&rft.issn=1935-2727&rft.volume=16&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.pntd.0010273&rft.externalDocID=A699909613 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon |