Association between cytokine levels, verbal memory and hippocampus volume in psychotic disorders and healthy controls
Objective We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with severe mental illnesses and in healthy controls. Method In total, 230 patients with a broad DSM‐IV schizophrenia spectrum illness or bipolar...
Saved in:
Published in | Acta psychiatrica Scandinavica Vol. 133; no. 1; pp. 53 - 62 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.01.2016
Munksgaard Forlag |
Subjects | |
Online Access | Get full text |
ISSN | 0001-690X 1600-0447 1600-0447 |
DOI | 10.1111/acps.12467 |
Cover
Abstract | Objective
We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with severe mental illnesses and in healthy controls.
Method
In total, 230 patients with a broad DSM‐IV schizophrenia spectrum illness or bipolar disorder and 236 healthy controls were recruited. Memory was assessed using the Wechsler Memory Scale‐Third Edition (WMS‐III) Logical Memory immediate and delayed recall, and the California Verbal Learning Test summed recall over learning list (CVLT learning) and delayed free recall. We measured plasma levels of soluble tumor necrosis factor receptor 1 (sTNF‐R1), interleukin‐1 receptor antagonist, interleukin‐6, von Willebrand factor, osteoprotegerin, high‐sensitivity C‐reactive protein and sCD40 ligand. Hippocampal subfield estimates were obtained using FreeSurfer.
Results
We found a moderate negative association between sTNF‐R1 and performance on verbal memory learning and recall tests as measured by the WMS‐III Logical Memory after controlling for age, sex and diagnosis. We observed no interaction effect of diagnosis and sTNF‐R1 on memory scores. We also found a nominally significant positive association between CVLT learning and hippocampal volumes.
Conclusion
The findings suggest a role for immune involvement in memory independent of severe mental disorders and may support the ‘bigger is better’ hypothesis of hippocampal subfield volumes. |
---|---|
AbstractList | Objective: We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with severe mental illnesses and in healthy controls.
Method: 230 patients with a broad DSM-IV schizophrenia spectrum illness or bipolar disorder and 236 healthy controls were recruited. Memory was assessed using the Wechsler Memory ScaleThird Edition (WMS-III) Logical Memory immediate and delayed recall, and the California Verbal Learning Test summed recall over learning list (CVLT learning) and delayed free recall. We measured plasma levels of soluble tumor necrosis factor receptor 1 (sTNF-R1), interleukin-1 receptor antagonist, interleukin-6, von Willebrand factor, osteoprotegerin, high-sensitivity Creactive protein and sCD40 Ligand. Hippocampal subfield estimates were obtained using FreeSurfer.
Results: We found a moderate negative association between sTNF-R1 and performance on verbal memory learning and recall tests as measured by the WMS-III Logical Memory after controlling for age, sex and diagnosis. We observed no interaction effect of diagnosis and sTNF-R1 on memory scores. We also found a nominally significant positive association between CVLT learning and hippocampal volumes.
Conclusions: The findings suggest a role for immune involvement in memory independent of severe mental disorders, and may support the “bigger is better” hypothesis of hippocampal subfield volumes. Objective We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with severe mental illnesses and in healthy controls. Method In total, 230 patients with a broad DSM‐IV schizophrenia spectrum illness or bipolar disorder and 236 healthy controls were recruited. Memory was assessed using the Wechsler Memory Scale‐Third Edition (WMS‐III) Logical Memory immediate and delayed recall, and the California Verbal Learning Test summed recall over learning list (CVLT learning) and delayed free recall. We measured plasma levels of soluble tumor necrosis factor receptor 1 (sTNF‐R1), interleukin‐1 receptor antagonist, interleukin‐6, von Willebrand factor, osteoprotegerin, high‐sensitivity C‐reactive protein and sCD40 ligand. Hippocampal subfield estimates were obtained using FreeSurfer. Results We found a moderate negative association between sTNF‐R1 and performance on verbal memory learning and recall tests as measured by the WMS‐III Logical Memory after controlling for age, sex and diagnosis. We observed no interaction effect of diagnosis and sTNF‐R1 on memory scores. We also found a nominally significant positive association between CVLT learning and hippocampal volumes. Conclusion The findings suggest a role for immune involvement in memory independent of severe mental disorders and may support the ‘bigger is better’ hypothesis of hippocampal subfield volumes. Objective We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with severe mental illnesses and in healthy controls. Method In total, 230 patients with a broad DSM-IV schizophrenia spectrum illness or bipolar disorder and 236 healthy controls were recruited. Memory was assessed using the Wechsler Memory Scale-Third Edition (WMS-III) Logical Memory immediate and delayed recall, and the California Verbal Learning Test summed recall over learning list (CVLT learning) and delayed free recall. We measured plasma levels of soluble tumor necrosis factor receptor 1 (sTNF-R1), interleukin-1 receptor antagonist, interleukin-6, von Willebrand factor, osteoprotegerin, high-sensitivity C-reactive protein and sCD40 ligand. Hippocampal subfield estimates were obtained using FreeSurfer. Results We found a moderate negative association between sTNF-R1 and performance on verbal memory learning and recall tests as measured by the WMS-III Logical Memory after controlling for age, sex and diagnosis. We observed no interaction effect of diagnosis and sTNF-R1 on memory scores. We also found a nominally significant positive association between CVLT learning and hippocampal volumes. Conclusion The findings suggest a role for immune involvement in memory independent of severe mental disorders and may support the 'bigger is better' hypothesis of hippocampal subfield volumes. We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with severe mental illnesses and in healthy controls.OBJECTIVEWe investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with severe mental illnesses and in healthy controls.In total, 230 patients with a broad DSM-IV schizophrenia spectrum illness or bipolar disorder and 236 healthy controls were recruited. Memory was assessed using the Wechsler Memory Scale-Third Edition (WMS-III) Logical Memory immediate and delayed recall, and the California Verbal Learning Test summed recall over learning list (CVLT learning) and delayed free recall. We measured plasma levels of soluble tumor necrosis factor receptor 1 (sTNF-R1), interleukin-1 receptor antagonist, interleukin-6, von Willebrand factor, osteoprotegerin, high-sensitivity C-reactive protein and sCD40 ligand. Hippocampal subfield estimates were obtained using FreeSurfer.METHODIn total, 230 patients with a broad DSM-IV schizophrenia spectrum illness or bipolar disorder and 236 healthy controls were recruited. Memory was assessed using the Wechsler Memory Scale-Third Edition (WMS-III) Logical Memory immediate and delayed recall, and the California Verbal Learning Test summed recall over learning list (CVLT learning) and delayed free recall. We measured plasma levels of soluble tumor necrosis factor receptor 1 (sTNF-R1), interleukin-1 receptor antagonist, interleukin-6, von Willebrand factor, osteoprotegerin, high-sensitivity C-reactive protein and sCD40 ligand. Hippocampal subfield estimates were obtained using FreeSurfer.We found a moderate negative association between sTNF-R1 and performance on verbal memory learning and recall tests as measured by the WMS-III Logical Memory after controlling for age, sex and diagnosis. We observed no interaction effect of diagnosis and sTNF-R1 on memory scores. We also found a nominally significant positive association between CVLT learning and hippocampal volumes.RESULTSWe found a moderate negative association between sTNF-R1 and performance on verbal memory learning and recall tests as measured by the WMS-III Logical Memory after controlling for age, sex and diagnosis. We observed no interaction effect of diagnosis and sTNF-R1 on memory scores. We also found a nominally significant positive association between CVLT learning and hippocampal volumes.The findings suggest a role for immune involvement in memory independent of severe mental disorders and may support the 'bigger is better' hypothesis of hippocampal subfield volumes.CONCLUSIONThe findings suggest a role for immune involvement in memory independent of severe mental disorders and may support the 'bigger is better' hypothesis of hippocampal subfield volumes. We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with severe mental illnesses and in healthy controls. In total, 230 patients with a broad DSM-IV schizophrenia spectrum illness or bipolar disorder and 236 healthy controls were recruited. Memory was assessed using the Wechsler Memory Scale-Third Edition (WMS-III) Logical Memory immediate and delayed recall, and the California Verbal Learning Test summed recall over learning list (CVLT learning) and delayed free recall. We measured plasma levels of soluble tumor necrosis factor receptor 1 (sTNF-R1), interleukin-1 receptor antagonist, interleukin-6, von Willebrand factor, osteoprotegerin, high-sensitivity C-reactive protein and sCD40 ligand. Hippocampal subfield estimates were obtained using FreeSurfer. We found a moderate negative association between sTNF-R1 and performance on verbal memory learning and recall tests as measured by the WMS-III Logical Memory after controlling for age, sex and diagnosis. We observed no interaction effect of diagnosis and sTNF-R1 on memory scores. We also found a nominally significant positive association between CVLT learning and hippocampal volumes. The findings suggest a role for immune involvement in memory independent of severe mental disorders and may support the 'bigger is better' hypothesis of hippocampal subfield volumes. |
Author | Westlye, L. T. Hope, S. Ueland, T. Agartz, I. Hoseth, E. Z. Melle, I. Haukvik, U. K. Andreassen, O. A. Dieset, I. Aukrust, P. |
Author_xml | – sequence: 1 givenname: E. Z. surname: Hoseth fullname: Hoseth, E. Z. email: Eva Z. Hoseth, NORMENT, KG Jebsen Centre for Psychosis Research, Building 49, Oslo University Hospital, Ullevål, Kirkeveien 166, PO Box 4956 Nydalen, 0424 Oslo, Norway., e.z.hoseth@medisin.uio.no organization: NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway – sequence: 2 givenname: L. T. surname: Westlye fullname: Westlye, L. T. organization: NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway – sequence: 3 givenname: S. surname: Hope fullname: Hope, S. organization: NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway – sequence: 4 givenname: I. surname: Dieset fullname: Dieset, I. organization: NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway – sequence: 5 givenname: P. surname: Aukrust fullname: Aukrust, P. organization: The Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway – sequence: 6 givenname: I. surname: Melle fullname: Melle, I. organization: NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway – sequence: 7 givenname: U. K. surname: Haukvik fullname: Haukvik, U. K. organization: Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway – sequence: 8 givenname: I. surname: Agartz fullname: Agartz, I. organization: NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway – sequence: 9 givenname: T. surname: Ueland fullname: Ueland, T. organization: NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway – sequence: 10 givenname: T. surname: Ueland fullname: Ueland, T. organization: The Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway – sequence: 11 givenname: O. A. surname: Andreassen fullname: Andreassen, O. A. organization: NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26189721$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0l1v1SAYB3BiZtzZ9MYPoCS7MYudwGmhvTw50WkyX-I0M94QSp_msFGo0J6t31627nixGCM3hPD7Ex54DtCe8w4Qek7JCU3jjdJ9PKEs5-IRWlBOSEbyXOyhBSGEZrwiP_bRQYyXaVlQUj5B-4zTshKMLtC4itFrowbjHa5huAZwWE-DvzIOsIUt2PgabyHUyuIOOh8mrFyDN6bvvVZdP0a89XbsABuH-zjpjR-Mxo2JPjQQ4qxB2WEzYe3dELyNT9HjVtkIz-7nQ_T93dtv6_fZ2efTD-vVWaY5y0WmeNG2fFkQnrNGNKLKG6h4wUteqpYwzhTXS1CqgbbOK6ZoSWuiyqatNalIo5aH6OV8rg4mDsZJ54OS6Q0KJjlnjCTxahZ98L9GiIPsTNRgrXLgxyipEJxzkYv8PygnpSjIkiZ69IBe-jG4VGpShSCiZIwl9eJejXUHjeyD6VSY5O53EiC76_sYA7RSm-Huq4agjE2FyNsGkLcNIO8aIEWOH0R2p_4V0xlfGwvTP6Rcrb-c7zLZnEkPCjd_MipcybQrCnnx6VSWPyt-fvHxq2TL383cz68 |
CitedBy_id | crossref_primary_10_1016_j_ajp_2022_103394 crossref_primary_10_1016_j_bbr_2018_06_008 crossref_primary_10_1017_S1092852918001499 crossref_primary_10_1186_s12974_018_1283_5 crossref_primary_10_3389_fpsyt_2021_612471 crossref_primary_10_1016_j_jpsychires_2021_05_071 crossref_primary_10_1080_15622975_2021_1925152 crossref_primary_10_1016_j_bbi_2023_11_006 crossref_primary_10_1007_s00406_020_01134_x crossref_primary_10_1038_npp_2016_211 crossref_primary_10_1016_j_pnpbp_2023_110817 crossref_primary_10_1016_j_bionps_2019_100006 crossref_primary_10_3389_fphar_2022_893567 crossref_primary_10_3233_JAD_215075 crossref_primary_10_1016_j_arr_2023_102037 crossref_primary_10_1016_j_bbi_2020_04_003 crossref_primary_10_1016_j_jad_2022_12_162 crossref_primary_10_1016_j_bandc_2022_105877 crossref_primary_10_1016_j_bbi_2021_04_002 crossref_primary_10_1016_j_jpsychires_2017_03_018 crossref_primary_10_1111_bdi_12821 crossref_primary_10_1016_j_jad_2018_10_093 crossref_primary_10_3389_fneur_2019_01120 crossref_primary_10_1007_s12640_019_00112_z crossref_primary_10_3390_jcm10173849 crossref_primary_10_1016_j_brainres_2019_146463 crossref_primary_10_1186_s40345_024_00327_w crossref_primary_10_1016_j_bbi_2024_03_014 crossref_primary_10_1016_j_reprotox_2020_05_015 crossref_primary_10_1016_j_drugalcdep_2018_06_024 crossref_primary_10_1016_j_jad_2015_08_058 crossref_primary_10_3389_fneur_2022_777808 crossref_primary_10_1093_ijnp_pyy013 crossref_primary_10_1016_j_jad_2017_12_038 crossref_primary_10_1016_j_jad_2023_12_054 crossref_primary_10_1093_cercor_bhae308 crossref_primary_10_1111_bdi_12496 crossref_primary_10_1007_s00406_023_01587_w crossref_primary_10_1016_j_neubiorev_2021_03_004 crossref_primary_10_1093_schbul_sbw183 |
Cites_doi | 10.1016/j.neuroimage.2004.03.032 10.1016/S0140-6736(13)60855-7 10.1159/000330247 10.1016/j.biopsycho.2012.01.008 10.1093/schbul/sbu016 10.1016/S0140-6736(05)66461-6 10.1503/jpn.090088 10.1016/j.jpsychires.2011.08.003 10.1016/j.biopsych.2014.06.020 10.1176/appi.ajp.2010.09081187 10.1016/j.yebeh.2014.01.017 10.1016/j.neuroimage.2010.07.020 10.1016/j.tins.2012.08.001 10.1002/ajmg.b.32135 10.1016/j.neuroimage.2012.01.021 10.1016/j.bbi.2005.10.005 10.1007/s11920-013-0387-y 10.1016/j.schres.2012.12.023 10.1093/schbul/sbp034 10.1016/j.neuroscience.2003.11.040 10.1159/000342427 10.1016/j.neubiorev.2008.10.005 10.1016/j.bbi.2012.05.017 10.1016/j.mcn.2012.10.002 10.1002/hipo.20614 10.1196/annals.1364.031 10.1016/j.bbi.2010.10.015 10.1001/jamapsychiatry.2014.453 10.1016/S0896-6273(02)00569-X 10.1111/acps.12307 10.1016/j.neuroimage.2004.07.016 10.1073/pnas.1400544111 10.1007/s00540-010-1042-y 10.1002/hipo.20615 10.4049/jimmunol.150.8.3300 10.1101/lm.031351.113 10.1016/j.biopsych.2010.03.036 10.1038/nature08192 10.3389/fpsyt.2014.00137 10.1016/j.neuron.2009.09.044 10.1111/j.1399-5618.2009.00757.x 10.1038/ng.940 10.1111/acps.12133 10.1016/j.pnpbp.2012.08.015 10.1016/j.jpsychires.2013.05.018 10.1016/j.jad.2014.09.029 10.4088/JCP.10m06068yel 10.1016/j.neuroscience.2014.10.062 10.1111/acps.12268 10.1016/j.pnpbp.2011.03.008 10.1016/j.jpsychires.2014.01.017 10.1111/j.1600-0447.2005.00626.x 10.1016/j.bbi.2011.09.012 |
ContentType | Journal Article |
Copyright | 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. 2016 John Wiley & Sons A/S, Published by John Wiley & Sons Ltd info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. – notice: 2016 John Wiley & Sons A/S, Published by John Wiley & Sons Ltd – notice: info:eu-repo/semantics/openAccess |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 7T5 H94 3HK |
DOI | 10.1111/acps.12467 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts NORA - Norwegian Open Research Archives |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1600-0447 |
EndPage | 62 |
ExternalDocumentID | 10852_66220 3922390001 26189721 10_1111_acps_12467 ACPS12467 ark_67375_WNG_8Z96SWMR_2 |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23M 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACHQT ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHMBA AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DUUFO EAD EAP EAS EBC EBD EBS EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 UPT V9Y W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR X7M XG1 YF5 ZGI ZXP ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 7T5 H94 08R 3HK AAPBV AAUGY AAVGM ABHUG ABPTK ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS PQEST UMP |
ID | FETCH-LOGICAL-c6247-a65ff6350642d7d794de9656868af0262a6c3eaadefb492a181b0a8dfbc090da3 |
IEDL.DBID | DR2 |
ISSN | 0001-690X 1600-0447 |
IngestDate | Sat Apr 29 05:42:37 EDT 2023 Fri Sep 05 09:38:44 EDT 2025 Fri Sep 05 06:19:08 EDT 2025 Sat Jul 26 02:31:21 EDT 2025 Thu Apr 03 07:02:49 EDT 2025 Tue Jul 01 01:06:44 EDT 2025 Thu Apr 24 22:57:08 EDT 2025 Wed Jan 22 16:31:53 EST 2025 Sun Sep 21 06:24:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | psychoses neurocognition neuroimaging |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6247-a65ff6350642d7d794de9656868af0262a6c3eaadefb492a181b0a8dfbc090da3 |
Notes | ark:/67375/WNG-8Z96SWMR-2 istex:C2C83208FB4D640BCA5A8553A6548E89221AB45B Table S1. Demographic and clinical characteristics of participants in the MRI subgroup (N = 224). Table S2. Immune and verbal memory characteristics for the Main group (N = 462). Table S3. Immune, verbal memory and hippocampal volume characteristics for the MRI subgroup (N = 224). Table S4. Linear regression models investigating the associations between verbal memory and cytokines in whole sample (N = 462) after controlling for age, sex and diagnosis. Table S5. Linear regression analyses of associations between verbal memory and hippocampal volumes in subsample (N = 224) after controlling for age, sex, estimated total intracranial volume and diagnosis (patient or control). Table S6. Linear regression analyses investigating associations between hippocampal subvolumes and cytokines in MRI subgroup (N = 224) after controlling for age, sex, estimated total intracranial volume and diagnosis (patient or control). Table S7. Spearman's rank correlation between cytokines and time of blood sampling for the control group (N = 174) ArticleID:ACPS12467 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 NFR/204966 |
OpenAccessLink | http://hdl.handle.net/10852/66220 |
PMID | 26189721 |
PQID | 1757078222 |
PQPubID | 33508 |
PageCount | 10 |
ParticipantIDs | cristin_nora_10852_66220 proquest_miscellaneous_1776667474 proquest_miscellaneous_1760875031 proquest_journals_1757078222 pubmed_primary_26189721 crossref_citationtrail_10_1111_acps_12467 crossref_primary_10_1111_acps_12467 wiley_primary_10_1111_acps_12467_ACPS12467 istex_primary_ark_67375_WNG_8Z96SWMR_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Aalborg |
PublicationTitle | Acta psychiatrica Scandinavica |
PublicationTitleAlternate | Acta Psychiatr Scand |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Munksgaard Forlag |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Munksgaard Forlag |
References | Fischl B. FreeSurfer. NeuroImage 2012;62:774-781. Rund BR, Sundet K, Asbjornsen A et al. Neuropsychological test profiles in schizophrenia and non-psychotic depression. Acta Psychiatr Scand 2006;113:350-359. Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 2011;25:181-213. Steen NE, Lorentzen S, Barrett EA et al. Sex-specific cortisol levels in bipolar disorder and schizophrenia during mental challenge-relationship to clinical characteristics and medication. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1100-1107. Shi J, Levinson DF, Duan J et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009;460:753-757. Mueller SG, Weiner MW. Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields. Hippocampus 2009;19:558-564. Munkholm K, Brauner JV, Kessing LV, Vinberg M. Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res 2013;47:1119-1133. Tamminga CA, Stan AD, Wagner AD. The hippocampal formation in schizophrenia. Am J Psychiatry 2010;167:1178-1193. Tischler L, Brand SR, Stavitsky K et al. The relationship between hippocampal volume and declarative memory in a population of combat veterans with and without PTSD. Ann N Y Acad Sci 2006;1071:405-409. Craddock N, Sklar P. Genetics of bipolar disorder. Lancet 2013;381:1654-1662. Tesli M, Espeseth T, Bettella F et al. Polygenic risk score and the psychosis continuum model. Acta Psychiatr Scand 2014;130:311-317. Fischl B, Salat DH, Busa E et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:341-355. Drew PD, Lonergan M, Goldstein ME, Lampson LA, Ozato K, McFarlin DE. Regulation of MHC class I and beta 2-microglobulin gene expression in human neuronal cells. Factor binding to conserved cis-acting regulatory sequences correlates with expression of the genes. J Immunol 1993;1:3300-3310. Wechsler D, Wycherley RJ, Benjamin L. Wechsler Memory Scale: WMS-III. Stockholm, Sweden: Pearson Assessment; 2008. Seguin JA, Brennan J, Mangano E, Hayley S. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration. Neuropsychiatr Dis Treat 2009;5:5-14. Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. NeuroImage 2010;53:1181-1196. Haukvik UK, Westlye LT, Mørch-Johnsen L et al. In vivo hippocampal subfield volumes in schizophrenia and bipolar disorder. Biol Psychiatry 2015;77:581-588. Simonsen C, Sundet K, Vaskinn A et al. Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group. Schizophr Bull 2011;37:73-83. McAfoose J, Baune BT. Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev 2009;33:355-366. Wu MD, Hein AM, Moravan MJ, Shaftel SS, Olschowka JA, O'Banion MK. Adult murine hippocampal neurogenesis is inhibited by sustained IL-1beta and not rescued by voluntary running. Brain Behav Immun 2012;26:292-300. Shimamura M, Nakagami H, Osako MK et al. OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci USA 2014;111:8191-8196. Segonne F, Dale AM, Busa E et al. A hybrid approach to the skull stripping problem in MRI. NeuroImage 2004;22:1060-1075. Cardno AG, Owen MJ. Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr Bull 2014;40:504-515. Chepenik LG, Wang F, Spencer L et al. Structure-function associations in hippocampus in bipolar disorder. Biol Psychol 2012;90:18-22. Kesler S, Janelsins M, Koovakkattu D et al. Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav Immun 2013;30(Suppl):S109-S116. Fischl B, Salat DH, van der Kouwe AJ et al. Sequence-independent segmentation of magnetic resonance images. NeuroImage 2004;23(Suppl 1):S69-S84. Jones KA, Thomsen C. The role of the innate immune system in psychiatric disorders. Mol Cell Neurosci 2013;53:52-62. de Miranda AS, Brant F, Campos AC et al. Evidence for the contribution of adult neurogenesis and hippocampal cell death in experimental cerebral malaria cognitive outcome. Neuroscience 2015;284:920-933. Hope S, Ueland T, Steen NE et al. Interleukin 1 receptor antagonist and soluble tumor necrosis factor receptor 1 are associated with general severity and psychotic symptoms in schizophrenia and bipolar disorder. Schizophr Res 2013;145:36-42. Hamdani N, Doukhan R, Kurtlucan O, Tamouza R, Leboyer M. Immunity, inflammation, and bipolar disorder: diagnostic and therapeutic implications. Curr Psychiatry Rep 2013;15:387. Hufner K, Kandler C, Koudouovoh-Tripp P et al. Bioprofiling of platelets in medicated patients with depression. J Affect Disord 2014;172c:81-88. Arisi GM. Nervous and immune systems signals and connections: Cytokines in hippocampus physiology and pathology. Epilepsy Behav 2014;38:43-47. Van Leemput K, Bakkour A, Benner T et al. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus 2009;19:549-557. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011;43:969-976. Hope S, Melle I, Aukrust P et al. Osteoprotegerin levels in patients with severe mental disorders. J Psychiatry Neurosci 2010;35:304-310. Verma S, Nakaoke R, Dohgu S, Banks WA. Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain Behav Immun 2006;20:449-455. Rimol LM, Hartberg CB, Nesvag R et al. Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biol Psychiatry 2010;68:41-50. Nelson PA, Sage JR, Wood SC, Davenport CM, Anagnostaras SG, Boulanger LM. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression. Learn Mem 2013;20:505-517. Elmer BM, McAllister AK. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci 2012;35:660-670. Schulz KF, Grimes DA. Multiplicity in randomised trials I: endpoints and treatments. Lancet 2005;365:1591-1595. Delis DC, Kramer JH, Kaplan E, Ober BA. California Verbal Learning Test: CVLT-II. Stockholm, Sweden: Pearson Assessment; 2004. Ringen PA, Engh JA, Birkenaes AB, Dieset I, Andreassen OA. Increased mortality in schizophrenia due to cardiovascular disease - a non-systematic review of epidemiology, possible causes, and interventions. Front Psychiatry 2014;5:137. Grande I, Magalhaes PV, Chendo I et al. Staging bipolar disorder: clinical, biochemical, and functional correlates. Acta Psychiatr Scand 2014;129:437-444. Altamura AC, Pozzoli S, Fiorentini A, Dell'osso B. Neurodevelopment and inflammatory patterns in schizophrenia in relation to pathophysiology. Prog Neuropsychopharmacol Biol Psychiatry 2013;42:63-70. Hudetz JA, Gandhi SD, Iqbal Z, Patterson KM, Pagel PS. Elevated postoperative inflammatory biomarkers are associated with short- and medium-term cognitive dysfunction after coronary artery surgery. J Anesth 2011;25:1-9. Mathew I, Gardin TM, Tandon N et al. Medial Temporal Lobe Structures and Hippocampal Subfields in Psychotic Disorders: findings From the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Study. JAMA Psychiatry 2014;71:769-777. Butler MP, O'Connor JJ, Moynagh PN. Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP. Neuroscience 2004;124:319-326. Mavroudis PD, Scheff JD, Calvano SE, Androulakis IP. Systems biology of circadian-immune interactions. J Innate Immun 2013;5:153-162. Hope S, Dieset I, Agartz I et al. Affective symptoms are associated with markers of inflammation and immune activation in bipolar disorders but not in schizophrenia. J Psychiatr Res 2011;45:1608-1616. Hope S, Melle I, Aukrust P et al. Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor. Bipolar Disord 2009;11:726-734. Erickson MA, Dohi K, Banks WA. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. NeuroImmunoModulation 2012;19:121-130. Shatz CJ. MHC class I: an unexpected role in neuronal plasticity. Neuron 2009;64:40-45. Steen NE, Methlie P, Lorentzen S et al. Altered systemic cortisol metabolism in bipolar disorder and schizophrenia spectrum disorders. J Psychiatr Res 2014;52:57-62. Bourne C, Aydemir O, Balanza-Martinez V et al. Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta-analysis. Acta Psychiatr Scand 2013;128:149-162. Steen NE, Methlie P, Lorentzen S et al. Increased systemic cortisol metabolism in patients with schizophrenia and bipolar disorder: a mechanism for increased stress vulnerability? J Clin Psychiatry 2011;72:1515-1521. van Dongen J, Boomsma DI. The evolutionary paradox and the missing heritability of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2013;162b:122-136. 2004; 22 2010; 53 2004; 124 2015; 77 2004; 23 2013; 20 2013; 128 2012; 19 2014; 130 1993; 1 2013; 5 2014; 129 2009; 11 2014; 5 2013; 15 2006; 20 2010; 68 2013; 53 2011; 72 2011; 25 2012; 26 2014; 52 2009; 19 2012; 62 2006; 1071 2015; 284 2013; 47 2010; 35 2009; 64 2013; 42 2010; 167 2002; 33 2013; 145 2008 2011; 35 2004 2013; 162b 2011; 37 2014; 40 2014; 111 2012; 35 2013; 381 2006; 113 2009; 33 2012; 90 2005; 365 2014; 172c 2013; 30 2014; 38 2011; 43 2011; 45 2009; 460 2009; 5 2014; 71 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 Hufner K (e_1_2_9_23_1) 2014; 172 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Drew PD (e_1_2_9_45_1) 1993; 1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Delis DC (e_1_2_9_32_1) 2004 Seguin JA (e_1_2_9_55_1) 2009; 5 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Wechsler D (e_1_2_9_33_1) 2008 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – reference: Jones KA, Thomsen C. The role of the innate immune system in psychiatric disorders. Mol Cell Neurosci 2013;53:52-62. – reference: Wu MD, Hein AM, Moravan MJ, Shaftel SS, Olschowka JA, O'Banion MK. Adult murine hippocampal neurogenesis is inhibited by sustained IL-1beta and not rescued by voluntary running. Brain Behav Immun 2012;26:292-300. – reference: Hope S, Dieset I, Agartz I et al. Affective symptoms are associated with markers of inflammation and immune activation in bipolar disorders but not in schizophrenia. J Psychiatr Res 2011;45:1608-1616. – reference: Grande I, Magalhaes PV, Chendo I et al. Staging bipolar disorder: clinical, biochemical, and functional correlates. Acta Psychiatr Scand 2014;129:437-444. – reference: Steen NE, Lorentzen S, Barrett EA et al. Sex-specific cortisol levels in bipolar disorder and schizophrenia during mental challenge-relationship to clinical characteristics and medication. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1100-1107. – reference: Mathew I, Gardin TM, Tandon N et al. Medial Temporal Lobe Structures and Hippocampal Subfields in Psychotic Disorders: findings From the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Study. JAMA Psychiatry 2014;71:769-777. – reference: Shatz CJ. MHC class I: an unexpected role in neuronal plasticity. Neuron 2009;64:40-45. – reference: Hope S, Ueland T, Steen NE et al. Interleukin 1 receptor antagonist and soluble tumor necrosis factor receptor 1 are associated with general severity and psychotic symptoms in schizophrenia and bipolar disorder. Schizophr Res 2013;145:36-42. – reference: Fischl B, Salat DH, Busa E et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:341-355. – reference: Fischl B, Salat DH, van der Kouwe AJ et al. Sequence-independent segmentation of magnetic resonance images. NeuroImage 2004;23(Suppl 1):S69-S84. – reference: Butler MP, O'Connor JJ, Moynagh PN. Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP. Neuroscience 2004;124:319-326. – reference: Verma S, Nakaoke R, Dohgu S, Banks WA. Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain Behav Immun 2006;20:449-455. – reference: Fischl B. FreeSurfer. NeuroImage 2012;62:774-781. – reference: Munkholm K, Brauner JV, Kessing LV, Vinberg M. Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res 2013;47:1119-1133. – reference: Cardno AG, Owen MJ. Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr Bull 2014;40:504-515. – reference: Tamminga CA, Stan AD, Wagner AD. The hippocampal formation in schizophrenia. Am J Psychiatry 2010;167:1178-1193. – reference: Craddock N, Sklar P. Genetics of bipolar disorder. Lancet 2013;381:1654-1662. – reference: van Dongen J, Boomsma DI. The evolutionary paradox and the missing heritability of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2013;162b:122-136. – reference: Steen NE, Methlie P, Lorentzen S et al. Altered systemic cortisol metabolism in bipolar disorder and schizophrenia spectrum disorders. J Psychiatr Res 2014;52:57-62. – reference: Van Leemput K, Bakkour A, Benner T et al. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus 2009;19:549-557. – reference: Delis DC, Kramer JH, Kaplan E, Ober BA. California Verbal Learning Test: CVLT-II. Stockholm, Sweden: Pearson Assessment; 2004. – reference: Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. NeuroImage 2010;53:1181-1196. – reference: Shi J, Levinson DF, Duan J et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009;460:753-757. – reference: Seguin JA, Brennan J, Mangano E, Hayley S. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration. Neuropsychiatr Dis Treat 2009;5:5-14. – reference: Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011;43:969-976. – reference: Hope S, Melle I, Aukrust P et al. Osteoprotegerin levels in patients with severe mental disorders. J Psychiatry Neurosci 2010;35:304-310. – reference: Ringen PA, Engh JA, Birkenaes AB, Dieset I, Andreassen OA. Increased mortality in schizophrenia due to cardiovascular disease - a non-systematic review of epidemiology, possible causes, and interventions. Front Psychiatry 2014;5:137. – reference: Shimamura M, Nakagami H, Osako MK et al. OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci USA 2014;111:8191-8196. – reference: Kesler S, Janelsins M, Koovakkattu D et al. Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav Immun 2013;30(Suppl):S109-S116. – reference: Schulz KF, Grimes DA. Multiplicity in randomised trials I: endpoints and treatments. Lancet 2005;365:1591-1595. – reference: Mavroudis PD, Scheff JD, Calvano SE, Androulakis IP. Systems biology of circadian-immune interactions. J Innate Immun 2013;5:153-162. – reference: Altamura AC, Pozzoli S, Fiorentini A, Dell'osso B. Neurodevelopment and inflammatory patterns in schizophrenia in relation to pathophysiology. Prog Neuropsychopharmacol Biol Psychiatry 2013;42:63-70. – reference: Steen NE, Methlie P, Lorentzen S et al. Increased systemic cortisol metabolism in patients with schizophrenia and bipolar disorder: a mechanism for increased stress vulnerability? J Clin Psychiatry 2011;72:1515-1521. – reference: Erickson MA, Dohi K, Banks WA. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. NeuroImmunoModulation 2012;19:121-130. – reference: Rund BR, Sundet K, Asbjornsen A et al. Neuropsychological test profiles in schizophrenia and non-psychotic depression. Acta Psychiatr Scand 2006;113:350-359. – reference: Bourne C, Aydemir O, Balanza-Martinez V et al. Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta-analysis. Acta Psychiatr Scand 2013;128:149-162. – reference: Segonne F, Dale AM, Busa E et al. A hybrid approach to the skull stripping problem in MRI. NeuroImage 2004;22:1060-1075. – reference: Hudetz JA, Gandhi SD, Iqbal Z, Patterson KM, Pagel PS. Elevated postoperative inflammatory biomarkers are associated with short- and medium-term cognitive dysfunction after coronary artery surgery. J Anesth 2011;25:1-9. – reference: McAfoose J, Baune BT. Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev 2009;33:355-366. – reference: Tesli M, Espeseth T, Bettella F et al. Polygenic risk score and the psychosis continuum model. Acta Psychiatr Scand 2014;130:311-317. – reference: Nelson PA, Sage JR, Wood SC, Davenport CM, Anagnostaras SG, Boulanger LM. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression. Learn Mem 2013;20:505-517. – reference: Tischler L, Brand SR, Stavitsky K et al. The relationship between hippocampal volume and declarative memory in a population of combat veterans with and without PTSD. Ann N Y Acad Sci 2006;1071:405-409. – reference: Wechsler D, Wycherley RJ, Benjamin L. Wechsler Memory Scale: WMS-III. Stockholm, Sweden: Pearson Assessment; 2008. – reference: Mueller SG, Weiner MW. Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields. Hippocampus 2009;19:558-564. – reference: Hufner K, Kandler C, Koudouovoh-Tripp P et al. Bioprofiling of platelets in medicated patients with depression. J Affect Disord 2014;172c:81-88. – reference: Rimol LM, Hartberg CB, Nesvag R et al. Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biol Psychiatry 2010;68:41-50. – reference: Arisi GM. Nervous and immune systems signals and connections: Cytokines in hippocampus physiology and pathology. Epilepsy Behav 2014;38:43-47. – reference: Simonsen C, Sundet K, Vaskinn A et al. Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group. Schizophr Bull 2011;37:73-83. – reference: Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 2011;25:181-213. – reference: Hope S, Melle I, Aukrust P et al. Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor. Bipolar Disord 2009;11:726-734. – reference: Drew PD, Lonergan M, Goldstein ME, Lampson LA, Ozato K, McFarlin DE. Regulation of MHC class I and beta 2-microglobulin gene expression in human neuronal cells. Factor binding to conserved cis-acting regulatory sequences correlates with expression of the genes. J Immunol 1993;1:3300-3310. – reference: Elmer BM, McAllister AK. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci 2012;35:660-670. – reference: de Miranda AS, Brant F, Campos AC et al. Evidence for the contribution of adult neurogenesis and hippocampal cell death in experimental cerebral malaria cognitive outcome. Neuroscience 2015;284:920-933. – reference: Chepenik LG, Wang F, Spencer L et al. Structure-function associations in hippocampus in bipolar disorder. Biol Psychol 2012;90:18-22. – reference: Haukvik UK, Westlye LT, Mørch-Johnsen L et al. In vivo hippocampal subfield volumes in schizophrenia and bipolar disorder. Biol Psychiatry 2015;77:581-588. – reference: Hamdani N, Doukhan R, Kurtlucan O, Tamouza R, Leboyer M. Immunity, inflammation, and bipolar disorder: diagnostic and therapeutic implications. Curr Psychiatry Rep 2013;15:387. – volume: 77 start-page: 581 year: 2015 end-page: 588 article-title: hippocampal subfield volumes in schizophrenia and bipolar disorder publication-title: Biol Psychiatry – volume: 162b start-page: 122 year: 2013 end-page: 136 article-title: The evolutionary paradox and the missing heritability of schizophrenia publication-title: Am J Med Genet B Neuropsychiatr Genet – volume: 11 start-page: 726 year: 2009 end-page: 734 article-title: Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor publication-title: Bipolar Disord – volume: 26 start-page: 292 year: 2012 end-page: 300 article-title: Adult murine hippocampal neurogenesis is inhibited by sustained IL‐1beta and not rescued by voluntary running publication-title: Brain Behav Immun – volume: 23 start-page: S69 issue: Suppl 1 year: 2004 end-page: S84 article-title: Sequence‐independent segmentation of magnetic resonance images publication-title: NeuroImage – volume: 172c start-page: 81 year: 2014 end-page: 88 article-title: Bioprofiling of platelets in medicated patients with depression publication-title: J Affect Disord – volume: 68 start-page: 41 year: 2010 end-page: 50 article-title: Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder publication-title: Biol Psychiatry – volume: 124 start-page: 319 year: 2004 end-page: 326 article-title: Dissection of tumor‐necrosis factor‐alpha inhibition of long‐term potentiation (LTP) reveals a p38 mitogen‐activated protein kinase‐dependent mechanism which maps to early‐but not late‐phase LTP publication-title: Neuroscience – volume: 460 start-page: 753 year: 2009 end-page: 757 article-title: Common variants on chromosome 6p22.1 are associated with schizophrenia publication-title: Nature – volume: 53 start-page: 52 year: 2013 end-page: 62 article-title: The role of the innate immune system in psychiatric disorders publication-title: Mol Cell Neurosci – volume: 33 start-page: 341 year: 2002 end-page: 355 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 72 start-page: 1515 year: 2011 end-page: 1521 article-title: Increased systemic cortisol metabolism in patients with schizophrenia and bipolar disorder: a mechanism for increased stress vulnerability? publication-title: J Clin Psychiatry – volume: 381 start-page: 1654 year: 2013 end-page: 1662 article-title: Genetics of bipolar disorder publication-title: Lancet – volume: 129 start-page: 437 year: 2014 end-page: 444 article-title: Staging bipolar disorder: clinical, biochemical, and functional correlates publication-title: Acta Psychiatr Scand – volume: 90 start-page: 18 year: 2012 end-page: 22 article-title: Structure‐function associations in hippocampus in bipolar disorder publication-title: Biol Psychol – volume: 25 start-page: 181 year: 2011 end-page: 213 article-title: Immune modulation of learning, memory, neural plasticity and neurogenesis publication-title: Brain Behav Immun – volume: 25 start-page: 1 year: 2011 end-page: 9 article-title: Elevated postoperative inflammatory biomarkers are associated with short‐ and medium‐term cognitive dysfunction after coronary artery surgery publication-title: J Anesth – volume: 64 start-page: 40 year: 2009 end-page: 45 article-title: MHC class I: an unexpected role in neuronal plasticity publication-title: Neuron – year: 2008 – volume: 5 start-page: 153 year: 2013 end-page: 162 article-title: Systems biology of circadian‐immune interactions publication-title: J Innate Immun – volume: 145 start-page: 36 year: 2013 end-page: 42 article-title: Interleukin 1 receptor antagonist and soluble tumor necrosis factor receptor 1 are associated with general severity and psychotic symptoms in schizophrenia and bipolar disorder publication-title: Schizophr Res – year: 2004 – volume: 365 start-page: 1591 year: 2005 end-page: 1595 article-title: Multiplicity in randomised trials I: endpoints and treatments publication-title: Lancet – volume: 284 start-page: 920 year: 2015 end-page: 933 article-title: Evidence for the contribution of adult neurogenesis and hippocampal cell death in experimental cerebral malaria cognitive outcome publication-title: Neuroscience – volume: 20 start-page: 449 year: 2006 end-page: 455 article-title: Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide publication-title: Brain Behav Immun – volume: 130 start-page: 311 year: 2014 end-page: 317 article-title: Polygenic risk score and the psychosis continuum model publication-title: Acta Psychiatr Scand – volume: 37 start-page: 73 year: 2011 end-page: 83 article-title: Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group publication-title: Schizophr Bull – volume: 1071 start-page: 405 year: 2006 end-page: 409 article-title: The relationship between hippocampal volume and declarative memory in a population of combat veterans with and without PTSD publication-title: Ann N Y Acad Sci – volume: 113 start-page: 350 year: 2006 end-page: 359 article-title: Neuropsychological test profiles in schizophrenia and non‐psychotic depression publication-title: Acta Psychiatr Scand – volume: 40 start-page: 504 year: 2014 end-page: 515 article-title: Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder publication-title: Schizophr Bull – volume: 52 start-page: 57 year: 2014 end-page: 62 article-title: Altered systemic cortisol metabolism in bipolar disorder and schizophrenia spectrum disorders publication-title: J Psychiatr Res – volume: 35 start-page: 660 year: 2012 end-page: 670 article-title: Major histocompatibility complex class I proteins in brain development and plasticity publication-title: Trends Neurosci – volume: 47 start-page: 1119 year: 2013 end-page: 1133 article-title: Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta‐analysis publication-title: J Psychiatr Res – volume: 45 start-page: 1608 year: 2011 end-page: 1616 article-title: Affective symptoms are associated with markers of inflammation and immune activation in bipolar disorders but not in schizophrenia publication-title: J Psychiatr Res – volume: 167 start-page: 1178 year: 2010 end-page: 1193 article-title: The hippocampal formation in schizophrenia publication-title: Am J Psychiatry – volume: 5 start-page: 5 year: 2009 end-page: 14 article-title: Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration publication-title: Neuropsychiatr Dis Treat – volume: 35 start-page: 304 year: 2010 end-page: 310 article-title: Osteoprotegerin levels in patients with severe mental disorders publication-title: J Psychiatry Neurosci – volume: 1 start-page: 3300 year: 1993 end-page: 3310 article-title: Regulation of MHC class I and beta 2‐microglobulin gene expression in human neuronal cells. Factor binding to conserved cis‐acting regulatory sequences correlates with expression of the genes publication-title: J Immunol – volume: 20 start-page: 505 year: 2013 end-page: 517 article-title: MHC class I immune proteins are critical for hippocampus‐dependent memory and gate NMDAR‐dependent hippocampal long‐term depression publication-title: Learn Mem – volume: 33 start-page: 355 year: 2009 end-page: 366 article-title: Evidence for a cytokine model of cognitive function publication-title: Neurosci Biobehav Rev – volume: 62 start-page: 774 year: 2012 end-page: 781 article-title: FreeSurfer publication-title: NeuroImage – volume: 19 start-page: 121 year: 2012 end-page: 130 article-title: Neuroinflammation: a common pathway in CNS diseases as mediated at the blood‐brain barrier publication-title: NeuroImmunoModulation – volume: 53 start-page: 1181 year: 2010 end-page: 1196 article-title: Highly accurate inverse consistent registration: a robust approach publication-title: NeuroImage – volume: 15 start-page: 387 year: 2013 article-title: Immunity, inflammation, and bipolar disorder: diagnostic and therapeutic implications publication-title: Curr Psychiatry Rep – volume: 22 start-page: 1060 year: 2004 end-page: 1075 article-title: A hybrid approach to the skull stripping problem in MRI publication-title: NeuroImage – volume: 5 start-page: 137 year: 2014 article-title: Increased mortality in schizophrenia due to cardiovascular disease ‐ a non‐systematic review of epidemiology, possible causes, and interventions publication-title: Front Psychiatry – volume: 128 start-page: 149 year: 2013 end-page: 162 article-title: Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta‐analysis publication-title: Acta Psychiatr Scand – volume: 43 start-page: 969 year: 2011 end-page: 976 article-title: Genome‐wide association study identifies five new schizophrenia loci publication-title: Nat Genet – volume: 19 start-page: 549 year: 2009 end-page: 557 article-title: Automated segmentation of hippocampal subfields from ultra‐high resolution MRI publication-title: Hippocampus – volume: 38 start-page: 43 year: 2014 end-page: 47 article-title: Nervous and immune systems signals and connections: Cytokines in hippocampus physiology and pathology publication-title: Epilepsy Behav – volume: 30 start-page: S109 issue: Suppl year: 2013 end-page: S116 article-title: Reduced hippocampal volume and verbal memory performance associated with interleukin‐6 and tumor necrosis factor‐alpha levels in chemotherapy‐treated breast cancer survivors publication-title: Brain Behav Immun – volume: 19 start-page: 558 year: 2009 end-page: 564 article-title: Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields publication-title: Hippocampus – volume: 35 start-page: 1100 year: 2011 end-page: 1107 article-title: Sex‐specific cortisol levels in bipolar disorder and schizophrenia during mental challenge–relationship to clinical characteristics and medication publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 111 start-page: 8191 year: 2014 end-page: 8196 article-title: OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice publication-title: Proc Natl Acad Sci USA – volume: 71 start-page: 769 year: 2014 end-page: 777 article-title: Medial Temporal Lobe Structures and Hippocampal Subfields in Psychotic Disorders: findings From the Bipolar‐Schizophrenia Network on Intermediate Phenotypes (B‐SNIP) Study publication-title: JAMA Psychiatry – volume: 42 start-page: 63 year: 2013 end-page: 70 article-title: Neurodevelopment and inflammatory patterns in schizophrenia in relation to pathophysiology publication-title: Prog Neuropsychopharmacol Biol Psychiatry – ident: e_1_2_9_38_1 doi: 10.1016/j.neuroimage.2004.03.032 – volume: 5 start-page: 5 year: 2009 ident: e_1_2_9_55_1 article-title: Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration publication-title: Neuropsychiatr Dis Treat – ident: e_1_2_9_3_1 doi: 10.1016/S0140-6736(13)60855-7 – ident: e_1_2_9_49_1 doi: 10.1159/000330247 – ident: e_1_2_9_56_1 doi: 10.1016/j.biopsycho.2012.01.008 – ident: e_1_2_9_4_1 doi: 10.1093/schbul/sbu016 – ident: e_1_2_9_43_1 doi: 10.1016/S0140-6736(05)66461-6 – volume-title: California Verbal Learning Test: CVLT‐II year: 2004 ident: e_1_2_9_32_1 – ident: e_1_2_9_8_1 doi: 10.1503/jpn.090088 – ident: e_1_2_9_7_1 doi: 10.1016/j.jpsychires.2011.08.003 – ident: e_1_2_9_30_1 doi: 10.1016/j.biopsych.2014.06.020 – ident: e_1_2_9_26_1 doi: 10.1176/appi.ajp.2010.09081187 – ident: e_1_2_9_17_1 doi: 10.1016/j.yebeh.2014.01.017 – ident: e_1_2_9_37_1 doi: 10.1016/j.neuroimage.2010.07.020 – ident: e_1_2_9_47_1 doi: 10.1016/j.tins.2012.08.001 – ident: e_1_2_9_2_1 doi: 10.1002/ajmg.b.32135 – ident: e_1_2_9_36_1 doi: 10.1016/j.neuroimage.2012.01.021 – ident: e_1_2_9_50_1 doi: 10.1016/j.bbi.2005.10.005 – ident: e_1_2_9_20_1 doi: 10.1007/s11920-013-0387-y – ident: e_1_2_9_11_1 doi: 10.1016/j.schres.2012.12.023 – ident: e_1_2_9_13_1 doi: 10.1093/schbul/sbp034 – ident: e_1_2_9_44_1 doi: 10.1016/j.neuroscience.2003.11.040 – ident: e_1_2_9_52_1 doi: 10.1159/000342427 – ident: e_1_2_9_28_1 doi: 10.1016/j.neubiorev.2008.10.005 – ident: e_1_2_9_24_1 doi: 10.1016/j.bbi.2012.05.017 – ident: e_1_2_9_51_1 doi: 10.1016/j.mcn.2012.10.002 – ident: e_1_2_9_29_1 doi: 10.1002/hipo.20614 – ident: e_1_2_9_57_1 doi: 10.1196/annals.1364.031 – ident: e_1_2_9_16_1 doi: 10.1016/j.bbi.2010.10.015 – ident: e_1_2_9_31_1 doi: 10.1001/jamapsychiatry.2014.453 – ident: e_1_2_9_39_1 doi: 10.1016/S0896-6273(02)00569-X – ident: e_1_2_9_5_1 doi: 10.1111/acps.12307 – ident: e_1_2_9_40_1 doi: 10.1016/j.neuroimage.2004.07.016 – ident: e_1_2_9_21_1 doi: 10.1073/pnas.1400544111 – ident: e_1_2_9_25_1 doi: 10.1007/s00540-010-1042-y – ident: e_1_2_9_41_1 doi: 10.1002/hipo.20615 – volume: 1 start-page: 3300 year: 1993 ident: e_1_2_9_45_1 article-title: Regulation of MHC class I and beta 2‐microglobulin gene expression in human neuronal cells. Factor binding to conserved cis‐acting regulatory sequences correlates with expression of the genes publication-title: J Immunol doi: 10.4049/jimmunol.150.8.3300 – ident: e_1_2_9_48_1 doi: 10.1101/lm.031351.113 – ident: e_1_2_9_27_1 doi: 10.1016/j.biopsych.2010.03.036 – ident: e_1_2_9_6_1 doi: 10.1038/nature08192 – ident: e_1_2_9_19_1 doi: 10.3389/fpsyt.2014.00137 – ident: e_1_2_9_46_1 doi: 10.1016/j.neuron.2009.09.044 – ident: e_1_2_9_18_1 doi: 10.1111/j.1399-5618.2009.00757.x – ident: e_1_2_9_10_1 doi: 10.1038/ng.940 – ident: e_1_2_9_15_1 doi: 10.1111/acps.12133 – ident: e_1_2_9_9_1 doi: 10.1016/j.pnpbp.2012.08.015 – ident: e_1_2_9_12_1 doi: 10.1016/j.jpsychires.2013.05.018 – volume: 172 start-page: 81 year: 2014 ident: e_1_2_9_23_1 article-title: Bioprofiling of platelets in medicated patients with depression publication-title: J Affect Disord doi: 10.1016/j.jad.2014.09.029 – volume-title: Wechsler Memory Scale: WMS‐III year: 2008 ident: e_1_2_9_33_1 – ident: e_1_2_9_34_1 doi: 10.4088/JCP.10m06068yel – ident: e_1_2_9_53_1 doi: 10.1016/j.neuroscience.2014.10.062 – ident: e_1_2_9_22_1 doi: 10.1111/acps.12268 – ident: e_1_2_9_35_1 doi: 10.1016/j.pnpbp.2011.03.008 – ident: e_1_2_9_42_1 doi: 10.1016/j.jpsychires.2014.01.017 – ident: e_1_2_9_14_1 doi: 10.1111/j.1600-0447.2005.00626.x – ident: e_1_2_9_54_1 doi: 10.1016/j.bbi.2011.09.012 |
SSID | ssj0005108 |
Score | 2.36867 |
Snippet | Objective
We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with... We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with severe... Objective We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients with... Objective: We investigated whether elevated plasma levels of immune markers were associated with verbal memory and hippocampal subfield volumes in patients... |
SourceID | cristin proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 53 |
SubjectTerms | Adolescent Adult Bipolar Disorder - blood Bipolar Disorder - pathology Bipolar Disorder - psychology Cytokines Cytokines - blood Diffusion Magnetic Resonance Imaging - methods Female Hippocampus - pathology Humans Male Memory Memory - physiology Mental disorders Mental Recall - physiology Middle Aged neurocognition neuroimaging Neuropsychological Tests - standards Psychopathology psychoses Psychotic Disorders - blood Psychotic Disorders - pathology Psychotic Disorders - psychology Schizophrenia - blood Schizophrenia - pathology Verbal Learning - physiology |
Title | Association between cytokine levels, verbal memory and hippocampus volume in psychotic disorders and healthy controls |
URI | https://api.istex.fr/ark:/67375/WNG-8Z96SWMR-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facps.12467 https://www.ncbi.nlm.nih.gov/pubmed/26189721 https://www.proquest.com/docview/1757078222 https://www.proquest.com/docview/1760875031 https://www.proquest.com/docview/1776667474 http://hdl.handle.net/10852/66220 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9KBfGL1mdjq6wogmKO3CbZJOCXUq1FuCKtpYcgyz4SelybC80FPP96Z5JN2kop6LdAJss-5vGb7OxvAd7YMKRAYn2dFqEfmTDzNaftQjUOhcH4pTUdcJ4ciP3j6Os0nq7Bx_4sTMcPMfxwI8to_TUZuNL1FSNXpqpHGJ0EHSXHhok4_9PhJXcUKlvnhjFfxhRw6rhJqYzn8lNEvaY1pvJaXLpDU_zrJtB5HcO2QWjvAfzsu9_VnsxHzVKPzO-_mB3_d3wbcN-hU7bTqdNDWMvLR3B34vbfH0NzZTWZK_FiZrVczPE1O6MCpPoDQ-vQ2Mo5FfGumCotO51VFQbN86qpWecP2axk7gTYzDDrOEDrTrqtSVsxV0ZfP4Hjvc_fd_d9d3GDbwSPEl-JuCgQyVByYxOLJm_zDIFjKlJVYNLHlTBhrpTNCx1lXCHK0IFKbaFNkAVWhU9hvVyU-SawIsxRyRICmpjLBVmaKMGLcZEYPlaJyj3YdAsoS7QZ4juNuRSC88CDd_2KSuMIz-nejTPZJz40xbKdYg9eD7JVR_Nxo9TbVjEGEXUxp8K4JJYnB19k-iMTRyeTQ8k92O41RzqfgE0kcdIBMg9eDa_RmmmLRpX5oiEZQVcMoKe9TSbBnBPTwMiDZ51WDh3CfDglPiYP3re6dctg5M7ut6P26fm_CG_BPcSM7i_UNqwvL5r8BeKypX7Z2t8fj04zkQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk4CXcWeBAUYgJBCpUie1k8dpYhRYK7SLVvFi-ZJoVbc0WhqJ8us5x3GzDU2T4C2ST6zEPpfv2MefCXln4xgDiQ11WsRhYuIs1Ay3C1U_5gbil9Z4wHk05sOj5NtkMPG1OXgWpuWH6Bbc0DKcv0YDxwXpS1auTFX3IDxxcZusJ4A03C7t_gV7FKhb64ghY4YkcOLZSbGQ5-JdwL3GmVN5JTKt4yD_ug52XkWxLgzt3m_vWq0deyFWn8x6zUL3zO-_uB3_-w8fkA0PUOl2q1EPya28fETujPwW_GPSXJpQ6qu8qFku5jNopqdYg1R_omAgGno5wzreJVWlpSfTqoK4eVY1NW1dIp2W1B8CmxpqPQ1o3Uq7srQl9ZX09RNytPv5cGcY-rsbQsNZIkLFB0UBYAbzGyssWL3NM8COKU9VAXkfU9zEuVI2L3SSMQVAQ0cqtYU2URZZFT8la-W8zDcJLeIc9Ewg1oR0LspSoTgr-oUwrK-EygOy6WdQlmA2SHk6YJJzxqKAfFhNqTSe8xyv3jiVq9wHh1i6IQ7I2062apk-rpV67zSjE1HnM6yNEwN5PP4i058ZPzge7UsWkK2V6kjvFqALMRAtJgvIm64ZDBp3aVSZzxuU4XjLADjbm2QEpJ2QCSYBedaqZfdBkBKnSMkUkI9OuW74Gbm98-PAPT3_F-HX5O7wcLQn976Ov78g9wBC-kWpLbK2OG_ylwDTFvqVM8Y_rbY3rw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qC8UvvmtTq64ogtIcuU2ym4BfSvWsL3eU1tJDkGVfEnpcmwu9C3j-emeTTdpKKei3g8yFZHeemefJzs4CvDZhaBOJ8VWSh36kw9RX1C4Xyn7INOYvpewG5-GI7R1FX8bxeAXet3thmv4Q3Qc3i4w6XluAlya_BHKpy3kPsxPjt2AtYpjKLCU6uGgehd7WxGEUzKgBx645qa3jufgv0l5do6m4kpjW7Bj_uo51XiWxdRYa3IWf7fM3xSfTXrVQPf37r9aO__uC9-COo6dkp_Gn-7CSFQ9gfegW4B9CdWk6iavxInq5mE3xMjm1FUjzbYLwUHiXM1vFuySyMORkUpaYNc_Kak6agEgmBXFbwCaaGNcEdN5Y10VpS-Lq6OeP4Gjw8fvunu9ObvA1oxH3JYvzHKmMVTeGG8S8yVJkjglLZI6qj0qmw0xKk-UqSqlEmqECmZhc6SANjAwfw2oxK7INIHmYoZdxyzRRzAVpwiWjeT_nmvYll5kHG24CRYGgsQ1PYyoYozTw4G07o0K7juf24I1T0SofO8SiHmIPXnW2ZdPn41qrN7VjdCbyfGor43gsjkefRPIjZYfHwwNBPdhqPUe4oIC34DFvGJkHL7vLCGe7RiOLbFZZG2bPGMBQe5MNR9GJOjDy4Enjld0DoSBObEMmD97VvnXDy4id3f3D-tfmvxi_gPX9DwPx7fPo61O4jfzRfZHagtXFeZU9Q462UM9rKP4B3_Q2Xg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+between+cytokine+levels%2C+verbal+memory+and+hippocampus+volume+in+psychotic+disorders+and+healthy+controls&rft.jtitle=Acta+psychiatrica+Scandinavica&rft.au=Hoseth%2C+E+Z&rft.au=Westlye%2C+L+T&rft.au=Hope%2C+S&rft.au=Dieset%2C+I&rft.date=2016-01-01&rft.issn=1600-0447&rft.eissn=1600-0447&rft.volume=133&rft.issue=1&rft.spage=53&rft_id=info:doi/10.1111%2Facps.12467&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-690X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-690X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-690X&client=summon |