Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis

The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans‐Golgi compartment and that loss of function of this carrier protein has a dr...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 72; no. 5; pp. 732 - 744
Main Authors Hassler, Sebastian, Lemke, Lilia, Jung, Benjamin, Möhlmann, Torsten, Krüger, Falco, Schumacher, Karin, Espen, Luca, Martinoia, Enrico, Neuhaus, H. Ekkehard
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.12.2012
Blackwell
Subjects
NMR
Online AccessGet full text
ISSN0960-7412
1365-313X
1365-313X
DOI10.1111/j.1365-313X.2012.05106.x

Cover

Abstract The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans‐Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi‐related functions, such as an altered abundance of certain N‐glycosylated proteins, altered composition of cell‐wall hemicelluose, and higher sensitivity to the Golgi α‐mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’ phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild‐type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans‐Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.
AbstractList Summary The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans‐Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi‐related functions, such as an altered abundance of certain N‐glycosylated proteins, altered composition of cell‐wall hemicelluose, and higher sensitivity to the Golgi α‐mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’ phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild‐type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans‐Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.
Summary The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6-GFP is targeted to the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition of cell-wall hemicelluose, and higher sensitivity to the Golgi [alpha]-mannosidase and the retrograde transport inhibitors kifunensine and brefeldinA, respectively. Moreover, pht4;6 mutants exhibit a 'mimic disease' phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance. [PUBLICATION ABSTRACT]
The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans‐Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi‐related functions, such as an altered abundance of certain N‐glycosylated proteins, altered composition of cell‐wall hemicelluose, and higher sensitivity to the Golgi α‐mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’ phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild‐type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans‐Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.
The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6-GFP is targeted to the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition of cell-wall hemicelluose, and higher sensitivity to the Golgi α-mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a 'mimic disease' phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6-GFP is targeted to the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition of cell-wall hemicelluose, and higher sensitivity to the Golgi α-mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a 'mimic disease' phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.
The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans ‐Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice ( Oryza sativa ). Interestingly, pht4;6 mutants show altered characteristics of several Golgi‐related functions, such as an altered abundance of certain N‐glycosylated proteins, altered composition of cell‐wall hemicelluose, and higher sensitivity to the Golgi α‐mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’ phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild‐type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans ‐Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.
Author Hassler, Sebastian
Möhlmann, Torsten
Schumacher, Karin
Martinoia, Enrico
Espen, Luca
Jung, Benjamin
Krüger, Falco
Lemke, Lilia
Neuhaus, H. Ekkehard
Author_xml – sequence: 1
  fullname: Hassler, Sebastian
– sequence: 2
  fullname: Lemke, Lilia
– sequence: 3
  fullname: Jung, Benjamin
– sequence: 4
  fullname: Möhlmann, Torsten
– sequence: 5
  fullname: Krüger, Falco
– sequence: 6
  fullname: Schumacher, Karin
– sequence: 7
  fullname: Espen, Luca
– sequence: 8
  fullname: Martinoia, Enrico
– sequence: 9
  fullname: Neuhaus, H. Ekkehard
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26650912$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22788523$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgep2A_9CxoQwQt3zcdkZoIolKKtUrBgC70LZzKZbtZMMiYZ2_2T_iaz3VqlF7W5mQx5zvuekze7xZbzThcFInhO8nq7nBNW8Rkj7HxOMaFzzAmu5lePip3bg61iB4sKz-qS0O1iN8YlxqRmVfmk2Ka0bhpO2U7x6xjUd-R7lBYaHXp7YdC48HFcQNIoBXBx9CHpgE6OTst3FVIwRR1RTMG7C9Tpn9r6cdAugc1_vVYpvkHKu5hMmpLJxysEKm-yXoc6EzVEjYKOJiZwSqNBqwU4E4eIwHUIbDbLpHHZXGlrJwvhn5aUH0YI6doxGe8yiPYDtKbzY9Z8WjzuwUb97Oa7V5x9-nh6cDQ7_nr4-WD_eKYqWlYzxlval52mQnGhWg2iFbxvq0q3Pe0bSkWpuWob1oGAutOcKQBK6rJholJCsb1CbHQnN8LqEqyVYzADhJUkWK4zkku5jkLmKK7kOiN5nZG8yrWvN7Vj8D8mHZMcTFyPCk77KUrCSVniOjv9HyUi98R5U2b05R106afg8iVkqsGCi7KimXp-Q03toLvbpv88iAy8ugEgKrB9fgHKxL9cVXEsyFqo2XAq-BiD7u-Z__zu_B_ulCqzCTNHbuxDBN5vBC6N1asHG8vTky_rXa5_sanvwUu4CHm-s2-ZLDHGTNC6vJegBDPOfgMbAxWz
CitedBy_id crossref_primary_10_1093_jxb_erw444
crossref_primary_10_1111_ppl_70067
crossref_primary_10_1007_s11104_022_05444_y
crossref_primary_10_1093_jxb_erw249
crossref_primary_10_1038_ncomms11095
crossref_primary_10_1093_pcp_pcaa168
crossref_primary_10_3390_ijms21062209
crossref_primary_10_3390_cells8050490
crossref_primary_10_1038_srep39293
crossref_primary_10_1186_s12870_016_0892_3
crossref_primary_10_1093_jxb_erac491
crossref_primary_10_3389_fphys_2014_00201
crossref_primary_10_1016_j_plaphy_2021_06_038
crossref_primary_10_3389_fpls_2020_607878
crossref_primary_10_1111_tpj_12962
crossref_primary_10_3390_ijms21218365
crossref_primary_10_1111_pce_12370
crossref_primary_10_1016_j_envexpbot_2023_105241
crossref_primary_10_3389_fpls_2021_620018
crossref_primary_10_3389_fpls_2015_01158
crossref_primary_10_1016_j_rsci_2020_09_006
crossref_primary_10_3390_agriculture8020027
crossref_primary_10_1111_jipb_13827
crossref_primary_10_1093_plcell_koad212
crossref_primary_10_1186_s12870_016_0841_1
crossref_primary_10_1093_plphys_kiad123
crossref_primary_10_1093_jxb_eraf017
crossref_primary_10_1111_tpj_16576
crossref_primary_10_3390_plants10010051
crossref_primary_10_1093_pcp_pcv208
crossref_primary_10_1016_j_molp_2019_07_003
crossref_primary_10_1016_j_pbi_2017_04_015
crossref_primary_10_1016_j_genrep_2021_101351
crossref_primary_10_1016_j_pbi_2014_06_009
crossref_primary_10_3390_ijms19071914
crossref_primary_10_1186_s12864_019_5599_z
crossref_primary_10_1016_j_molp_2015_12_012
crossref_primary_10_3390_ijms20225575
crossref_primary_10_1017_qpb_2025_1
crossref_primary_10_3389_fpls_2014_00701
crossref_primary_10_3389_fpls_2016_01198
crossref_primary_10_1007_s10265_024_01533_4
crossref_primary_10_3390_cells11192985
Cites_doi 10.1104/pp.106.090167
10.1104/pp.104.046367
10.1105/tpc.5.8.865
10.1006/abio.1993.1529
10.1091/mbc.E06-01-0046
10.1093/glycob/7.2.169
10.1111/j.1365-313X.2011.04532.x
10.1073/pnas.1115146109
10.1073/pnas.0800237105
10.1105/tpc.007872
10.1093/jxb/erl183
10.1104/pp.108.127027
10.1111/j.1600-0854.2008.00841.x
10.1104/pp.104.049502
10.1016/S0076-6879(10)80022-9
10.1046/j.1365-313x.1998.00343.x
10.1016/S1369-5266(03)00058-X
10.1016/S0092-8674(00)00213-0
10.1073/pnas.0913035107
10.1038/nature02076
10.1105/tpc.4.6.645
10.4161/psb.3.10.6666
10.1146/annurev.arplant.56.032604.144228
10.1021/bi00070a020
10.1073/pnas.0901778106
10.1007/s004250050707
10.1111/j.1365-313X.2010.04455.x
10.1007/s00425-002-0921-3
10.1111/j.1469-8137.2007.02331.x
10.1007/s00438-004-1071-z
10.1104/pp.103.025379
10.1105/tpc.013862
10.1038/283870a0
10.1007/BF00015814
10.1080/09687680410001720830
10.1073/pnas.95.11.6531
10.1105/tpc.104.025817
10.1104/pp.011569
10.1073/pnas.0804015105
10.1023/A:1006496308160
10.1074/jbc.M412462200
10.1111/j.1365-313X.2012.05004.x
10.1104/pp.102.012633
10.1093/mp/ssp013
10.3109/10520296409061248
10.1105/tpc.7.4.391
10.1046/j.0960-7412.2002.01252.x
10.1021/jo0516382
10.1073/pnas.0609507104
10.1105/tpc.110.078154
10.1111/j.1365-313X.2004.02161.x
10.1007/s00424-003-1087-y
10.1104/pp.109.144626
10.1104/pp.103.037945
10.1093/jxb/33.4.670
10.1073/pnas.0907173106
10.1093/pcp/pci095
10.1046/j.1365-313X.1998.00093.x
10.1093/glycob/8.7.651
10.1152/physiol.00050.2006
10.1105/tpc.110.079426
10.1111/j.1469-8137.2006.01935.x
10.1073/pnas.0800141105
10.1105/tpc.10.1.105
10.1007/s00425-003-1121-5
10.1104/pp.99.3.856
10.1007/BF00028910
10.1038/nature06545
ContentType Journal Article
Copyright 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd
2014 INIST-CNRS
2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Copyright_xml – notice: 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd
– notice: 2014 INIST-CNRS
– notice: 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
ADTOC
UNPAY
DOI 10.1111/j.1365-313X.2012.05106.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Genetics Abstracts

MEDLINE
MEDLINE - Academic
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Chemistry
EISSN 1365-313X
EndPage 744
ExternalDocumentID oai:air.unimi.it:2434/225022
2822244231
22788523
26650912
10_1111_j_1365_313X_2012_05106_x
TPJ5106
US201400039274
US201400021035
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAHBH
AAHQN
AAMNL
AAYCA
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c6246-35b2f4de29c59cbea9b95fb66ebf2f82294e5cb83da9a7de53caa21748396c9c3
IEDL.DBID UNPAY
ISSN 0960-7412
1365-313X
IngestDate Tue Aug 19 21:27:44 EDT 2025
Fri Jul 11 18:24:43 EDT 2025
Fri Jul 11 15:21:30 EDT 2025
Fri Jul 25 10:51:59 EDT 2025
Mon Jul 21 06:05:05 EDT 2025
Wed Apr 02 07:23:36 EDT 2025
Thu Apr 24 23:01:48 EDT 2025
Wed Oct 01 04:33:11 EDT 2025
Wed Jan 22 16:38:44 EST 2025
Wed Dec 27 18:50:11 EST 2023
Wed Dec 27 19:05:15 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Phosphates
phosphate compartmentation
Arabidopsis
mimic disease
Biological transport
Activation
Vacuole
Mechanism
Golgi apparatus
Arabidopsis thaliana
Resistance
Cruciferae
Dicotyledones
Angiospermae
Spermatophyta
inorganic phosphate
Intracellular
Language English
License CC BY 4.0
2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6246-35b2f4de29c59cbea9b95fb66ebf2f82294e5cb83da9a7de53caa21748396c9c3
Notes http://dx.doi.org/10.1111/j.1365-313X.2012.05106.x
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2434/225022
PMID 22788523
PQID 1180959462
PQPubID 31702
PageCount 13
ParticipantIDs unpaywall_primary_10_1111_j_1365_313x_2012_05106_x
proquest_miscellaneous_1514407396
proquest_miscellaneous_1197485584
proquest_journals_1180959462
pubmed_primary_22788523
pascalfrancis_primary_26650912
crossref_primary_10_1111_j_1365_313X_2012_05106_x
crossref_citationtrail_10_1111_j_1365_313X_2012_05106_x
wiley_primary_10_1111_j_1365_313X_2012_05106_x_TPJ5106
fao_agris_US201400039274
fao_agris_US201400021035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References 2004; 21
2010; 12
2007; 104
2008a; 3
2010; 107
1987; 8
2007; 143
2000; 42
2003; 15
2008; 105
2008; 148
2009; 151
2000; 210
1992; 99
2004; 447
1997; 9
1997; 7
1993; 5
1998; 16
2004; 134
2012; 71
2010; 22
2004; 136
2009; 10
2004; 135
2007; 173
1964; 39
2004; 39
2003; 6
1993; 32
2011; 66
2011; 65
2011; 23
2005; 70
1998; 95
2004; 218
1998; 10
2007; 22
1993; 214
1998; 14
1992; 4
1991; 3
2002; 130
2006; 17
1982; 33
2002; 216
2010; 480
2008b; 177
2007; 58
2003; 132
2005; 46
2012; 109
1995; 7
2005; 280
2003; 425
2002; 29
2000; 103
2004; 272
1992; 20
1980; 283
2009; 2
2005; 17
2008; 451
2005; 56
2009; 106
1998; 8
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Fischer K. (e_1_2_6_13_1) 1997; 9
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
Whalen M.C. (e_1_2_6_69_1) 1991; 3
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
Kammerer B. (e_1_2_6_24_1) 1998; 10
e_1_2_6_39_1
e_1_2_6_56_1
Foster C.E. (e_1_2_6_14_1) 2010; 12
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 135
  start-page: 400
  year: 2004
  end-page: 411
  article-title: Structure and expression profile of the Arabidopsis gene family indicates a broad role in inorganic phosphate homeostasis
  publication-title: Plant Physiol.
– volume: 15
  start-page: 19
  year: 2003
  end-page: 32
  article-title: The Arabidopsis locus encodes a putative cell surface adhesion protein and is required for normal cell expansion
  publication-title: Plant Cell
– volume: 132
  start-page: 343
  year: 2003
  end-page: 351
  article-title: The expression of the t‐SNARE AtSNAP33 is induced by pathogens and mechanical stimulation
  publication-title: Plant Physiol.
– volume: 480
  start-page: 495
  year: 2010
  end-page: 510
  article-title: The acidic environment of the Golgi is critical for glycosylation and transport
  publication-title: Methods Enzymol.
– volume: 33
  start-page: 670
  year: 1982
  end-page: 681
  article-title: The application of P nuclear magnetic resonance to higher plant tissue
  publication-title: J. Exp. Bot.
– volume: 103
  start-page: 1111
  year: 2000
  end-page: 1120
  article-title: Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance
  publication-title: Cell
– volume: 3
  start-page: 784
  year: 2008a
  end-page: 790
  article-title: Differential expression and phylogenetic analysis suggest specialization of plastid‐localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues
  publication-title: Plant Signal. Behav.
– volume: 177
  start-page: 889
  year: 2008b
  end-page: 898
  article-title: Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters
  publication-title: New Phytol.
– volume: 15
  start-page: 2273
  year: 2003
  end-page: 2284
  article-title: The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress
  publication-title: Plant Cell
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for ‐mediated transformation of
  publication-title: Plant J.
– volume: 210
  start-page: 985
  year: 2000
  end-page: 992
  article-title: Metabolic responses in cucumber ( L.) roots under Fe‐deficiency: a P‐nuclear magnetic resonance study
  publication-title: Planta
– volume: 39
  start-page: 629
  year: 2004
  end-page: 642
  article-title: Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low‐ and high‐phosphate environments
  publication-title: Plant J.
– volume: 148
  start-page: 1354
  year: 2008
  end-page: 1367
  article-title: Comparative analyses of Arabidopsis mutants and genetic interaction with
  publication-title: Plant Physiol.
– volume: 10
  start-page: 105
  year: 1998
  end-page: 117
  article-title: Molecular characterisation of a carbon transporter in plastids from heterotrophic tissues: the glucose 6‐phosphate/phosphate antiporter
  publication-title: Plant Cell
– volume: 216
  start-page: 23
  year: 2002
  end-page: 37
  article-title: Molecular mechanisms of phosphate transport in plants
  publication-title: Planta
– volume: 22
  start-page: 193
  year: 2007
  end-page: 201
  article-title: Endoplasmic reticulum stress: signaling the unfolded protein response
  publication-title: Physiology
– volume: 105
  start-page: 5683
  year: 2008
  end-page: 5686
  article-title: Identification of a vesicular nucleotide transporter
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 99
  start-page: 856
  year: 1992
  end-page: 863
  article-title: Metabolic response of maize roots to hyperosmotic shock: an P nuclear magnetic resonance study
  publication-title: Plant Physiol.
– volume: 7
  start-page: 391
  year: 1995
  end-page: 406
  article-title: The tobacco homolog of mammalian calreticulin is present in protein complexes
  publication-title: Plant Cell
– volume: 20
  start-page: 1203
  year: 1992
  end-page: 1207
  article-title: A versatile binary vector system with a T‐DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome
  publication-title: Plant Mol. Biol.
– volume: 8
  start-page: 363
  year: 1987
  end-page: 373
  article-title: Hybrid genes in the analysis of transformation conditions
  publication-title: Plant Mol. Biol.
– volume: 136
  start-page: 2621
  year: 2004
  end-page: 2632
  article-title: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox
  publication-title: Plant Physiol.
– volume: 2
  start-page: 535
  year: 2009
  end-page: 552
  article-title: The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis
  publication-title: Mol. Plant
– volume: 6
  start-page: 365
  year: 2003
  end-page: 371
  article-title: The salicylic acid loop in plant defense
  publication-title: Curr. Opin. Plant Biol.
– volume: 130
  start-page: 1102
  year: 2002
  end-page: 1108
  article-title: Brefeldin A: deciphering an enigmatic inhibitor of secretion
  publication-title: Plant Physiol.
– volume: 29
  start-page: 661
  year: 2002
  end-page: 678
  article-title: Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks
  publication-title: Plant J.
– volume: 106
  start-page: 14174
  year: 2009
  end-page: 14179
  article-title: ER‐resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 173
  start-page: 11
  year: 2007
  end-page: 26
  article-title: Functional biology of plant phosphate uptake at root and mycorrhiza interfaces
  publication-title: New Phytol.
– volume: 3
  start-page: 49
  year: 1991
  end-page: 59
  article-title: Identification of pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean
  publication-title: Plant Cell
– volume: 21
  start-page: 171
  year: 2004
  end-page: 181
  article-title: Phylogeny as a guide to structure and function of membrane transport proteins
  publication-title: Mol. Membr. Biol.
– volume: 65
  start-page: 703
  year: 2011
  end-page: 711
  article-title: Arabidopsis nucleoside hydrolases involved in intracellular and extracellular degradation of purines
  publication-title: Plant J.
– volume: 46
  start-page: 902
  year: 2005
  end-page: 912
  article-title: The Arabidopsis gene controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain
  publication-title: Plant Cell Physiol.
– volume: 23
  start-page: 224
  year: 2011
  end-page: 239
  article-title: The Arabidopsis intracellular Na /H antiporters NHX5 and NHX6 are endosome‐associated and necessary for plant growth and development
  publication-title: Plant Cell
– volume: 12
  start-page: 1837
  year: 2010
  article-title: Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates
  publication-title: J. Vis. Exp.
– volume: 58
  start-page: 83
  year: 2007
  end-page: 102
  article-title: Vacuolar transporters and their essential role in plant metabolism
  publication-title: J. Exp. Bot.
– volume: 143
  start-page: 156
  year: 2007
  end-page: 171
  article-title: Genome‐wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism
  publication-title: Plant Physiol.
– volume: 7
  start-page: 169
  year: 1997
  end-page: 171
  article-title: Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus membrane: where next?
  publication-title: Glycobiology
– volume: 218
  start-page: 406
  year: 2004
  end-page: 416
  article-title: Characterization of a protein of the plastid inner envelope having homology to animal inorganic phosphate, chloride and organic‐anion transporters
  publication-title: Planta
– volume: 425
  start-page: 973
  year: 2003
  end-page: 977
  article-title: SNARE‐protein‐mediated disease resistance at the plant cell wall
  publication-title: Nature
– volume: 283
  start-page: 870
  year: 1980
  end-page: 872
  article-title: Estimation of cytoplasmic and vacuolar pH in higher plant cells by P NMR
  publication-title: Nature
– volume: 32
  start-page: 5116
  year: 1993
  end-page: 5120
  article-title: Differences in the binding affinities of dimeric concanavalin A (including acetyl and succinyl derivatives) and tetrameric concanavalin A with large oligomannose‐type glycopeptides
  publication-title: Biochemistry
– volume: 4
  start-page: 645
  year: 1992
  end-page: 656
  article-title: Acquired resistance in Arabidopsis
  publication-title: Plant Cell
– volume: 10
  start-page: 101
  year: 2009
  end-page: 115
  article-title: Arginine/lysine residues in the cytoplasmic tail promote ER export of plant glycosylation enzymes
  publication-title: Traffic
– volume: 9
  start-page: 453
  year: 1997
  end-page: 462
  article-title: A new class of plastidic phosphate translocator: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter
  publication-title: Plant Cell
– volume: 56
  start-page: 133
  year: 2005
  end-page: 164
  article-title: Solute transporters of the plastid envelope membrane
  publication-title: Annu. Rev. Plant Biol.
– volume: 17
  start-page: 282
  year: 2005
  end-page: 294
  article-title: Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants
  publication-title: Plant Cell
– volume: 136
  start-page: 3524
  year: 2004
  end-page: 3536
  article-title: Molecular physiological analysis of the two plastidic ATP/ADP transporters from
  publication-title: Plant Physiol.
– volume: 22
  start-page: 2930
  year: 2010
  end-page: 2942
  article-title: Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants
  publication-title: Plant Cell
– volume: 105
  start-page: 11720
  year: 2008
  end-page: 11724
  article-title: Identification of a vesicular aspartate transporter
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 42
  start-page: 819
  year: 2000
  end-page: 832
  article-title: pGreen: a versatile and flexible binary Ti vector for Agrobacterium‐mediated plant transformation
  publication-title: Plant Mol. Biol.
– volume: 280
  start-page: 17992
  year: 2005
  end-page: 18000
  article-title: Identification and characterization of a novel plastidic adenine nucleotide uniporter from
  publication-title: J. Biol. Chem.
– volume: 451
  start-page: 835
  year: 2008
  end-page: 840
  article-title: Co‐option of a default secretory pathway for plant immune responses
  publication-title: Nature
– volume: 104
  start-page: 8532
  year: 2007
  end-page: 8537
  article-title: A secretory pathway‐localized cation diffusion facilitator confers plant manganese tolerance
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 70
  start-page: 9892
  year: 2005
  end-page: 9904
  article-title: A practical synthesis of kifunensine analogues as inhibitors of endoplasmic reticulum α‐mannosidase I
  publication-title: J. Org. Chem.
– volume: 447
  start-page: 629
  year: 2004
  end-page: 635
  article-title: Organic anion transport is the primary function of the SLC17/type I phosphate transporter family
  publication-title: Pflügers Arch.
– volume: 106
  start-page: 20978
  year: 2009
  end-page: 20983
  article-title: Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 151
  start-page: 1646
  year: 2009
  end-page: 1657
  article-title: Phosphate (Pi) starvation effect on the cytosolic Pi concentration and Pi exchanges across the tonoplast in plant cells: an P‐nuclear magnetic resonance study using methylphosphonate as a Pi analog
  publication-title: Plant Physiol.
– volume: 66
  start-page: 689
  year: 2011
  end-page: 699
  article-title: Over‐expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux
  publication-title: Plant J.
– volume: 39
  start-page: 303
  year: 1964
  end-page: 307
  article-title: Identification of callose by its diachrome and fluorochrome reactions
  publication-title: Stain Technology
– volume: 105
  start-page: 5933
  year: 2008
  end-page: 5938
  article-title: Salt tolerance of requires maturation of N‐glycosylated proteins in the Golgi apparatus
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 214
  start-page: 500
  year: 1993
  end-page: 505
  article-title: Ortho‐anisic acid as internal standard for the simultaneous quantitation of salicylic acid and its putative biosynthetic precursors in cucumber leaves
  publication-title: Anal. Biochem.
– volume: 8
  start-page: 651
  year: 1998
  end-page: 661
  article-title: Core β‐1,3‐fucose is a key part of the epitope recognized by antibodies reacting against plant N‐linked oligosaccharides and is present in a wide variety of plant extracts
  publication-title: Glycobiology
– volume: 71
  start-page: 479
  year: 2012
  end-page: 491
  article-title: Functional expression of PHO1 to the Golgi and ‐Golgi network and its role in export of inorganic phosphate
  publication-title: Plant J.
– volume: 17
  start-page: 4257
  year: 2006
  end-page: 4269
  article-title: A Golgi‐localized hexose transporter is involved in heterotrimeric G protein‐mediated early development in Arabidopsis
  publication-title: Mol. Biol. Cell
– volume: 272
  start-page: 397
  year: 2004
  end-page: 410
  article-title: expresses multiple Golgi‐localised nucleotide‐sugar transporters related to GONST1
  publication-title: Mol. Genet. Genomics
– volume: 107
  start-page: 3251
  year: 2010
  end-page: 3256
  article-title: Arabidopsis V‐ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 14
  start-page: 35
  year: 1998
  end-page: 42
  article-title: Salicylic acid has a dual role in the activation of defense related genes in parsley
  publication-title: Plant J.
– volume: 5
  start-page: 865
  year: 1993
  end-page: 875
  article-title: RPS2, an Arabidopsis disease resistance locus specifying recognition of strains expressing the avirulence gene
  publication-title: Plant Cell
– volume: 109
  start-page: 1784
  year: 2012
  end-page: 1789
  article-title: Qa‐SNAREs localized to the ‐Golgi network regulate multiple transport pathways and extracellular disease resistance in plants
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 95
  start-page: 6531
  year: 1998
  end-page: 6536
  article-title: Generation of broad‐spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 134
  start-page: 118
  year: 2004
  end-page: 128
  article-title: Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e)
  publication-title: Plant Physiol.
– ident: e_1_2_6_42_1
  doi: 10.1104/pp.106.090167
– ident: e_1_2_6_72_1
  doi: 10.1104/pp.104.046367
– ident: e_1_2_6_30_1
  doi: 10.1105/tpc.5.8.865
– ident: e_1_2_6_39_1
  doi: 10.1006/abio.1993.1529
– ident: e_1_2_6_67_1
  doi: 10.1091/mbc.E06-01-0046
– ident: e_1_2_6_22_1
  doi: 10.1093/glycob/7.2.169
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1365-313X.2011.04532.x
– ident: e_1_2_6_64_1
  doi: 10.1073/pnas.1115146109
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.0800237105
– ident: e_1_2_6_58_1
  doi: 10.1105/tpc.007872
– ident: e_1_2_6_37_1
  doi: 10.1093/jxb/erl183
– volume: 12
  start-page: 1837
  year: 2010
  ident: e_1_2_6_14_1
  article-title: Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates
  publication-title: J. Vis. Exp.
– ident: e_1_2_6_15_1
  doi: 10.1104/pp.108.127027
– ident: e_1_2_6_56_1
  doi: 10.1111/j.1600-0854.2008.00841.x
– ident: e_1_2_6_51_1
  doi: 10.1104/pp.104.049502
– ident: e_1_2_6_35_1
  doi: 10.1016/S0076-6879(10)80022-9
– ident: e_1_2_6_7_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_6_57_1
  doi: 10.1016/S1369-5266(03)00058-X
– ident: e_1_2_6_47_1
  doi: 10.1016/S0092-8674(00)00213-0
– ident: e_1_2_6_29_1
  doi: 10.1073/pnas.0913035107
– ident: e_1_2_6_8_1
  doi: 10.1038/nature02076
– ident: e_1_2_6_65_1
  doi: 10.1105/tpc.4.6.645
– ident: e_1_2_6_17_1
  doi: 10.4161/psb.3.10.6666
– ident: e_1_2_6_68_1
  doi: 10.1146/annurev.arplant.56.032604.144228
– ident: e_1_2_6_36_1
  doi: 10.1021/bi00070a020
– ident: e_1_2_6_63_1
  doi: 10.1073/pnas.0901778106
– ident: e_1_2_6_12_1
  doi: 10.1007/s004250050707
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-313X.2010.04455.x
– ident: e_1_2_6_49_1
  doi: 10.1007/s00425-002-0921-3
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1469-8137.2007.02331.x
– ident: e_1_2_6_19_1
  doi: 10.1007/s00438-004-1071-z
– ident: e_1_2_6_38_1
  doi: 10.1104/pp.103.025379
– ident: e_1_2_6_28_1
  doi: 10.1105/tpc.013862
– ident: e_1_2_6_52_1
  doi: 10.1038/283870a0
– ident: e_1_2_6_45_1
  doi: 10.1007/BF00015814
– ident: e_1_2_6_6_1
  doi: 10.1080/09687680410001720830
– ident: e_1_2_6_5_1
  doi: 10.1073/pnas.95.11.6531
– ident: e_1_2_6_26_1
  doi: 10.1105/tpc.104.025817
– ident: e_1_2_6_44_1
  doi: 10.1104/pp.011569
– ident: e_1_2_6_40_1
  doi: 10.1073/pnas.0804015105
– ident: e_1_2_6_20_1
  doi: 10.1023/A:1006496308160
– ident: e_1_2_6_33_1
  doi: 10.1074/jbc.M412462200
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1365-313X.2012.05004.x
– ident: e_1_2_6_70_1
  doi: 10.1104/pp.102.012633
– ident: e_1_2_6_9_1
  doi: 10.1093/mp/ssp013
– ident: e_1_2_6_11_1
  doi: 10.3109/10520296409061248
– ident: e_1_2_6_10_1
  doi: 10.1105/tpc.7.4.391
– ident: e_1_2_6_54_1
  doi: 10.1046/j.0960-7412.2002.01252.x
– ident: e_1_2_6_21_1
  doi: 10.1021/jo0516382
– ident: e_1_2_6_46_1
  doi: 10.1073/pnas.0609507104
– ident: e_1_2_6_34_1
  doi: 10.1105/tpc.110.078154
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1365-313X.2004.02161.x
– ident: e_1_2_6_50_1
  doi: 10.1007/s00424-003-1087-y
– volume: 3
  start-page: 49
  year: 1991
  ident: e_1_2_6_69_1
  article-title: Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean
  publication-title: Plant Cell
– ident: e_1_2_6_48_1
  doi: 10.1104/pp.109.144626
– ident: e_1_2_6_66_1
  doi: 10.1104/pp.103.037945
– ident: e_1_2_6_27_1
  doi: 10.1093/jxb/33.4.670
– ident: e_1_2_6_43_1
  doi: 10.1073/pnas.0907173106
– ident: e_1_2_6_41_1
  doi: 10.1093/pcp/pci095
– ident: e_1_2_6_62_1
  doi: 10.1046/j.1365-313X.1998.00093.x
– ident: e_1_2_6_71_1
  doi: 10.1093/glycob/8.7.651
– ident: e_1_2_6_32_1
  doi: 10.1152/physiol.00050.2006
– ident: e_1_2_6_3_1
  doi: 10.1105/tpc.110.079426
– volume: 9
  start-page: 453
  year: 1997
  ident: e_1_2_6_13_1
  article-title: A new class of plastidic phosphate translocator: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter
  publication-title: Plant Cell
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1469-8137.2006.01935.x
– ident: e_1_2_6_55_1
  doi: 10.1073/pnas.0800141105
– volume: 10
  start-page: 105
  year: 1998
  ident: e_1_2_6_24_1
  article-title: Molecular characterisation of a carbon transporter in plastids from heterotrophic tissues: the glucose 6‐phosphate/phosphate antiporter
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.1.105
– ident: e_1_2_6_53_1
  doi: 10.1007/s00425-003-1121-5
– ident: e_1_2_6_60_1
  doi: 10.1104/pp.99.3.856
– ident: e_1_2_6_16_1
  doi: 10.1007/BF00028910
– ident: e_1_2_6_31_1
  doi: 10.1038/nature06545
SSID ssj0017364
Score 2.321777
Snippet The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6...
Summary The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6...
The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6...
Summary The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
wiley
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 732
SubjectTerms Alkaloids
Alkaloids - pharmacology
alpha-Mannosidase
alpha-Mannosidase - metabolism
Arabidopsis
Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis - microbiology
Arabidopsis Proteins
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biological and medical sciences
brefeldin A
Brefeldin A - pharmacology
Cell Wall
Cell Wall - chemistry
chemistry
Disease Resistance
drug effects
Flowers & plants
Fundamental and applied biological sciences. Psychology
Gene Knockdown Techniques
genes
Genetic Complementation Test
genetics
Golgi Apparatus
Golgi Apparatus - genetics
Golgi Apparatus - metabolism
growth & development
growth and development
inorganic phosphate
knockout mutants
metabolism
microbiology
mimic disease
Mutants
Mutation
NMR
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
Oryza
Oryza - genetics
Oryza sativa
pathogenicity
pharmacology
phosphate compartmentation
Phosphate Transport Proteins
Phosphate Transport Proteins - genetics
Phosphate Transport Proteins - metabolism
Phosphates
Plant Diseases
Plant Diseases - microbiology
Plant growth
Plant physiology and development
Plants, Genetically Modified
Polysaccharides
Polysaccharides - metabolism
Pseudomonas syringae
Pseudomonas syringae - pathogenicity
resistance mechanisms
Resistance to control
rice
Salt tolerance
vacuole
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgQgIeuI8VxmQkHkm1-JZYPAFiVBOgCVppb5HtOF3VLqmaFlZ-JL-Jc5I0W6tqmhBvVX1Jcnwun-3Px4S8gbBiU21MwHVoA2GECKxhYcBTxoXKlAsZnnf--k31BuL4VJ42_Cc8C1Pnh2gX3NAyKn-NBm5suW7kyNDiIT9FhhbronqpLuLJkMtqx_Z7m0kqjHidSQoAewBBdIPUs7WjtUh1OzMF8iZNCaLL6jsvtoHS--TuIp-a5S8zmazj3SpgHT0k49Wn1jyVcXcxt133eyML5P-RxSPyoMG19H2tiI_JLZ8_IXc-FIA9l0_Jny_GjWmRUYCb9HMxGY7o9Kwop2eAdOm8za8-oye9vninqDOL0pe0xHX6IU0viU3wiNRXDJS31BUN0QEc9mRJ8YTGT-gvpc2mE535EtExqDU993jCeVSel9TkKa04AlBzhEvbuHeBZNwrr1Qz8ysCfqW5UBE-zdhRWkyhz2dkcPSp_7EXNDdJBE4xoQIuLctE6pl2UjvrjbZaZlYpbzOWYc574aWzMU-NNlHqJXfG4GQN4KNy2vFdspMXud8jNGY2i7ky0aEzQrtQY0JJrjl0dehiE3VItNKaxDVp1vG2j0lyZboFg5XgYCU4WEk1WMlFh4Rty2mdauQGbfZAMRMzhIiQDH4wnC9X03gutxcBHI5EhxysKXL7OEBrCCBZh-yvNDtpfFqZYLJALbVQUPy6LQZvhMNkcl8ssA7MT2MJqPaaOhIJBRFItkOe11Zz-QIsimPJeIew1oyuEcbFhjBUZSQ3ll7SPznGXy_-teFLcg__rulN-2RnPlv4VwBS5_agcj9_AXa0gg0
  priority: 102
  providerName: Wiley-Blackwell
Title Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2012.05106.x
https://www.ncbi.nlm.nih.gov/pubmed/22788523
https://www.proquest.com/docview/1180959462
https://www.proquest.com/docview/1197485584
https://www.proquest.com/docview/1514407396
http://hdl.handle.net/2434/225022
UnpaywallVersion submittedVersion
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1365-313X
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0017364
  issn: 1365-313X
  databaseCode: DIK
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  customDbUrl:
  eissn: 1365-313X
  dateEnd: 20141231
  omitProxy: true
  ssIdentifier: ssj0017364
  issn: 1365-313X
  databaseCode: FIJ
  dateStart: 19910701
  isFulltext: true
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  providerName: Ingenta
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1365-313X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-313X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017364
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2Dgl44BsWGJWReCSjsR0nFk8DMaoJpgpaqTxFtuN01bqmWlpo-ZH8Ju5N0nYdY5p4S2PHjt1j33Pj42tCXoNZManS2ucqML7QQvhGs8DnKeNCZtIGDPc7fzmW7Z446of9LbI8n_BSeAEmuHgLiANDs012JK4hNchO77hz8L2MoSdbPlhEttxbxQPe31Tr1HfnqOFi-whAuQxyVJug7UznKIjUBfRJVh1mcRXbvEtuz8YTvfipR6NNIltaosP76_08lQDldH82Nfv219_hHf_dyAfkXs1D6UEFnIdky40fkVvvc-CKi8fk92dtT2meUaCH9FM-Ggzp5CQvJifATOl0FQ_9nHbaXfFOUqtnhStogd_VBzRdC5GgitSVipE31Oa1MAEm2NGC4o6KH1BeSutFIgqeP7JZgCE9c7gjeVicFRSaQMs1fcg5xE_RuNaA4tkLr1Qp6UvBfIk0yAhN02aY5hMo8wnpHX7sfmj79ckPvpVMSJ-HhmUidUzZUFnjtDIqzIyUzmQswxj1woXWxDzVSkepC7nVGp0roHvSKsufksY4H7tdQmNmsphLHbWsFsoGCgNAcsWhqJaNdeSRaAmGxNZh0fF0jlFywT0CGCUIrgRhlJQwSuYeCVZPTqrQIDd4ZhfwlugBzOBJ7xtD_7Z0u3l4dRLQ10h4pLmBz1V1wK6Q8DGP7C0Bm9RzUJFgcD8VKiEh-dUqGWYP_Jv02OUzzAP-ZBwCC70mT4gCgAh61iPPqsGwfgEWxXHIuEfYanRc0xnzS50hy2F0495Lup0jvHr-P7W9IHfwZyVF2iON6fnMvQRCOTVNcKW-smY9sfwBHadq3g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgIA0euMMCYxiJR1ItduLE4onbKKObJmilvUW243TVsqRqWlj5kfwmzknSbK2qaUK8RfIlyfG5fLY_HxPyBsKKTqRSLpeedn3l-65WzHN5wrgvUmE8huedDw5Fd-DvHwfHzXVAeBamzg_RLrihZVT-Gg0cF6SXrRwpWtzjx0jRYh3UL9EBQHkLt-vQSj99b3NJeSGvc0kBZHchjK7Qetb2tBSrbqaqQOakKkF4aX3rxTpYepdszvKxmv9SWbaMeKuQtXefZIufrZkqp53ZVHfM75U8kP9JGg_IvQba0ve1Lj4kN2z-iNz-UAD8nD8mf3rKnNIipYA46ZciG47o-KQoxycAdum0TbE-oUfdvv9OUKNmpS1piUv1Q5pccJvgFYmtSChvqSkargP47GxO8ZDGT-gvoc2-E53YEgEyaDY9s3jIeVSelVTlCa1oAlBzhKvbuH2BfNxLn1ST8ysOfqW8UBF-TelRUoyhzydksPe5_7HrNpdJuEYwX7g80Cz1E8ukCaTRVkktg1QLYXXKUkx779vA6IgnSqowsQE3SuF8DRCkMNLwp2QjL3K7RWjEdBpxocJdo3xpPIk5Jbnk0NWuiVTokHChNrFpMq3jhR9ZfGnGBYMV42DFOFhxNVjxuUO8tuW4zjZyjTZboJmxGkJQiAc_GE6Zq5k8D9YXASIOfYfsLGly-zoAbIghmUO2F6odN26tjDFfoAykL6D4dVsMDgmHSeW2mGEdmKJGAQDbK-oEyCkIQbIOeVabzcUHsDCKAsYdwlo7ukIY5yvCEJWVXFt6cf9oH5-e_2vDV2Sz2z_oxb2vh99ekDtYpWY7bZON6WRmXwJmneqdyhf9BXJkhik
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgIC4P3AasMIaReCTVYjtOLJ64lTLGVEEn9S2yHaer2jVV08LKj-Q3cU6SZmtVTRPiLZIvic_F_o7z-ZiQ17CsmERp7XHlG09oITyjme_xhHEhU2l9huedvx3J9rE46AW9iv-EZ2HK_BD1hht6RjFfo4NPknTVyZGhxX3eQ4YWa6J5ySbgyRtCQrCFAOl7nUrKD3mZSgoQuwer6BqrZ2NPK0vV9VRnSJzUOcguLS-92IRK75Lb8_FEL37p0WgV8BYrVus-GS7HWhJVhs35zDTt77U0kP9HGA_IvQrY0nelJT4k19z4Ebn5PgPwudgmfw61HdIspYA36eds1B_QyUmWT04A6tJZnWB9SjvtrngrqdXz3OU0x436Pk3OmU3wisQVFJQ31GYV0wFm7NGC4hGNn9BfQqu_TnTqcoTHYNf01OER50F-mlM9TmhBEoCaA9zbxp8XyMa98EklNb9g4BemCxVhaNoMkmwCfT4mx61P3Q9tr7pKwrOSCenxwLBUJI4pGyhrnFZGBamR0pmUpZj0XrjAmognWukwcQG3WmO0BvhRWmX5E7I1zsZuh9CImTTiUof7VgtlfYUZJbni0NW-jXTYIOHSamJb5VnH6z5G8YV4C5QVo7JiVFZcKCs-axC_bjkpc41coc0OGGas-7AkxMc_GAbMRRzPg81FgIdD0SB7K4Zcvw7gGiJI1iC7S8uOq0ktjzFboAqUkFD8qi6G6QjVpMcum2MdCFCjAGDtJXUCZBSEINkGeVp6zfkHsDCKAsYbhNVudIkwztaEIQsnubL04m7nAJ-e_WvDl-RW52MrPvxy9PU5uYM1SqrTLtmaTefuBQDWmdkrZqK_XvyE2A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2Dgl44BsWGJOReCRdYztOLJ4GYlQTTJVopfIU2Y7TVeuaammh5Ufym7g3Sdt1jGniLY0dO3aPfc-Nj68JeQtmxaRKa5-rwPhCC-EbzQKfp4wLmUkbMNzv_PVEtnviuB_2t8jyfMIr4QWY4OIAEAeGZpvsSFxDapCd3knn8HsZQ0-2fLCIbLm3ige8v6nWqe_OUcPFmghAuQxyVJug7UznKIjUBfRJVh1mcR3bvE_uzsYTvfipR6NNIltaoqOH6_08lQDlrDmbmqb99Xd4x3838hF5UPNQelgB5zHZcuMn5M6HHLji4in5_UXbM5pnFOgh_ZyPBkM6Oc2LySkwUzpdxUO_oJ12V7yX1OpZ4Qpa4Hf1AU3XQiSoInWlYuQdtXktTIAJdrSguKPiB5SX0nqRiILnj2wWYEjPHe5IHhbnBYUm0HJNH3IO8VM0rjWgePbSK1VK-lIwXyINMkLTtBmm-QTKfEZ6R5-6H9t-ffKDbyUT0uehYZlIHVM2VNY4rYwKMyOlMxnLMEa9cKE1MU-10lHqQm61RucK6J60yvLnpDHOx26X0JiZLOZSRy2rhbKBwgCQXHEoqmVjHXkkWoIhsXVYdDydY5Rcco8ARgmCK0EYJSWMkrlHgtWTkyo0yC2e2QW8JXoAM3jS-8bQvy3dbh5enwT0NRIe2d_A56o6YFdI-JhH9paATeo5qEgwuJ8KlZCQ_GaVDLMH_k167PIZ5gF_Mg6Bhd6QJ0QBQAQ965EX1WBYvwCL4jhk3CNsNTpu6Iz5lc6Q5TC6de8l3c4xXr38n9pekXv4s5Ii7ZHG9GLmXgOhnJr9ekr5A6IyafU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lack+of+the+Golgi+phosphate+transporter+PHT4%3B6+causes+strong+developmental+defects%2C+constitutively+activated+disease+resistance+mechanisms+and+altered+intracellular+phosphate+compartmentation+in+Arabidopsis&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Hassler%2C+Sebastian&rft.au=Lemke%2C+Lilia&rft.au=Jung%2C+Benjamin&rft.au=M%C3%B6hlmann%2C+Torsten&rft.date=2012-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=72&rft.issue=5&rft.spage=732&rft.epage=744&rft_id=info:doi/10.1111%2Fj.1365-313X.2012.05106.x&rft.externalDocID=US201400039274
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon