Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis
The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans‐Golgi compartment and that loss of function of this carrier protein has a dr...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 72; no. 5; pp. 732 - 744 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.12.2012
Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 0960-7412 1365-313X 1365-313X |
DOI | 10.1111/j.1365-313X.2012.05106.x |
Cover
Abstract | The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans‐Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi‐related functions, such as an altered abundance of certain N‐glycosylated proteins, altered composition of cell‐wall hemicelluose, and higher sensitivity to the Golgi α‐mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’ phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild‐type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans‐Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance. |
---|---|
AbstractList | Summary
The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans‐Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi‐related functions, such as an altered abundance of certain N‐glycosylated proteins, altered composition of cell‐wall hemicelluose, and higher sensitivity to the Golgi α‐mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’ phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild‐type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans‐Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance. Summary The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6-GFP is targeted to the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition of cell-wall hemicelluose, and higher sensitivity to the Golgi [alpha]-mannosidase and the retrograde transport inhibitors kifunensine and brefeldinA, respectively. Moreover, pht4;6 mutants exhibit a 'mimic disease' phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance. [PUBLICATION ABSTRACT] The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans‐Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi‐related functions, such as an altered abundance of certain N‐glycosylated proteins, altered composition of cell‐wall hemicelluose, and higher sensitivity to the Golgi α‐mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’ phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild‐type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans‐Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance. The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6-GFP is targeted to the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition of cell-wall hemicelluose, and higher sensitivity to the Golgi α-mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a 'mimic disease' phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6-GFP is targeted to the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition of cell-wall hemicelluose, and higher sensitivity to the Golgi α-mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a 'mimic disease' phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance. The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6–GFP is targeted to the trans ‐Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice ( Oryza sativa ). Interestingly, pht4;6 mutants show altered characteristics of several Golgi‐related functions, such as an altered abundance of certain N‐glycosylated proteins, altered composition of cell‐wall hemicelluose, and higher sensitivity to the Golgi α‐mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a ‘mimic disease’ phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild‐type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans ‐Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance. |
Author | Hassler, Sebastian Möhlmann, Torsten Schumacher, Karin Martinoia, Enrico Espen, Luca Jung, Benjamin Krüger, Falco Lemke, Lilia Neuhaus, H. Ekkehard |
Author_xml | – sequence: 1 fullname: Hassler, Sebastian – sequence: 2 fullname: Lemke, Lilia – sequence: 3 fullname: Jung, Benjamin – sequence: 4 fullname: Möhlmann, Torsten – sequence: 5 fullname: Krüger, Falco – sequence: 6 fullname: Schumacher, Karin – sequence: 7 fullname: Espen, Luca – sequence: 8 fullname: Martinoia, Enrico – sequence: 9 fullname: Neuhaus, H. Ekkehard |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26650912$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22788523$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhgep2A_9CxoQwQt3zcdkZoIolKKtUrBgC70LZzKZbtZMMiYZ2_2T_iaz3VqlF7W5mQx5zvuekze7xZbzThcFInhO8nq7nBNW8Rkj7HxOMaFzzAmu5lePip3bg61iB4sKz-qS0O1iN8YlxqRmVfmk2Ka0bhpO2U7x6xjUd-R7lBYaHXp7YdC48HFcQNIoBXBx9CHpgE6OTst3FVIwRR1RTMG7C9Tpn9r6cdAugc1_vVYpvkHKu5hMmpLJxysEKm-yXoc6EzVEjYKOJiZwSqNBqwU4E4eIwHUIbDbLpHHZXGlrJwvhn5aUH0YI6doxGe8yiPYDtKbzY9Z8WjzuwUb97Oa7V5x9-nh6cDQ7_nr4-WD_eKYqWlYzxlval52mQnGhWg2iFbxvq0q3Pe0bSkWpuWob1oGAutOcKQBK6rJholJCsb1CbHQnN8LqEqyVYzADhJUkWK4zkku5jkLmKK7kOiN5nZG8yrWvN7Vj8D8mHZMcTFyPCk77KUrCSVniOjv9HyUi98R5U2b05R106afg8iVkqsGCi7KimXp-Q03toLvbpv88iAy8ugEgKrB9fgHKxL9cVXEsyFqo2XAq-BiD7u-Z__zu_B_ulCqzCTNHbuxDBN5vBC6N1asHG8vTky_rXa5_sanvwUu4CHm-s2-ZLDHGTNC6vJegBDPOfgMbAxWz |
CitedBy_id | crossref_primary_10_1093_jxb_erw444 crossref_primary_10_1111_ppl_70067 crossref_primary_10_1007_s11104_022_05444_y crossref_primary_10_1093_jxb_erw249 crossref_primary_10_1038_ncomms11095 crossref_primary_10_1093_pcp_pcaa168 crossref_primary_10_3390_ijms21062209 crossref_primary_10_3390_cells8050490 crossref_primary_10_1038_srep39293 crossref_primary_10_1186_s12870_016_0892_3 crossref_primary_10_1093_jxb_erac491 crossref_primary_10_3389_fphys_2014_00201 crossref_primary_10_1016_j_plaphy_2021_06_038 crossref_primary_10_3389_fpls_2020_607878 crossref_primary_10_1111_tpj_12962 crossref_primary_10_3390_ijms21218365 crossref_primary_10_1111_pce_12370 crossref_primary_10_1016_j_envexpbot_2023_105241 crossref_primary_10_3389_fpls_2021_620018 crossref_primary_10_3389_fpls_2015_01158 crossref_primary_10_1016_j_rsci_2020_09_006 crossref_primary_10_3390_agriculture8020027 crossref_primary_10_1111_jipb_13827 crossref_primary_10_1093_plcell_koad212 crossref_primary_10_1186_s12870_016_0841_1 crossref_primary_10_1093_plphys_kiad123 crossref_primary_10_1093_jxb_eraf017 crossref_primary_10_1111_tpj_16576 crossref_primary_10_3390_plants10010051 crossref_primary_10_1093_pcp_pcv208 crossref_primary_10_1016_j_molp_2019_07_003 crossref_primary_10_1016_j_pbi_2017_04_015 crossref_primary_10_1016_j_genrep_2021_101351 crossref_primary_10_1016_j_pbi_2014_06_009 crossref_primary_10_3390_ijms19071914 crossref_primary_10_1186_s12864_019_5599_z crossref_primary_10_1016_j_molp_2015_12_012 crossref_primary_10_3390_ijms20225575 crossref_primary_10_1017_qpb_2025_1 crossref_primary_10_3389_fpls_2014_00701 crossref_primary_10_3389_fpls_2016_01198 crossref_primary_10_1007_s10265_024_01533_4 crossref_primary_10_3390_cells11192985 |
Cites_doi | 10.1104/pp.106.090167 10.1104/pp.104.046367 10.1105/tpc.5.8.865 10.1006/abio.1993.1529 10.1091/mbc.E06-01-0046 10.1093/glycob/7.2.169 10.1111/j.1365-313X.2011.04532.x 10.1073/pnas.1115146109 10.1073/pnas.0800237105 10.1105/tpc.007872 10.1093/jxb/erl183 10.1104/pp.108.127027 10.1111/j.1600-0854.2008.00841.x 10.1104/pp.104.049502 10.1016/S0076-6879(10)80022-9 10.1046/j.1365-313x.1998.00343.x 10.1016/S1369-5266(03)00058-X 10.1016/S0092-8674(00)00213-0 10.1073/pnas.0913035107 10.1038/nature02076 10.1105/tpc.4.6.645 10.4161/psb.3.10.6666 10.1146/annurev.arplant.56.032604.144228 10.1021/bi00070a020 10.1073/pnas.0901778106 10.1007/s004250050707 10.1111/j.1365-313X.2010.04455.x 10.1007/s00425-002-0921-3 10.1111/j.1469-8137.2007.02331.x 10.1007/s00438-004-1071-z 10.1104/pp.103.025379 10.1105/tpc.013862 10.1038/283870a0 10.1007/BF00015814 10.1080/09687680410001720830 10.1073/pnas.95.11.6531 10.1105/tpc.104.025817 10.1104/pp.011569 10.1073/pnas.0804015105 10.1023/A:1006496308160 10.1074/jbc.M412462200 10.1111/j.1365-313X.2012.05004.x 10.1104/pp.102.012633 10.1093/mp/ssp013 10.3109/10520296409061248 10.1105/tpc.7.4.391 10.1046/j.0960-7412.2002.01252.x 10.1021/jo0516382 10.1073/pnas.0609507104 10.1105/tpc.110.078154 10.1111/j.1365-313X.2004.02161.x 10.1007/s00424-003-1087-y 10.1104/pp.109.144626 10.1104/pp.103.037945 10.1093/jxb/33.4.670 10.1073/pnas.0907173106 10.1093/pcp/pci095 10.1046/j.1365-313X.1998.00093.x 10.1093/glycob/8.7.651 10.1152/physiol.00050.2006 10.1105/tpc.110.079426 10.1111/j.1469-8137.2006.01935.x 10.1073/pnas.0800141105 10.1105/tpc.10.1.105 10.1007/s00425-003-1121-5 10.1104/pp.99.3.856 10.1007/BF00028910 10.1038/nature06545 |
ContentType | Journal Article |
Copyright | 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd 2014 INIST-CNRS 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd – notice: 2014 INIST-CNRS – notice: 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 ADTOC UNPAY |
DOI | 10.1111/j.1365-313X.2012.05106.x |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Chemistry |
EISSN | 1365-313X |
EndPage | 744 |
ExternalDocumentID | oai:air.unimi.it:2434/225022 2822244231 22788523 26650912 10_1111_j_1365_313X_2012_05106_x TPJ5106 US201400039274 US201400021035 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA H.T H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAHBH AAHQN AAMNL AAYCA AFWVQ AHBTC AITYG ALVPJ HGLYW OIG AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 ADTOC UNPAY |
ID | FETCH-LOGICAL-c6246-35b2f4de29c59cbea9b95fb66ebf2f82294e5cb83da9a7de53caa21748396c9c3 |
IEDL.DBID | UNPAY |
ISSN | 0960-7412 1365-313X |
IngestDate | Tue Aug 19 21:27:44 EDT 2025 Fri Jul 11 18:24:43 EDT 2025 Fri Jul 11 15:21:30 EDT 2025 Fri Jul 25 10:51:59 EDT 2025 Mon Jul 21 06:05:05 EDT 2025 Wed Apr 02 07:23:36 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Wed Oct 01 04:33:11 EDT 2025 Wed Jan 22 16:38:44 EST 2025 Wed Dec 27 18:50:11 EST 2023 Wed Dec 27 19:05:15 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Phosphates phosphate compartmentation Arabidopsis mimic disease Biological transport Activation Vacuole Mechanism Golgi apparatus Arabidopsis thaliana Resistance Cruciferae Dicotyledones Angiospermae Spermatophyta inorganic phosphate Intracellular |
Language | English |
License | CC BY 4.0 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd. other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6246-35b2f4de29c59cbea9b95fb66ebf2f82294e5cb83da9a7de53caa21748396c9c3 |
Notes | http://dx.doi.org/10.1111/j.1365-313X.2012.05106.x SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2434/225022 |
PMID | 22788523 |
PQID | 1180959462 |
PQPubID | 31702 |
PageCount | 13 |
ParticipantIDs | unpaywall_primary_10_1111_j_1365_313x_2012_05106_x proquest_miscellaneous_1514407396 proquest_miscellaneous_1197485584 proquest_journals_1180959462 pubmed_primary_22788523 pascalfrancis_primary_26650912 crossref_primary_10_1111_j_1365_313X_2012_05106_x crossref_citationtrail_10_1111_j_1365_313X_2012_05106_x wiley_primary_10_1111_j_1365_313X_2012_05106_x_TPJ5106 fao_agris_US201400039274 fao_agris_US201400021035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | 2004; 21 2010; 12 2007; 104 2008a; 3 2010; 107 1987; 8 2007; 143 2000; 42 2003; 15 2008; 105 2008; 148 2009; 151 2000; 210 1992; 99 2004; 447 1997; 9 1997; 7 1993; 5 1998; 16 2004; 134 2012; 71 2010; 22 2004; 136 2009; 10 2004; 135 2007; 173 1964; 39 2004; 39 2003; 6 1993; 32 2011; 66 2011; 65 2011; 23 2005; 70 1998; 95 2004; 218 1998; 10 2007; 22 1993; 214 1998; 14 1992; 4 1991; 3 2002; 130 2006; 17 1982; 33 2002; 216 2010; 480 2008b; 177 2007; 58 2003; 132 2005; 46 2012; 109 1995; 7 2005; 280 2003; 425 2002; 29 2000; 103 2004; 272 1992; 20 1980; 283 2009; 2 2005; 17 2008; 451 2005; 56 2009; 106 1998; 8 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Fischer K. (e_1_2_6_13_1) 1997; 9 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 Whalen M.C. (e_1_2_6_69_1) 1991; 3 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 Kammerer B. (e_1_2_6_24_1) 1998; 10 e_1_2_6_39_1 e_1_2_6_56_1 Foster C.E. (e_1_2_6_14_1) 2010; 12 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 135 start-page: 400 year: 2004 end-page: 411 article-title: Structure and expression profile of the Arabidopsis gene family indicates a broad role in inorganic phosphate homeostasis publication-title: Plant Physiol. – volume: 15 start-page: 19 year: 2003 end-page: 32 article-title: The Arabidopsis locus encodes a putative cell surface adhesion protein and is required for normal cell expansion publication-title: Plant Cell – volume: 132 start-page: 343 year: 2003 end-page: 351 article-title: The expression of the t‐SNARE AtSNAP33 is induced by pathogens and mechanical stimulation publication-title: Plant Physiol. – volume: 480 start-page: 495 year: 2010 end-page: 510 article-title: The acidic environment of the Golgi is critical for glycosylation and transport publication-title: Methods Enzymol. – volume: 33 start-page: 670 year: 1982 end-page: 681 article-title: The application of P nuclear magnetic resonance to higher plant tissue publication-title: J. Exp. Bot. – volume: 103 start-page: 1111 year: 2000 end-page: 1120 article-title: Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance publication-title: Cell – volume: 3 start-page: 784 year: 2008a end-page: 790 article-title: Differential expression and phylogenetic analysis suggest specialization of plastid‐localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues publication-title: Plant Signal. Behav. – volume: 177 start-page: 889 year: 2008b end-page: 898 article-title: Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters publication-title: New Phytol. – volume: 15 start-page: 2273 year: 2003 end-page: 2284 article-title: The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress publication-title: Plant Cell – volume: 16 start-page: 735 year: 1998 end-page: 743 article-title: Floral dip: a simplified method for ‐mediated transformation of publication-title: Plant J. – volume: 210 start-page: 985 year: 2000 end-page: 992 article-title: Metabolic responses in cucumber ( L.) roots under Fe‐deficiency: a P‐nuclear magnetic resonance study publication-title: Planta – volume: 39 start-page: 629 year: 2004 end-page: 642 article-title: Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low‐ and high‐phosphate environments publication-title: Plant J. – volume: 148 start-page: 1354 year: 2008 end-page: 1367 article-title: Comparative analyses of Arabidopsis mutants and genetic interaction with publication-title: Plant Physiol. – volume: 10 start-page: 105 year: 1998 end-page: 117 article-title: Molecular characterisation of a carbon transporter in plastids from heterotrophic tissues: the glucose 6‐phosphate/phosphate antiporter publication-title: Plant Cell – volume: 216 start-page: 23 year: 2002 end-page: 37 article-title: Molecular mechanisms of phosphate transport in plants publication-title: Planta – volume: 22 start-page: 193 year: 2007 end-page: 201 article-title: Endoplasmic reticulum stress: signaling the unfolded protein response publication-title: Physiology – volume: 105 start-page: 5683 year: 2008 end-page: 5686 article-title: Identification of a vesicular nucleotide transporter publication-title: Proc. Natl Acad. Sci. USA – volume: 99 start-page: 856 year: 1992 end-page: 863 article-title: Metabolic response of maize roots to hyperosmotic shock: an P nuclear magnetic resonance study publication-title: Plant Physiol. – volume: 7 start-page: 391 year: 1995 end-page: 406 article-title: The tobacco homolog of mammalian calreticulin is present in protein complexes publication-title: Plant Cell – volume: 20 start-page: 1203 year: 1992 end-page: 1207 article-title: A versatile binary vector system with a T‐DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome publication-title: Plant Mol. Biol. – volume: 8 start-page: 363 year: 1987 end-page: 373 article-title: Hybrid genes in the analysis of transformation conditions publication-title: Plant Mol. Biol. – volume: 136 start-page: 2621 year: 2004 end-page: 2632 article-title: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox publication-title: Plant Physiol. – volume: 2 start-page: 535 year: 2009 end-page: 552 article-title: The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis publication-title: Mol. Plant – volume: 6 start-page: 365 year: 2003 end-page: 371 article-title: The salicylic acid loop in plant defense publication-title: Curr. Opin. Plant Biol. – volume: 130 start-page: 1102 year: 2002 end-page: 1108 article-title: Brefeldin A: deciphering an enigmatic inhibitor of secretion publication-title: Plant Physiol. – volume: 29 start-page: 661 year: 2002 end-page: 678 article-title: Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks publication-title: Plant J. – volume: 106 start-page: 14174 year: 2009 end-page: 14179 article-title: ER‐resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability publication-title: Proc. Natl Acad. Sci. USA – volume: 173 start-page: 11 year: 2007 end-page: 26 article-title: Functional biology of plant phosphate uptake at root and mycorrhiza interfaces publication-title: New Phytol. – volume: 3 start-page: 49 year: 1991 end-page: 59 article-title: Identification of pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean publication-title: Plant Cell – volume: 21 start-page: 171 year: 2004 end-page: 181 article-title: Phylogeny as a guide to structure and function of membrane transport proteins publication-title: Mol. Membr. Biol. – volume: 65 start-page: 703 year: 2011 end-page: 711 article-title: Arabidopsis nucleoside hydrolases involved in intracellular and extracellular degradation of purines publication-title: Plant J. – volume: 46 start-page: 902 year: 2005 end-page: 912 article-title: The Arabidopsis gene controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain publication-title: Plant Cell Physiol. – volume: 23 start-page: 224 year: 2011 end-page: 239 article-title: The Arabidopsis intracellular Na /H antiporters NHX5 and NHX6 are endosome‐associated and necessary for plant growth and development publication-title: Plant Cell – volume: 12 start-page: 1837 year: 2010 article-title: Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates publication-title: J. Vis. Exp. – volume: 58 start-page: 83 year: 2007 end-page: 102 article-title: Vacuolar transporters and their essential role in plant metabolism publication-title: J. Exp. Bot. – volume: 143 start-page: 156 year: 2007 end-page: 171 article-title: Genome‐wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism publication-title: Plant Physiol. – volume: 7 start-page: 169 year: 1997 end-page: 171 article-title: Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus membrane: where next? publication-title: Glycobiology – volume: 218 start-page: 406 year: 2004 end-page: 416 article-title: Characterization of a protein of the plastid inner envelope having homology to animal inorganic phosphate, chloride and organic‐anion transporters publication-title: Planta – volume: 425 start-page: 973 year: 2003 end-page: 977 article-title: SNARE‐protein‐mediated disease resistance at the plant cell wall publication-title: Nature – volume: 283 start-page: 870 year: 1980 end-page: 872 article-title: Estimation of cytoplasmic and vacuolar pH in higher plant cells by P NMR publication-title: Nature – volume: 32 start-page: 5116 year: 1993 end-page: 5120 article-title: Differences in the binding affinities of dimeric concanavalin A (including acetyl and succinyl derivatives) and tetrameric concanavalin A with large oligomannose‐type glycopeptides publication-title: Biochemistry – volume: 4 start-page: 645 year: 1992 end-page: 656 article-title: Acquired resistance in Arabidopsis publication-title: Plant Cell – volume: 10 start-page: 101 year: 2009 end-page: 115 article-title: Arginine/lysine residues in the cytoplasmic tail promote ER export of plant glycosylation enzymes publication-title: Traffic – volume: 9 start-page: 453 year: 1997 end-page: 462 article-title: A new class of plastidic phosphate translocator: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter publication-title: Plant Cell – volume: 56 start-page: 133 year: 2005 end-page: 164 article-title: Solute transporters of the plastid envelope membrane publication-title: Annu. Rev. Plant Biol. – volume: 17 start-page: 282 year: 2005 end-page: 294 article-title: Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants publication-title: Plant Cell – volume: 136 start-page: 3524 year: 2004 end-page: 3536 article-title: Molecular physiological analysis of the two plastidic ATP/ADP transporters from publication-title: Plant Physiol. – volume: 22 start-page: 2930 year: 2010 end-page: 2942 article-title: Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants publication-title: Plant Cell – volume: 105 start-page: 11720 year: 2008 end-page: 11724 article-title: Identification of a vesicular aspartate transporter publication-title: Proc. Natl Acad. Sci. USA – volume: 42 start-page: 819 year: 2000 end-page: 832 article-title: pGreen: a versatile and flexible binary Ti vector for Agrobacterium‐mediated plant transformation publication-title: Plant Mol. Biol. – volume: 280 start-page: 17992 year: 2005 end-page: 18000 article-title: Identification and characterization of a novel plastidic adenine nucleotide uniporter from publication-title: J. Biol. Chem. – volume: 451 start-page: 835 year: 2008 end-page: 840 article-title: Co‐option of a default secretory pathway for plant immune responses publication-title: Nature – volume: 104 start-page: 8532 year: 2007 end-page: 8537 article-title: A secretory pathway‐localized cation diffusion facilitator confers plant manganese tolerance publication-title: Proc. Natl Acad. Sci. USA – volume: 70 start-page: 9892 year: 2005 end-page: 9904 article-title: A practical synthesis of kifunensine analogues as inhibitors of endoplasmic reticulum α‐mannosidase I publication-title: J. Org. Chem. – volume: 447 start-page: 629 year: 2004 end-page: 635 article-title: Organic anion transport is the primary function of the SLC17/type I phosphate transporter family publication-title: Pflügers Arch. – volume: 106 start-page: 20978 year: 2009 end-page: 20983 article-title: Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation publication-title: Proc. Natl Acad. Sci. USA – volume: 151 start-page: 1646 year: 2009 end-page: 1657 article-title: Phosphate (Pi) starvation effect on the cytosolic Pi concentration and Pi exchanges across the tonoplast in plant cells: an P‐nuclear magnetic resonance study using methylphosphonate as a Pi analog publication-title: Plant Physiol. – volume: 66 start-page: 689 year: 2011 end-page: 699 article-title: Over‐expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux publication-title: Plant J. – volume: 39 start-page: 303 year: 1964 end-page: 307 article-title: Identification of callose by its diachrome and fluorochrome reactions publication-title: Stain Technology – volume: 105 start-page: 5933 year: 2008 end-page: 5938 article-title: Salt tolerance of requires maturation of N‐glycosylated proteins in the Golgi apparatus publication-title: Proc. Natl Acad. Sci. USA – volume: 214 start-page: 500 year: 1993 end-page: 505 article-title: Ortho‐anisic acid as internal standard for the simultaneous quantitation of salicylic acid and its putative biosynthetic precursors in cucumber leaves publication-title: Anal. Biochem. – volume: 8 start-page: 651 year: 1998 end-page: 661 article-title: Core β‐1,3‐fucose is a key part of the epitope recognized by antibodies reacting against plant N‐linked oligosaccharides and is present in a wide variety of plant extracts publication-title: Glycobiology – volume: 71 start-page: 479 year: 2012 end-page: 491 article-title: Functional expression of PHO1 to the Golgi and ‐Golgi network and its role in export of inorganic phosphate publication-title: Plant J. – volume: 17 start-page: 4257 year: 2006 end-page: 4269 article-title: A Golgi‐localized hexose transporter is involved in heterotrimeric G protein‐mediated early development in Arabidopsis publication-title: Mol. Biol. Cell – volume: 272 start-page: 397 year: 2004 end-page: 410 article-title: expresses multiple Golgi‐localised nucleotide‐sugar transporters related to GONST1 publication-title: Mol. Genet. Genomics – volume: 107 start-page: 3251 year: 2010 end-page: 3256 article-title: Arabidopsis V‐ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation publication-title: Proc. Natl Acad. Sci. USA – volume: 14 start-page: 35 year: 1998 end-page: 42 article-title: Salicylic acid has a dual role in the activation of defense related genes in parsley publication-title: Plant J. – volume: 5 start-page: 865 year: 1993 end-page: 875 article-title: RPS2, an Arabidopsis disease resistance locus specifying recognition of strains expressing the avirulence gene publication-title: Plant Cell – volume: 109 start-page: 1784 year: 2012 end-page: 1789 article-title: Qa‐SNAREs localized to the ‐Golgi network regulate multiple transport pathways and extracellular disease resistance in plants publication-title: Proc. Natl Acad. Sci. USA – volume: 95 start-page: 6531 year: 1998 end-page: 6536 article-title: Generation of broad‐spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance publication-title: Proc. Natl Acad. Sci. USA – volume: 134 start-page: 118 year: 2004 end-page: 128 article-title: Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e) publication-title: Plant Physiol. – ident: e_1_2_6_42_1 doi: 10.1104/pp.106.090167 – ident: e_1_2_6_72_1 doi: 10.1104/pp.104.046367 – ident: e_1_2_6_30_1 doi: 10.1105/tpc.5.8.865 – ident: e_1_2_6_39_1 doi: 10.1006/abio.1993.1529 – ident: e_1_2_6_67_1 doi: 10.1091/mbc.E06-01-0046 – ident: e_1_2_6_22_1 doi: 10.1093/glycob/7.2.169 – ident: e_1_2_6_61_1 doi: 10.1111/j.1365-313X.2011.04532.x – ident: e_1_2_6_64_1 doi: 10.1073/pnas.1115146109 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.0800237105 – ident: e_1_2_6_58_1 doi: 10.1105/tpc.007872 – ident: e_1_2_6_37_1 doi: 10.1093/jxb/erl183 – volume: 12 start-page: 1837 year: 2010 ident: e_1_2_6_14_1 article-title: Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates publication-title: J. Vis. Exp. – ident: e_1_2_6_15_1 doi: 10.1104/pp.108.127027 – ident: e_1_2_6_56_1 doi: 10.1111/j.1600-0854.2008.00841.x – ident: e_1_2_6_51_1 doi: 10.1104/pp.104.049502 – ident: e_1_2_6_35_1 doi: 10.1016/S0076-6879(10)80022-9 – ident: e_1_2_6_7_1 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_2_6_57_1 doi: 10.1016/S1369-5266(03)00058-X – ident: e_1_2_6_47_1 doi: 10.1016/S0092-8674(00)00213-0 – ident: e_1_2_6_29_1 doi: 10.1073/pnas.0913035107 – ident: e_1_2_6_8_1 doi: 10.1038/nature02076 – ident: e_1_2_6_65_1 doi: 10.1105/tpc.4.6.645 – ident: e_1_2_6_17_1 doi: 10.4161/psb.3.10.6666 – ident: e_1_2_6_68_1 doi: 10.1146/annurev.arplant.56.032604.144228 – ident: e_1_2_6_36_1 doi: 10.1021/bi00070a020 – ident: e_1_2_6_63_1 doi: 10.1073/pnas.0901778106 – ident: e_1_2_6_12_1 doi: 10.1007/s004250050707 – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-313X.2010.04455.x – ident: e_1_2_6_49_1 doi: 10.1007/s00425-002-0921-3 – ident: e_1_2_6_18_1 doi: 10.1111/j.1469-8137.2007.02331.x – ident: e_1_2_6_19_1 doi: 10.1007/s00438-004-1071-z – ident: e_1_2_6_38_1 doi: 10.1104/pp.103.025379 – ident: e_1_2_6_28_1 doi: 10.1105/tpc.013862 – ident: e_1_2_6_52_1 doi: 10.1038/283870a0 – ident: e_1_2_6_45_1 doi: 10.1007/BF00015814 – ident: e_1_2_6_6_1 doi: 10.1080/09687680410001720830 – ident: e_1_2_6_5_1 doi: 10.1073/pnas.95.11.6531 – ident: e_1_2_6_26_1 doi: 10.1105/tpc.104.025817 – ident: e_1_2_6_44_1 doi: 10.1104/pp.011569 – ident: e_1_2_6_40_1 doi: 10.1073/pnas.0804015105 – ident: e_1_2_6_20_1 doi: 10.1023/A:1006496308160 – ident: e_1_2_6_33_1 doi: 10.1074/jbc.M412462200 – ident: e_1_2_6_2_1 doi: 10.1111/j.1365-313X.2012.05004.x – ident: e_1_2_6_70_1 doi: 10.1104/pp.102.012633 – ident: e_1_2_6_9_1 doi: 10.1093/mp/ssp013 – ident: e_1_2_6_11_1 doi: 10.3109/10520296409061248 – ident: e_1_2_6_10_1 doi: 10.1105/tpc.7.4.391 – ident: e_1_2_6_54_1 doi: 10.1046/j.0960-7412.2002.01252.x – ident: e_1_2_6_21_1 doi: 10.1021/jo0516382 – ident: e_1_2_6_46_1 doi: 10.1073/pnas.0609507104 – ident: e_1_2_6_34_1 doi: 10.1105/tpc.110.078154 – ident: e_1_2_6_59_1 doi: 10.1111/j.1365-313X.2004.02161.x – ident: e_1_2_6_50_1 doi: 10.1007/s00424-003-1087-y – volume: 3 start-page: 49 year: 1991 ident: e_1_2_6_69_1 article-title: Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean publication-title: Plant Cell – ident: e_1_2_6_48_1 doi: 10.1104/pp.109.144626 – ident: e_1_2_6_66_1 doi: 10.1104/pp.103.037945 – ident: e_1_2_6_27_1 doi: 10.1093/jxb/33.4.670 – ident: e_1_2_6_43_1 doi: 10.1073/pnas.0907173106 – ident: e_1_2_6_41_1 doi: 10.1093/pcp/pci095 – ident: e_1_2_6_62_1 doi: 10.1046/j.1365-313X.1998.00093.x – ident: e_1_2_6_71_1 doi: 10.1093/glycob/8.7.651 – ident: e_1_2_6_32_1 doi: 10.1152/physiol.00050.2006 – ident: e_1_2_6_3_1 doi: 10.1105/tpc.110.079426 – volume: 9 start-page: 453 year: 1997 ident: e_1_2_6_13_1 article-title: A new class of plastidic phosphate translocator: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter publication-title: Plant Cell – ident: e_1_2_6_4_1 doi: 10.1111/j.1469-8137.2006.01935.x – ident: e_1_2_6_55_1 doi: 10.1073/pnas.0800141105 – volume: 10 start-page: 105 year: 1998 ident: e_1_2_6_24_1 article-title: Molecular characterisation of a carbon transporter in plastids from heterotrophic tissues: the glucose 6‐phosphate/phosphate antiporter publication-title: Plant Cell doi: 10.1105/tpc.10.1.105 – ident: e_1_2_6_53_1 doi: 10.1007/s00425-003-1121-5 – ident: e_1_2_6_60_1 doi: 10.1104/pp.99.3.856 – ident: e_1_2_6_16_1 doi: 10.1007/BF00028910 – ident: e_1_2_6_31_1 doi: 10.1038/nature06545 |
SSID | ssj0017364 |
Score | 2.321777 |
Snippet | The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6... Summary The Golgi‐located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6... The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6... Summary The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6... |
SourceID | unpaywall proquest pubmed pascalfrancis crossref wiley fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 732 |
SubjectTerms | Alkaloids Alkaloids - pharmacology alpha-Mannosidase alpha-Mannosidase - metabolism Arabidopsis Arabidopsis - drug effects Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis - microbiology Arabidopsis Proteins Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biological and medical sciences brefeldin A Brefeldin A - pharmacology Cell Wall Cell Wall - chemistry chemistry Disease Resistance drug effects Flowers & plants Fundamental and applied biological sciences. Psychology Gene Knockdown Techniques genes Genetic Complementation Test genetics Golgi Apparatus Golgi Apparatus - genetics Golgi Apparatus - metabolism growth & development growth and development inorganic phosphate knockout mutants metabolism microbiology mimic disease Mutants Mutation NMR Nuclear magnetic resonance nuclear magnetic resonance spectroscopy Oryza Oryza - genetics Oryza sativa pathogenicity pharmacology phosphate compartmentation Phosphate Transport Proteins Phosphate Transport Proteins - genetics Phosphate Transport Proteins - metabolism Phosphates Plant Diseases Plant Diseases - microbiology Plant growth Plant physiology and development Plants, Genetically Modified Polysaccharides Polysaccharides - metabolism Pseudomonas syringae Pseudomonas syringae - pathogenicity resistance mechanisms Resistance to control rice Salt tolerance vacuole |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgQgIeuI8VxmQkHkm1-JZYPAFiVBOgCVppb5HtOF3VLqmaFlZ-JL-Jc5I0W6tqmhBvVX1Jcnwun-3Px4S8gbBiU21MwHVoA2GECKxhYcBTxoXKlAsZnnf--k31BuL4VJ42_Cc8C1Pnh2gX3NAyKn-NBm5suW7kyNDiIT9FhhbronqpLuLJkMtqx_Z7m0kqjHidSQoAewBBdIPUs7WjtUh1OzMF8iZNCaLL6jsvtoHS--TuIp-a5S8zmazj3SpgHT0k49Wn1jyVcXcxt133eyML5P-RxSPyoMG19H2tiI_JLZ8_IXc-FIA9l0_Jny_GjWmRUYCb9HMxGY7o9Kwop2eAdOm8za8-oye9vninqDOL0pe0xHX6IU0viU3wiNRXDJS31BUN0QEc9mRJ8YTGT-gvpc2mE535EtExqDU993jCeVSel9TkKa04AlBzhEvbuHeBZNwrr1Qz8ysCfqW5UBE-zdhRWkyhz2dkcPSp_7EXNDdJBE4xoQIuLctE6pl2UjvrjbZaZlYpbzOWYc574aWzMU-NNlHqJXfG4GQN4KNy2vFdspMXud8jNGY2i7ky0aEzQrtQY0JJrjl0dehiE3VItNKaxDVp1vG2j0lyZboFg5XgYCU4WEk1WMlFh4Rty2mdauQGbfZAMRMzhIiQDH4wnC9X03gutxcBHI5EhxysKXL7OEBrCCBZh-yvNDtpfFqZYLJALbVQUPy6LQZvhMNkcl8ssA7MT2MJqPaaOhIJBRFItkOe11Zz-QIsimPJeIew1oyuEcbFhjBUZSQ3ll7SPznGXy_-teFLcg__rulN-2RnPlv4VwBS5_agcj9_AXa0gg0 priority: 102 providerName: Wiley-Blackwell |
Title | Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2012.05106.x https://www.ncbi.nlm.nih.gov/pubmed/22788523 https://www.proquest.com/docview/1180959462 https://www.proquest.com/docview/1197485584 https://www.proquest.com/docview/1514407396 http://hdl.handle.net/2434/225022 |
UnpaywallVersion | submittedVersion |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1365-313X dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0017364 issn: 1365-313X databaseCode: DIK dateStart: 19910101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVALS databaseName: IngentaConnect Open Access Journals customDbUrl: eissn: 1365-313X dateEnd: 20141231 omitProxy: true ssIdentifier: ssj0017364 issn: 1365-313X databaseCode: FIJ dateStart: 19910701 isFulltext: true titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1 providerName: Ingenta – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1365-313X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-313X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017364 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2Dgl44BsWGJWReCSjsR0nFk8DMaoJpgpaqTxFtuN01bqmWlpo-ZH8Ju5N0nYdY5p4S2PHjt1j33Pj42tCXoNZManS2ucqML7QQvhGs8DnKeNCZtIGDPc7fzmW7Z446of9LbI8n_BSeAEmuHgLiANDs012JK4hNchO77hz8L2MoSdbPlhEttxbxQPe31Tr1HfnqOFi-whAuQxyVJug7UznKIjUBfRJVh1mcRXbvEtuz8YTvfipR6NNIltaosP76_08lQDldH82Nfv219_hHf_dyAfkXs1D6UEFnIdky40fkVvvc-CKi8fk92dtT2meUaCH9FM-Ggzp5CQvJifATOl0FQ_9nHbaXfFOUqtnhStogd_VBzRdC5GgitSVipE31Oa1MAEm2NGC4o6KH1BeSutFIgqeP7JZgCE9c7gjeVicFRSaQMs1fcg5xE_RuNaA4tkLr1Qp6UvBfIk0yAhN02aY5hMo8wnpHX7sfmj79ckPvpVMSJ-HhmUidUzZUFnjtDIqzIyUzmQswxj1woXWxDzVSkepC7nVGp0roHvSKsufksY4H7tdQmNmsphLHbWsFsoGCgNAcsWhqJaNdeSRaAmGxNZh0fF0jlFywT0CGCUIrgRhlJQwSuYeCVZPTqrQIDd4ZhfwlugBzOBJ7xtD_7Z0u3l4dRLQ10h4pLmBz1V1wK6Q8DGP7C0Bm9RzUJFgcD8VKiEh-dUqGWYP_Jv02OUzzAP-ZBwCC70mT4gCgAh61iPPqsGwfgEWxXHIuEfYanRc0xnzS50hy2F0495Lup0jvHr-P7W9IHfwZyVF2iON6fnMvQRCOTVNcKW-smY9sfwBHadq3g |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgIA0euMMCYxiJR1ItduLE4onbKKObJmilvUW243TVsqRqWlj5kfwmzknSbK2qaUK8RfIlyfG5fLY_HxPyBsKKTqRSLpeedn3l-65WzHN5wrgvUmE8huedDw5Fd-DvHwfHzXVAeBamzg_RLrihZVT-Gg0cF6SXrRwpWtzjx0jRYh3UL9EBQHkLt-vQSj99b3NJeSGvc0kBZHchjK7Qetb2tBSrbqaqQOakKkF4aX3rxTpYepdszvKxmv9SWbaMeKuQtXefZIufrZkqp53ZVHfM75U8kP9JGg_IvQba0ve1Lj4kN2z-iNz-UAD8nD8mf3rKnNIipYA46ZciG47o-KQoxycAdum0TbE-oUfdvv9OUKNmpS1piUv1Q5pccJvgFYmtSChvqSkargP47GxO8ZDGT-gvoc2-E53YEgEyaDY9s3jIeVSelVTlCa1oAlBzhKvbuH2BfNxLn1ST8ysOfqW8UBF-TelRUoyhzydksPe5_7HrNpdJuEYwX7g80Cz1E8ukCaTRVkktg1QLYXXKUkx779vA6IgnSqowsQE3SuF8DRCkMNLwp2QjL3K7RWjEdBpxocJdo3xpPIk5Jbnk0NWuiVTokHChNrFpMq3jhR9ZfGnGBYMV42DFOFhxNVjxuUO8tuW4zjZyjTZboJmxGkJQiAc_GE6Zq5k8D9YXASIOfYfsLGly-zoAbIghmUO2F6odN26tjDFfoAykL6D4dVsMDgmHSeW2mGEdmKJGAQDbK-oEyCkIQbIOeVabzcUHsDCKAsYdwlo7ukIY5yvCEJWVXFt6cf9oH5-e_2vDV2Sz2z_oxb2vh99ekDtYpWY7bZON6WRmXwJmneqdyhf9BXJkhik |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgIC4P3AasMIaReCTVYjtOLJ64lTLGVEEn9S2yHaer2jVV08LKj-Q3cU6SZmtVTRPiLZIvic_F_o7z-ZiQ17CsmERp7XHlG09oITyjme_xhHEhU2l9huedvx3J9rE46AW9iv-EZ2HK_BD1hht6RjFfo4NPknTVyZGhxX3eQ4YWa6J5ySbgyRtCQrCFAOl7nUrKD3mZSgoQuwer6BqrZ2NPK0vV9VRnSJzUOcguLS-92IRK75Lb8_FEL37p0WgV8BYrVus-GS7HWhJVhs35zDTt77U0kP9HGA_IvQrY0nelJT4k19z4Ebn5PgPwudgmfw61HdIspYA36eds1B_QyUmWT04A6tJZnWB9SjvtrngrqdXz3OU0x436Pk3OmU3wisQVFJQ31GYV0wFm7NGC4hGNn9BfQqu_TnTqcoTHYNf01OER50F-mlM9TmhBEoCaA9zbxp8XyMa98EklNb9g4BemCxVhaNoMkmwCfT4mx61P3Q9tr7pKwrOSCenxwLBUJI4pGyhrnFZGBamR0pmUpZj0XrjAmognWukwcQG3WmO0BvhRWmX5E7I1zsZuh9CImTTiUof7VgtlfYUZJbni0NW-jXTYIOHSamJb5VnH6z5G8YV4C5QVo7JiVFZcKCs-axC_bjkpc41coc0OGGas-7AkxMc_GAbMRRzPg81FgIdD0SB7K4Zcvw7gGiJI1iC7S8uOq0ktjzFboAqUkFD8qi6G6QjVpMcum2MdCFCjAGDtJXUCZBSEINkGeVp6zfkHsDCKAsYbhNVudIkwztaEIQsnubL04m7nAJ-e_WvDl-RW52MrPvxy9PU5uYM1SqrTLtmaTefuBQDWmdkrZqK_XvyE2A |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2Dgl44BsWGJOReCRdYztOLJ4GYlQTTJVopfIU2Y7TVeuaammh5Ufym7g3Sdt1jGniLY0dO3aPfc-Nj68JeQtmxaRKa5-rwPhCC-EbzQKfp4wLmUkbMNzv_PVEtnviuB_2t8jyfMIr4QWY4OIAEAeGZpvsSFxDapCd3knn8HsZQ0-2fLCIbLm3ige8v6nWqe_OUcPFmghAuQxyVJug7UznKIjUBfRJVh1mcR3bvE_uzsYTvfipR6NNIltaoqOH6_08lQDlrDmbmqb99Xd4x3838hF5UPNQelgB5zHZcuMn5M6HHLji4in5_UXbM5pnFOgh_ZyPBkM6Oc2LySkwUzpdxUO_oJ12V7yX1OpZ4Qpa4Hf1AU3XQiSoInWlYuQdtXktTIAJdrSguKPiB5SX0nqRiILnj2wWYEjPHe5IHhbnBYUm0HJNH3IO8VM0rjWgePbSK1VK-lIwXyINMkLTtBmm-QTKfEZ6R5-6H9t-ffKDbyUT0uehYZlIHVM2VNY4rYwKMyOlMxnLMEa9cKE1MU-10lHqQm61RucK6J60yvLnpDHOx26X0JiZLOZSRy2rhbKBwgCQXHEoqmVjHXkkWoIhsXVYdDydY5Rcco8ARgmCK0EYJSWMkrlHgtWTkyo0yC2e2QW8JXoAM3jS-8bQvy3dbh5enwT0NRIe2d_A56o6YFdI-JhH9paATeo5qEgwuJ8KlZCQ_GaVDLMH_k167PIZ5gF_Mg6Bhd6QJ0QBQAQ965EX1WBYvwCL4jhk3CNsNTpu6Iz5lc6Q5TC6de8l3c4xXr38n9pekXv4s5Ii7ZHG9GLmXgOhnJr9ekr5A6IyafU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lack+of+the+Golgi+phosphate+transporter+PHT4%3B6+causes+strong+developmental+defects%2C+constitutively+activated+disease+resistance+mechanisms+and+altered+intracellular+phosphate+compartmentation+in+Arabidopsis&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Hassler%2C+Sebastian&rft.au=Lemke%2C+Lilia&rft.au=Jung%2C+Benjamin&rft.au=M%C3%B6hlmann%2C+Torsten&rft.date=2012-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=72&rft.issue=5&rft.spage=732&rft.epage=744&rft_id=info:doi/10.1111%2Fj.1365-313X.2012.05106.x&rft.externalDocID=US201400039274 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |