物联网异常节点定位方法的改进

传统的物联网异常节点定位方法采用模糊边缘覆盖方法,以节点之间的互信息量作为信息索引导,当节点规模较大和干扰较强时,定位准确度不高,为此,提出一种基于自适应信息融合跟踪检测的物联网异常节点定位算法.首先构建物联网节点之间通信传输信道模型,采用载波调制方法进行信道特征参量估计.然后利用自适应信息融合跟踪检测算法进行节点异常特征提取和检测,实现异常节点信息融合和滤波,通过接收端进行连续检测,实现异常节点的自适应分辨和定位.仿真结果表明,该方法在对物联网中异常节点定位时,误差能快速收敛到零,具有较好的准确性和实时性....

Full description

Saved in:
Bibliographic Details
Published in西安工程大学学报 Vol. 31; no. 2; pp. 225 - 231
Main Author 张华
Format Journal Article
LanguageChinese
Published 广州铁路职业技术学院信息工程系,广东广州,510000 2017
Subjects
Online AccessGet full text
ISSN1674-649X
DOI10.13338/j.issn.1674-649x.2017.02.014

Cover

Abstract 传统的物联网异常节点定位方法采用模糊边缘覆盖方法,以节点之间的互信息量作为信息索引导,当节点规模较大和干扰较强时,定位准确度不高,为此,提出一种基于自适应信息融合跟踪检测的物联网异常节点定位算法.首先构建物联网节点之间通信传输信道模型,采用载波调制方法进行信道特征参量估计.然后利用自适应信息融合跟踪检测算法进行节点异常特征提取和检测,实现异常节点信息融合和滤波,通过接收端进行连续检测,实现异常节点的自适应分辨和定位.仿真结果表明,该方法在对物联网中异常节点定位时,误差能快速收敛到零,具有较好的准确性和实时性.
AbstractList TN911; 传统的物联网异常节点定位方法采用模糊边缘覆盖方法,以节点之间的互信息量作为信息素引导,当节点规模较大和干扰较强时,定位准确度不高,为此,提出一种基于自适应信息融合跟踪检测的物联网异常节点定位算法.首先构建物联网节点之间通信传输信道模型,采用载波调制方法进行信道特征参量估计.然后利用自适应信息融合跟踪检测算法进行节点异常特征提取和检测,实现异常节点信息融合和滤波,通过接收端进行连续检测,实现异常节点的自适应分辨和定位.仿真结果表明,该方法在对物联网中异常节点定位时,误差能快速收敛到零,具有较好的准确性和实时性.
传统的物联网异常节点定位方法采用模糊边缘覆盖方法,以节点之间的互信息量作为信息索引导,当节点规模较大和干扰较强时,定位准确度不高,为此,提出一种基于自适应信息融合跟踪检测的物联网异常节点定位算法.首先构建物联网节点之间通信传输信道模型,采用载波调制方法进行信道特征参量估计.然后利用自适应信息融合跟踪检测算法进行节点异常特征提取和检测,实现异常节点信息融合和滤波,通过接收端进行连续检测,实现异常节点的自适应分辨和定位.仿真结果表明,该方法在对物联网中异常节点定位时,误差能快速收敛到零,具有较好的准确性和实时性.
Abstract_FL Traditional networking abnormal node locatingus uses fuzzy edge covering method,with the mutual information between nodes as information element guide.When a node with a large scale and strong interference,positioning accuracy is not high.Thus,an abnormal node localization algorithm based on adaptive information fusion tracking algorithm is proposed.Firstly,the communication transmission channel model between physical network node is constructed,and characteristic parameters of channel estimation is performed using carrier modulation method.Then,an adaptive information fusion tracking algorithm is used to extract and detect abnormal nodes feature,and the abnormal node information fusion and filtering are realized.By continuous detection at the receiving end,the abnormal node adaptive identification and localization are achieved.The simulation results show that when the method is used to locate the abnormal nodes in the Internet of things,the error can converge to zero quickly,which has good accuracy and real-time performance.
Author 张华
AuthorAffiliation 广州铁路职业技术学院信息工程系,广东广州510000
AuthorAffiliation_xml – name: 广州铁路职业技术学院信息工程系,广东广州,510000
Author_FL ZHANG Hua
Author_FL_xml – sequence: 1
  fullname: ZHANG Hua
Author_xml – sequence: 1
  fullname: 张华
BookMark eNo1j7tKA0EYhaeIYIx5CcEmsOv8c9mdKSV4g4BNCrswM9mNG3SiWcSNncFGwUKIFvEJbGxssmDwZdzLY7gSbc6Bw8f5_7OBanZkA4S2AbtAKRU7QzeKY-uC5zPHYzJxCQbfxcTFwGqo_p-frKNmHEcaE0JBMo_XUau4fytvZ8XyKfucZotF-TAtpmn2Pv9ePuYvaf7xXMzv8llafr1uorVQncVB888bqLu_120fOp3jg6P2bscxHmEO93xifMP6lEgQQnHJJNMKG6l8GXgCaB-EEYYB72PNSGhAaB5yoiUHIJo2UGtVe61sqOygNxxdjW11sJfo8GaQTBL9uw5Xwip4awWb05EdXEYVfjGOztV40qv-wIwIIugPczFi9w
ClassificationCodes TN911
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13338/j.issn.1674-649x.2017.02.014
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate The improvement of abnormal node localization method for Internet of things
DocumentTitle_FL The improvement of abnormal node localization method for Internet of things
EndPage 231
ExternalDocumentID xbfzgxyxb201702014
672042828
GrantInformation_xml – fundername: 广东省公益研究与能力建设专项基金
  funderid: (2015A010103001)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
-02
2B.
4A8
92I
93N
CCEZO
CDRFL
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-c624-5672c7c4d329188a59494ba0c9a79e6813d18c8c415d0b42fc18b5f52b95112b3
ISSN 1674-649X
IngestDate Thu May 29 04:07:46 EDT 2025
Wed Feb 14 10:02:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Internet of things
abnormal nodes
滤波
信息融合
information fusion
定位
location
物联网
filtering
异常节点
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c624-5672c7c4d329188a59494ba0c9a79e6813d18c8c415d0b42fc18b5f52b95112b3
Notes Traditional networking abnormal node locatingus uses fuzzy edge covering method, with the mutual information between nodes as information element guide. When a node with a large scale and strong interference, positioning accuracy is not high. Thus, an abnormal node localization algorithm based on adaptive information fusion tracking algorithm is proposed. Firstly, the communication transmission channel model between physical network node is constructed, and characteristic parameters of channel estimation is performed using carrier modulation method.Then, an adaptive information fusion tracking algorithm is used to extract and detect abnormal nodes feature, and the abnormal node information fusion and filtering are realized. By continuous detection at the receiving end, the abnormal node adaptive identification and localization are achieved. The simulation results show that when the method is used to locate the abnormal nodes in the Internet of things, the error can converge to zero quickly, which has good acc
PageCount 7
ParticipantIDs wanfang_journals_xbfzgxyxb201702014
chongqing_primary_672042828
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 西安工程大学学报
PublicationTitleAlternate Journal of Xi an University of Engineering Science and Technology
PublicationTitle_FL Journal of Xi'an Polytechnic University
PublicationYear 2017
Publisher 广州铁路职业技术学院信息工程系,广东广州,510000
Publisher_xml – name: 广州铁路职业技术学院信息工程系,广东广州,510000
SSID ssib022319465
ssib006595880
ssib008679780
ssib036435108
ssib051375645
ssib009686238
ssib005319384
ssj0003313605
Score 2.086034
Snippet 传统的物联网异常节点定位方法采用模糊边缘覆盖方法,以节点之间的互信息量作为信息索引导,当节点规模较大和干扰较强时,定位准确度不高,为此,提出一种基于自适应信息...
TN911; 传统的物联网异常节点定位方法采用模糊边缘覆盖方法,以节点之间的互信息量作为信息素引导,当节点规模较大和干扰较强时,定位准确度不高,为此,提出一种基于自适应信...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 225
SubjectTerms 信息融合
定位
异常节点
滤波
物联网
Title 物联网异常节点定位方法的改进
URI http://lib.cqvip.com/qk/98149B/201702/672042828.html
https://d.wanfangdata.com.cn/periodical/xbfzgxyxb201702014
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1674-649X
  databaseCode: ABDBF
  dateStart: 20150201
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib009686238
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNNQtiBdRVKxVKWguwrQ7-c4xsztLEfRUobdlZnam1cO26hbW3ly8KHgQqof6C7x48dKCxT9ju_0ZvpeZXce2SBWWkHl5yXsvL5u8ZOa9EHIfdv6wKIswKArbC4TIeZDYJAyyNLcsl5lIBTo4P3qslp-Ih6tydebCUu2rpa1Buphtn-lX8j9aBRjoFb1k_0Gz00YBAHnQL6SgYUjPpWMaa2osdZbGBkxCagVCoja1IY0ljVrUMJ8x-EMc5yEa08hikYupdTQWWMu0aayoVb4IUk6tRGRAMMIXCV8ErXWojep2LQKdRHjZpvGNRxqB0IID0pEvEtRpn2lTp2oZhbw5OdF_xb5rYgb4MnH9eKL0w_RDySPaijDQszGNLbUcuwMZBdqdqndMy8tpvMCenml6qVoeZ8oKVIc-ZR65Q13okcMK56RIGrspimCk1jgpqbTO4I21pH_VUVsLlBaBEv6m3-liUS1ZT2t79mrmL_23KyOClXin1ifOfTj6Z57C4oTCED8x1D52bOlReyIE-DAttteGr4YpooF9jxe3zzI8gGqQWRe1o84fUyqvuR5juMj6FI3xFXXt2aKH0O8pmIOBCv0wfZYh13LyohqNG85DXnobT7vnIqET0Zb-JhhGL1nf6K89B5vMu8j1i6S_VrPmVq6Qy9U2bMGV_6mrZGZ7_Rp5MH775fj1zvjgw-H30eHe3vG70Xi0f_h19-fB-6NP-0ffPo533xzt7B__-HydrHTildZyUN0lEmSKiUAqzTKdiR5nNjQmkVZYkSbNzCba5sqEvBeazGRgzvaaqWBFFppUFpKlFnckKb9BGv2Nfn6TLCRaZjkTCdRSopfD_spkSdPqoqdZWoRqjsxPxexuliFjugrvgsLTjTlyrxK8W00kL7un1XvrXFjz5BLmywPB26QxeLGV3wETeZDerYbFLwjriFg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%89%A9%E8%81%94%E7%BD%91%E5%BC%82%E5%B8%B8%E8%8A%82%E7%82%B9%E5%AE%9A%E4%BD%8D%E6%96%B9%E6%B3%95%E7%9A%84%E6%94%B9%E8%BF%9B&rft.jtitle=%E8%A5%BF%E5%AE%89%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E5%8D%8E&rft.date=2017&rft.pub=%E5%B9%BF%E5%B7%9E%E9%93%81%E8%B7%AF%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E7%B3%BB%2C%E5%B9%BF%E4%B8%9C%E5%B9%BF%E5%B7%9E%2C510000&rft.issn=1674-649X&rft.volume=31&rft.issue=2&rft.spage=225&rft.epage=231&rft_id=info:doi/10.13338%2Fj.issn.1674-649x.2017.02.014&rft.externalDocID=xbfzgxyxb201702014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F98149B%2F98149B.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fxbfzgxyxb%2Fxbfzgxyxb.jpg