融合Fisher判别分析与波动序列的音乐推荐方法
TP391; 现有的音乐推荐方法多是采用不同的历史偏好相关性度量方法直接为用户生成推荐音乐列表,而不考虑用户历史喜好音乐行为所体现出的用户兴趣的波动性,影响了推荐音乐的准确率.针对这个问题,提出了一种融合Fisher线性判别分析与波动序列的音乐行为偏好获取方法.首先获取音乐的社会化标签与音频特征,采用Fisher线性判别分析对两类样本数据进行特征融合,通过投影变换并引入Fisher判别准则,获取具有最大类间离散度,最小类内离散度的音乐特征分类方向.然后结合用户的历史喜好音乐获取音乐类型基点、类型波动幅度,再以音乐类型基点为中心,以类型波动幅度为半径获取用户的喜好音乐类型,并据此为用户生成推荐音...
Saved in:
Published in | 计算机科学与探索 Vol. 11; no. 8; pp. 1314 - 1323 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Chinese |
Published |
山西水利职业技术学院 信息工程系,山西 运城,044000
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1673-9418 |
DOI | 10.3778/j.issn.1673-9418.1604064 |
Cover
Abstract | TP391; 现有的音乐推荐方法多是采用不同的历史偏好相关性度量方法直接为用户生成推荐音乐列表,而不考虑用户历史喜好音乐行为所体现出的用户兴趣的波动性,影响了推荐音乐的准确率.针对这个问题,提出了一种融合Fisher线性判别分析与波动序列的音乐行为偏好获取方法.首先获取音乐的社会化标签与音频特征,采用Fisher线性判别分析对两类样本数据进行特征融合,通过投影变换并引入Fisher判别准则,获取具有最大类间离散度,最小类内离散度的音乐特征分类方向.然后结合用户的历史喜好音乐获取音乐类型基点、类型波动幅度,再以音乐类型基点为中心,以类型波动幅度为半径获取用户的喜好音乐类型,并据此为用户生成推荐音乐列表.在真实数据集LFM上的仿真实验结果表明,所提出方法能够取得更好的P@R值与覆盖率,提升了音乐推荐精度与推荐质量. |
---|---|
AbstractList | TP391; 现有的音乐推荐方法多是采用不同的历史偏好相关性度量方法直接为用户生成推荐音乐列表,而不考虑用户历史喜好音乐行为所体现出的用户兴趣的波动性,影响了推荐音乐的准确率.针对这个问题,提出了一种融合Fisher线性判别分析与波动序列的音乐行为偏好获取方法.首先获取音乐的社会化标签与音频特征,采用Fisher线性判别分析对两类样本数据进行特征融合,通过投影变换并引入Fisher判别准则,获取具有最大类间离散度,最小类内离散度的音乐特征分类方向.然后结合用户的历史喜好音乐获取音乐类型基点、类型波动幅度,再以音乐类型基点为中心,以类型波动幅度为半径获取用户的喜好音乐类型,并据此为用户生成推荐音乐列表.在真实数据集LFM上的仿真实验结果表明,所提出方法能够取得更好的P@R值与覆盖率,提升了音乐推荐精度与推荐质量. |
Abstract_FL | The existing music recommendation methods often use similarity or correlation to generate recommended music list, those methods don ' t consider the volatility of users ' interest reflected by the historical music behavior, which influences the recommendation accuracy. To solve this problem, this paper proposes a music recommendation method based on Fisher linear discriminant analysis and volatility sequence. In the beginning, this method obtains the social tags and audio features of music to compute the projection direction which has the minimum within-class scatter and maximum between-class scatter, by using projection transformation and Fisher discriminant criterion. This projection direction is also the best direction of classification. Then it takes music type base point as center, type vol-atility range as radius to acquire users ' preferred music type, and based on which to generate the recommendation list. This paper presents the empirical experiments in a real data set LFM, the results show that the proposed method can achieve better P@R and coverage rate, which means it efficiently improves recommendation accuracy and quality. |
Author | 薛董敏 赵志华 |
AuthorAffiliation | 山西水利职业技术学院 信息工程系,山西 运城,044000 |
AuthorAffiliation_xml | – name: 山西水利职业技术学院 信息工程系,山西 运城,044000 |
Author_FL | XUE Dongmin ZHAO Zhihua |
Author_FL_xml | – sequence: 1 fullname: XUE Dongmin – sequence: 2 fullname: ZHAO Zhihua |
Author_xml | – sequence: 1 fullname: 薛董敏 – sequence: 2 fullname: 赵志华 |
BookMark | eNo9jT9Lw0Achm-oYK39Dq4Oqb-7XO4PuEixKhRcupfLJdFEuUJPUXeRILTNooJDBXEoOGaxfp5erN_CguL0PjzD826gmhmYGKEtDC2fc7GTtVJrTQsz7nuSYrEioMBoDdX_3TpqWpuGEFBKMGeijnaX05Er8k5qT-Ohy99c_u7yu2paLD7GVfnq7mfuc-Lyp6_n2--XcjEvqvFsOSqqx3lVPmyitUSd27j5tw3U6-z32ode9_jgqL3X9TQj1PO1plwLBqCpCiMcSMzDiKqIAEmkVFxqYImOiJaYgGAB11gC1jQOQh1x4TfQ9m_2SplEmZN-NrgcmtVhP7PZ2fXNhSWAOQjA1P8Blx9g8g |
ClassificationCodes | TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3778/j.issn.1673-9418.1604064 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Music Preference Elicit Method Based on Fisher Linear Discriminant Analysis and Volatility Sequence |
EndPage | 1323 |
ExternalDocumentID | jsjkxyts201708014 |
GrantInformation_xml | – fundername: The National Natural Science Foundation of China Under Grant No.11241005 |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS M~E PSX TCJ |
ID | FETCH-LOGICAL-c624-3cc47c8600c4abd15917bd4ad202f99a79c06fcd2c91208657c1901c4e5bcd783 |
ISSN | 1673-9418 |
IngestDate | Thu May 29 04:00:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | 音乐推荐系统 Fisher线性判别分析 music recom-mender systems 音乐类型基点 Fisher linear discriminant analysis music type base point volatility sequence social tags 波动序列 社会化标签 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c624-3cc47c8600c4abd15917bd4ad202f99a79c06fcd2c91208657c1901c4e5bcd783 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_jsjkxyts201708014 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 计算机科学与探索 |
PublicationTitle_FL | Journal of Frontiers of Computer Science & Technology |
PublicationYear | 2017 |
Publisher | 山西水利职业技术学院 信息工程系,山西 运城,044000 |
Publisher_xml | – name: 山西水利职业技术学院 信息工程系,山西 运城,044000 |
SSID | ssib054421768 ssib002040941 ssib002423894 ssib051375751 ssib023646573 ssib036438069 ssib002040926 |
Score | 2.0890307 |
Snippet | TP391; 现有的音乐推荐方法多是采用不同的历史偏好相关性度量方法直接为用户生成推荐音乐列表,而不考虑用户历史喜好音乐行为所体现出的用户兴趣的波动性,影响了推荐音乐的... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1314 |
Title | 融合Fisher判别分析与波动序列的音乐推荐方法 |
URI | https://d.wanfangdata.com.cn/periodical/jsjkxyts201708014 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1673-9418 databaseCode: M~E dateStart: 20070101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib054421768 providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANLT14kUUFb8p4pxKaiaZzAd4SbYJRdDTCr2VzWSjVFjB3YL24EWRRWjdiwoeKoiHgse9WH9Ps9Z_4Xsz2WxqFaoQwszbN-9jXmbem-y8jOPcklkX_FghXMp17oLHK1wJMNfXhc6FDrk0n1K6d5-vPmB318K1ufmXjV1Lm4NsWW_9Ma_kf6wKMLArZsn-g2VrogCAMtgX7mBhuJ_IxiSRRCVErpAkJMojUlYnmUNVShKxaSGuCpKThGMTQE4YiQGSICQOSOQbnIhEEgtxRGRatVKCJIIogABBRVSK-NhcGTociWAriZJYiOL4q6Vsj7ecRsCIFgE-RZpQQOKA30KOCAFGFPlGKyTiR4RELj7ixAwK0yfF9AEQiE2Bkigw9EDwtIkSh3ihYqlhGaKsMmm-9LDZneYBNYgUL5TWNEJdPGRddaky-lIiW5WQ0D8oZIR7R6xGUdpQBPpKgdhLBjs1-nNsb5FigWxQfyAaGyUDEscwAI6LsmT0SU1Ph2gNiTta8VBvz2v4GC4CV7HK7UydEG0MNtnwKDSwSbZVdEIDm579u-cLhJDG8yGL5ZoFvjyEkI3NvH29B3Ojv_H42fNBH7vXw28IzTunfAHhGu5_fZHMYjggoJprUKyzI8nQEPTWkzoeSMDDWUwM1UB6vI6ZQxoI_K-vrjMGq2KbsjqV2u64Q5Vu_00hk2PXKzq9h41wsH3WOVOt4xYjOyjPOXNbj847dw53t8vR0A7CcvilHH4th68nu6ODbzuT8efyzV75_W05_PDj46ufn8YH-6PJzt7h9mjyfn8yfnfBaadJu7XqVseTuJr7zA20ZkJLWDBo1slyWBZQkeWsk_ueXyjVEUp7HCY8XyvqexL6RGPwrVk3zGAalMFFZ6H3pNe95CwGzC98WFp084Ky3Aef2slCrnJDVNLOZedmpex6Nfv014-Z78pJkK46p7Fs3yFecxYGTze71yGqHmQ3jNV_ARwRlao |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88Fisher%E5%88%A4%E5%88%AB%E5%88%86%E6%9E%90%E4%B8%8E%E6%B3%A2%E5%8A%A8%E5%BA%8F%E5%88%97%E7%9A%84%E9%9F%B3%E4%B9%90%E6%8E%A8%E8%8D%90%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E8%96%9B%E8%91%A3%E6%95%8F&rft.au=%E8%B5%B5%E5%BF%97%E5%8D%8E&rft.date=2017&rft.pub=%E5%B1%B1%E8%A5%BF%E6%B0%B4%E5%88%A9%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2+%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E7%B3%BB%2C%E5%B1%B1%E8%A5%BF+%E8%BF%90%E5%9F%8E%2C044000&rft.issn=1673-9418&rft.volume=11&rft.issue=8&rft.spage=1314&rft.epage=1323&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1604064&rft.externalDocID=jsjkxyts201708014 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg |