基于Spark平台的社交网络在不同文化环境中的中心度加权算法
社交网络广泛应用于科技、商业、经济和生物等领域.社交网络一般用中心性指标来对节点的重要性进行量化,常用的中心性指标有节点中心度、接近中心度、介数中心度、三角计数等等.已有的中心度算法通常只考虑单一的度量标准,本文提出加权中心度的思想,结合不同的中心度指标来进行综合考虑.该实验使用社交网络的真实BoardEX数据库,由合作单位香港大学提供,基础数据约600G,需借助ApacheSpark处理大数据的能力来进行集群并行计算.社交网络数据分成美国、英国、欧洲和其他国家4个地区,计算各地区上市公司的首席技术官和首席信息官的个人中心度,从而得到每个地区的平均加权中心度.实验结果表明,通过调整权值,可以使...
Saved in:
Published in | 广东工业大学学报 Vol. 34; no. 3; pp. 15 - 20 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
广东工业大学 计算机学院,广东 广州,510006%香港大学 经济与金融学院,中国 香港,999077%华南师范大学 经济与管理学院,广东 广州,510631
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1007-7162 |
DOI | 10.12052/gdutxb.170023 |
Cover
Abstract | 社交网络广泛应用于科技、商业、经济和生物等领域.社交网络一般用中心性指标来对节点的重要性进行量化,常用的中心性指标有节点中心度、接近中心度、介数中心度、三角计数等等.已有的中心度算法通常只考虑单一的度量标准,本文提出加权中心度的思想,结合不同的中心度指标来进行综合考虑.该实验使用社交网络的真实BoardEX数据库,由合作单位香港大学提供,基础数据约600G,需借助ApacheSpark处理大数据的能力来进行集群并行计算.社交网络数据分成美国、英国、欧洲和其他国家4个地区,计算各地区上市公司的首席技术官和首席信息官的个人中心度,从而得到每个地区的平均加权中心度.实验结果表明,通过调整权值,可以使不同区域的加权中心度的差异尽可能小,且由权值大小可知不同中心度度量标准对加权中心度的影响不同.基于真实数据库和处理大数据的集群计算,本文的研究成果更具有现实意义和应用前景. |
---|---|
AbstractList | TP182; 社交网络广泛应用于科技、商业、经济和生物等领域.社交网络一般用中心性指标来对节点的重要性进行量化,常用的中心性指标有节点中心度、接近中心度、介数中心度、三角计数等等.已有的中心度算法通常只考虑单一的度量标准,本文提出加权中心度的思想,结合不同的中心度指标来进行综合考虑.该实验使用社交网络的真实BoardEX数据库,由合作单位香港大学提供,基础数据约600 G,需借助Apache Spark处理大数据的能力来进行集群并行计算.社交网络数据分成美国、英国、欧洲和其他国家4个地区,计算各地区上市公司的首席技术官和首席信息官的个人中心度,从而得到每个地区的平均加权中心度.实验结果表明,通过调整权值,可以使不同区域的加权中心度的差异尽可能小,且由权值大小可知不同中心度度量标准对加权中心度的影响不同.基于真实数据库和处理大数据的集群计算,本文的研究成果更具有现实意义和应用前景. 社交网络广泛应用于科技、商业、经济和生物等领域.社交网络一般用中心性指标来对节点的重要性进行量化,常用的中心性指标有节点中心度、接近中心度、介数中心度、三角计数等等.已有的中心度算法通常只考虑单一的度量标准,本文提出加权中心度的思想,结合不同的中心度指标来进行综合考虑.该实验使用社交网络的真实BoardEX数据库,由合作单位香港大学提供,基础数据约600G,需借助ApacheSpark处理大数据的能力来进行集群并行计算.社交网络数据分成美国、英国、欧洲和其他国家4个地区,计算各地区上市公司的首席技术官和首席信息官的个人中心度,从而得到每个地区的平均加权中心度.实验结果表明,通过调整权值,可以使不同区域的加权中心度的差异尽可能小,且由权值大小可知不同中心度度量标准对加权中心度的影响不同.基于真实数据库和处理大数据的集群计算,本文的研究成果更具有现实意义和应用前景. |
Abstract_FL | Social networks are developed rapidly and used widely in the fields such as science and technology, business, economic and biological fields. People often use the centrality to quantify the importance degree of nodes in a social network. However, in the existing centrality algorithms, researchers only use a single centrality measuring, without considering the co-effects of different measuring. Therefore, a weighted centrality is proposed which is a function of different centrality measuring. Experiments here use a real social network database BoardEX, which is provided by our cooperative research institution, the University of Hong Kong. The size of the database is about 600G. This inspires us to use the Apache Spark platform to calculate such a big data. The experimental social network is divided into four regions: the U.S.A, the United Kingdom, Europe, others. First, the degree centrality of some persons, e.g. the chief technology officers or the chief information officers in a quoted company, in each region, is calculated. Then, a weighted function is constructed to calculate the average centrality. Experimental results show that, by setting the weighted values, the difference between the weighted centrality of regions is minimized. Besides, the weighted values reflect the contributions of various centrality measuring to the weighted centrality. With the application of real social network database and big data cluster computing, a more practical and promising application prospect is showed. |
Author | 饶东宁;温远丽;魏来;王雅丽 |
AuthorAffiliation | 广东工业大学计算机学院,广东广州510006;香港大学经济与金融学院,中国香港999077;华南师范大学经济与管理学院,广东广州510631 |
AuthorAffiliation_xml | – name: 广东工业大学 计算机学院,广东 广州,510006%香港大学 经济与金融学院,中国 香港,999077%华南师范大学 经济与管理学院,广东 广州,510631 |
Author_FL | Rao Dong-ning Wei lai Wang Ya-li Wen Yuan-li |
Author_FL_xml | – sequence: 1 fullname: Rao Dong-ning – sequence: 2 fullname: Wen Yuan-li – sequence: 3 fullname: Wei lai – sequence: 4 fullname: Wang Ya-li |
Author_xml | – sequence: 1 fullname: 饶东宁;温远丽;魏来;王雅丽 |
BookMark | eNotkEtLw0AUhWdRwVq79Q-4cpF6Z5KZdJZSfEFBwe7LJJnG-khrarFdVxCkVl1YQSqKFHHjA7qpEfXPZJq_4UDd3HMX37mXc-ZQKqgFEqEFDDlMgJJl32set5wctgGImUJpDGAbNmZkFmUbjaoDFJs25jZNo231EMVRb6cuwn31OVKXH8ndaTL8iaNh8n2dfA3U4CUeX6ir7qR_prr9pPeunjrx-FVjeqrfjoqe1fnj5L6TvN1ORjfzaKYiDhoy-68ZVFpbLRU2jOLW-mZhpWi4jFgGkcQCkscukRhonoJjMksI7HgV1_YkZ4RJ4Izr1WWYm5QLj_M8dYTUfgxmBi1Nz56IoCICv7xXa4aBflj2Pb_ttVoOAZ3fBLA0uzhl3d1a4B9VNV0Pq4cibJd1Q0CIroOZf61reZs |
ClassificationCodes | TP182 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12052/gdutxb.170023 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | A Weighted Centrality Algorithm for Social Networks Based on Spark Platform in Different Cultural Environments |
DocumentTitle_FL | A Weighted Centrality Algorithm for Social Networks Based on Spark Platform in Different Cultural Environments |
EndPage | 20 |
ExternalDocumentID | gdgydxxb201703004 7000225136 |
GrantInformation_xml | – fundername: 中央高校基本科研业务费专项资金资助项目; 广东省自然科学基金资助项目; 广东省科技计划项目 funderid: (21615438); (2016A030313084, 2016A030313700, 2014A030313374); (2015B010128007) |
GroupedDBID | 2RA 92L ALMA_UNASSIGNED_HOLDINGS CDYEO CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c624-2e240281c2e105850b364aa1bdfc7de9626e0969de9c619359ad9985baec62103 |
ISSN | 1007-7162 |
IngestDate | Thu May 29 04:07:13 EDT 2025 Wed Feb 14 10:00:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 中心性 社交网络 加权中心度 centrality social networks weighted centrality big data 大数据 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c624-2e240281c2e105850b364aa1bdfc7de9626e0969de9c619359ad9985baec62103 |
Notes | social networks; big data; centrality; weighted centrality 44-1428/T Social networks are developed rapidly and used widely in the fields such as science and technology,business,economic and biological fields.People often use the centrality to quantify the importance degree of nodes in a social network.However,in the existing centrality algorithms,researchers only use a single centrality measuring,without considering the co-effects of different measuring.Therefore,a weighted centrality is proposed which is a function of different centrality measuring.Experiments here use a real social network database BoardEX,which is provided by our cooperative research institution,the University of Hong Kong.The size of the database is about600G.This inspires us to use the Apache Spark platform to calculate such a big data.The experimental social network is divided into four regions:the U.S.A,the United Kingdom,Europe,others.First,the degree centrality of some persons,e.g.the chief technology officers or the chief information |
PageCount | 6 |
ParticipantIDs | wanfang_journals_gdgydxxb201703004 chongqing_primary_7000225136 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 广东工业大学学报 |
PublicationTitleAlternate | Journal of Guangdong University of Technology |
PublicationTitle_FL | Journal of Guangdong University of Technology |
PublicationYear | 2017 |
Publisher | 广东工业大学 计算机学院,广东 广州,510006%香港大学 经济与金融学院,中国 香港,999077%华南师范大学 经济与管理学院,广东 广州,510631 |
Publisher_xml | – name: 广东工业大学 计算机学院,广东 广州,510006%香港大学 经济与金融学院,中国 香港,999077%华南师范大学 经济与管理学院,广东 广州,510631 |
SSID | ssib051371975 ssib002264213 ssib001129395 ssib006563509 ssib000269678 ssib018830021 ssib036435595 |
Score | 2.0885882 |
Snippet | 社交网络广泛应用于科技、商业、经济和生物等领域.社交网络一般用中心性指标来对节点的重要性进行量化,常用的中心性指标有节点中心度、接近中心度、介数中心度、三角计数等等.... TP182; 社交网络广泛应用于科技、商业、经济和生物等领域.社交网络一般用中心性指标来对节点的重要性进行量化,常用的中心性指标有节点中心度、接近中心度、介数中心度、三角计... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 15 |
SubjectTerms | 社交网络;大数据;中心性;加权中心度 |
Title | 基于Spark平台的社交网络在不同文化环境中的中心度加权算法 |
URI | http://lib.cqvip.com/qk/98069A/201703/7000225136.html https://d.wanfangdata.com.cn/periodical/gdgydxxb201703004 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1007-7162 databaseCode: ADMLS dateStart: 20140301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib000269678 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9RANJT24kFRVKxWKeKcytZkkpnMHJNNliJWhFbobUmy2a2XbdUt1F4rCFKrHqwgFUWKePEDeqkr6p_ZdP-G701mt1m7h7ZewtuXeZ_zNnlvduatYdxInNgyE5aWIpvWS05ccwFiAKWRE9txxGiMh5Nn7_CZe86tBbYwMna6sGtppRVPJ2tDz5WcZFYBB_OKp2SPMbN9poAAGOYXrjDDcD3SHJOQEVkhvkdCB68inFvGvc-A9iXxbQQE3DdJ6BIJ9x0EPBgbagpPYfyASEsBPpFlxbVMPKHGCCIChTGJgFucSE6EqziXEQYqERKvghiPEmFrKi8oCO1jQLGKGsOUdK74AGAqzoG6BRqGRLqIARPyP8fs5c890yqaZ66tDySsh_GUJg7xlJIgNJeiAa7EsV6ckVAiqc8H-IF8YR0M4Up7SUKBgnGIGusHA1wCdHVuRZG_co_wcYj0iWCDxHq9JT9Yqr4bJ7NwCpUDtT1rwH9A7HsF60EHibNEy4fFTBVQSqDEjbIMf5nhhDJlI0d67Y_KUC1UDOWO8BmarmMoRHqIG4wzgazzqBqiVyFWwGF-MDVEMi1DxWHiPgCmIihQAhQglTooUqAkCNI83I6jqXvgSgx7_r8e5DoFyV_-uGyPHdWK2YFear9fXDxSr_r8FLJOGvNusYfSEWoy7G_cqK20VuNpbIWZH67_p8V7o9Z4XFtdjTHcTFu1Nx6jLmTOo8aYF8zenivsC-CSFxrwYbVkFxsUUjy4Xmiox6CgOGjQZwlhY1bf-2xDPcIKJ_OZZbuWVN3J-87QnW7RlJsDhmA3msWlZuMB5NjqyGOzHjUbhex8_qxxRpfVk17-jDxnjKwtnjfuZu_bnfameiZmP3azF9-7b590d3532jvdX6-6P7ez7c-dvefZy439rafZxlZ381v2cb2z9wWGwTX7s561P2XPPuy_W-9-fbO_-_qCMV8J58szJf0PMqWEU6dEU_ztWFgJTaGMFMyMweAosuJaPXFrqeSUp6bkEsCEW9ijIKpJKVgcpUBvmfZFY7S51EwvGZM2jVi9xmgkYiiC60kk61C5MjuxzJS7UTRuTPSdUV3OGwVVXdVeDJzKx43r2j9V_f54VD0065ePMuiKcQrhfBV4whhtPVxJr0Jd1Iqv6WD5CyniBkU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ESpark%E5%B9%B3%E5%8F%B0%E7%9A%84%E7%A4%BE%E4%BA%A4%E7%BD%91%E7%BB%9C%E5%9C%A8%E4%B8%8D%E5%90%8C%E6%96%87%E5%8C%96%E7%8E%AF%E5%A2%83%E4%B8%AD%E7%9A%84%E4%B8%AD%E5%BF%83%E5%BA%A6%E5%8A%A0%E6%9D%83%E7%AE%97%E6%B3%95&rft.jtitle=%E5%B9%BF%E4%B8%9C%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E9%A5%B6%E4%B8%9C%E5%AE%81&rft.au=%E6%B8%A9%E8%BF%9C%E4%B8%BD&rft.au=%E9%AD%8F%E6%9D%A5&rft.au=%E7%8E%8B%E9%9B%85%E4%B8%BD&rft.date=2017&rft.pub=%E5%B9%BF%E4%B8%9C%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E%2C510006%25%E9%A6%99%E6%B8%AF%E5%A4%A7%E5%AD%A6+%E7%BB%8F%E6%B5%8E%E4%B8%8E%E9%87%91%E8%9E%8D%E5%AD%A6%E9%99%A2%2C%E4%B8%AD%E5%9B%BD+%E9%A6%99%E6%B8%AF%2C999077%25%E5%8D%8E%E5%8D%97%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6+%E7%BB%8F%E6%B5%8E%E4%B8%8E%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E%2C510631&rft.issn=1007-7162&rft.volume=34&rft.issue=3&rft.spage=15&rft.epage=48&rft_id=info:doi/10.12052%2Fgdutxb.170023&rft.externalDocID=gdgydxxb201703004 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F98069A%2F98069A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgdgydxxb%2Fgdgydxxb.jpg |