Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking

Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a functional pathway in mouse brain that encodes the aversive effects of stress and mediates stress-induced reinstatement of cocaine place prefere...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 45; pp. 19168 - 19173
Main Authors Land, Benjamin B, Bruchas, Michael R, Schattauer, Selena, Giardino, William J, Aita, Megumi, Messinger, Daniel, Hnasko, Thomas S, Palmiter, Richard D, Chavkin, Charles
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.11.2009
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0910705106

Cover

Abstract Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a functional pathway in mouse brain that encodes the aversive effects of stress and mediates stress-induced reinstatement of cocaine place preference (CPP). Activation of the dynorphin/kappa opioid receptor (KOR) system by either repeated stress or agonist produces conditioned place aversion (CPA). Because KOR inhibition of dopamine release in the mesolimbic pathway has been proposed to mediate the dysphoria underlying this response, we tested dopamine-deficient mice in this study and found that KOR agonist in these mice still produced CPA. However, inactivation of serotonergic KORs by injection of the KOR antagonist norBNI into the dorsal raphe nucleus (DRN), blocked aversive responses to the KOR agonist U50,488 and blocked stress-induced reinstatement of CPP. KOR knockout (KO) mice did not develop CPA to U50,488; however, lentiviral re-expression of KOR in the DRN of KOR KO mice restored place aversion. In contrast, lentiviral expression in DRN of a mutated form of KOR that fails to activate p38 MAPK required for KOR-dependent aversion, did not restore place aversion. DRN serotonergic neurons project broadly throughout the brain, but the inactivation of KOR in the nucleus accumbens (NAc) coupled with viral re-expression in the DRN of KOR KO mice demonstrated that aversion was encoded by a DRN to NAc projection. These results suggest that the adverse effects of stress may converge on the serotonergic system and offers an approach to controlling stress-induced dysphoria and relapse.
AbstractList Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a functional pathway in mouse brain that encodes the aversive effects of stress and mediates stress-induced reinstatement of cocaine place preference (CPP). Activation of the dynorphin/kappa opioid receptor (KOR) system by either repeated stress or agonist produces conditioned place aversion (CPA). Because KOR inhibition of dopamine release in the mesolimbic pathway has been proposed to mediate the dysphoria underlying this response, we tested dopamine-deficient mice in this study and found that KOR agonist in these mice still produced CPA. However, inactivation of serotonergic KORs by injection of the KOR antagonist norBNI into the dorsal raphe nucleus (DRN), blocked aversive responses to the KOR agonist U50,488 and blocked stress-induced reinstatement of CPP. KOR knockout (KO) mice did not develop CPA to U50,488; however, lentiviral re-expression of KOR in the DRN of KOR KO mice restored place aversion. In contrast, lentiviral expression in DRN of a mutated form of KOR that fails to activate p38 MAPK required for KOR-dependent aversion, did not restore place aversion. DRN serotonergic neurons project broadly throughout the brain, but the inactivation of KOR in the nucleus accumbens (NAc) coupled with viral re-expression in the DRN of KOR KO mice demonstrated that aversion was encoded by a DRN to NAc projection. These results suggest that the adverse effects of stress may converge on the serotonergic system and offers an approach to controlling stress-induced dysphoria and relapse.
Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a functional pathway in mouse brain that encodes the aversive effects of stress and mediates stress-induced reinstatement of cocaine place preference (CPP). Activation of the dynorphin/kappa opioid receptor (KOR) system by either repeated stress or agonist produces conditioned place aversion (CPA). Because KOR inhibition of dopamine release in the mesolimbic pathway has been proposed to mediate the dysphoria underlying this response, we tested dopamine-deficient mice in this study and found that KOR agonist in these mice still produced CPA. However, inactivation of serotonergic KORs by injection of the KOR antagonist norBNI into the dorsal raphe nucleus (DRN), blocked aversive responses to the KOR agonist U50,488 and blocked stress-induced reinstatement of CPP. KOR knockout (KO) mice did not develop CPA to U50,488; however, lentiviral re-expression of KOR in the DRN of KOR KO mice restored place aversion. In contrast, lentiviral expression in DRN of a mutated form of KOR that fails to activate p38 MAPK required for KOR-dependent aversion, did not restore place aversion. DRN serotonergic neurons project broadly throughout the brain, but the inactivation of KOR in the nucleus accumbens (NAc) coupled with viral re-expression in the DRN of KOR KO mice demonstrated that aversion was encoded by a DRN to NAc projection. These results suggest that the adverse effects of stress may converge on the serotonergic system and offers an approach to controlling stress-induced dysphoria and relapse. [PUBLICATION ABSTRACT]
Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a functional pathway in mouse brain that encodes the aversive effects of stress and mediates stress-induced reinstatement of cocaine place preference (CPP). Activation of the dynorphin/kappa opioid receptor (KOR) system by either repeated stress or agonist produces conditioned place aversion (CPA). Because KOR inhibition of dopamine release in the mesolimbic pathway has been proposed to mediate the dysphoria underlying this response, we tested dopamine-deficient mice in this study and found that KOR agonist in these mice still produced CPA. However, inactivation of serotonergic KORs by injection of the KOR antagonist norBNI into the dorsal raphe nucleus (DRN), blocked aversive responses to the KOR agonist U50,488 and blocked stress-induced reinstatement of CPP. KOR knockout (KO) mice did not develop CPA to U50,488; however, lentiviral re-expression of KOR in the DRN of KOR KO mice restored place aversion. In contrast, lentiviral expression in DRN of a mutated form of KOR that fails to activate p38 MAPK required for KOR-dependent aversion, did not restore place aversion. DRN serotonergic neurons project broadly throughout the brain, but the inactivation of KOR in the nucleus accumbens (NAc) coupled with viral re-expression in the DRN of KOR KO mice demonstrated that aversion was encoded by a DRN to NAc projection. These results suggest that the adverse effects of stress may converge on the serotonergic system and offers an approach to controlling stress-induced dysphoria and relapse.Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a functional pathway in mouse brain that encodes the aversive effects of stress and mediates stress-induced reinstatement of cocaine place preference (CPP). Activation of the dynorphin/kappa opioid receptor (KOR) system by either repeated stress or agonist produces conditioned place aversion (CPA). Because KOR inhibition of dopamine release in the mesolimbic pathway has been proposed to mediate the dysphoria underlying this response, we tested dopamine-deficient mice in this study and found that KOR agonist in these mice still produced CPA. However, inactivation of serotonergic KORs by injection of the KOR antagonist norBNI into the dorsal raphe nucleus (DRN), blocked aversive responses to the KOR agonist U50,488 and blocked stress-induced reinstatement of CPP. KOR knockout (KO) mice did not develop CPA to U50,488; however, lentiviral re-expression of KOR in the DRN of KOR KO mice restored place aversion. In contrast, lentiviral expression in DRN of a mutated form of KOR that fails to activate p38 MAPK required for KOR-dependent aversion, did not restore place aversion. DRN serotonergic neurons project broadly throughout the brain, but the inactivation of KOR in the nucleus accumbens (NAc) coupled with viral re-expression in the DRN of KOR KO mice demonstrated that aversion was encoded by a DRN to NAc projection. These results suggest that the adverse effects of stress may converge on the serotonergic system and offers an approach to controlling stress-induced dysphoria and relapse.
Author Chavkin, Charles
Schattauer, Selena
Giardino, William J
Messinger, Daniel
Land, Benjamin B
Aita, Megumi
Hnasko, Thomas S
Palmiter, Richard D
Bruchas, Michael R
Author_xml – sequence: 1
  fullname: Land, Benjamin B
– sequence: 2
  fullname: Bruchas, Michael R
– sequence: 3
  fullname: Schattauer, Selena
– sequence: 4
  fullname: Giardino, William J
– sequence: 5
  fullname: Aita, Megumi
– sequence: 6
  fullname: Messinger, Daniel
– sequence: 7
  fullname: Hnasko, Thomas S
– sequence: 8
  fullname: Palmiter, Richard D
– sequence: 9
  fullname: Chavkin, Charles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19864633$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNURKeFNSvA6gZYTGvH8WuDVFW8pEosoGvLSW6mnmbs1HZG9Bfwt3Fmhg50URZRYp3vHp_Y56g4cN5BUbwk-JRgQc8GZ-IpVvkbM4L5k2JG8mrOK4UPihnGpZjLqqwOi6MYlxhjxSR-VhwSJXnFKZ0Vv86bZNcmWe-Q71C6BnRjhsEgP1hvWxSggSH5gKzbiK0P0fQomCEv3Nj0MEa0gtaaBHFDmDWEaNeAoOugSXGyjSlAjMi4ydC6mDZ0G8YFigA31i2eF08700d4sXsfF1efPv64-DK__Pb568X55bzhJU1zimvBhOq4UKZjlBBRtczghklFWwUVJYbXQspOkVoArYkRMj-mZmXTYqbocfFh6zuMdY7dgEvB9HoIdmXCnfbG6n8VZ6_1wq91KQSvSpwN3u4Mgr8dISa9srGBvjcO_Bi1oJRKwdhEvnuUJJIISSVXE3ryAF36Mbh8ELrEhCouSJWh139Hv8_85zIzcLYFmuBjDNDtEaynuuipLnpflzzBHkw0Nm3KkP_d9o_MoV2USdjvwnXFch7CZUbe_wfR3dj3CX6mzL7assuYq3YPlyxfGOEk62-2eme8Notgo776Ph0MJgKXEjP6GyXZ8T8
CitedBy_id crossref_primary_10_1016_j_tibs_2013_03_003
crossref_primary_10_1038_npp_2017_120
crossref_primary_10_3389_fphar_2021_775317
crossref_primary_10_1016_j_bbr_2017_12_010
crossref_primary_10_1111_cns_14520
crossref_primary_10_1021_acsptsci_0c00066
crossref_primary_10_3389_fncel_2016_00045
crossref_primary_10_1016_j_pbb_2023_173620
crossref_primary_10_1016_j_bbr_2015_05_053
crossref_primary_10_1074_jbc_M112_381368
crossref_primary_10_1126_scisignal_aai8441
crossref_primary_10_1111_j_1369_1600_2012_00494_x
crossref_primary_10_1007_s40429_025_00618_x
crossref_primary_10_1016_j_jchemneu_2013_04_003
crossref_primary_10_1016_j_celrep_2016_02_069
crossref_primary_10_1038_npp_2017_133
crossref_primary_10_3390_molecules28124848
crossref_primary_10_1074_jbc_M113_476234
crossref_primary_10_1016_j_pbb_2011_11_005
crossref_primary_10_1111_ejn_12490
crossref_primary_10_1016_j_tins_2012_11_002
crossref_primary_10_1016_j_neuron_2012_12_034
crossref_primary_10_1016_j_biopsych_2013_03_014
crossref_primary_10_1172_JCI97854
crossref_primary_10_1038_s41586_021_04013_0
crossref_primary_10_1016_j_brainres_2020_146742
crossref_primary_10_3389_fncel_2016_00061
crossref_primary_10_1039_D0NP00028K
crossref_primary_10_1016_j_neuron_2019_02_029
crossref_primary_10_1021_acs_jmedchem_4c00736
crossref_primary_10_1111_bph_14913
crossref_primary_10_1371_journal_pone_0097216
crossref_primary_10_1007_s00213_020_05652_3
crossref_primary_10_1016_j_ejphar_2018_01_052
crossref_primary_10_3389_fnbeh_2020_00033
crossref_primary_10_1007_s00213_010_1806_y
crossref_primary_10_1016_j_burns_2019_03_028
crossref_primary_10_1016_j_neuroscience_2016_01_052
crossref_primary_10_1016_j_neuron_2022_09_024
crossref_primary_10_3389_fnbeh_2022_836996
crossref_primary_10_1016_j_brainres_2018_09_023
crossref_primary_10_1155_2013_697632
crossref_primary_10_1016_j_alcohol_2011_10_006
crossref_primary_10_1016_j_biopsych_2011_11_015
crossref_primary_10_1016_j_neuropharm_2015_07_001
crossref_primary_10_1213_ANE_0000000000005309
crossref_primary_10_2139_ssrn_4168314
crossref_primary_10_1523_JNEUROSCI_3220_12_2012
crossref_primary_10_1093_alcalc_agw098
crossref_primary_10_1038_nrd_2017_229
crossref_primary_10_1016_j_physbeh_2012_01_003
crossref_primary_10_3389_fphar_2018_01388
crossref_primary_10_1016_j_neuropharm_2024_110061
crossref_primary_10_3389_fpsyt_2014_00170
crossref_primary_10_1523_JNEUROSCI_2053_12_2012
crossref_primary_10_1038_npp_2012_229
crossref_primary_10_1111_acer_12416
crossref_primary_10_1001_jamapsychiatry_2014_1221
crossref_primary_10_1038_npp_2013_261
crossref_primary_10_1038_s41421_018_0060_z
crossref_primary_10_1016_j_jpsychires_2015_04_019
crossref_primary_10_1021_acs_jmedchem_3c00064
crossref_primary_10_1016_j_neuropharm_2018_07_034
crossref_primary_10_1016_j_bmc_2017_06_035
crossref_primary_10_1016_j_bbr_2018_05_011
crossref_primary_10_1016_j_neuropharm_2021_108769
crossref_primary_10_1007_s00213_012_2864_0
crossref_primary_10_1016_j_ntt_2021_107033
crossref_primary_10_1038_npp_2013_151
crossref_primary_10_1523_ENEURO_0028_20_2020
crossref_primary_10_1016_j_ynpai_2023_100121
crossref_primary_10_1111_jnc_15340
crossref_primary_10_1007_s00018_011_0844_x
crossref_primary_10_1124_jpet_112_193615
crossref_primary_10_1016_j_alcohol_2017_01_001
crossref_primary_10_1038_aps_2015_32
crossref_primary_10_1016_j_npep_2010_12_004
crossref_primary_10_1111_j_1476_5381_2012_02075_x
crossref_primary_10_1016_j_bbr_2014_02_029
crossref_primary_10_1111_ejn_14127
crossref_primary_10_1016_j_euroneuro_2015_11_009
crossref_primary_10_1016_j_phrs_2022_106091
crossref_primary_10_1111_acer_13406
crossref_primary_10_1016_j_bbr_2017_03_033
crossref_primary_10_1111_adb_12392
crossref_primary_10_1038_s41583_018_0028_x
crossref_primary_10_1172_JCI90678
crossref_primary_10_1111_j_1369_1600_2012_00455_x
crossref_primary_10_1038_npp_2010_67
crossref_primary_10_1073_pnas_1205565109
crossref_primary_10_1016_j_ejphar_2015_05_012
crossref_primary_10_7554_eLife_55523
crossref_primary_10_1016_j_pharmthera_2019_04_009
crossref_primary_10_1016_j_pnpbp_2019_02_010
crossref_primary_10_1038_s41386_021_01178_0
crossref_primary_10_1074_jbc_M112_405696
crossref_primary_10_3389_fnins_2015_00466
crossref_primary_10_1038_s41386_019_0423_7
crossref_primary_10_1111_bph_13854
crossref_primary_10_1007_s00213_016_4484_6
crossref_primary_10_1016_j_phrs_2023_106961
crossref_primary_10_1111_adb_12020
crossref_primary_10_1016_j_neuint_2019_104504
crossref_primary_10_1016_j_neuropharm_2019_02_010
crossref_primary_10_1016_j_ynstr_2021_100364
crossref_primary_10_1021_acschemneuro_5b00092
crossref_primary_10_1016_j_cellsig_2017_01_016
crossref_primary_10_1038_s41467_019_12316_0
crossref_primary_10_1111_adb_12133
crossref_primary_10_1016_j_neuropharm_2016_04_022
crossref_primary_10_1124_jpet_118_255661
crossref_primary_10_1016_j_neuropharm_2011_02_012
crossref_primary_10_1124_mol_111_074195
crossref_primary_10_1016_j_pbb_2015_05_008
crossref_primary_10_1016_j_conb_2013_02_005
crossref_primary_10_1124_pr_114_009209
crossref_primary_10_3389_fncel_2022_807549
crossref_primary_10_1111_ejn_15926
crossref_primary_10_1016_j_neuron_2019_03_003
crossref_primary_10_1517_13543784_2015_1020109
crossref_primary_10_3390_ijms21144833
crossref_primary_10_1016_j_neuron_2011_07_018
crossref_primary_10_1016_j_physbeh_2016_02_024
crossref_primary_10_1016_j_ejphar_2014_11_044
crossref_primary_10_1016_j_neuroscience_2014_11_053
crossref_primary_10_3389_fnins_2021_642493
crossref_primary_10_1038_s41401_022_00987_3
crossref_primary_10_1111_bph_13873
crossref_primary_10_1523_ENEURO_0043_23_2023
crossref_primary_10_1007_s00213_010_1825_8
crossref_primary_10_1126_scisignal_aba0245
crossref_primary_10_7554_eLife_68130
crossref_primary_10_1016_j_cobeha_2019_01_002
crossref_primary_10_3389_fphar_2019_00407
crossref_primary_10_1016_j_neuroscience_2012_07_040
crossref_primary_10_1016_j_ynstr_2018_08_003
crossref_primary_10_1111_apha_13882
crossref_primary_10_1111_bph_12692
crossref_primary_10_1176_appi_focus_10_4_452
crossref_primary_10_3390_molecules27207065
crossref_primary_10_1016_j_neuropharm_2013_09_021
crossref_primary_10_1016_j_pnpbp_2015_01_001
crossref_primary_10_1146_annurev_pharmtox_010919_023317
crossref_primary_10_1007_s10571_013_0011_z
crossref_primary_10_3389_fpsyt_2017_00052
crossref_primary_10_1016_j_biopsych_2011_05_021
crossref_primary_10_1038_npp_2013_171
crossref_primary_10_1073_pnas_1521825113
crossref_primary_10_1146_annurev_neuro_080317_061522
crossref_primary_10_1021_ci400019t
crossref_primary_10_1074_jbc_C112_387332
crossref_primary_10_1007_s00213_013_3182_x
crossref_primary_10_1007_s10309_011_0218_2
crossref_primary_10_1016_j_pnpbp_2016_07_008
crossref_primary_10_1016_j_neuropharm_2018_11_011
crossref_primary_10_3389_fnbeh_2020_582147
crossref_primary_10_3389_fnins_2025_1507747
crossref_primary_10_1016_j_neuropharm_2018_11_010
crossref_primary_10_1016_j_peptides_2010_09_016
crossref_primary_10_1007_s11916_014_0410_y
crossref_primary_10_1016_j_tins_2021_09_004
crossref_primary_10_1016_j_pnpbp_2022_110599
crossref_primary_10_1007_s11055_016_0288_8
crossref_primary_10_3390_molecules26164767
crossref_primary_10_1016_j_neuropharm_2013_05_024
crossref_primary_10_1021_acschemneuro_6b00268
crossref_primary_10_1038_mp_2011_119
crossref_primary_10_1016_j_neuron_2011_06_011
crossref_primary_10_1016_j_alcohol_2012_05_004
crossref_primary_10_1038_npp_2015_268
crossref_primary_10_1016_j_neubiorev_2018_09_008
crossref_primary_10_1021_acs_jmedchem_6b01418
crossref_primary_10_1016_j_neuropharm_2019_01_017
crossref_primary_10_1016_j_cub_2021_07_047
crossref_primary_10_1038_npp_2015_142
crossref_primary_10_1016_j_pnpbp_2015_06_006
crossref_primary_10_3390_biomedicines9121882
crossref_primary_10_1016_j_conb_2013_03_011
crossref_primary_10_1371_journal_pone_0206421
crossref_primary_10_1016_j_neuron_2015_08_019
crossref_primary_10_1016_j_yfrne_2018_05_003
crossref_primary_10_1523_JNEUROSCI_1979_13_2013
crossref_primary_10_1523_JNEUROSCI_2838_13_2014
crossref_primary_10_1016_j_pbb_2022_173377
crossref_primary_10_1124_mol_113_089649
crossref_primary_10_1111_bph_14088
crossref_primary_10_3389_fphar_2014_00253
crossref_primary_10_1007_s00213_010_1846_3
crossref_primary_10_1016_j_ejphar_2015_07_018
crossref_primary_10_1176_appi_ajp_2020_20081224
crossref_primary_10_1016_j_biopsych_2014_04_019
crossref_primary_10_1007_s00213_017_4637_2
crossref_primary_10_1021_acs_biochem_0c00629
crossref_primary_10_3389_fnins_2022_964724
crossref_primary_10_1074_jbc_RA119_009592
crossref_primary_10_7554_eLife_23785
crossref_primary_10_1016_j_pbb_2012_10_009
crossref_primary_10_1113_JP271657
crossref_primary_10_1002_jnr_23815
crossref_primary_10_1007_s00213_013_3195_5
crossref_primary_10_1016_j_ynstr_2022_100493
crossref_primary_10_1007_s00259_019_04488_0
crossref_primary_10_3389_fphar_2022_856672
crossref_primary_10_1007_s40429_021_00361_z
crossref_primary_10_1016_j_cellsig_2015_03_026
crossref_primary_10_1016_j_psyneuen_2011_10_002
crossref_primary_10_1038_s41380_023_02204_x
crossref_primary_10_1002_dev_21192
crossref_primary_10_1016_j_addicn_2022_100005
crossref_primary_10_3390_ijms20164010
Cites_doi 10.1038/nrn1406
10.1038/nature03694
10.1038/nn1399
10.1038/nature04172
10.1038/npp.2008.142
10.1016/j.ejphar.2007.05.007
10.1073/pnas.0501432102
10.1016/j.neuron.2008.06.012
10.1016/0014-2999(88)90803-5
10.1073/pnas.0600084103
10.1523/JNEUROSCI.22-24-10856.2002
10.1111/j.1471-4159.2004.02589.x
10.1124/jpet.102.037861
10.1007/s00213-005-0167-4
10.1523/JNEUROSCI.3769-07.2007
10.1038/sj.npp.1300872
10.1073/pnas.091039298
10.1126/science.3016896
10.1073/pnas.0603081103
10.1074/jbc.M705540200
10.1038/sj.npp.1301438
10.1523/JNEUROSCI.23-31-09981.2003
10.1006/mthe.2001.0282
10.1073/pnas.0705740104
10.1038/nn1123
10.1515/REVNEURO.1995.6.3.279
10.1016/S0896-6273(02)00653-0
10.1016/S0006-8993(00)02776-1
10.1523/JNEUROSCI.3133-07.2007
10.1523/JNEUROSCI.22-18-07844.2002
10.1128/JVI.72.12.9873-9880.1998
10.1038/88115
10.1523/JNEUROSCI.4458-07.2008
10.1074/jbc.M513640200
10.1046/j.1471-4159.1998.70020635.x
10.1038/nrn1346
10.1038/nrn1539
10.1074/jbc.M304022200
10.1523/JNEUROSCI.22-16-07308.2002
10.1523/JNEUROSCI.23-13-05674.2003
10.1038/nature07455
10.1007/s00213-008-1122-y
10.1016/0006-8993(87)91571-X
ContentType Journal Article
Copyright Copyright National Academy of Sciences Nov 10, 2009
Copyright_xml – notice: Copyright National Academy of Sciences Nov 10, 2009
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0910705106
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA

Virology and AIDS Abstracts
MEDLINE

CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 19173
ExternalDocumentID PMC2776420
1900726761
19864633
10_1073_pnas_0910705106
106_45_19168
25593161
US201301702805
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: DA16898
– fundername: NIDA NIH HHS
  grantid: K99 DA025182
– fundername: NIDA NIH HHS
  grantid: R01 DA016898
– fundername: Howard Hughes Medical Institute
– fundername: NIDA NIH HHS
  grantid: DA25182
– fundername: NIDA NIH HHS
  grantid: DA20570
– fundername: NIDA NIH HHS
  grantid: R00 DA025182
– fundername: NIDA NIH HHS
  grantid: R21 DA025970
– fundername: NIDA NIH HHS
  grantid: K05 DA020570
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c623t-30b7579f679af531174d5a0c5893d9e431a6b788f91b7e3b1a781a7ab52cd0593
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:07:02 EDT 2025
Fri Sep 05 14:23:29 EDT 2025
Fri Sep 05 04:45:46 EDT 2025
Sat Aug 23 13:14:27 EDT 2025
Sat May 31 02:11:10 EDT 2025
Tue Jul 01 00:46:46 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Thu May 30 08:49:31 EDT 2019
Wed Nov 11 00:29:25 EST 2020
Thu May 29 08:43:02 EDT 2025
Wed Dec 27 19:05:39 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c623t-30b7579f679af531174d5a0c5893d9e431a6b788f91b7e3b1a781a7ab52cd0593
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: B.B.L., M.R.B., R.D.P., and C.C. designed research; B.B.L., M.R.B., W.J.G., M.A., and D.M. performed research; S.S., T.S.H., and R.D.P. contributed new reagents/analytic tools; B.B.L., M.R.B., T.S.H., and C.C. analyzed data; and B.B.L., M.R.B., and C.C. wrote the paper.
Contributed by Richard D. Palmiter, September 23, 2009
1B.B.L. and M.R.B. contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2776420
PMID 19864633
PQID 201396714
PQPubID 42026
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_0910705106
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2776420
fao_agris_US201301702805
proquest_miscellaneous_733387550
jstor_primary_25593161
crossref_primary_10_1073_pnas_0910705106
pnas_primary_106_45_19168
proquest_journals_201396714
pubmed_primary_19864633
proquest_miscellaneous_1817838690
pnas_primary_106_45_19168_fulltext
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-10
PublicationDateYYYYMMDD 2009-11-10
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-10
  day: 10
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Horan P (e_1_3_3_19_2) 1992; 260
Shippenberg TS (e_1_3_3_40_2) 1986; 75
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
Bals-Kubik R (e_1_3_3_16_2) 1993; 264
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_11_2
  doi: 10.1038/nrn1406
– ident: e_1_3_3_22_2
  doi: 10.1038/nature03694
– ident: e_1_3_3_14_2
  doi: 10.1038/nn1399
– ident: e_1_3_3_12_2
  doi: 10.1038/nature04172
– ident: e_1_3_3_41_2
  doi: 10.1038/npp.2008.142
– ident: e_1_3_3_7_2
  doi: 10.1016/j.ejphar.2007.05.007
– ident: e_1_3_3_36_2
  doi: 10.1073/pnas.0501432102
– ident: e_1_3_3_10_2
  doi: 10.1016/j.neuron.2008.06.012
– ident: e_1_3_3_35_2
  doi: 10.1016/0014-2999(88)90803-5
– ident: e_1_3_3_38_2
  doi: 10.1073/pnas.0600084103
– ident: e_1_3_3_30_2
  doi: 10.1523/JNEUROSCI.22-24-10856.2002
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1471-4159.2004.02589.x
– ident: e_1_3_3_32_2
  doi: 10.1124/jpet.102.037861
– ident: e_1_3_3_9_2
  doi: 10.1007/s00213-005-0167-4
– ident: e_1_3_3_25_2
  doi: 10.1523/JNEUROSCI.3769-07.2007
– ident: e_1_3_3_8_2
  doi: 10.1038/sj.npp.1300872
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.091039298
– ident: e_1_3_3_39_2
  doi: 10.1126/science.3016896
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.0603081103
– ident: e_1_3_3_20_2
  doi: 10.1074/jbc.M705540200
– volume: 264
  start-page: 489
  year: 1993
  ident: e_1_3_3_16_2
  article-title: Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats
  publication-title: J Pharmacol Exp Ther
– ident: e_1_3_3_43_2
  doi: 10.1038/sj.npp.1301438
– ident: e_1_3_3_17_2
  doi: 10.1523/JNEUROSCI.23-31-09981.2003
– ident: e_1_3_3_44_2
  doi: 10.1006/mthe.2001.0282
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.0705740104
– volume: 75
  start-page: 563
  year: 1986
  ident: e_1_3_3_40_2
  article-title: Differential effects of mu and kappa opioid systems on motivational processes
  publication-title: NIDA Res Monogr
– ident: e_1_3_3_4_2
  doi: 10.1038/nn1123
– ident: e_1_3_3_33_2
  doi: 10.1515/REVNEURO.1995.6.3.279
– volume: 260
  start-page: 1237
  year: 1992
  ident: e_1_3_3_19_2
  article-title: Extremely long-lasting antagonistic actions of nor-binaltorphimine (nor-BNI) in the mouse tail-flick test
  publication-title: J Pharmacol Exp Ther
– ident: e_1_3_3_2_2
  doi: 10.1016/S0896-6273(02)00653-0
– ident: e_1_3_3_23_2
  doi: 10.1016/S0006-8993(00)02776-1
– ident: e_1_3_3_13_2
  doi: 10.1523/JNEUROSCI.3133-07.2007
– ident: e_1_3_3_31_2
  doi: 10.1523/JNEUROSCI.22-18-07844.2002
– ident: e_1_3_3_45_2
  doi: 10.1128/JVI.72.12.9873-9880.1998
– ident: e_1_3_3_46_2
  doi: 10.1038/88115
– ident: e_1_3_3_5_2
  doi: 10.1523/JNEUROSCI.4458-07.2008
– ident: e_1_3_3_24_2
  doi: 10.1074/jbc.M513640200
– ident: e_1_3_3_26_2
  doi: 10.1046/j.1471-4159.1998.70020635.x
– ident: e_1_3_3_37_2
  doi: 10.1038/nrn1346
– ident: e_1_3_3_3_2
  doi: 10.1038/nrn1539
– ident: e_1_3_3_21_2
  doi: 10.1074/jbc.M304022200
– ident: e_1_3_3_27_2
  doi: 10.1523/JNEUROSCI.22-16-07308.2002
– ident: e_1_3_3_42_2
  doi: 10.1523/JNEUROSCI.23-13-05674.2003
– ident: e_1_3_3_1_2
  doi: 10.1038/nature07455
– ident: e_1_3_3_6_2
  doi: 10.1007/s00213-008-1122-y
– ident: e_1_3_3_34_2
  doi: 10.1016/0006-8993(87)91571-X
SSID ssj0009580
Score 2.448122
Snippet Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19168
SubjectTerms 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer - pharmacology
Agonists
Analysis of Variance
Animal behavior
Animals
antagonists
Behavioral neuroscience
Biological Sciences
Brain
Cocaine
Cocaine - metabolism
dopamine
drugs
Effects
Enzyme-Linked Immunosorbent Assay
Immunohistochemistry
Inactivation
Lentivirus
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
mitogen-activated protein kinase
Mutation
Naltrexone - analogs & derivatives
Naltrexone - pharmacology
Neurons
Opioid analgesics
Opioid receptors
Raphe Nuclei - metabolism
Receptors
Receptors, Opioid, kappa - agonists
Receptors, Opioid, kappa - antagonists & inhibitors
Receptors, Opioid, kappa - genetics
Receptors, Opioid, kappa - metabolism
relapse
Rodents
Serotonin agents
Stress
Stress, Physiological - genetics
Stress, Physiological - physiology
Studies
T tests
Ventral Tegmental Area - metabolism
Title Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking
URI https://www.jstor.org/stable/25593161
http://www.pnas.org/content/106/45/19168.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19864633
https://www.proquest.com/docview/201396714
https://www.proquest.com/docview/1817838690
https://www.proquest.com/docview/733387550
https://pubmed.ncbi.nlm.nih.gov/PMC2776420
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLa6ccMNYsBYGCCDuBiKUtI4iZPLDgHTBNXENml3kZM4WxkkVdNwwQvwsjwE5zh20latNJDaqI1PXbfny_lxzg8hb2QqRJrH3JEych0_96UjojQHr9XNGctCPvIwOfnLJDy59E-vgqvB4M9S1FKzSIfZr415Jf_DVTgHfMUs2X_gbDcpnIDXwF84AofheCcejzPTnMzc6r8Vs5mwq9m0mmJaCsasqIBzNZhX8xrr-IsZvCmxkHFTt6kjuPmKFEIFafxcCfPQ2SQqDl1OS5WBVNv5vLm2aylvjerTBu5ZpxBrs6aJ2W8c99krWqTUtmOfTfpeyJ91mOWxLL-JH7Ds42G_X9BkOvtMh_rbX7vBczixWIhGdxFDVdqpm09TvAhUh3FTg8I-Ha7sdsSOirhbluAeaFW_zbseylZog83jhH7bdrST6m64BF8_WBLS4KK2rXy0xkeXlW1UJyD_sAdyKeoh2lUcJdiGwt1rCrULc1Q3-DlLcIKkn2CH3PM4WHpmb6krER21CVP6F5pCVJy9W1vBig21U4jKBNNihV4g3eQtrQf9LllRFw_JA-3-0HGL5T0ykOUjsmfQQI90FfS3j8nvHty0KigAiSpw0xbc1ICbTks12IKbKnBTDW5qwK0oDLipBjdO24KbAuxoD26K4KYa3E_I5ccPF-9PHN01xMnAlF84zE15wOMi5LEoQMOAy50Hws0CsMzzWILBLMKUR1ERj1IuWToSPIKnSAMvy7HB5T7ZLatSHhDqsZyFMAYuQ-xHsQcPmeeZGwIlA8BZZGj4kGS6pD52dvmebOG8RY66D8zaajLbSQ-AsYm4Bl2fXJ57GGEw4hgIEVhkX3G7mwK3BRi4bhax1Cz91GHiB4nCu0Vebx1LCh1oZpFDA5xEy7k6wa-OQWj7FnnVjYISwjuLopRVUyfgJvCIYXM7i9AtNJwxFvEgAJKnLRL7tWCPiJAxi_AVjHYEWAN_daSc3qha-B7noe-5z-7-xx6S-71geU52F_NGvgDHYpG-VNfjX3j1I3M
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+of+the+kappa+opioid+receptor+in+the+dorsal+raphe+nucleus+mediates+the+aversive+effects+of+stress+and+reinstates+drug+seeking&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Land%2C+Benjamin+B.&rft.au=Bruchas%2C+Michael+R.&rft.au=Schattauer%2C+Selena&rft.au=Giardino%2C+William+J.&rft.date=2009-11-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=106&rft.issue=45&rft.spage=19168&rft.epage=19173&rft_id=info:doi/10.1073%2Fpnas.0910705106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_0910705106
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F45.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F45.cover.gif