Digital image processing technology under backpropagation neural network and K-Means Clustering algorithm on nitrogen utilization rate of Chinese cabbages
The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through...
Saved in:
| Published in | PloS one Vol. 16; no. 3; p. e0248923 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
31.03.2021
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0248923 |
Cover
| Abstract | The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R
2
value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection. |
|---|---|
| AbstractList | The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R2 value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection. The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R 2 value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection. The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R.sup.2 value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection. The average annual vegetable per capita was 350kg, which was 100kg higher than the world average. According to the research questions above, a nitrogen concentration model is established through the digital processing technology based on previous research. Some agricultural parameters that are difficult to be measured directly are associated with crop image features. [...]agricultural parameter estimation models have emerged. The color of the crop canopy is closely linked to its nitrogen nutrition status. [...]visible light spectrum analysis technology in crop nitrogen nutrition diagnosis has received widespread attention. The average annual vegetable per capita was 350kg, which was 100kg higher than the world average. According to the research questions above, a nitrogen concentration model is established through the digital processing technology based on previous research. Some agricultural parameters that are difficult to be measured directly are associated with crop image features. [...]agricultural parameter estimation models have emerged. The color of the crop canopy is closely linked to its nitrogen nutrition status. [...]visible light spectrum analysis technology in crop nitrogen nutrition diagnosis has received widespread attention. The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R2 value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection.The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R2 value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection. |
| Audience | Academic |
| Author | Shao, Xiaohou Pei, Dandan Wang, Qilin Mao, Xinyu Jiang, Xiaosan |
| AuthorAffiliation | 2 Taizhou Research Institute of Nanjing Agricultural University, Taizhou, China Ministry of Natural Resources North Sea Bureau, CHINA 1 College of Agricultural Science and Engineering, Hohai University, Nanjing, China |
| AuthorAffiliation_xml | – name: Ministry of Natural Resources North Sea Bureau, CHINA – name: 2 Taizhou Research Institute of Nanjing Agricultural University, Taizhou, China – name: 1 College of Agricultural Science and Engineering, Hohai University, Nanjing, China |
| Author_xml | – sequence: 1 givenname: Qilin surname: Wang fullname: Wang, Qilin – sequence: 2 givenname: Xinyu orcidid: 0000-0002-8369-3759 surname: Mao fullname: Mao, Xinyu – sequence: 3 givenname: Xiaosan surname: Jiang fullname: Jiang, Xiaosan – sequence: 4 givenname: Dandan surname: Pei fullname: Pei, Dandan – sequence: 5 givenname: Xiaohou surname: Shao fullname: Shao, Xiaohou |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33788875$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk9lu1DAUhiMEogu8AQJLSAguZvCSxeECqRq2iqJKbLeW7ZzJuPXYg-1QyqPwtDjMtOpUlahykcj-_t_n_CfeK-4676AoHhE8JawhL0_8EJy001VenmJa8payO8UuaRmd1BSzu1e-d4q9GE8wrhiv6_vFDmMN57ypdos_b0xvkrTILGUPaBW8hhiN61ECvXDe-v4cDa6DgJTUp3l_JXuZjHfIwRCy0EE68-EUSdehj5NPIF1EMzvEBGG0kbb3waTFEo0Sk4LvwaEhGWt-r32CTID8HM0WxkEEpKVSuZb4oLg3lzbCw817v_j27u3X2YfJ0fH7w9nB0UTXlKaJ6qDlDWkUqyivStK0ZU1r1VR6jglmRHVKtVhzDpzPWadKJauuUQQ0b1poGdsvnqx9V9ZHsYk1Clrhpm5ITWgmDtdE5-WJWIWcVTgXXhrxb8GHXsiQjLYggLUkxy5LTqHERKsO13VFm7KjIKWC7FWtvQa3kudn0tpLQ4LFONmLEsQ4WbGZbNa93lQ5qCV0GlwK0m4Vs73jzEL0_qfgmBBOqmzwfGMQ_I8BYhJLEzVYKx34Yd1vwzBn41lPr6E3p7KhepkbN27u87l6NBUHdVW3lNRVmanpDVR-OlganTucm7y-JXixJchMgl-pl0OM4vDL59uzx9-32WdX2AVImxbR22H8B-M2-Phq0pcRX1yaDLxaAzr4GAPMhc5XaPTJrRn7vzmW18S3Gv9fjCtCJA |
| CitedBy_id | crossref_primary_10_3390_agronomy12051106 crossref_primary_10_3390_land12111984 crossref_primary_10_1016_j_compag_2024_109158 crossref_primary_10_1371_journal_pone_0290865 crossref_primary_10_3390_horticulturae9040506 crossref_primary_10_1016_j_jag_2022_102971 crossref_primary_10_1007_s00170_023_12628_y crossref_primary_10_1186_s13007_021_00790_x |
| Cites_doi | 10.1038/s41467-020-14586-5 10.1016/j.measurement.2018.12.088 10.1186/s13007-017-0253-8 10.1016/j.ecolmodel.2017.10.016 10.1016/j.watres.2018.04.052 10.1080/03650340.2020.1789967 10.3390/agriculture10100451 10.1016/j.ins.2018.06.035 10.1016/j.rse.2017.05.019 10.1016/j.aiia.2019.09.001 10.3390/rs8090706 10.1088/1757-899X/336/1/012017 10.1021/acs.est.0c06354 10.1016/j.jclepro.2019.05.053 10.1007/s11042-018-6192-1 10.1007/s00128-018-2315-7 10.3390/s17071474 10.3389/fpls.2019.01537 10.3724/SP.J.1006.2020.94121 10.1007/s10653-016-9899-9 10.30645/ijistech.v1i1.4 10.1007/s11042-017-5445-8 10.1016/j.ins.2017.02.049 10.1016/j.energy.2017.03.094 10.1371/journal.pone.0212294 10.1007/s11130-018-0660-7 10.3390/s16030276 10.1007/s10967-018-5881-6 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Wang et al 2021 Wang et al |
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Wang et al 2021 Wang et al |
| DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0248923 |
| DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Science in Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Agricultural Science Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Engineering Agriculture |
| DocumentTitleAlternate | The impact of K-Means Clustering algorithm-based digital image processing technology |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2507671612 oai_doaj_org_article_e391193a482e401cbd0665274d2eaabe 10.1371/journal.pone.0248923 PMC8011815 A656921654 33788875 10_1371_journal_pone_0248923 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: ; grantid: no.51809076 – fundername: ; grantid: no.20201301 – fundername: ; grantid: no.2019B08514 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c622t-bde98717b3528541794626b75cf01031bdbb90c88e88f3db4ba5d7b1ec879e933 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:12:04 EST 2021 Fri Oct 03 12:30:38 EDT 2025 Sun Oct 26 03:49:49 EDT 2025 Tue Sep 30 17:06:02 EDT 2025 Fri Sep 05 10:31:51 EDT 2025 Tue Oct 07 07:54:01 EDT 2025 Mon Oct 20 22:05:11 EDT 2025 Mon Oct 20 16:11:03 EDT 2025 Thu Oct 16 14:10:54 EDT 2025 Thu Oct 16 15:26:06 EDT 2025 Thu May 22 21:22:43 EDT 2025 Wed Feb 19 02:27:51 EST 2025 Wed Oct 01 04:11:20 EDT 2025 Thu Apr 24 22:55:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c622t-bde98717b3528541794626b75cf01031bdbb90c88e88f3db4ba5d7b1ec879e933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correction/Retraction-3 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-8369-3759 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0248923 |
| PMID | 33788875 |
| PQID | 2507671612 |
| PQPubID | 1436336 |
| PageCount | e0248923 |
| ParticipantIDs | plos_journals_2507671612 doaj_primary_oai_doaj_org_article_e391193a482e401cbd0665274d2eaabe unpaywall_primary_10_1371_journal_pone_0248923 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011815 proquest_miscellaneous_2507730833 proquest_journals_2507671612 gale_infotracmisc_A656921654 gale_infotracacademiconefile_A656921654 gale_incontextgauss_ISR_A656921654 gale_incontextgauss_IOV_A656921654 gale_healthsolutions_A656921654 pubmed_primary_33788875 crossref_citationtrail_10_1371_journal_pone_0248923 crossref_primary_10_1371_journal_pone_0248923 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-31 |
| PublicationDateYYYYMMDD | 2021-03-31 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2021 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | P. Sadeghi-Tehran (pone.0248923.ref029) 2017; 13 S. El-Hendawy (pone.0248923.ref021) 2019; 14 H.B. Yang (pone.0248923.ref014) 2020; 46 B. Dechant (pone.0248923.ref016) 2017; 196 N. Gupta (pone.0248923.ref020) 2020 Z. Sun (pone.0248923.ref034) 2020; 54 X. Sun (pone.0248923.ref027) 2019; 6 L. Wang (pone.0248923.ref013) 2020 W. Zhou (pone.0248923.ref032) 2017; 397 H. Liang (pone.0248923.ref005) 2018; 367 D. Feng (pone.0248923.ref012) 2019 M.J. López-Calderón (pone.0248923.ref017) 2020; 10 F. Aeffner (pone.0248923.ref019) 2019 G. Dhingra (pone.0248923.ref009) 2018; 77 H.W. Pan (pone.0248923.ref003) 2017; 39 M. Wang (pone.0248923.ref004) 2018; 100 J.M. Bengochea-Guevara (pone.0248923.ref007) 2016; 16 C. Zhou (pone.0248923.ref011) 2019; 136 P. Mattila (pone.0248923.ref015) 2018; 73 J. Mahalakshmi (pone.0248923.ref008) 2017; 13 J. Zhou (pone.0248923.ref030) 2019; 78 S.E.-S. El-Hendawy (pone.0248923.ref022) 2019; 10 Y. Hashimoto (pone.0248923.ref006) 2020; 11 pone.0248923.ref024 W. Liang (pone.0248923.ref001) 2019; 21 M. Schirrmann (pone.0248923.ref033) 2016; 8 S.P. Siregar (pone.0248923.ref025) 2017; 1 T.N. Syed (pone.0248923.ref018) 2019; 3 Y.-R. Zeng (pone.0248923.ref026) 2017; 127 G. He (pone.0248923.ref002) 2019; 229 Y. Meng (pone.0248923.ref023) 2018; 463 V. Vasilaki (pone.0248923.ref010) 2018; 140 M. Mádlíková (pone.0248923.ref028) 2018; 317 X. Zhang (pone.0248923.ref031) 2017; 17 |
| References_xml | – volume: 11 start-page: 1 issue: 1 year: 2020 ident: pone.0248923.ref006 article-title: Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection publication-title: Nature communications doi: 10.1038/s41467-020-14586-5 – volume: 136 start-page: 478 year: 2019 ident: pone.0248923.ref011 article-title: Imaging analysis of chlorophyll fluorescence induction for monitoring plant water and nitrogen treatments publication-title: Measurement doi: 10.1016/j.measurement.2018.12.088 – volume: 13 start-page: 103 issue: 1 year: 2017 ident: pone.0248923.ref029 article-title: Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping publication-title: Plant methods doi: 10.1186/s13007-017-0253-8 – volume: 367 start-page: 24 year: 2018 ident: pone.0248923.ref005 article-title: Developing a water and nitrogen management model for greenhouse vegetable production in China: sensitivity analysis and evaluation publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2017.10.016 – volume: 140 start-page: 387 year: 2018 ident: pone.0248923.ref010 article-title: Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques publication-title: Water research doi: 10.1016/j.watres.2018.04.052 – start-page: 1 year: 2020 ident: pone.0248923.ref013 article-title: Growth and yield responses of drip-irrigated cotton to two different methods of simulated hail damages publication-title: Archives of Agronomy and Soil Science doi: 10.1080/03650340.2020.1789967 – start-page: 10 year: 2019 ident: pone.0248923.ref019 article-title: Introduction to digital image analysis in whole-slide imaging: a white paper from the digital pathology association publication-title: Journal of pathology informatics – volume: 10 start-page: 451 issue: 10 year: 2020 ident: pone.0248923.ref017 article-title: Estimation of Total Nitrogen Content in Forage Maize (Zea mays L.) Using Spectral Indices: Analysis by Random Forest publication-title: Agriculture doi: 10.3390/agriculture10100451 – volume: 463 start-page: 166 year: 2018 ident: pone.0248923.ref023 article-title: A new distance with derivative information for functional k-means clustering algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2018.06.035 – volume: 196 start-page: 279 year: 2017 ident: pone.0248923.ref016 article-title: Estimation of photosynthesis traits from leaf reflectance spectra: Correlation to nitrogen content as the dominant mechanism publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2017.05.019 – volume: 3 start-page: 18 year: 2019 ident: pone.0248923.ref018 article-title: Seedling-lump integrated non-destructive monitoring for automatic transplanting with Intel RealSense depth camera publication-title: Artificial Intelligence in Agriculture doi: 10.1016/j.aiia.2019.09.001 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: pone.0248923.ref027 article-title: Genome-wide transcriptome analysis reveals molecular pathways involved in leafy head formation of Chinese cabbage (Brassica rapa) publication-title: Horticulture research – volume: 8 start-page: 706 issue: 9 year: 2016 ident: pone.0248923.ref033 article-title: Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery publication-title: Remote Sensing doi: 10.3390/rs8090706 – ident: pone.0248923.ref024 doi: 10.1088/1757-899X/336/1/012017 – volume: 54 start-page: 15507 issue: 23 year: 2020 ident: pone.0248923.ref034 article-title: Using Algal Virus Paramecium bursaria Chlorella Virus as a Human Adenovirus Surrogate for Validation of UV Treatment Systems publication-title: Environmental Science & Technology doi: 10.1021/acs.est.0c06354 – volume: 229 start-page: 739 year: 2019 ident: pone.0248923.ref002 article-title: China’s food security challenge: Effects of food habit changes on requirements for arable land and water publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.05.053 – volume: 13 start-page: 25 issue: 3 year: 2017 ident: pone.0248923.ref008 article-title: Automated crop inspection and pest control using image processing publication-title: International Journal of Engineering Research and development – volume: 78 start-page: 6163 issue: 5 year: 2019 ident: pone.0248923.ref030 article-title: Image retrieval based on effective feature extraction and diffusion process publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-6192-1 – volume: 100 start-page: 634 issue: 5 year: 2018 ident: pone.0248923.ref004 article-title: Heavy metal contamination and ecological risk assessment of swine manure irrigated vegetable soils in Jiangxi Province, China publication-title: Bulletin of environmental contamination and toxicology doi: 10.1007/s00128-018-2315-7 – volume: 17 start-page: 1474 issue: 7 year: 2017 ident: pone.0248923.ref031 article-title: A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm publication-title: Sensors doi: 10.3390/s17071474 – volume: 10 start-page: 1537 year: 2019 ident: pone.0248923.ref022 article-title: Comparative performance of spectral reflectance indices and multivariate modeling for assessing agronomic parameters in advanced spring wheat lines under two contrasting irrigation regimes publication-title: Frontiers in plant science doi: 10.3389/fpls.2019.01537 – volume: 21 start-page: 1 year: 2019 ident: pone.0248923.ref001 article-title: Urbanization, economic growth and environmental pollution: Evidence from China publication-title: Sustainable Computing: Informatics and Systems – volume: 46 start-page: 950 issue: 6 year: 2020 ident: pone.0248923.ref014 article-title: Effect of variety and growth period on NDVI estimation of nitrogen concentration in potato plants publication-title: Acta Agronomica Sinica doi: 10.3724/SP.J.1006.2020.94121 – volume: 39 start-page: 417 issue: 2 year: 2017 ident: pone.0248923.ref003 article-title: Levels and distributions of organochlorine pesticides in the soil–groundwater system of vegetable planting area in Tianjin City, Northern China publication-title: Environmental geochemistry and health doi: 10.1007/s10653-016-9899-9 – volume: 1 start-page: 34 issue: 1 year: 2017 ident: pone.0248923.ref025 article-title: Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting) publication-title: IJISTECH (International Journal of Information System & Technology) doi: 10.30645/ijistech.v1i1.4 – volume: 77 start-page: 19951 issue: 15 year: 2018 ident: pone.0248923.ref009 article-title: Study of digital image processing techniques for leaf disease detection and classification publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-5445-8 – volume: 397 start-page: 1 year: 2017 ident: pone.0248923.ref032 article-title: Local gradient patterns (LGP): An effective local-statistical-feature extraction scheme for no-reference image quality assessment publication-title: Information Sciences doi: 10.1016/j.ins.2017.02.049 – start-page: 1 year: 2020 ident: pone.0248923.ref020 article-title: Economic IoT strategy: the future technology for health monitoring and diagnostic of agriculture vehicles publication-title: Journal of Intelligent Manufacturing – volume: 127 start-page: 381 year: 2017 ident: pone.0248923.ref026 article-title: Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network publication-title: Energy doi: 10.1016/j.energy.2017.03.094 – volume: 14 start-page: e0212294 issue: 3 year: 2019 ident: pone.0248923.ref021 article-title: Combining biophysical parameters, spectral indices and multivariate hyperspectral models for estimating yield and water productivity of spring wheat across different agronomic practices publication-title: PloS One doi: 10.1371/journal.pone.0212294 – start-page: 1 year: 2019 ident: pone.0248923.ref012 article-title: Advances in plant nutrition diagnosis based on remote sensing and computer application publication-title: Neural Computing and Applications – volume: 73 start-page: 108 issue: 2 year: 2018 ident: pone.0248923.ref015 article-title: Nutritional value of commercial protein-rich plant products publication-title: Plant foods for human nutrition doi: 10.1007/s11130-018-0660-7 – volume: 16 start-page: 276 issue: 3 year: 2016 ident: pone.0248923.ref007 article-title: Merge fuzzy visual servoing and GPS-based planning to obtain a proper navigation behavior for a small crop-inspection robot publication-title: Sensors doi: 10.3390/s16030276 – volume: 317 start-page: 479 issue: 1 year: 2018 ident: pone.0248923.ref028 article-title: Nitrogen assay in winter wheat by short-time instrumental photon activation analysis and its comparison with the Kjeldahl method publication-title: Journal of Radioanalytical and Nuclear Chemistry doi: 10.1007/s10967-018-5881-6 |
| SSID | ssj0053866 |
| Score | 2.4223282 |
| Snippet | The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production... The average annual vegetable per capita was 350kg, which was 100kg higher than the world average. According to the research questions above, a nitrogen... The average annual vegetable per capita was 350kg, which was 100kg higher than the world average. According to the research questions above, a nitrogen... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0248923 |
| SubjectTerms | Agricultural production Agricultural research Agriculture Algorithms Back propagation Back propagation networks Biology and Life Sciences Chinese cabbage Cluster analysis Clustering Crop diseases Crops Digital cameras Digital imaging Engineering Engineering and Technology Environmental aspects Horticulture Image processing Information processing Literature reviews Mathematical models Medicine and Health Sciences Methods Neural networks Nitrogen Nitrogen fertilizers Nutrition Parameter estimation Software Spectrum analysis Technology Technology assessment Vector quantization Vegetables |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQX8YLYuNjhQEGIQEP6Vo7iZ3HMZgGaCABQ3uL7NjpKrKkalIh_hX-Wu5sN1rEpO2B1_ouau_Ld83d7wh5aSArFmoWRzaB9C3Woow0k1CqyFSpDIJy4nC2Tz6nx6fxx7Pk7NKqL-wJ8_DAXnD7loM7ZlzFklmoBQpt8GUB1FKGWaW0xeg7ldmmmPIxGLw4TcOgHBez_aCXybKp7QRRvDLGBxeRw-vvo_JoWTXtVSnnv52TW-t6qX7_UlV16Vo6ukvuhHySHvjfsU1u2XqHbAePbenrACv95h75824xxw0hdHEBMYQu_YQA3Fy06_9epzhStqJaFT_hHGKN0xtF0EtgrH3LOFW1oZ-iEwu3HD2s1gi1gI9R1bxZLbrzC4osi27VgHFSMOwqzHpShKWgTUlxabdtLS2U1vBd2vvk9Oj998PjKGxmiIqUsS7SxmZQaQmN2DAJLjGLoTDSIilKtzdCG62zaSGllbLkRsdaJUbomS2kyGzG-QMyqkEXu4RaiAmKiRJ0ymIO5Vym7BSYjWTGQH01JnyjprwIsOW4PaPK3bs4AeWLl3SOys2Dcsck6rmWHrbjGvq3aAE9LYJuuw_AFPNgivl1pjgmz9B-cj_B2oeO_ABy5ozh2NiYvHAUCLxRY2fPXK3bNv_w5ccNiL59HRC9CkRlA-IoVJimgN-EgF4Dyr0BJYSPYnC8i9a-kUqbQ04sUqiiZww4Nx5w9fHz_hgfit16tW3WngZuDslBrg-9w_SS5bjAAIrkMREDVxqIfnhSL84d7rl0U9LAOemd7kbKffQ_lPuY3GbYzuTGUffIqFut7RPIRzv91IWevy-7i_w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_G7QF4mNj42I0BASEBD73t0o-0DwjdxqYB2oEGQ3urkia9nejacu0J8a_w12KnaVnFBHu8xq6uduzYrf0zIc8VRMVcjD1H-xC-eZKnjmQhpCphIEQETtk3ONvH0-Do1Ht_5p-tkGnbC4Nlla1PNI5aFQm-I9-Bo5oHENyP2Zvyu4NTo_DrajtCQ9jRCuq1gRi7QVYZImMNyOrewfTTSeubwbqDwDbQuXy8Y_U1KotcjxDdK2Ju74AyOP6dtx6UWVFdFYr-XVF5c5mX4ucPkWWXjqvDO2TNxpl00myMdbKi8w1yezJbWKwNDb8uYRFukHVr5RV9aaGoX90lv97OZzhVhM4vwO_QsukqAHpad6_kKbahLagUyTdYB_9kdE0RKBMY86bMnIpc0Q_OsYaTke5nS4RnwNuIbAZCrs8vKLLM60UBG5qCMWS2P5QilAUtUoqDvnWlaSKkhP9S3SOnhwdf9o8cO83BSQLGakcqHUF2xiXiyfg4-MyDZEpyP0nNrAmppIx2kzDUYZi6SnpS-IrLsU5CHunIde-TQQ562iRUgx8RjKcBBI-eCylgJPQuMKuQKQU52ZC4rQrjxEKd48SNLDbf7zikPI0WYlR8bBU_JE7HVTZQH_-h38Pd0dEiULe5UCxmsbX7WLtwmkSu8EKmIZVNpMJvXYx7imkhpB6SJ7i34qbrtXM38QTi7Ihhq9mQPDMUCNaRYzXQTCyrKn738es1iD6f9IheWKK0AHEkwnZgwDMhCFiPcrtHCS4n6S1voiW0UqniP8YJnK11XL38tFvGm2KFX66LZUMDp03oglwfNMbUSdbFoQeQWA8J75lZT_T9lXx-brDSQ9NZDZyjziCvpdytfz_HQ3KLYXGTaU7dJoN6sdSPIDqt5WPrcn4DlNKTJw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFIuus8nByXQlVALQhYVA4oshNnu2qarDaJEBz4IfxaZhwnIlBEOXBbrWesZDwez2Q83xDyIAWvmIuJZysf3DdP8syWLIRQJQyEiMAo-xpne_8g2Jt5Lw_9wzXyqauFMRKEGDEvK53Jxx9lobaNJLcRr6jNnjoTl086DmcJRA4idIHL8lAjDuGXsRoLkM6R9cCHhxqR9dnBm-nHNtPM7ICNXVNO96eZBseVRvXvbfcIn-w0x_T3-5Xnm2IpvnwWef7T4bV7iXzrXru9s3LsNLV0kq-_IEL-N7lcJheN20un7SwbZE0VV8iGMSwVfWzQr59cJd-fLebYyIQuTsDU0WVbyAAHLK37LADFyrcVlSI5hnEwiVq9KGJzAmPR3mynokjpK3tfwWFMd_IGESFwGpHPy9WiPjqhyLKoVyXsIQr7LzclqRTRM2iZUewtripFEyElPEt1jcx2n7_f2bNNAwk7CRirbZmqCAJCLhHCxsdeax7Eb5L7SabbW8hUymichKEKw8xNpSeFn3I5UUnIIxW57nUyKkB8m4QqMF2C8SwAf9VzIeqMhBoDcxqyNIUw0CJupydxYtDVsclHHuuUIYcoq5V0jOsRm_WwiN1zLVt0kb_QP0UV7GkRG1z_AQoRG0WIlQsHWOQKL2QKoudEppheY9xLmRJCKovcRQWO20Lb3sLFU3DtI4bVbRa5rykQH6TAC0hz0VRV_OL1hzMQvXs7IHpkiLISxJEIU_QB74T6OqDcGlCClUsGw5uo8J1Uqhhcdx5AsD9hwNltwdOH7_XDOCleKixU2bQ0cMCFLsj1Rrtje8m62GcBYnmL8MFeHoh-OFIsjjQ8e6iLuYHT6Xf9mRb35r8y3CIXGN6w0hWyW2RUrxp1G1zkWt4xhu4H35TDQw priority: 102 providerName: Unpaywall |
| Title | Digital image processing technology under backpropagation neural network and K-Means Clustering algorithm on nitrogen utilization rate of Chinese cabbages |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33788875 https://www.proquest.com/docview/2507671612 https://www.proquest.com/docview/2507730833 https://pubmed.ncbi.nlm.nih.gov/PMC8011815 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0248923&type=printable https://doaj.org/article/e391193a482e401cbd0665274d2eaabe http://dx.doi.org/10.1371/journal.pone.0248923 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCO) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrhVEMQgIeUrX5svOAUFdWBqhlGnQqT5GdOF1FlpSkFexf4a_lznEjIorYSx7iO6s9-75i3-8IeR5DVMxE37WUB-GbK1liSZtDqsJ9IQIwyp7G2R5P_JOp-2HmzXbIpmerEWC5NbXDflLTIu3-_H71BhT-te7awPobpu4yz1QXMbogaNkle-CrAmzmMHbrcwXQbn16iVGL5ds9xxTT_WuWhrPSmP615W4t07zcFpb-fbvyxjpbiqsfIk3_cF2j2-SWiTnpoNok-2RHZXfIvtHqkr400NOv7pJfbxdz7CJCF5dgZ-iyqiIA70ZX9Sd4imVnBZUi-gbjYI_02lIExgTGrLpWTkUW04_WWIEnpMN0jXAMOI1I53mxWF1cUmRZrIocNjCFzZ-aelCK0BU0Tyg29lalopGQEn5LeY9MR8dfhieW6d5gRb5trywZqwCyMSYRP8bDRmcuJE-SeVGie0vIWMqgF3GuOE-cWLpSeDGTfRVxFqjAce6TVgZrcUCoArshbJb4ECy6DqR8gVA9YI65HceQg7WJs1mmMDLQ5thhIw31eR2DFKeSdIiLG5rFbROr5lpW0B7_oT_CHVDTIjC3fpEX89Doeagc8B6BI1xuK0hdIxnj2Rak_rGthJCqTZ7g_gmrKtfavIQDiKsDG0vL2uSZpkBwjgxv_8zFuizD95_Or0H0-axB9MIQJTmIIxKm4gL-E4J-NSgPG5RgYqLG8AHu9o1UyhDiZuZDpt23gXOjAduHn9bDOCne6MtUvq5owLtwB-T6oFKYWrIONjmARLpNWEOVGqJvjmSLC42NznUlNXB2a6W71uI-vI7UH5GbNl5p0iWph6S1KtbqMcSkK9khu2zG4MmHfXyO3nXI3tHx5PSso7_ydLQZgnfTyeng628itJQN |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5V4VA4IFp-Gih0QSDg4LRZ_6x9QCi0VAlpigRtlZvZtddphGub2FHVV-EheEZm7LWpRQW99BjvrBXv7HwzY-98Q8jLEKJiLvqWoWwI3yzJI0MyF1IV1xHCA1C2S57tyaEzPLY-Te3pCvlV18LgscoaE0ugDtMA35Fvg6vmDgT3ffY--2Fg1yj8ulq30Ki2xVhdnEPKlr8b7YF-XzG2__Fod2jorgJG4DBWGDJUkGf3uUReExsbcFkQ1EtuB1HZ80CGUno7gesq143MUFpS2CGXfRW43FMevgAFyL9lmYAlYD982iR4gB2Oo8vzTN7f1ruhl6WJ6iF3mMfMlvsruwQ0vqCTxWl-VaD793nN1WWSiYtzEceXnOH-PXJXR7F0UG27NbKiknVyZzBbaCYPBb8uMR2ukzWNITl9o4mu394nP_fmM-xZQudngGo0q2oWQJ4WzQt_ikVuCypF8B3GAf3KnUSRhhMmJtUhdiqSkI6NiQK_S3fjJZI_4G1EPAMVFqdnFKfMi0UK5kLB1GJdfUqRKIOmEcU24ipXNBBSwn_JH5DjG9HqQ9JJQE8bhCpAKcF45EBoapmQYHpC7cDk0GVhCBlfl5i1Cv1AE6ljP4_YL78OckioKi34qHhfK75LjGZWVhGJ_Ef-A-6ORhZpwMsL6WLma1TxlQm-yjOF5TIFiXIgQ_ySxrgVMiWEVF2yhXvLr2pqGzDzBxDFewwL2brkRSmBVCAJnjWaiWWe-6PPJ9cQ-vqlJfRaC0UpLEcgdH0HPBNSjLUkN1uSAGhBa3gDLaFeldz_Y_ows7aOq4efN8N4Uzw_mKh0WcmAL3NNWNdHlTE1K2tiSwVI27uEt8ystfTtkWR-WjKxu2XdNszsNQZ5LeU-_vdzbJHV4dHkwD8YHY6fkNsMj1GVZbCbpFMsluopxMGFfFaCDyXfbhrtfgMZKckG |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQeJxQLQ8Gih0QSDg4KRZP9Y-IBQaoobQgoCi3MyuvU4jXNvEjqr-FX4Kv44Ze21qUUEvPcY7a8U7O9_O2DPfEPI0BK-Yi4FlKBvcN0vyyJDMhVDFdYTwAJTtkmd7_8DZO7TezezZGvlV18JgWmWNiSVQh2mA78j7cFRzB5z7AetHOi3i42j8OvthYAcp_NJat9OotshUnZ5A-Ja_moxA188YG7_9srtn6A4DRuAwVhgyVBBzD7hEjhMbm3FZ4OBLbgdR2f9AhlJ6O4HrKteNzFBaUtghlwMVuNxTHr4MBfi_wk3Tw3RCPmuCPcARx9GleiYf9PXO6GVponrII-Yxs3UUlh0DmnOhk8Vpfp7T-3fu5rVVkonTExHHZw7G8S1yU3u0dFhtwXWyppINcmM4X2pWDwW_zrAebpB1jSc5faFJr1_eJj9Hizn2L6GLY0A4mlX1CyBPi-blP8WCtyWVIvgO44CE5a6iSMkJE5MqoZ2KJKRTY1_BGUx34xUSQeBtRDwHFRZHxxSnLIplCqZDwexiXYlKkTSDphHFluIqVzQQUsJ_ye-Qw0vR6l3SSUBPm4QqQCzBeOSAm2qZEGx6Qu3A5NBlYQjRX5eYtQr9QJOqY2-P2C-_FHIIriot-Kh4Xyu-S4xmVlaRivxH_g3ujkYWKcHLC-ly7muE8ZUJ55ZnCstlCoLmQIb4VY1xK2RKCKm6ZBv3ll_V1zbA5g_Bo_cYFrV1yZNSAmlBEjSwuVjluT_58PUCQp8_tYSea6EoheUIhK71gGdCurGW5FZLEsAtaA1voiXUq5L7f2AAZtbWcf7w42YYb4q5hIlKV5UMnGuuCet6rzKmZmVNbK8AIXyX8JaZtZa-PZIsjkpWdres4YaZvcYgL6Tc-_9-jm1yFXDOfz85mD4g1xlmVJUVsVukUyxX6iG4xIV8VGIPJd8uG-x-A8UwzUk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFIuus8nByXQlVALQhYVA4oshNnu2qarDaJEBz4IfxaZhwnIlBEOXBbrWesZDwez2Q83xDyIAWvmIuJZysf3DdP8syWLIRQJQyEiMAo-xpne_8g2Jt5Lw_9wzXyqauFMRKEGDEvK53Jxx9lobaNJLcRr6jNnjoTl086DmcJRA4idIHL8lAjDuGXsRoLkM6R9cCHhxqR9dnBm-nHNtPM7ICNXVNO96eZBseVRvXvbfcIn-w0x_T3-5Xnm2IpvnwWef7T4bV7iXzrXru9s3LsNLV0kq-_IEL-N7lcJheN20un7SwbZE0VV8iGMSwVfWzQr59cJd-fLebYyIQuTsDU0WVbyAAHLK37LADFyrcVlSI5hnEwiVq9KGJzAmPR3mynokjpK3tfwWFMd_IGESFwGpHPy9WiPjqhyLKoVyXsIQr7LzclqRTRM2iZUewtripFEyElPEt1jcx2n7_f2bNNAwk7CRirbZmqCAJCLhHCxsdeax7Eb5L7SabbW8hUymichKEKw8xNpSeFn3I5UUnIIxW57nUyKkB8m4QqMF2C8SwAf9VzIeqMhBoDcxqyNIUw0CJupydxYtDVsclHHuuUIYcoq5V0jOsRm_WwiN1zLVt0kb_QP0UV7GkRG1z_AQoRG0WIlQsHWOQKL2QKoudEppheY9xLmRJCKovcRQWO20Lb3sLFU3DtI4bVbRa5rykQH6TAC0hz0VRV_OL1hzMQvXs7IHpkiLISxJEIU_QB74T6OqDcGlCClUsGw5uo8J1Uqhhcdx5AsD9hwNltwdOH7_XDOCleKixU2bQ0cMCFLsj1Rrtje8m62GcBYnmL8MFeHoh-OFIsjjQ8e6iLuYHT6Xf9mRb35r8y3CIXGN6w0hWyW2RUrxp1G1zkWt4xhu4H35TDQw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+image+processing+technology+under+backpropagation+neural+network+and+K-Means+Clustering+algorithm+on+nitrogen+utilization+rate+of+Chinese+cabbages&rft.jtitle=PloS+one&rft.au=Wang%2C+Qilin&rft.au=Mao%2C+Xinyu&rft.au=Jiang%2C+Xiaosan&rft.au=Pei%2C+Dandan&rft.date=2021-03-31&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=3&rft.spage=e0248923&rft_id=info:doi/10.1371%2Fjournal.pone.0248923&rft.externalDBID=IOV&rft.externalDocID=A656921654 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |