Digital image processing technology under backpropagation neural network and K-Means Clustering algorithm on nitrogen utilization rate of Chinese cabbages

The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 3; p. e0248923
Main Authors Wang, Qilin, Mao, Xinyu, Jiang, Xiaosan, Pei, Dandan, Shao, Xiaohou
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.03.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0248923

Cover

Abstract The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R 2 value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection.
AbstractList The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R2 value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection.
The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R 2 value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection.
The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R.sup.2 value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection.
The average annual vegetable per capita was 350kg, which was 100kg higher than the world average. According to the research questions above, a nitrogen concentration model is established through the digital processing technology based on previous research. Some agricultural parameters that are difficult to be measured directly are associated with crop image features. [...]agricultural parameter estimation models have emerged. The color of the crop canopy is closely linked to its nitrogen nutrition status. [...]visible light spectrum analysis technology in crop nitrogen nutrition diagnosis has received widespread attention.
The average annual vegetable per capita was 350kg, which was 100kg higher than the world average. According to the research questions above, a nitrogen concentration model is established through the digital processing technology based on previous research. Some agricultural parameters that are difficult to be measured directly are associated with crop image features. [...]agricultural parameter estimation models have emerged. The color of the crop canopy is closely linked to its nitrogen nutrition status. [...]visible light spectrum analysis technology in crop nitrogen nutrition diagnosis has received widespread attention.
The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R2 value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection.The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production process. The research object is Chinese cabbage. The Chinese cabbage population with different agricultural parameters is constructed through different densities and nitrogen fertilizer application rates based on digital image processing technology, and an estimation NC (Nitrogen Content) model is established. The population is classified through the K-Means Clustering algorithm using the feature extraction method, and the Chinese cabbage population quality BPNN (Backpropagation Neural Network) model is constructed. The nonlinear mapping relationship between different agricultural parameters and population quality, and the contribution rate of each indicator, are studied. The nitrogen utilization of Chinese cabbage is monitored effectively. Results demonstrate that the proposed NC estimation model has correlation coefficients above 0.70 in different growth stages. This model can accurately estimate the NC of the Chinese cabbage population. The results of the Chinese cabbage population quality BPNN model show that the population planting density based on the seedling number is reasonable. The constructed population quality evaluation model has a high R2 value and a comparatively low RMSE (Root Mean Square Error) value for the quality evaluation of Chinese cabbage in different periods, showing that it applies to evaluate the population quality of Chinese cabbage in different growth stages. The constructed nitrogen utilization model and quality evaluation model can monitor the nutrient utilization of crops in different growth stages, ascertain the agricultural characteristics of other yield groups in different growth stages, and clarify the performance of agricultural parameters in different growth stages. The above results can provide some ideas for crop growth intelligent detection.
Audience Academic
Author Shao, Xiaohou
Pei, Dandan
Wang, Qilin
Mao, Xinyu
Jiang, Xiaosan
AuthorAffiliation 2 Taizhou Research Institute of Nanjing Agricultural University, Taizhou, China
Ministry of Natural Resources North Sea Bureau, CHINA
1 College of Agricultural Science and Engineering, Hohai University, Nanjing, China
AuthorAffiliation_xml – name: Ministry of Natural Resources North Sea Bureau, CHINA
– name: 2 Taizhou Research Institute of Nanjing Agricultural University, Taizhou, China
– name: 1 College of Agricultural Science and Engineering, Hohai University, Nanjing, China
Author_xml – sequence: 1
  givenname: Qilin
  surname: Wang
  fullname: Wang, Qilin
– sequence: 2
  givenname: Xinyu
  orcidid: 0000-0002-8369-3759
  surname: Mao
  fullname: Mao, Xinyu
– sequence: 3
  givenname: Xiaosan
  surname: Jiang
  fullname: Jiang, Xiaosan
– sequence: 4
  givenname: Dandan
  surname: Pei
  fullname: Pei, Dandan
– sequence: 5
  givenname: Xiaohou
  surname: Shao
  fullname: Shao, Xiaohou
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33788875$$D View this record in MEDLINE/PubMed
BookMark eNqNk9lu1DAUhiMEogu8AQJLSAguZvCSxeECqRq2iqJKbLeW7ZzJuPXYg-1QyqPwtDjMtOpUlahykcj-_t_n_CfeK-4676AoHhE8JawhL0_8EJy001VenmJa8payO8UuaRmd1BSzu1e-d4q9GE8wrhiv6_vFDmMN57ypdos_b0xvkrTILGUPaBW8hhiN61ECvXDe-v4cDa6DgJTUp3l_JXuZjHfIwRCy0EE68-EUSdehj5NPIF1EMzvEBGG0kbb3waTFEo0Sk4LvwaEhGWt-r32CTID8HM0WxkEEpKVSuZb4oLg3lzbCw817v_j27u3X2YfJ0fH7w9nB0UTXlKaJ6qDlDWkUqyivStK0ZU1r1VR6jglmRHVKtVhzDpzPWadKJauuUQQ0b1poGdsvnqx9V9ZHsYk1Clrhpm5ITWgmDtdE5-WJWIWcVTgXXhrxb8GHXsiQjLYggLUkxy5LTqHERKsO13VFm7KjIKWC7FWtvQa3kudn0tpLQ4LFONmLEsQ4WbGZbNa93lQ5qCV0GlwK0m4Vs73jzEL0_qfgmBBOqmzwfGMQ_I8BYhJLEzVYKx34Yd1vwzBn41lPr6E3p7KhepkbN27u87l6NBUHdVW3lNRVmanpDVR-OlganTucm7y-JXixJchMgl-pl0OM4vDL59uzx9-32WdX2AVImxbR22H8B-M2-Phq0pcRX1yaDLxaAzr4GAPMhc5XaPTJrRn7vzmW18S3Gv9fjCtCJA
CitedBy_id crossref_primary_10_3390_agronomy12051106
crossref_primary_10_3390_land12111984
crossref_primary_10_1016_j_compag_2024_109158
crossref_primary_10_1371_journal_pone_0290865
crossref_primary_10_3390_horticulturae9040506
crossref_primary_10_1016_j_jag_2022_102971
crossref_primary_10_1007_s00170_023_12628_y
crossref_primary_10_1186_s13007_021_00790_x
Cites_doi 10.1038/s41467-020-14586-5
10.1016/j.measurement.2018.12.088
10.1186/s13007-017-0253-8
10.1016/j.ecolmodel.2017.10.016
10.1016/j.watres.2018.04.052
10.1080/03650340.2020.1789967
10.3390/agriculture10100451
10.1016/j.ins.2018.06.035
10.1016/j.rse.2017.05.019
10.1016/j.aiia.2019.09.001
10.3390/rs8090706
10.1088/1757-899X/336/1/012017
10.1021/acs.est.0c06354
10.1016/j.jclepro.2019.05.053
10.1007/s11042-018-6192-1
10.1007/s00128-018-2315-7
10.3390/s17071474
10.3389/fpls.2019.01537
10.3724/SP.J.1006.2020.94121
10.1007/s10653-016-9899-9
10.30645/ijistech.v1i1.4
10.1007/s11042-017-5445-8
10.1016/j.ins.2017.02.049
10.1016/j.energy.2017.03.094
10.1371/journal.pone.0212294
10.1007/s11130-018-0660-7
10.3390/s16030276
10.1007/s10967-018-5881-6
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Wang et al 2021 Wang et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Wang et al 2021 Wang et al
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0248923
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Agricultural Science Database


MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
Agriculture
DocumentTitleAlternate The impact of K-Means Clustering algorithm-based digital image processing technology
EISSN 1932-6203
ExternalDocumentID 2507671612
oai_doaj_org_article_e391193a482e401cbd0665274d2eaabe
10.1371/journal.pone.0248923
PMC8011815
A656921654
33788875
10_1371_journal_pone_0248923
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: no.51809076
– fundername: ;
  grantid: no.20201301
– fundername: ;
  grantid: no.2019B08514
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c622t-bde98717b3528541794626b75cf01031bdbb90c88e88f3db4ba5d7b1ec879e933
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:04 EST 2021
Fri Oct 03 12:30:38 EDT 2025
Sun Oct 26 03:49:49 EDT 2025
Tue Sep 30 17:06:02 EDT 2025
Fri Sep 05 10:31:51 EDT 2025
Tue Oct 07 07:54:01 EDT 2025
Mon Oct 20 22:05:11 EDT 2025
Mon Oct 20 16:11:03 EDT 2025
Thu Oct 16 14:10:54 EDT 2025
Thu Oct 16 15:26:06 EDT 2025
Thu May 22 21:22:43 EDT 2025
Wed Feb 19 02:27:51 EST 2025
Wed Oct 01 04:11:20 EDT 2025
Thu Apr 24 22:55:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c622t-bde98717b3528541794626b75cf01031bdbb90c88e88f3db4ba5d7b1ec879e933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-8369-3759
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0248923
PMID 33788875
PQID 2507671612
PQPubID 1436336
PageCount e0248923
ParticipantIDs plos_journals_2507671612
doaj_primary_oai_doaj_org_article_e391193a482e401cbd0665274d2eaabe
unpaywall_primary_10_1371_journal_pone_0248923
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011815
proquest_miscellaneous_2507730833
proquest_journals_2507671612
gale_infotracmisc_A656921654
gale_infotracacademiconefile_A656921654
gale_incontextgauss_ISR_A656921654
gale_incontextgauss_IOV_A656921654
gale_healthsolutions_A656921654
pubmed_primary_33788875
crossref_citationtrail_10_1371_journal_pone_0248923
crossref_primary_10_1371_journal_pone_0248923
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-31
PublicationDateYYYYMMDD 2021-03-31
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P. Sadeghi-Tehran (pone.0248923.ref029) 2017; 13
S. El-Hendawy (pone.0248923.ref021) 2019; 14
H.B. Yang (pone.0248923.ref014) 2020; 46
B. Dechant (pone.0248923.ref016) 2017; 196
N. Gupta (pone.0248923.ref020) 2020
Z. Sun (pone.0248923.ref034) 2020; 54
X. Sun (pone.0248923.ref027) 2019; 6
L. Wang (pone.0248923.ref013) 2020
W. Zhou (pone.0248923.ref032) 2017; 397
H. Liang (pone.0248923.ref005) 2018; 367
D. Feng (pone.0248923.ref012) 2019
M.J. López-Calderón (pone.0248923.ref017) 2020; 10
F. Aeffner (pone.0248923.ref019) 2019
G. Dhingra (pone.0248923.ref009) 2018; 77
H.W. Pan (pone.0248923.ref003) 2017; 39
M. Wang (pone.0248923.ref004) 2018; 100
J.M. Bengochea-Guevara (pone.0248923.ref007) 2016; 16
C. Zhou (pone.0248923.ref011) 2019; 136
P. Mattila (pone.0248923.ref015) 2018; 73
J. Mahalakshmi (pone.0248923.ref008) 2017; 13
J. Zhou (pone.0248923.ref030) 2019; 78
S.E.-S. El-Hendawy (pone.0248923.ref022) 2019; 10
Y. Hashimoto (pone.0248923.ref006) 2020; 11
pone.0248923.ref024
W. Liang (pone.0248923.ref001) 2019; 21
M. Schirrmann (pone.0248923.ref033) 2016; 8
S.P. Siregar (pone.0248923.ref025) 2017; 1
T.N. Syed (pone.0248923.ref018) 2019; 3
Y.-R. Zeng (pone.0248923.ref026) 2017; 127
G. He (pone.0248923.ref002) 2019; 229
Y. Meng (pone.0248923.ref023) 2018; 463
V. Vasilaki (pone.0248923.ref010) 2018; 140
M. Mádlíková (pone.0248923.ref028) 2018; 317
X. Zhang (pone.0248923.ref031) 2017; 17
References_xml – volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: pone.0248923.ref006
  article-title: Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection
  publication-title: Nature communications
  doi: 10.1038/s41467-020-14586-5
– volume: 136
  start-page: 478
  year: 2019
  ident: pone.0248923.ref011
  article-title: Imaging analysis of chlorophyll fluorescence induction for monitoring plant water and nitrogen treatments
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.12.088
– volume: 13
  start-page: 103
  issue: 1
  year: 2017
  ident: pone.0248923.ref029
  article-title: Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping
  publication-title: Plant methods
  doi: 10.1186/s13007-017-0253-8
– volume: 367
  start-page: 24
  year: 2018
  ident: pone.0248923.ref005
  article-title: Developing a water and nitrogen management model for greenhouse vegetable production in China: sensitivity analysis and evaluation
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2017.10.016
– volume: 140
  start-page: 387
  year: 2018
  ident: pone.0248923.ref010
  article-title: Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques
  publication-title: Water research
  doi: 10.1016/j.watres.2018.04.052
– start-page: 1
  year: 2020
  ident: pone.0248923.ref013
  article-title: Growth and yield responses of drip-irrigated cotton to two different methods of simulated hail damages
  publication-title: Archives of Agronomy and Soil Science
  doi: 10.1080/03650340.2020.1789967
– start-page: 10
  year: 2019
  ident: pone.0248923.ref019
  article-title: Introduction to digital image analysis in whole-slide imaging: a white paper from the digital pathology association
  publication-title: Journal of pathology informatics
– volume: 10
  start-page: 451
  issue: 10
  year: 2020
  ident: pone.0248923.ref017
  article-title: Estimation of Total Nitrogen Content in Forage Maize (Zea mays L.) Using Spectral Indices: Analysis by Random Forest
  publication-title: Agriculture
  doi: 10.3390/agriculture10100451
– volume: 463
  start-page: 166
  year: 2018
  ident: pone.0248923.ref023
  article-title: A new distance with derivative information for functional k-means clustering algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.06.035
– volume: 196
  start-page: 279
  year: 2017
  ident: pone.0248923.ref016
  article-title: Estimation of photosynthesis traits from leaf reflectance spectra: Correlation to nitrogen content as the dominant mechanism
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2017.05.019
– volume: 3
  start-page: 18
  year: 2019
  ident: pone.0248923.ref018
  article-title: Seedling-lump integrated non-destructive monitoring for automatic transplanting with Intel RealSense depth camera
  publication-title: Artificial Intelligence in Agriculture
  doi: 10.1016/j.aiia.2019.09.001
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: pone.0248923.ref027
  article-title: Genome-wide transcriptome analysis reveals molecular pathways involved in leafy head formation of Chinese cabbage (Brassica rapa)
  publication-title: Horticulture research
– volume: 8
  start-page: 706
  issue: 9
  year: 2016
  ident: pone.0248923.ref033
  article-title: Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery
  publication-title: Remote Sensing
  doi: 10.3390/rs8090706
– ident: pone.0248923.ref024
  doi: 10.1088/1757-899X/336/1/012017
– volume: 54
  start-page: 15507
  issue: 23
  year: 2020
  ident: pone.0248923.ref034
  article-title: Using Algal Virus Paramecium bursaria Chlorella Virus as a Human Adenovirus Surrogate for Validation of UV Treatment Systems
  publication-title: Environmental Science & Technology
  doi: 10.1021/acs.est.0c06354
– volume: 229
  start-page: 739
  year: 2019
  ident: pone.0248923.ref002
  article-title: China’s food security challenge: Effects of food habit changes on requirements for arable land and water
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.05.053
– volume: 13
  start-page: 25
  issue: 3
  year: 2017
  ident: pone.0248923.ref008
  article-title: Automated crop inspection and pest control using image processing
  publication-title: International Journal of Engineering Research and development
– volume: 78
  start-page: 6163
  issue: 5
  year: 2019
  ident: pone.0248923.ref030
  article-title: Image retrieval based on effective feature extraction and diffusion process
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-6192-1
– volume: 100
  start-page: 634
  issue: 5
  year: 2018
  ident: pone.0248923.ref004
  article-title: Heavy metal contamination and ecological risk assessment of swine manure irrigated vegetable soils in Jiangxi Province, China
  publication-title: Bulletin of environmental contamination and toxicology
  doi: 10.1007/s00128-018-2315-7
– volume: 17
  start-page: 1474
  issue: 7
  year: 2017
  ident: pone.0248923.ref031
  article-title: A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm
  publication-title: Sensors
  doi: 10.3390/s17071474
– volume: 10
  start-page: 1537
  year: 2019
  ident: pone.0248923.ref022
  article-title: Comparative performance of spectral reflectance indices and multivariate modeling for assessing agronomic parameters in advanced spring wheat lines under two contrasting irrigation regimes
  publication-title: Frontiers in plant science
  doi: 10.3389/fpls.2019.01537
– volume: 21
  start-page: 1
  year: 2019
  ident: pone.0248923.ref001
  article-title: Urbanization, economic growth and environmental pollution: Evidence from China
  publication-title: Sustainable Computing: Informatics and Systems
– volume: 46
  start-page: 950
  issue: 6
  year: 2020
  ident: pone.0248923.ref014
  article-title: Effect of variety and growth period on NDVI estimation of nitrogen concentration in potato plants
  publication-title: Acta Agronomica Sinica
  doi: 10.3724/SP.J.1006.2020.94121
– volume: 39
  start-page: 417
  issue: 2
  year: 2017
  ident: pone.0248923.ref003
  article-title: Levels and distributions of organochlorine pesticides in the soil–groundwater system of vegetable planting area in Tianjin City, Northern China
  publication-title: Environmental geochemistry and health
  doi: 10.1007/s10653-016-9899-9
– volume: 1
  start-page: 34
  issue: 1
  year: 2017
  ident: pone.0248923.ref025
  article-title: Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting)
  publication-title: IJISTECH (International Journal of Information System & Technology)
  doi: 10.30645/ijistech.v1i1.4
– volume: 77
  start-page: 19951
  issue: 15
  year: 2018
  ident: pone.0248923.ref009
  article-title: Study of digital image processing techniques for leaf disease detection and classification
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-5445-8
– volume: 397
  start-page: 1
  year: 2017
  ident: pone.0248923.ref032
  article-title: Local gradient patterns (LGP): An effective local-statistical-feature extraction scheme for no-reference image quality assessment
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.02.049
– start-page: 1
  year: 2020
  ident: pone.0248923.ref020
  article-title: Economic IoT strategy: the future technology for health monitoring and diagnostic of agriculture vehicles
  publication-title: Journal of Intelligent Manufacturing
– volume: 127
  start-page: 381
  year: 2017
  ident: pone.0248923.ref026
  article-title: Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.094
– volume: 14
  start-page: e0212294
  issue: 3
  year: 2019
  ident: pone.0248923.ref021
  article-title: Combining biophysical parameters, spectral indices and multivariate hyperspectral models for estimating yield and water productivity of spring wheat across different agronomic practices
  publication-title: PloS One
  doi: 10.1371/journal.pone.0212294
– start-page: 1
  year: 2019
  ident: pone.0248923.ref012
  article-title: Advances in plant nutrition diagnosis based on remote sensing and computer application
  publication-title: Neural Computing and Applications
– volume: 73
  start-page: 108
  issue: 2
  year: 2018
  ident: pone.0248923.ref015
  article-title: Nutritional value of commercial protein-rich plant products
  publication-title: Plant foods for human nutrition
  doi: 10.1007/s11130-018-0660-7
– volume: 16
  start-page: 276
  issue: 3
  year: 2016
  ident: pone.0248923.ref007
  article-title: Merge fuzzy visual servoing and GPS-based planning to obtain a proper navigation behavior for a small crop-inspection robot
  publication-title: Sensors
  doi: 10.3390/s16030276
– volume: 317
  start-page: 479
  issue: 1
  year: 2018
  ident: pone.0248923.ref028
  article-title: Nitrogen assay in winter wheat by short-time instrumental photon activation analysis and its comparison with the Kjeldahl method
  publication-title: Journal of Radioanalytical and Nuclear Chemistry
  doi: 10.1007/s10967-018-5881-6
SSID ssj0053866
Score 2.4223282
Snippet The purposes are to monitor the nitrogen utilization efficiency of crops and intelligently evaluate the absorption of nutrients by crops during the production...
The average annual vegetable per capita was 350kg, which was 100kg higher than the world average. According to the research questions above, a nitrogen...
The average annual vegetable per capita was 350kg, which was 100kg higher than the world average. According to the research questions above, a nitrogen...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0248923
SubjectTerms Agricultural production
Agricultural research
Agriculture
Algorithms
Back propagation
Back propagation networks
Biology and Life Sciences
Chinese cabbage
Cluster analysis
Clustering
Crop diseases
Crops
Digital cameras
Digital imaging
Engineering
Engineering and Technology
Environmental aspects
Horticulture
Image processing
Information processing
Literature reviews
Mathematical models
Medicine and Health Sciences
Methods
Neural networks
Nitrogen
Nitrogen fertilizers
Nutrition
Parameter estimation
Software
Spectrum analysis
Technology
Technology assessment
Vector quantization
Vegetables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQX8YLYuNjhQEGIQEP6Vo7iZ3HMZgGaCABQ3uL7NjpKrKkalIh_hX-Wu5sN1rEpO2B1_ouau_Ld83d7wh5aSArFmoWRzaB9C3Woow0k1CqyFSpDIJy4nC2Tz6nx6fxx7Pk7NKqL-wJ8_DAXnD7loM7ZlzFklmoBQpt8GUB1FKGWaW0xeg7ldmmmPIxGLw4TcOgHBez_aCXybKp7QRRvDLGBxeRw-vvo_JoWTXtVSnnv52TW-t6qX7_UlV16Vo6ukvuhHySHvjfsU1u2XqHbAePbenrACv95h75824xxw0hdHEBMYQu_YQA3Fy06_9epzhStqJaFT_hHGKN0xtF0EtgrH3LOFW1oZ-iEwu3HD2s1gi1gI9R1bxZLbrzC4osi27VgHFSMOwqzHpShKWgTUlxabdtLS2U1vBd2vvk9Oj998PjKGxmiIqUsS7SxmZQaQmN2DAJLjGLoTDSIilKtzdCG62zaSGllbLkRsdaJUbomS2kyGzG-QMyqkEXu4RaiAmKiRJ0ymIO5Vym7BSYjWTGQH01JnyjprwIsOW4PaPK3bs4AeWLl3SOys2Dcsck6rmWHrbjGvq3aAE9LYJuuw_AFPNgivl1pjgmz9B-cj_B2oeO_ABy5ozh2NiYvHAUCLxRY2fPXK3bNv_w5ccNiL59HRC9CkRlA-IoVJimgN-EgF4Dyr0BJYSPYnC8i9a-kUqbQ04sUqiiZww4Nx5w9fHz_hgfit16tW3WngZuDslBrg-9w_SS5bjAAIrkMREDVxqIfnhSL84d7rl0U9LAOemd7kbKffQ_lPuY3GbYzuTGUffIqFut7RPIRzv91IWevy-7i_w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_G7QF4mNj42I0BASEBD73t0o-0DwjdxqYB2oEGQ3urkia9nejacu0J8a_w12KnaVnFBHu8xq6uduzYrf0zIc8VRMVcjD1H-xC-eZKnjmQhpCphIEQETtk3ONvH0-Do1Ht_5p-tkGnbC4Nlla1PNI5aFQm-I9-Bo5oHENyP2Zvyu4NTo_DrajtCQ9jRCuq1gRi7QVYZImMNyOrewfTTSeubwbqDwDbQuXy8Y_U1KotcjxDdK2Ju74AyOP6dtx6UWVFdFYr-XVF5c5mX4ucPkWWXjqvDO2TNxpl00myMdbKi8w1yezJbWKwNDb8uYRFukHVr5RV9aaGoX90lv97OZzhVhM4vwO_QsukqAHpad6_kKbahLagUyTdYB_9kdE0RKBMY86bMnIpc0Q_OsYaTke5nS4RnwNuIbAZCrs8vKLLM60UBG5qCMWS2P5QilAUtUoqDvnWlaSKkhP9S3SOnhwdf9o8cO83BSQLGakcqHUF2xiXiyfg4-MyDZEpyP0nNrAmppIx2kzDUYZi6SnpS-IrLsU5CHunIde-TQQ562iRUgx8RjKcBBI-eCylgJPQuMKuQKQU52ZC4rQrjxEKd48SNLDbf7zikPI0WYlR8bBU_JE7HVTZQH_-h38Pd0dEiULe5UCxmsbX7WLtwmkSu8EKmIZVNpMJvXYx7imkhpB6SJ7i34qbrtXM38QTi7Ihhq9mQPDMUCNaRYzXQTCyrKn738es1iD6f9IheWKK0AHEkwnZgwDMhCFiPcrtHCS4n6S1voiW0UqniP8YJnK11XL38tFvGm2KFX66LZUMDp03oglwfNMbUSdbFoQeQWA8J75lZT_T9lXx-brDSQ9NZDZyjziCvpdytfz_HQ3KLYXGTaU7dJoN6sdSPIDqt5WPrcn4DlNKTJw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFIuus8nByXQlVALQhYVA4oshNnu2qarDaJEBz4IfxaZhwnIlBEOXBbrWesZDwez2Q83xDyIAWvmIuJZysf3DdP8syWLIRQJQyEiMAo-xpne_8g2Jt5Lw_9wzXyqauFMRKEGDEvK53Jxx9lobaNJLcRr6jNnjoTl086DmcJRA4idIHL8lAjDuGXsRoLkM6R9cCHhxqR9dnBm-nHNtPM7ICNXVNO96eZBseVRvXvbfcIn-w0x_T3-5Xnm2IpvnwWef7T4bV7iXzrXru9s3LsNLV0kq-_IEL-N7lcJheN20un7SwbZE0VV8iGMSwVfWzQr59cJd-fLebYyIQuTsDU0WVbyAAHLK37LADFyrcVlSI5hnEwiVq9KGJzAmPR3mynokjpK3tfwWFMd_IGESFwGpHPy9WiPjqhyLKoVyXsIQr7LzclqRTRM2iZUewtripFEyElPEt1jcx2n7_f2bNNAwk7CRirbZmqCAJCLhHCxsdeax7Eb5L7SabbW8hUymichKEKw8xNpSeFn3I5UUnIIxW57nUyKkB8m4QqMF2C8SwAf9VzIeqMhBoDcxqyNIUw0CJupydxYtDVsclHHuuUIYcoq5V0jOsRm_WwiN1zLVt0kb_QP0UV7GkRG1z_AQoRG0WIlQsHWOQKL2QKoudEppheY9xLmRJCKovcRQWO20Lb3sLFU3DtI4bVbRa5rykQH6TAC0hz0VRV_OL1hzMQvXs7IHpkiLISxJEIU_QB74T6OqDcGlCClUsGw5uo8J1Uqhhcdx5AsD9hwNltwdOH7_XDOCleKixU2bQ0cMCFLsj1Rrtje8m62GcBYnmL8MFeHoh-OFIsjjQ8e6iLuYHT6Xf9mRb35r8y3CIXGN6w0hWyW2RUrxp1G1zkWt4xhu4H35TDQw
  priority: 102
  providerName: Unpaywall
Title Digital image processing technology under backpropagation neural network and K-Means Clustering algorithm on nitrogen utilization rate of Chinese cabbages
URI https://www.ncbi.nlm.nih.gov/pubmed/33788875
https://www.proquest.com/docview/2507671612
https://www.proquest.com/docview/2507730833
https://pubmed.ncbi.nlm.nih.gov/PMC8011815
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0248923&type=printable
https://doaj.org/article/e391193a482e401cbd0665274d2eaabe
http://dx.doi.org/10.1371/journal.pone.0248923
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCO)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrhVEMQgIeUrX5svOAUFdWBqhlGnQqT5GdOF1FlpSkFexf4a_lznEjIorYSx7iO6s9-75i3-8IeR5DVMxE37WUB-GbK1liSZtDqsJ9IQIwyp7G2R5P_JOp-2HmzXbIpmerEWC5NbXDflLTIu3-_H71BhT-te7awPobpu4yz1QXMbogaNkle-CrAmzmMHbrcwXQbn16iVGL5ds9xxTT_WuWhrPSmP615W4t07zcFpb-fbvyxjpbiqsfIk3_cF2j2-SWiTnpoNok-2RHZXfIvtHqkr400NOv7pJfbxdz7CJCF5dgZ-iyqiIA70ZX9Sd4imVnBZUi-gbjYI_02lIExgTGrLpWTkUW04_WWIEnpMN0jXAMOI1I53mxWF1cUmRZrIocNjCFzZ-aelCK0BU0Tyg29lalopGQEn5LeY9MR8dfhieW6d5gRb5trywZqwCyMSYRP8bDRmcuJE-SeVGie0vIWMqgF3GuOE-cWLpSeDGTfRVxFqjAce6TVgZrcUCoArshbJb4ECy6DqR8gVA9YI65HceQg7WJs1mmMDLQ5thhIw31eR2DFKeSdIiLG5rFbROr5lpW0B7_oT_CHVDTIjC3fpEX89Doeagc8B6BI1xuK0hdIxnj2Rak_rGthJCqTZ7g_gmrKtfavIQDiKsDG0vL2uSZpkBwjgxv_8zFuizD95_Or0H0-axB9MIQJTmIIxKm4gL-E4J-NSgPG5RgYqLG8AHu9o1UyhDiZuZDpt23gXOjAduHn9bDOCne6MtUvq5owLtwB-T6oFKYWrIONjmARLpNWEOVGqJvjmSLC42NznUlNXB2a6W71uI-vI7UH5GbNl5p0iWph6S1KtbqMcSkK9khu2zG4MmHfXyO3nXI3tHx5PSso7_ydLQZgnfTyeng628itJQN
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5V4VA4IFp-Gih0QSDg4LRZ_6x9QCi0VAlpigRtlZvZtddphGub2FHVV-EheEZm7LWpRQW99BjvrBXv7HwzY-98Q8jLEKJiLvqWoWwI3yzJI0MyF1IV1xHCA1C2S57tyaEzPLY-Te3pCvlV18LgscoaE0ugDtMA35Fvg6vmDgT3ffY--2Fg1yj8ulq30Ki2xVhdnEPKlr8b7YF-XzG2__Fod2jorgJG4DBWGDJUkGf3uUReExsbcFkQ1EtuB1HZ80CGUno7gesq143MUFpS2CGXfRW43FMevgAFyL9lmYAlYD982iR4gB2Oo8vzTN7f1ruhl6WJ6iF3mMfMlvsruwQ0vqCTxWl-VaD793nN1WWSiYtzEceXnOH-PXJXR7F0UG27NbKiknVyZzBbaCYPBb8uMR2ukzWNITl9o4mu394nP_fmM-xZQudngGo0q2oWQJ4WzQt_ikVuCypF8B3GAf3KnUSRhhMmJtUhdiqSkI6NiQK_S3fjJZI_4G1EPAMVFqdnFKfMi0UK5kLB1GJdfUqRKIOmEcU24ipXNBBSwn_JH5DjG9HqQ9JJQE8bhCpAKcF45EBoapmQYHpC7cDk0GVhCBlfl5i1Cv1AE6ljP4_YL78OckioKi34qHhfK75LjGZWVhGJ_Ef-A-6ORhZpwMsL6WLma1TxlQm-yjOF5TIFiXIgQ_ySxrgVMiWEVF2yhXvLr2pqGzDzBxDFewwL2brkRSmBVCAJnjWaiWWe-6PPJ9cQ-vqlJfRaC0UpLEcgdH0HPBNSjLUkN1uSAGhBa3gDLaFeldz_Y_ows7aOq4efN8N4Uzw_mKh0WcmAL3NNWNdHlTE1K2tiSwVI27uEt8ystfTtkWR-WjKxu2XdNszsNQZ5LeU-_vdzbJHV4dHkwD8YHY6fkNsMj1GVZbCbpFMsluopxMGFfFaCDyXfbhrtfgMZKckG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQeJxQLQ8Gih0QSDg4KRZP9Y-IBQaoobQgoCi3MyuvU4jXNvEjqr-FX4Kv44Ze21qUUEvPcY7a8U7O9_O2DPfEPI0BK-Yi4FlKBvcN0vyyJDMhVDFdYTwAJTtkmd7_8DZO7TezezZGvlV18JgWmWNiSVQh2mA78j7cFRzB5z7AetHOi3i42j8OvthYAcp_NJat9OotshUnZ5A-Ja_moxA188YG7_9srtn6A4DRuAwVhgyVBBzD7hEjhMbm3FZ4OBLbgdR2f9AhlJ6O4HrKteNzFBaUtghlwMVuNxTHr4MBfi_wk3Tw3RCPmuCPcARx9GleiYf9PXO6GVponrII-Yxs3UUlh0DmnOhk8Vpfp7T-3fu5rVVkonTExHHZw7G8S1yU3u0dFhtwXWyppINcmM4X2pWDwW_zrAebpB1jSc5faFJr1_eJj9Hizn2L6GLY0A4mlX1CyBPi-blP8WCtyWVIvgO44CE5a6iSMkJE5MqoZ2KJKRTY1_BGUx34xUSQeBtRDwHFRZHxxSnLIplCqZDwexiXYlKkTSDphHFluIqVzQQUsJ_ye-Qw0vR6l3SSUBPm4QqQCzBeOSAm2qZEGx6Qu3A5NBlYQjRX5eYtQr9QJOqY2-P2C-_FHIIriot-Kh4Xyu-S4xmVlaRivxH_g3ujkYWKcHLC-ly7muE8ZUJ55ZnCstlCoLmQIb4VY1xK2RKCKm6ZBv3ll_V1zbA5g_Bo_cYFrV1yZNSAmlBEjSwuVjluT_58PUCQp8_tYSea6EoheUIhK71gGdCurGW5FZLEsAtaA1voiXUq5L7f2AAZtbWcf7w42YYb4q5hIlKV5UMnGuuCet6rzKmZmVNbK8AIXyX8JaZtZa-PZIsjkpWdres4YaZvcYgL6Tc-_9-jm1yFXDOfz85mD4g1xlmVJUVsVukUyxX6iG4xIV8VGIPJd8uG-x-A8UwzUk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFIuus8nByXQlVALQhYVA4oshNnu2qarDaJEBz4IfxaZhwnIlBEOXBbrWesZDwez2Q83xDyIAWvmIuJZysf3DdP8syWLIRQJQyEiMAo-xpne_8g2Jt5Lw_9wzXyqauFMRKEGDEvK53Jxx9lobaNJLcRr6jNnjoTl086DmcJRA4idIHL8lAjDuGXsRoLkM6R9cCHhxqR9dnBm-nHNtPM7ICNXVNO96eZBseVRvXvbfcIn-w0x_T3-5Xnm2IpvnwWef7T4bV7iXzrXru9s3LsNLV0kq-_IEL-N7lcJheN20un7SwbZE0VV8iGMSwVfWzQr59cJd-fLebYyIQuTsDU0WVbyAAHLK37LADFyrcVlSI5hnEwiVq9KGJzAmPR3mynokjpK3tfwWFMd_IGESFwGpHPy9WiPjqhyLKoVyXsIQr7LzclqRTRM2iZUewtripFEyElPEt1jcx2n7_f2bNNAwk7CRirbZmqCAJCLhHCxsdeax7Eb5L7SabbW8hUymichKEKw8xNpSeFn3I5UUnIIxW57nUyKkB8m4QqMF2C8SwAf9VzIeqMhBoDcxqyNIUw0CJupydxYtDVsclHHuuUIYcoq5V0jOsRm_WwiN1zLVt0kb_QP0UV7GkRG1z_AQoRG0WIlQsHWOQKL2QKoudEppheY9xLmRJCKovcRQWO20Lb3sLFU3DtI4bVbRa5rykQH6TAC0hz0VRV_OL1hzMQvXs7IHpkiLISxJEIU_QB74T6OqDcGlCClUsGw5uo8J1Uqhhcdx5AsD9hwNltwdOH7_XDOCleKixU2bQ0cMCFLsj1Rrtje8m62GcBYnmL8MFeHoh-OFIsjjQ8e6iLuYHT6Xf9mRb35r8y3CIXGN6w0hWyW2RUrxp1G1zkWt4xhu4H35TDQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+image+processing+technology+under+backpropagation+neural+network+and+K-Means+Clustering+algorithm+on+nitrogen+utilization+rate+of+Chinese+cabbages&rft.jtitle=PloS+one&rft.au=Wang%2C+Qilin&rft.au=Mao%2C+Xinyu&rft.au=Jiang%2C+Xiaosan&rft.au=Pei%2C+Dandan&rft.date=2021-03-31&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=3&rft.spage=e0248923&rft_id=info:doi/10.1371%2Fjournal.pone.0248923&rft.externalDBID=IOV&rft.externalDocID=A656921654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon