Energy consumption prediction using the GRU-MMattention-LightGBM model with features of Prophet decomposition

The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption forecasting, researchers have constantly proposed improved neural network prediction models or improved machine learning models to predict time ser...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 1; p. e0277085
Main Authors Liang, Shaokun, Deng, Tao, Huang, Anna, Liu, Ningxian, Jiang, Xuchu
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 17.01.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0277085

Cover

Abstract The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption forecasting, researchers have constantly proposed improved neural network prediction models or improved machine learning models to predict time series data. Combining the well-performing machine learning model and neural network model in energy consumption prediction, we propose a hybrid model architecture of GRU-MMattention-LightGBM with feature selection based on Prophet decomposition. During the prediction process, first, the prophet features are extracted from the original time series. We select the best LightGBM model in the training set and save the best parameters. Then, the Prophet feature is input to GRU-MMattention for training. Finally, MLP is used to learn the final prediction weight between LightGBM and GRU-MMattention. After the prediction weights are learned, the final prediction result is determined. The innovation of this paper lies in that we propose a structure to learn the internal correlation between features based on Prophet feature extraction combined with the gating and attention mechanism. The structure also has the characteristics of a strong anti-noise ability of the LightGBM method, which can reduce the impact of the energy consumption mutation point on the overall prediction effect of the model. In addition, we propose a simple method to select the hyperparameters of the time window length using ACF and PACF diagrams. The MAPE of the GRU-MMattention-LightGBM model is 1.69%, and the relative error is 8.66% less than that of the GRU structure and 2.02% less than that of the LightGBM prediction. Compared with a single method, the prediction accuracy and stability of this hybrid architecture are significantly improved.
AbstractList The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption forecasting, researchers have constantly proposed improved neural network prediction models or improved machine learning models to predict time series data. Combining the well-performing machine learning model and neural network model in energy consumption prediction, we propose a hybrid model architecture of GRU-MMattention-LightGBM with feature selection based on Prophet decomposition. During the prediction process, first, the prophet features are extracted from the original time series. We select the best LightGBM model in the training set and save the best parameters. Then, the Prophet feature is input to GRU-MMattention for training. Finally, MLP is used to learn the final prediction weight between LightGBM and GRU-MMattention. After the prediction weights are learned, the final prediction result is determined. The innovation of this paper lies in that we propose a structure to learn the internal correlation between features based on Prophet feature extraction combined with the gating and attention mechanism. The structure also has the characteristics of a strong anti-noise ability of the LightGBM method, which can reduce the impact of the energy consumption mutation point on the overall prediction effect of the model. In addition, we propose a simple method to select the hyperparameters of the time window length using ACF and PACF diagrams. The MAPE of the GRU-MMattention-LightGBM model is 1.69%, and the relative error is 8.66% less than that of the GRU structure and 2.02% less than that of the LightGBM prediction. Compared with a single method, the prediction accuracy and stability of this hybrid architecture are significantly improved.
The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption forecasting, researchers have constantly proposed improved neural network prediction models or improved machine learning models to predict time series data. Combining the well-performing machine learning model and neural network model in energy consumption prediction, we propose a hybrid model architecture of GRU-MMattention-LightGBM with feature selection based on Prophet decomposition. During the prediction process, first, the prophet features are extracted from the original time series. We select the best LightGBM model in the training set and save the best parameters. Then, the Prophet feature is input to GRU-MMattention for training. Finally, MLP is used to learn the final prediction weight between LightGBM and GRU-MMattention. After the prediction weights are learned, the final prediction result is determined. The innovation of this paper lies in that we propose a structure to learn the internal correlation between features based on Prophet feature extraction combined with the gating and attention mechanism. The structure also has the characteristics of a strong anti-noise ability of the LightGBM method, which can reduce the impact of the energy consumption mutation point on the overall prediction effect of the model. In addition, we propose a simple method to select the hyperparameters of the time window length using ACF and PACF diagrams. The MAPE of the GRU-MMattention-LightGBM model is 1.69%, and the relative error is 8.66% less than that of the GRU structure and 2.02% less than that of the LightGBM prediction. Compared with a single method, the prediction accuracy and stability of this hybrid architecture are significantly improved.The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption forecasting, researchers have constantly proposed improved neural network prediction models or improved machine learning models to predict time series data. Combining the well-performing machine learning model and neural network model in energy consumption prediction, we propose a hybrid model architecture of GRU-MMattention-LightGBM with feature selection based on Prophet decomposition. During the prediction process, first, the prophet features are extracted from the original time series. We select the best LightGBM model in the training set and save the best parameters. Then, the Prophet feature is input to GRU-MMattention for training. Finally, MLP is used to learn the final prediction weight between LightGBM and GRU-MMattention. After the prediction weights are learned, the final prediction result is determined. The innovation of this paper lies in that we propose a structure to learn the internal correlation between features based on Prophet feature extraction combined with the gating and attention mechanism. The structure also has the characteristics of a strong anti-noise ability of the LightGBM method, which can reduce the impact of the energy consumption mutation point on the overall prediction effect of the model. In addition, we propose a simple method to select the hyperparameters of the time window length using ACF and PACF diagrams. The MAPE of the GRU-MMattention-LightGBM model is 1.69%, and the relative error is 8.66% less than that of the GRU structure and 2.02% less than that of the LightGBM prediction. Compared with a single method, the prediction accuracy and stability of this hybrid architecture are significantly improved.
Audience Academic
Author Huang, Anna
Jiang, Xuchu
Deng, Tao
Liu, Ningxian
Liang, Shaokun
AuthorAffiliation National Taiwan University of Science and Technology, TAIWAN
School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China
AuthorAffiliation_xml – name: National Taiwan University of Science and Technology, TAIWAN
– name: School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China
Author_xml – sequence: 1
  givenname: Shaokun
  orcidid: 0000-0002-2152-6779
  surname: Liang
  fullname: Liang, Shaokun
– sequence: 2
  givenname: Tao
  surname: Deng
  fullname: Deng, Tao
– sequence: 3
  givenname: Anna
  orcidid: 0000-0002-2175-865X
  surname: Huang
  fullname: Huang, Anna
– sequence: 4
  givenname: Ningxian
  surname: Liu
  fullname: Liu, Ningxian
– sequence: 5
  givenname: Xuchu
  orcidid: 0000-0002-6443-9990
  surname: Jiang
  fullname: Jiang, Xuchu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36649365$$D View this record in MEDLINE/PubMed
BookMark eNqNk91u1DAQhSNURH_gDRBEQkJwsYsTO07SC6RSlaXSVkWFcmt57UniyomD7VD69jjdtNqtKlHlwtb4mzOeOc5-tNOZDqLodYLmCc6TT1dmsB3X8z6E5yjNc1Rkz6K9pMTpjKYI72zsd6N9564QynBB6YtoF1NKSkyzvag96cDWN7EwnRva3ivTxb0FqcTtdnCqq2PfQLy4uJydnXHvoRtPZktVN37x5SxujQQdXyvfxBVwP1hwsani79b0DfhYgjBtb5was15GzyuuHbya1oPo8uvJz-Nvs-X54vT4aDkTNE39DKdAKUUy4VlKV8ABZzkugRBEsgxVpEwyKUsscp6UgogSZRKjVZVUUqYcpRk-iN6udXttHJsm5Viah75R6LsIxOmakIZfsd6qltsbZrhitwFja8atV0IDE0hiwNWKrHBBclqWGGdFnqZFQQqgRAStbK01dD2_ueZa3wsmiI1m3V2BjWaxyayQ93m65bBqQYowWcv11mW2TzrVsNr8YWVBSBlsPYg-TALW_B7AedYqJ0Br3oEZpn5xQvBY690D9PGpTFTNQ-Oqq0yoK0ZRdpSHtinC-Vh2_ggVPgmtCg8JKhXiWwkftxIC4-Gvr_ngHDv9cfF09vzXNvt-g22Aa984o4fxqblt8M3mpO9HfPcfBOBwDQhrnLNQMaE8H3VCa0r_z0fyIPlJ9v8DxxQvqQ
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3284678
crossref_primary_10_3390_foods12244517
crossref_primary_10_1049_tje2_12409
crossref_primary_10_1109_ACCESS_2024_3441642
crossref_primary_10_1108_DTA_07_2023_0377
Cites_doi 10.3390/en13184722
10.3390/en13164121
10.1016/j.epsr.2020.106489
10.1109/ICIOT.2019.00029
10.1109/INFORMATICS.2017.8327236
10.3390/atmos12091211
10.1109/PowerAfrica.2016.7556585
10.1080/00031305.2017.1380080
10.1016/j.apenergy.2017.03.034
10.1016/j.jmoneco.2005.03.015
10.3390/s21051639
10.3390/en13020443
10.1002/for.3980090203
10.1016/j.eswa.2019.05.028
10.3390/en14185873
ContentType Journal Article
Copyright Copyright: © 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Liang et al 2023 Liang et al
2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Liang et al 2023 Liang et al
– notice: 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0277085
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
Agricultural & Environmental Science Collection (ProQuest)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE

MEDLINE - Academic

Agricultural Science Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Energy consumption prediction
EISSN 1932-6203
ExternalDocumentID 2766403658
oai_doaj_org_article_c0d3e3fb4b384769933587228848e64c
10.1371/journal.pone.0277085
PMC9844920
A733560370
36649365
10_1371_journal_pone_0277085
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c622t-32e6660d1a526beae35739e4404550f4915dd93c7a19c4c905d30bf1fdd2a0253
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Feb 05 03:14:12 EST 2023
Fri Oct 03 12:43:01 EDT 2025
Sun Oct 26 04:07:50 EDT 2025
Tue Sep 30 17:16:23 EDT 2025
Fri Sep 05 14:49:23 EDT 2025
Tue Oct 07 07:48:15 EDT 2025
Mon Oct 20 22:09:31 EDT 2025
Mon Oct 20 16:48:20 EDT 2025
Thu Oct 16 16:04:36 EDT 2025
Thu Oct 16 16:04:42 EDT 2025
Thu May 22 21:23:36 EDT 2025
Thu Apr 03 07:02:41 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Wed Oct 01 01:25:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright: © 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c622t-32e6660d1a526beae35739e4404550f4915dd93c7a19c4c905d30bf1fdd2a0253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-2175-865X
0000-0002-2152-6779
0000-0002-6443-9990
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0277085
PMID 36649365
PQID 2766403658
PQPubID 1436336
PageCount e0277085
ParticipantIDs plos_journals_2766403658
doaj_primary_oai_doaj_org_article_c0d3e3fb4b384769933587228848e64c
unpaywall_primary_10_1371_journal_pone_0277085
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9844920
proquest_miscellaneous_2766431435
proquest_journals_2766403658
gale_infotracmisc_A733560370
gale_infotracacademiconefile_A733560370
gale_incontextgauss_ISR_A733560370
gale_incontextgauss_IOV_A733560370
gale_healthsolutions_A733560370
pubmed_primary_36649365
crossref_citationtrail_10_1371_journal_pone_0277085
crossref_primary_10_1371_journal_pone_0277085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-17
PublicationDateYYYYMMDD 2023-01-17
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0277085.ref007
G Ke (pone.0277085.ref019) 2017; 30
S Park (pone.0277085.ref009) 2020; 13
J Bu S (pone.0277085.ref014) 2020; 13
X Jiang (pone.0277085.ref022) 2021; 12
J Taylor S (pone.0277085.ref015) 2018; 72
J Chung (pone.0277085.ref016) 2014
K Cho (pone.0277085.ref020) 2014; 1259
L Sehovac (pone.0277085.ref006) 2019
L Yuxuan (pone.0277085.ref012) 2021
W Luthuli Q (pone.0277085.ref001) 2016
S Pei (pone.0277085.ref005) 2020; 13
A Vaswani (pone.0277085.ref021) 2017
C Harvey A (pone.0277085.ref017) 1990; 9
S Jung (pone.0277085.ref013) 2021; 21
Y Xie (pone.0277085.ref011) 2021; 14
A Jain (pone.0277085.ref002) 2009
L Speiser J (pone.0277085.ref010) 2019; 134
S Park (pone.0277085.ref004) 2021
S Atef (pone.0277085.ref008) 2020; 187
V Zarnowitz (pone.0277085.ref018) 2006; 53
Y Chen (pone.0277085.ref003) 2017; 195
References_xml – volume: 13
  start-page: 4722
  issue: 18
  year: 2020
  ident: pone.0277085.ref014
  article-title: Time series forecasting with multiheaded attention-based deep learning for residential energy consumption[J].
  publication-title: Energies
  doi: 10.3390/en13184722
– start-page: 1
  year: 2021
  ident: pone.0277085.ref004
  article-title: Sliding window-based LightGBM model for electric load forecasting using anomaly repair[J]
  publication-title: The Journalof Supercomputing
– volume: 13
  start-page: 4121
  issue: 16
  year: 2020
  ident: pone.0277085.ref005
  article-title: Multistep ahead short-term load forecasting using hybrid feature selection and improved long short-term memory network[J].
  publication-title: Energies
  doi: 10.3390/en13164121
– start-page: 1
  year: 2009
  ident: pone.0277085.ref002
  article-title: Clustering based short term load forecasting using support vector machines[C].
  publication-title: 2009 IEEE Bucharest PowerTech.
– volume: 187
  start-page: 106489
  year: 2020
  ident: pone.0277085.ref008
  article-title: Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting[J]
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2020.106489
– year: 2021
  ident: pone.0277085.ref012
  article-title: Dynamic time features expanding and extracting method for prediction model of sintering process quality index[J]
  publication-title: IEEE Transactions on Industrial Informatics
– start-page: 108
  year: 2019
  ident: pone.0277085.ref006
  article-title: Forecasting building energy consumption with deep learning: A sequence to sequence approach[C].
  publication-title: 2019 IEEE International Congress on Internet of Things (ICIOT)
  doi: 10.1109/ICIOT.2019.00029
– ident: pone.0277085.ref007
  doi: 10.1109/INFORMATICS.2017.8327236
– volume: 12
  start-page: 1211
  issue: 9
  year: 2021
  ident: pone.0277085.ref022
  article-title: Prediction of PM2. 5 Concentration Based on the LSTM-TSLightGBM Variable Weight Combination Model[J].
  publication-title: Atmosphere
  doi: 10.3390/atmos12091211
– start-page: 129
  year: 2016
  ident: pone.0277085.ref001
  article-title: Short term load forecasting using artificial intelligen-ce[C].
  publication-title: 2016 IEEE PES PowerAfrica.
  doi: 10.1109/PowerAfrica.2016.7556585
– year: 2014
  ident: pone.0277085.ref016
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling[J].
  publication-title: arXiv preprint arXiv:1412.3555
– volume: 72
  start-page: 37
  issue: 1
  year: 2018
  ident: pone.0277085.ref015
  article-title: Forecasting at scale[J]
  publication-title: The American Statistician
  doi: 10.1080/00031305.2017.1380080
– volume: 30
  start-page: 3146
  year: 2017
  ident: pone.0277085.ref019
  article-title: Lightgbm: A highly efficient gradient boosting decision tree[J]
  publication-title: Advances in neural information processing systems
– volume: 1259
  year: 2014
  ident: pone.0277085.ref020
  article-title: On the properties of neural machine translation: Encoder-decoder approaches[J].
  publication-title: arXiv preprint arXiv:1409.
– volume: 195
  start-page: 659
  year: 2017
  ident: pone.0277085.ref003
  article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings[J].
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.03.034
– volume: 53
  start-page: 1717
  issue: 7
  year: 2006
  ident: pone.0277085.ref018
  article-title: Time series decomposition and measurement of business cycles, trends and growth cycles[J]
  publication-title: Journal of Monetary Economics
  doi: 10.1016/j.jmoneco.2005.03.015
– volume: 21
  start-page: 1639
  issue: 5
  year: 2021
  ident: pone.0277085.ref013
  article-title: An Attention-Based Multilayer GRU Model for Multistep-Ahead Short-Term Load Forecasting[J].
  publication-title: Sensors
  doi: 10.3390/s21051639
– volume: 13
  start-page: 443
  issue: 2
  year: 2020
  ident: pone.0277085.ref009
  article-title: A two-stage industrial load forecasting scheme for day-ahead combined cooling, heating and power scheduling[J].
  publication-title: Energies
  doi: 10.3390/en13020443
– volume: 9
  start-page: 89
  issue: 2
  year: 1990
  ident: pone.0277085.ref017
  article-title: Estimation procedures for structural time series models[J]
  publication-title: Journal of forecasting
  doi: 10.1002/for.3980090203
– start-page: 5998
  year: 2017
  ident: pone.0277085.ref021
  article-title: Attention is all you need[C]
  publication-title: Advances in neural information processing systems
– volume: 134
  start-page: 93
  year: 2019
  ident: pone.0277085.ref010
  article-title: A comparison of random forest variable selection methods for classification prediction modeling[J]
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2019.05.028
– volume: 14
  start-page: 5873
  issue: 18
  year: 2021
  ident: pone.0277085.ref011
  article-title: A Two-Stage Short-Term Load Forecasting Method Using Long Short-Term Memory and Multilayer Perceptron[J].
  publication-title: Energies
  doi: 10.3390/en14185873
SSID ssj0053866
Score 2.4454207
Snippet The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0277085
SubjectTerms Accuracy
Biology and Life Sciences
Computer and Information Sciences
Decision trees
Decomposition
Energy consumption
Energy research
Engineering and Technology
Feature extraction
Forecasting
Forecasts and trends
Growth models
Learning algorithms
Machine Learning
Methods
Modelling
Mutation
Neural networks
Neural Networks, Computer
Noise reduction
Physical Phenomena
Physical Sciences
Prediction models
Regression analysis
Research and Analysis Methods
Seasons
Stability
Time series
Time-series analysis
Training
Windows (intervals)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQX-AFMb6WMcAgJOAhXWI7Tvy4oX2AKKBB0d4ix3EGUkmiphXiv-fOcaNGTNoeeKvic1Tfnc938d3vCHmVqBKCZG3CiGsdiqwEO1hEOsxK0B8ImuHUwULh2Sd5NhcfLpKLrVZfmBPWwwP3jDswUcktrwpRcDCkEo5TnmQpY1kmMiuFQesbZWoTTPU2GHaxlL5QjqfxgZfLtG1qO8Vbywh7J28dRA6vf7DKk3bRdFe5nP9mTt5e163-81svFlvH0sk9ctf7k_SwX8cOuWXr-2TH79iOvvGw0m8fkF_HrsyPGld06SwFbZd4T-N-YgL8JQV3kJ6ez8MZ9gHvMyHDjxi_nx7NqOuaQ_HLLa2sAwTtaFPRL0vEJljR0mJ-uk8Ce0jmJ8ff3p2FvtlCaCRjq5AzC5FMVMY6YbKw2vIk5coifCAEMZVQcVKWiptUx8oIo6IEhFxUcVWWTIPjxB-RSQ3s3SVUGsaVFkWsKi6sTnQhI424i6kBDTBFQPiG87nxSOTYEGORu-u1FCKSnnk5yiv38gpIOMxqeySOa-iPUKgDLeJouwegXbnXrvw67QrIc1SJvC9KHaxBfgirAV-Rp1FAXjoKxNKoMVnnUq-7Ln__-fsNiL6ej4hee6KqAXYY7QskYE2I0TWi3B9RgkUwo-FdVOANV7qcpVIKcFWSDGZulPrq4RfDML4UE_Bq26w9DUfnOiCP-z0wcJbDkILpAUlHu2PE-vFI_fOHgzJXmRCKwT-eDvvoRsLd-x_CfULuMHBZ8YNanO6TyWq5tk_BxVwVz5w1-Qte9njS
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wACDkICHdEnsfD0gtKJuA9EyFYr2Fjm2U5BKUppWiP-eO8cJi5hgb1V9ruo73_nOvvsdIc_DVEGQLKTrMSFcniiwg7kn3ETB_oGgGU4dLBSeTKPTOX9_Hp7vkGlbC4Npla1NNIZaVRLvyA-DOIo4mNswebP64WLXKHxdbVtoCNtaQb02EGPXyG6AyFgDsjsaT89mrW0G7Y4iW0DHYv_Qymu4qko9xNdMD3sqXzigDI5_Z60Hq2VVX-aK_p1ReX1brsSvn2K5vHBcHd8iN62fSY-ajbFHdnR5m-xZTa7pSws3_eoO-T425X9UmmJMY0Hoao3vN-YjJsYvKLiJ9GQ2dyfYH7zJkHQ_YFx_MppQ002H4o0uLbQBCq1pVdCzNWIWbKjSmLduk8Pukvnx-PPbU9c2YXBlFAQblwUaIhxP-SIMolwLzcKYpRphBSG4KXjqh0qlTMbCTyWXqReC8PPCL5QKBDhU7B4ZlMDefUIjGbBU8NxPC8a1CEUeeQLxGGMJO0PmDmEt5zNpEcqxUcYyM89uMUQqDfMylFdm5eUQt5u1ahA6_kM_QqF2tIivbb6o1ovMqmsmPcU0K3KeMzi-I3DiWJjEQZAkPNERlw55glsia4pVOyuRHcFqwIdkseeQZ4YCMTZKTOJZiG1dZ-8-frkC0adZj-iFJSoqYIcUtnAC1oTYXT3Kgx4lWArZG97HDdxypc7-6BTMbDf15cNPu2H8UUzMK3W1tTQMnW6H3G90oOMsg6EUpjsk7mlHj_X9kfLbVwNxniacpwH842GnR1cS7oN_r-MhuRGAk4pXaH58QAab9VY_Aqdykz-2luI3VXt4FQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEQmI7H37s0D5AdEyDovEUOY4zECWtmlYI_nruHDdaYIjyVtXnqj7fnX-2734m5EksS9gkK-2HXClfZCXEwSJUflaC_cCmGVYdLBQeHSWHY_HmND7dIC9WtTDn7-95Gr10Gg1m09oEeN8IEOES2UxiQN4Dsjk-Oh5-ai-OmZ-wkLvquL917a0-lqS_C8WD2WTaXIQz_0yXvLysZ-rHdzWZnFuL9q-R0WoUbQrK12C5KAL98zeCx3WHeZ1cdaCUDlsr2iIbpr5BtpzbN_SZ46Z-fpN827O1glTbyk0bbuhsjpc99iNm0Z9RwJT04GTsj_Ax8Tad0n-LhwAHuyNqn96hePxLK2NZRRs6rejxHAkOFrQ0mOTuMslukfH-3odXh757scHXCWMLnzMD26GwjFTMksIow-OUS4MchLATqoSM4rKUXKcqklpoGcZgKUUVVWXJFKAvfpsMalDBNqGJZlwqUUSy4sKoWBVJqJC8MdVgRrrwCF_NZK4dnTm-qjHJ7R1dCtuaVnk56jR3OvWI3_WatXQe_5DfRSPpZJGM234Bk5c73851WHLDq0IUHNb6BBAfj7OUsSwTmUmE9shDNLG8rWztQko-hNEA4ORp6JHHVgIJOWrM-DlTy6bJX7_7uIbQ-5Oe0FMnVE1BHVq5KgsYExJ99SR3epIQVnSveRsdYqWVJmdpkgjAO3EGPVdOcnHzo64ZfxSz-GozXToZjgjdI3dan-o0y6FJQnePpD1v66m-31J_-Wz50GUmhGTwj4POL9ea3Lv_2-EeucIA4-IJXJTukMFivjT3AZMuigcuFP0Cd72Kjg
  priority: 102
  providerName: Unpaywall
Title Energy consumption prediction using the GRU-MMattention-LightGBM model with features of Prophet decomposition
URI https://www.ncbi.nlm.nih.gov/pubmed/36649365
https://www.proquest.com/docview/2766403658
https://www.proquest.com/docview/2766431435
https://pubmed.ncbi.nlm.nih.gov/PMC9844920
https://doi.org/10.1371/journal.pone.0277085
https://doaj.org/article/c0d3e3fb4b384769933587228848e64c
http://dx.doi.org/10.1371/journal.pone.0277085
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj9MwDI_udg_wgji-rnCMgJCAh05tk349ILSdth2IjWkwNJ6qNE0H0mjHugnuv8fOsoqKIe6lmhqnWh3bsRv7Z0Ke-3EGQbKQtsOEsHmUgR1MHWFHGcgPBM2w62Ch8GgcXM74u7k_PyL7nq2GgdXB0A77Sc3Wy86vH1dvQOFf664Nobuf1FmVhergmSS4EcfkBPaqGJs5jHh9rgDarU8v0WuxA89hppjuX09pbFYa07-23K3VsqwOuaV_Z1fe2BYrcfVTLJd_bF2D2-SW8Tlpdyckp-RIFXfIqdHqir400NOv7pLvfV0KSKUuzNTWhK7WeJajf2KS_IKCy0iH05k9wl7hu2xJ-z3G-MPeiOrOOhS_7tJcadDQipY5nawRv2BDM4U57CZR7B6ZDfqfLi5t05DBloHnbWzmKYh2nMwVvhekSijmhyxWCDEIgU7OY9fPspjJULix5DJ2fBCENHfzLPMEOFfsPmkVwN4zQgPpsVjw1I1zxpXwRRo4ArEZQwlSIlOLsD3nE2nQyrFpxjLRR3AhRC075iW4XolZL4vY9azVDq3jP_Q9XNSaFrG29Y1yvUiM6ibSyZhiecpTBlt5AA4d86PQ86KIRyrg0iJPUCSSXeFqbTGSLrwN-JMsdCzyTFMg3kaBCT0Lsa2q5O2Hz9cg-jhtEL0wRHkJ7JDCFFHAOyGOV4PyvEEJVkM2hs9QgPdcqRIvDAIO7owfwcy9UB8efloP40MxSa9Q5dbQMHTALfJgpwM1ZxkMxTDdImFDOxqsb44U375quPM44jz24B93aj261uI-vA7XH5GbHrit-FHNDc9Ja7PeqsfgZm7SNjkO5yFcowsXr4Nhm5z0-uPJtK0_3LS1ZYF7s_Gk--U3NYyCDA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLorwaKNQgEHDINrGd1wGhFvqi3YLaLtpbcBynIC3JstlV1T_Fb2TG8YZGVNBLb6t4Eq3H48-f7XkQ8iJIctgkS-V6XEpXxDngYOZJN87BfmDTDKsOBgr3D8Pdgfg4DIYL5Nc8FgbdKueYaIA6rxSeka-zKAwFwG0Qvxv_dLFqFN6uzktoNGaxr8_PYMtWv937AOP7krHtrZP3u66tKuCqkLGpy5kGyu7lvgxYmGmpeRDxRGOePGDrhUj8IM8TriLpJ0qoxAugN1nhF3nOJDAEDt-9QW4KDlgC8ycaths8wI4wtOF5PPLXrTX0xlWpe3hX6mHF5gvLn6kS0K4Fi-NRVV9GdP_211yalWN5fiZHowuL4fYdctuyWLrRmN0yWdDlXbJscaKmr20y6zf3yI8tE1xIlQn1NPhExxO8HTI_0e3-lAIJpTtHA7eP1ccb_0v3AE8Ndjb71NTqoXheTAtt0pDWtCro5wlmRJjSXKNXvHU9u08G1zIYD8hiCepdITRUjCdSZH5ScKFlILPQk5jtMVJgdypzCJ9rPlU2_zmW4Ril5lIvgn1Qo7wUxyu14-UQt31r3OT_-I_8Jg5qK4vZu82DanKaWjBIlZdzzYtMZBzIQQgUkQdxxFgci1iHQjlkDU0ibUJhWwxKN6A3wFB55DnkuZHADB4lugidylldp3ufvlxB6PioI_TKChUVqENJG5YBfcLMYB3J1Y4k4JDqNK-gAc-1Uqd_Ziy8OTfqy5uftc34UXT7K3U1szIcKb1DHjZzoNUsh6YEXndI1JkdHdV3W8rv30wC9SQWImHwj3vtPLrS4D76dz_WyNLuSf8gPdg73H9MbjGgw3hY50erZHE6meknQF-n2VODGZR8vW6Q-g0wH61E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkYAXxLgtMJhBIOAhbWLn-oDQxtat7MI0KOpbcBynIJWkNK2m_TV-Hec4bljEBHvZWxWfRPXx8efP9rkQ8sKPM9gkC2k7XAjbizLAwdQRdpSB_cCmGVYdDBQ-PAr2ht6HkT9aIb-WsTDoVrnERA3UWSnxjLzHwiDwAG79qJcbt4jj7f676U8bK0jhTeuynEZtIvvq7BS2b9XbwTaM9UvG-juf3-_ZpsKALQPG5jZnCui7k7nCZ0GqhOJ-yGOFOfOAuede7PpZFnMZCjeWnowdH3qW5m6eZUwAW-Dw3Wvkesh5jO6E4ajZ7AGOBIEJ1eOh2zOW0Z2WherivamD1ZvPLYW6YkCzLnSmk7K6iPT-7bt5c1FMxdmpmEzOLYz9O-S2YbR0szbBVbKiirtk1WBGRV-bxNZv7pEfOzrQkEod9qmxik5neFOkf6IL_pgCIaW7J0P7ECuR176Y9gGeIOxuHVJdt4fi2THNlU5JWtEyp8czzI4wp5lCD3njhnafDK9kMB6QTgHqXSM0kIzHwkvdOOeeEr5IA0dg5sdQgg3K1CJ8qflEmlzoWJJjkugLvhD2RLXyEhyvxIyXRezmrWmdC-Q_8ls4qI0sZvLWD8rZODHAkEgn44rnqZdyIAoB0EXuRyFjUeRFKvCkRTbQJJI6LLbBo2QTegNslYeORZ5rCczmUeC8GItFVSWDj18uIfTppCX0ygjlJahDChOiAX3CLGEtyfWWJGCSbDWvoQEvtVIlf2YvvLk06oubnzXN-FF0ASxUuTAyHOm9RR7Wc6DRLIemGF63SNiaHS3Vt1uK7990MvU48ryYwT_uNvPoUoP76N_92CA3AJ6Sg8HR_mNyiwEzxnM7N1wnnflsoZ4Ak52nTzVkUPL1qjHqN6N2sYc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEQmI7H37s0D5AdEyDovEUOY4zECWtmlYI_nruHDdaYIjyVtXnqj7fnX-2734m5EksS9gkK-2HXClfZCXEwSJUflaC_cCmGVYdLBQeHSWHY_HmND7dIC9WtTDn7-95Gr10Gg1m09oEeN8IEOES2UxiQN4Dsjk-Oh5-ai-OmZ-wkLvquL917a0-lqS_C8WD2WTaXIQz_0yXvLysZ-rHdzWZnFuL9q-R0WoUbQrK12C5KAL98zeCx3WHeZ1cdaCUDlsr2iIbpr5BtpzbN_SZ46Z-fpN827O1glTbyk0bbuhsjpc99iNm0Z9RwJT04GTsj_Ax8Tad0n-LhwAHuyNqn96hePxLK2NZRRs6rejxHAkOFrQ0mOTuMslukfH-3odXh757scHXCWMLnzMD26GwjFTMksIow-OUS4MchLATqoSM4rKUXKcqklpoGcZgKUUVVWXJFKAvfpsMalDBNqGJZlwqUUSy4sKoWBVJqJC8MdVgRrrwCF_NZK4dnTm-qjHJ7R1dCtuaVnk56jR3OvWI3_WatXQe_5DfRSPpZJGM234Bk5c73851WHLDq0IUHNb6BBAfj7OUsSwTmUmE9shDNLG8rWztQko-hNEA4ORp6JHHVgIJOWrM-DlTy6bJX7_7uIbQ-5Oe0FMnVE1BHVq5KgsYExJ99SR3epIQVnSveRsdYqWVJmdpkgjAO3EGPVdOcnHzo64ZfxSz-GozXToZjgjdI3dan-o0y6FJQnePpD1v66m-31J_-Wz50GUmhGTwj4POL9ea3Lv_2-EeucIA4-IJXJTukMFivjT3AZMuigcuFP0Cd72Kjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+consumption+prediction+using+the+GRU-MMattention-LightGBM+model+with+features+of+Prophet+decomposition&rft.jtitle=PloS+one&rft.au=Liang%2C+Shaokun&rft.au=Deng%2C+Tao&rft.au=Huang%2C+Anna&rft.au=Liu%2C+Ningxian&rft.date=2023-01-17&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=1&rft.spage=e0277085&rft_id=info:doi/10.1371%2Fjournal.pone.0277085&rft.externalDBID=IOV&rft.externalDocID=A733560370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon