Energy consumption prediction using the GRU-MMattention-LightGBM model with features of Prophet decomposition
The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption forecasting, researchers have constantly proposed improved neural network prediction models or improved machine learning models to predict time ser...
Saved in:
| Published in | PloS one Vol. 18; no. 1; p. e0277085 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
17.01.2023
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0277085 |
Cover
| Abstract | The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption forecasting, researchers have constantly proposed improved neural network prediction models or improved machine learning models to predict time series data. Combining the well-performing machine learning model and neural network model in energy consumption prediction, we propose a hybrid model architecture of GRU-MMattention-LightGBM with feature selection based on Prophet decomposition. During the prediction process, first, the prophet features are extracted from the original time series. We select the best LightGBM model in the training set and save the best parameters. Then, the Prophet feature is input to GRU-MMattention for training. Finally, MLP is used to learn the final prediction weight between LightGBM and GRU-MMattention. After the prediction weights are learned, the final prediction result is determined. The innovation of this paper lies in that we propose a structure to learn the internal correlation between features based on Prophet feature extraction combined with the gating and attention mechanism. The structure also has the characteristics of a strong anti-noise ability of the LightGBM method, which can reduce the impact of the energy consumption mutation point on the overall prediction effect of the model. In addition, we propose a simple method to select the hyperparameters of the time window length using ACF and PACF diagrams. The MAPE of the GRU-MMattention-LightGBM model is 1.69%, and the relative error is 8.66% less than that of the GRU structure and 2.02% less than that of the LightGBM prediction. Compared with a single method, the prediction accuracy and stability of this hybrid architecture are significantly improved. |
|---|---|
| AbstractList | The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption forecasting, researchers have constantly proposed improved neural network prediction models or improved machine learning models to predict time series data. Combining the well-performing machine learning model and neural network model in energy consumption prediction, we propose a hybrid model architecture of GRU-MMattention-LightGBM with feature selection based on Prophet decomposition. During the prediction process, first, the prophet features are extracted from the original time series. We select the best LightGBM model in the training set and save the best parameters. Then, the Prophet feature is input to GRU-MMattention for training. Finally, MLP is used to learn the final prediction weight between LightGBM and GRU-MMattention. After the prediction weights are learned, the final prediction result is determined. The innovation of this paper lies in that we propose a structure to learn the internal correlation between features based on Prophet feature extraction combined with the gating and attention mechanism. The structure also has the characteristics of a strong anti-noise ability of the LightGBM method, which can reduce the impact of the energy consumption mutation point on the overall prediction effect of the model. In addition, we propose a simple method to select the hyperparameters of the time window length using ACF and PACF diagrams. The MAPE of the GRU-MMattention-LightGBM model is 1.69%, and the relative error is 8.66% less than that of the GRU structure and 2.02% less than that of the LightGBM prediction. Compared with a single method, the prediction accuracy and stability of this hybrid architecture are significantly improved. The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption forecasting, researchers have constantly proposed improved neural network prediction models or improved machine learning models to predict time series data. Combining the well-performing machine learning model and neural network model in energy consumption prediction, we propose a hybrid model architecture of GRU-MMattention-LightGBM with feature selection based on Prophet decomposition. During the prediction process, first, the prophet features are extracted from the original time series. We select the best LightGBM model in the training set and save the best parameters. Then, the Prophet feature is input to GRU-MMattention for training. Finally, MLP is used to learn the final prediction weight between LightGBM and GRU-MMattention. After the prediction weights are learned, the final prediction result is determined. The innovation of this paper lies in that we propose a structure to learn the internal correlation between features based on Prophet feature extraction combined with the gating and attention mechanism. The structure also has the characteristics of a strong anti-noise ability of the LightGBM method, which can reduce the impact of the energy consumption mutation point on the overall prediction effect of the model. In addition, we propose a simple method to select the hyperparameters of the time window length using ACF and PACF diagrams. The MAPE of the GRU-MMattention-LightGBM model is 1.69%, and the relative error is 8.66% less than that of the GRU structure and 2.02% less than that of the LightGBM prediction. Compared with a single method, the prediction accuracy and stability of this hybrid architecture are significantly improved.The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption forecasting, researchers have constantly proposed improved neural network prediction models or improved machine learning models to predict time series data. Combining the well-performing machine learning model and neural network model in energy consumption prediction, we propose a hybrid model architecture of GRU-MMattention-LightGBM with feature selection based on Prophet decomposition. During the prediction process, first, the prophet features are extracted from the original time series. We select the best LightGBM model in the training set and save the best parameters. Then, the Prophet feature is input to GRU-MMattention for training. Finally, MLP is used to learn the final prediction weight between LightGBM and GRU-MMattention. After the prediction weights are learned, the final prediction result is determined. The innovation of this paper lies in that we propose a structure to learn the internal correlation between features based on Prophet feature extraction combined with the gating and attention mechanism. The structure also has the characteristics of a strong anti-noise ability of the LightGBM method, which can reduce the impact of the energy consumption mutation point on the overall prediction effect of the model. In addition, we propose a simple method to select the hyperparameters of the time window length using ACF and PACF diagrams. The MAPE of the GRU-MMattention-LightGBM model is 1.69%, and the relative error is 8.66% less than that of the GRU structure and 2.02% less than that of the LightGBM prediction. Compared with a single method, the prediction accuracy and stability of this hybrid architecture are significantly improved. |
| Audience | Academic |
| Author | Huang, Anna Jiang, Xuchu Deng, Tao Liu, Ningxian Liang, Shaokun |
| AuthorAffiliation | National Taiwan University of Science and Technology, TAIWAN School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China |
| AuthorAffiliation_xml | – name: National Taiwan University of Science and Technology, TAIWAN – name: School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China |
| Author_xml | – sequence: 1 givenname: Shaokun orcidid: 0000-0002-2152-6779 surname: Liang fullname: Liang, Shaokun – sequence: 2 givenname: Tao surname: Deng fullname: Deng, Tao – sequence: 3 givenname: Anna orcidid: 0000-0002-2175-865X surname: Huang fullname: Huang, Anna – sequence: 4 givenname: Ningxian surname: Liu fullname: Liu, Ningxian – sequence: 5 givenname: Xuchu orcidid: 0000-0002-6443-9990 surname: Jiang fullname: Jiang, Xuchu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36649365$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk91u1DAQhSNURH_gDRBEQkJwsYsTO07SC6RSlaXSVkWFcmt57UniyomD7VD69jjdtNqtKlHlwtb4mzOeOc5-tNOZDqLodYLmCc6TT1dmsB3X8z6E5yjNc1Rkz6K9pMTpjKYI72zsd6N9564QynBB6YtoF1NKSkyzvag96cDWN7EwnRva3ivTxb0FqcTtdnCqq2PfQLy4uJydnXHvoRtPZktVN37x5SxujQQdXyvfxBVwP1hwsani79b0DfhYgjBtb5was15GzyuuHbya1oPo8uvJz-Nvs-X54vT4aDkTNE39DKdAKUUy4VlKV8ABZzkugRBEsgxVpEwyKUsscp6UgogSZRKjVZVUUqYcpRk-iN6udXttHJsm5Viah75R6LsIxOmakIZfsd6qltsbZrhitwFja8atV0IDE0hiwNWKrHBBclqWGGdFnqZFQQqgRAStbK01dD2_ueZa3wsmiI1m3V2BjWaxyayQ93m65bBqQYowWcv11mW2TzrVsNr8YWVBSBlsPYg-TALW_B7AedYqJ0Br3oEZpn5xQvBY690D9PGpTFTNQ-Oqq0yoK0ZRdpSHtinC-Vh2_ggVPgmtCg8JKhXiWwkftxIC4-Gvr_ngHDv9cfF09vzXNvt-g22Aa984o4fxqblt8M3mpO9HfPcfBOBwDQhrnLNQMaE8H3VCa0r_z0fyIPlJ9v8DxxQvqQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3284678 crossref_primary_10_3390_foods12244517 crossref_primary_10_1049_tje2_12409 crossref_primary_10_1109_ACCESS_2024_3441642 crossref_primary_10_1108_DTA_07_2023_0377 |
| Cites_doi | 10.3390/en13184722 10.3390/en13164121 10.1016/j.epsr.2020.106489 10.1109/ICIOT.2019.00029 10.1109/INFORMATICS.2017.8327236 10.3390/atmos12091211 10.1109/PowerAfrica.2016.7556585 10.1080/00031305.2017.1380080 10.1016/j.apenergy.2017.03.034 10.1016/j.jmoneco.2005.03.015 10.3390/s21051639 10.3390/en13020443 10.1002/for.3980090203 10.1016/j.eswa.2019.05.028 10.3390/en14185873 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Liang et al 2023 Liang et al 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Liang et al 2023 Liang et al – notice: 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0277085 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database Agricultural & Environmental Science Collection (ProQuest) ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Energy consumption prediction |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2766403658 oai_doaj_org_article_c0d3e3fb4b384769933587228848e64c 10.1371/journal.pone.0277085 PMC9844920 A733560370 36649365 10_1371_journal_pone_0277085 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK N95 |
| ID | FETCH-LOGICAL-c622t-32e6660d1a526beae35739e4404550f4915dd93c7a19c4c905d30bf1fdd2a0253 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Feb 05 03:14:12 EST 2023 Fri Oct 03 12:43:01 EDT 2025 Sun Oct 26 04:07:50 EDT 2025 Tue Sep 30 17:16:23 EDT 2025 Fri Sep 05 14:49:23 EDT 2025 Tue Oct 07 07:48:15 EDT 2025 Mon Oct 20 22:09:31 EDT 2025 Mon Oct 20 16:48:20 EDT 2025 Thu Oct 16 16:04:36 EDT 2025 Thu Oct 16 16:04:42 EDT 2025 Thu May 22 21:23:36 EDT 2025 Thu Apr 03 07:02:41 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 Wed Oct 01 01:25:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Copyright: © 2023 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c622t-32e6660d1a526beae35739e4404550f4915dd93c7a19c4c905d30bf1fdd2a0253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-2175-865X 0000-0002-2152-6779 0000-0002-6443-9990 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0277085 |
| PMID | 36649365 |
| PQID | 2766403658 |
| PQPubID | 1436336 |
| PageCount | e0277085 |
| ParticipantIDs | plos_journals_2766403658 doaj_primary_oai_doaj_org_article_c0d3e3fb4b384769933587228848e64c unpaywall_primary_10_1371_journal_pone_0277085 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9844920 proquest_miscellaneous_2766431435 proquest_journals_2766403658 gale_infotracmisc_A733560370 gale_infotracacademiconefile_A733560370 gale_incontextgauss_ISR_A733560370 gale_incontextgauss_IOV_A733560370 gale_healthsolutions_A733560370 pubmed_primary_36649365 crossref_citationtrail_10_1371_journal_pone_0277085 crossref_primary_10_1371_journal_pone_0277085 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-17 |
| PublicationDateYYYYMMDD | 2023-01-17 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2023 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | pone.0277085.ref007 G Ke (pone.0277085.ref019) 2017; 30 S Park (pone.0277085.ref009) 2020; 13 J Bu S (pone.0277085.ref014) 2020; 13 X Jiang (pone.0277085.ref022) 2021; 12 J Taylor S (pone.0277085.ref015) 2018; 72 J Chung (pone.0277085.ref016) 2014 K Cho (pone.0277085.ref020) 2014; 1259 L Sehovac (pone.0277085.ref006) 2019 L Yuxuan (pone.0277085.ref012) 2021 W Luthuli Q (pone.0277085.ref001) 2016 S Pei (pone.0277085.ref005) 2020; 13 A Vaswani (pone.0277085.ref021) 2017 C Harvey A (pone.0277085.ref017) 1990; 9 S Jung (pone.0277085.ref013) 2021; 21 Y Xie (pone.0277085.ref011) 2021; 14 A Jain (pone.0277085.ref002) 2009 L Speiser J (pone.0277085.ref010) 2019; 134 S Park (pone.0277085.ref004) 2021 S Atef (pone.0277085.ref008) 2020; 187 V Zarnowitz (pone.0277085.ref018) 2006; 53 Y Chen (pone.0277085.ref003) 2017; 195 |
| References_xml | – volume: 13 start-page: 4722 issue: 18 year: 2020 ident: pone.0277085.ref014 article-title: Time series forecasting with multiheaded attention-based deep learning for residential energy consumption[J]. publication-title: Energies doi: 10.3390/en13184722 – start-page: 1 year: 2021 ident: pone.0277085.ref004 article-title: Sliding window-based LightGBM model for electric load forecasting using anomaly repair[J] publication-title: The Journalof Supercomputing – volume: 13 start-page: 4121 issue: 16 year: 2020 ident: pone.0277085.ref005 article-title: Multistep ahead short-term load forecasting using hybrid feature selection and improved long short-term memory network[J]. publication-title: Energies doi: 10.3390/en13164121 – start-page: 1 year: 2009 ident: pone.0277085.ref002 article-title: Clustering based short term load forecasting using support vector machines[C]. publication-title: 2009 IEEE Bucharest PowerTech. – volume: 187 start-page: 106489 year: 2020 ident: pone.0277085.ref008 article-title: Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting[J] publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2020.106489 – year: 2021 ident: pone.0277085.ref012 article-title: Dynamic time features expanding and extracting method for prediction model of sintering process quality index[J] publication-title: IEEE Transactions on Industrial Informatics – start-page: 108 year: 2019 ident: pone.0277085.ref006 article-title: Forecasting building energy consumption with deep learning: A sequence to sequence approach[C]. publication-title: 2019 IEEE International Congress on Internet of Things (ICIOT) doi: 10.1109/ICIOT.2019.00029 – ident: pone.0277085.ref007 doi: 10.1109/INFORMATICS.2017.8327236 – volume: 12 start-page: 1211 issue: 9 year: 2021 ident: pone.0277085.ref022 article-title: Prediction of PM2. 5 Concentration Based on the LSTM-TSLightGBM Variable Weight Combination Model[J]. publication-title: Atmosphere doi: 10.3390/atmos12091211 – start-page: 129 year: 2016 ident: pone.0277085.ref001 article-title: Short term load forecasting using artificial intelligen-ce[C]. publication-title: 2016 IEEE PES PowerAfrica. doi: 10.1109/PowerAfrica.2016.7556585 – year: 2014 ident: pone.0277085.ref016 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. publication-title: arXiv preprint arXiv:1412.3555 – volume: 72 start-page: 37 issue: 1 year: 2018 ident: pone.0277085.ref015 article-title: Forecasting at scale[J] publication-title: The American Statistician doi: 10.1080/00031305.2017.1380080 – volume: 30 start-page: 3146 year: 2017 ident: pone.0277085.ref019 article-title: Lightgbm: A highly efficient gradient boosting decision tree[J] publication-title: Advances in neural information processing systems – volume: 1259 year: 2014 ident: pone.0277085.ref020 article-title: On the properties of neural machine translation: Encoder-decoder approaches[J]. publication-title: arXiv preprint arXiv:1409. – volume: 195 start-page: 659 year: 2017 ident: pone.0277085.ref003 article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings[J]. publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.03.034 – volume: 53 start-page: 1717 issue: 7 year: 2006 ident: pone.0277085.ref018 article-title: Time series decomposition and measurement of business cycles, trends and growth cycles[J] publication-title: Journal of Monetary Economics doi: 10.1016/j.jmoneco.2005.03.015 – volume: 21 start-page: 1639 issue: 5 year: 2021 ident: pone.0277085.ref013 article-title: An Attention-Based Multilayer GRU Model for Multistep-Ahead Short-Term Load Forecasting[J]. publication-title: Sensors doi: 10.3390/s21051639 – volume: 13 start-page: 443 issue: 2 year: 2020 ident: pone.0277085.ref009 article-title: A two-stage industrial load forecasting scheme for day-ahead combined cooling, heating and power scheduling[J]. publication-title: Energies doi: 10.3390/en13020443 – volume: 9 start-page: 89 issue: 2 year: 1990 ident: pone.0277085.ref017 article-title: Estimation procedures for structural time series models[J] publication-title: Journal of forecasting doi: 10.1002/for.3980090203 – start-page: 5998 year: 2017 ident: pone.0277085.ref021 article-title: Attention is all you need[C] publication-title: Advances in neural information processing systems – volume: 134 start-page: 93 year: 2019 ident: pone.0277085.ref010 article-title: A comparison of random forest variable selection methods for classification prediction modeling[J] publication-title: Expert systems with applications doi: 10.1016/j.eswa.2019.05.028 – volume: 14 start-page: 5873 issue: 18 year: 2021 ident: pone.0277085.ref011 article-title: A Two-Stage Short-Term Load Forecasting Method Using Long Short-Term Memory and Multilayer Perceptron[J]. publication-title: Energies doi: 10.3390/en14185873 |
| SSID | ssj0053866 |
| Score | 2.4454207 |
| Snippet | The prediction of energy consumption is of great significance to the stability of the regional energy supply. In previous research on energy consumption... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0277085 |
| SubjectTerms | Accuracy Biology and Life Sciences Computer and Information Sciences Decision trees Decomposition Energy consumption Energy research Engineering and Technology Feature extraction Forecasting Forecasts and trends Growth models Learning algorithms Machine Learning Methods Modelling Mutation Neural networks Neural Networks, Computer Noise reduction Physical Phenomena Physical Sciences Prediction models Regression analysis Research and Analysis Methods Seasons Stability Time series Time-series analysis Training Windows (intervals) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQX-AFMb6WMcAgJOAhXWI7Tvy4oX2AKKBB0d4ix3EGUkmiphXiv-fOcaNGTNoeeKvic1Tfnc938d3vCHmVqBKCZG3CiGsdiqwEO1hEOsxK0B8ImuHUwULh2Sd5NhcfLpKLrVZfmBPWwwP3jDswUcktrwpRcDCkEo5TnmQpY1kmMiuFQesbZWoTTPU2GHaxlL5QjqfxgZfLtG1qO8Vbywh7J28dRA6vf7DKk3bRdFe5nP9mTt5e163-81svFlvH0sk9ctf7k_SwX8cOuWXr-2TH79iOvvGw0m8fkF_HrsyPGld06SwFbZd4T-N-YgL8JQV3kJ6ez8MZ9gHvMyHDjxi_nx7NqOuaQ_HLLa2sAwTtaFPRL0vEJljR0mJ-uk8Ce0jmJ8ff3p2FvtlCaCRjq5AzC5FMVMY6YbKw2vIk5coifCAEMZVQcVKWiptUx8oIo6IEhFxUcVWWTIPjxB-RSQ3s3SVUGsaVFkWsKi6sTnQhI424i6kBDTBFQPiG87nxSOTYEGORu-u1FCKSnnk5yiv38gpIOMxqeySOa-iPUKgDLeJouwegXbnXrvw67QrIc1SJvC9KHaxBfgirAV-Rp1FAXjoKxNKoMVnnUq-7Ln__-fsNiL6ej4hee6KqAXYY7QskYE2I0TWi3B9RgkUwo-FdVOANV7qcpVIKcFWSDGZulPrq4RfDML4UE_Bq26w9DUfnOiCP-z0wcJbDkILpAUlHu2PE-vFI_fOHgzJXmRCKwT-eDvvoRsLd-x_CfULuMHBZ8YNanO6TyWq5tk_BxVwVz5w1-Qte9njS priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wACDkICHdEnsfD0gtKJuA9EyFYr2Fjm2U5BKUppWiP-eO8cJi5hgb1V9ruo73_nOvvsdIc_DVEGQLKTrMSFcniiwg7kn3ETB_oGgGU4dLBSeTKPTOX9_Hp7vkGlbC4Npla1NNIZaVRLvyA-DOIo4mNswebP64WLXKHxdbVtoCNtaQb02EGPXyG6AyFgDsjsaT89mrW0G7Y4iW0DHYv_Qymu4qko9xNdMD3sqXzigDI5_Z60Hq2VVX-aK_p1ReX1brsSvn2K5vHBcHd8iN62fSY-ajbFHdnR5m-xZTa7pSws3_eoO-T425X9UmmJMY0Hoao3vN-YjJsYvKLiJ9GQ2dyfYH7zJkHQ_YFx_MppQ002H4o0uLbQBCq1pVdCzNWIWbKjSmLduk8Pukvnx-PPbU9c2YXBlFAQblwUaIhxP-SIMolwLzcKYpRphBSG4KXjqh0qlTMbCTyWXqReC8PPCL5QKBDhU7B4ZlMDefUIjGbBU8NxPC8a1CEUeeQLxGGMJO0PmDmEt5zNpEcqxUcYyM89uMUQqDfMylFdm5eUQt5u1ahA6_kM_QqF2tIivbb6o1ovMqmsmPcU0K3KeMzi-I3DiWJjEQZAkPNERlw55glsia4pVOyuRHcFqwIdkseeQZ4YCMTZKTOJZiG1dZ-8-frkC0adZj-iFJSoqYIcUtnAC1oTYXT3Kgx4lWArZG97HDdxypc7-6BTMbDf15cNPu2H8UUzMK3W1tTQMnW6H3G90oOMsg6EUpjsk7mlHj_X9kfLbVwNxniacpwH842GnR1cS7oN_r-MhuRGAk4pXaH58QAab9VY_Aqdykz-2luI3VXt4FQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEQmI7H37s0D5AdEyDovEUOY4zECWtmlYI_nruHDdaYIjyVtXnqj7fnX-2734m5EksS9gkK-2HXClfZCXEwSJUflaC_cCmGVYdLBQeHSWHY_HmND7dIC9WtTDn7-95Gr10Gg1m09oEeN8IEOES2UxiQN4Dsjk-Oh5-ai-OmZ-wkLvquL917a0-lqS_C8WD2WTaXIQz_0yXvLysZ-rHdzWZnFuL9q-R0WoUbQrK12C5KAL98zeCx3WHeZ1cdaCUDlsr2iIbpr5BtpzbN_SZ46Z-fpN827O1glTbyk0bbuhsjpc99iNm0Z9RwJT04GTsj_Ax8Tad0n-LhwAHuyNqn96hePxLK2NZRRs6rejxHAkOFrQ0mOTuMslukfH-3odXh757scHXCWMLnzMD26GwjFTMksIow-OUS4MchLATqoSM4rKUXKcqklpoGcZgKUUVVWXJFKAvfpsMalDBNqGJZlwqUUSy4sKoWBVJqJC8MdVgRrrwCF_NZK4dnTm-qjHJ7R1dCtuaVnk56jR3OvWI3_WatXQe_5DfRSPpZJGM234Bk5c73851WHLDq0IUHNb6BBAfj7OUsSwTmUmE9shDNLG8rWztQko-hNEA4ORp6JHHVgIJOWrM-DlTy6bJX7_7uIbQ-5Oe0FMnVE1BHVq5KgsYExJ99SR3epIQVnSveRsdYqWVJmdpkgjAO3EGPVdOcnHzo64ZfxSz-GozXToZjgjdI3dan-o0y6FJQnePpD1v66m-31J_-Wz50GUmhGTwj4POL9ea3Lv_2-EeucIA4-IJXJTukMFivjT3AZMuigcuFP0Cd72Kjg priority: 102 providerName: Unpaywall |
| Title | Energy consumption prediction using the GRU-MMattention-LightGBM model with features of Prophet decomposition |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36649365 https://www.proquest.com/docview/2766403658 https://www.proquest.com/docview/2766431435 https://pubmed.ncbi.nlm.nih.gov/PMC9844920 https://doi.org/10.1371/journal.pone.0277085 https://doaj.org/article/c0d3e3fb4b384769933587228848e64c http://dx.doi.org/10.1371/journal.pone.0277085 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj9MwDI_udg_wgji-rnCMgJCAh05tk349ILSdth2IjWkwNJ6qNE0H0mjHugnuv8fOsoqKIe6lmhqnWh3bsRv7Z0Ke-3EGQbKQtsOEsHmUgR1MHWFHGcgPBM2w62Ch8GgcXM74u7k_PyL7nq2GgdXB0A77Sc3Wy86vH1dvQOFf664Nobuf1FmVhergmSS4EcfkBPaqGJs5jHh9rgDarU8v0WuxA89hppjuX09pbFYa07-23K3VsqwOuaV_Z1fe2BYrcfVTLJd_bF2D2-SW8Tlpdyckp-RIFXfIqdHqir400NOv7pLvfV0KSKUuzNTWhK7WeJajf2KS_IKCy0iH05k9wl7hu2xJ-z3G-MPeiOrOOhS_7tJcadDQipY5nawRv2BDM4U57CZR7B6ZDfqfLi5t05DBloHnbWzmKYh2nMwVvhekSijmhyxWCDEIgU7OY9fPspjJULix5DJ2fBCENHfzLPMEOFfsPmkVwN4zQgPpsVjw1I1zxpXwRRo4ArEZQwlSIlOLsD3nE2nQyrFpxjLRR3AhRC075iW4XolZL4vY9azVDq3jP_Q9XNSaFrG29Y1yvUiM6ibSyZhiecpTBlt5AA4d86PQ86KIRyrg0iJPUCSSXeFqbTGSLrwN-JMsdCzyTFMg3kaBCT0Lsa2q5O2Hz9cg-jhtEL0wRHkJ7JDCFFHAOyGOV4PyvEEJVkM2hs9QgPdcqRIvDAIO7owfwcy9UB8efloP40MxSa9Q5dbQMHTALfJgpwM1ZxkMxTDdImFDOxqsb44U375quPM44jz24B93aj261uI-vA7XH5GbHrit-FHNDc9Ja7PeqsfgZm7SNjkO5yFcowsXr4Nhm5z0-uPJtK0_3LS1ZYF7s_Gk--U3NYyCDA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLorwaKNQgEHDINrGd1wGhFvqi3YLaLtpbcBynIC3JstlV1T_Fb2TG8YZGVNBLb6t4Eq3H48-f7XkQ8iJIctgkS-V6XEpXxDngYOZJN87BfmDTDKsOBgr3D8Pdgfg4DIYL5Nc8FgbdKueYaIA6rxSeka-zKAwFwG0Qvxv_dLFqFN6uzktoNGaxr8_PYMtWv937AOP7krHtrZP3u66tKuCqkLGpy5kGyu7lvgxYmGmpeRDxRGOePGDrhUj8IM8TriLpJ0qoxAugN1nhF3nOJDAEDt-9QW4KDlgC8ycaths8wI4wtOF5PPLXrTX0xlWpe3hX6mHF5gvLn6kS0K4Fi-NRVV9GdP_211yalWN5fiZHowuL4fYdctuyWLrRmN0yWdDlXbJscaKmr20y6zf3yI8tE1xIlQn1NPhExxO8HTI_0e3-lAIJpTtHA7eP1ccb_0v3AE8Ndjb71NTqoXheTAtt0pDWtCro5wlmRJjSXKNXvHU9u08G1zIYD8hiCepdITRUjCdSZH5ScKFlILPQk5jtMVJgdypzCJ9rPlU2_zmW4Ril5lIvgn1Qo7wUxyu14-UQt31r3OT_-I_8Jg5qK4vZu82DanKaWjBIlZdzzYtMZBzIQQgUkQdxxFgci1iHQjlkDU0ibUJhWwxKN6A3wFB55DnkuZHADB4lugidylldp3ufvlxB6PioI_TKChUVqENJG5YBfcLMYB3J1Y4k4JDqNK-gAc-1Uqd_Ziy8OTfqy5uftc34UXT7K3U1szIcKb1DHjZzoNUsh6YEXndI1JkdHdV3W8rv30wC9SQWImHwj3vtPLrS4D76dz_WyNLuSf8gPdg73H9MbjGgw3hY50erZHE6meknQF-n2VODGZR8vW6Q-g0wH61E |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGkYAXxLgtMJhBIOAhbWLn-oDQxtat7MI0KOpbcBynIJWkNK2m_TV-Hec4bljEBHvZWxWfRPXx8efP9rkQ8sKPM9gkC2k7XAjbizLAwdQRdpSB_cCmGVYdDBQ-PAr2ht6HkT9aIb-WsTDoVrnERA3UWSnxjLzHwiDwAG79qJcbt4jj7f676U8bK0jhTeuynEZtIvvq7BS2b9XbwTaM9UvG-juf3-_ZpsKALQPG5jZnCui7k7nCZ0GqhOJ-yGOFOfOAuede7PpZFnMZCjeWnowdH3qW5m6eZUwAW-Dw3Wvkesh5jO6E4ajZ7AGOBIEJ1eOh2zOW0Z2WherivamD1ZvPLYW6YkCzLnSmk7K6iPT-7bt5c1FMxdmpmEzOLYz9O-S2YbR0szbBVbKiirtk1WBGRV-bxNZv7pEfOzrQkEod9qmxik5neFOkf6IL_pgCIaW7J0P7ECuR176Y9gGeIOxuHVJdt4fi2THNlU5JWtEyp8czzI4wp5lCD3njhnafDK9kMB6QTgHqXSM0kIzHwkvdOOeeEr5IA0dg5sdQgg3K1CJ8qflEmlzoWJJjkugLvhD2RLXyEhyvxIyXRezmrWmdC-Q_8ls4qI0sZvLWD8rZODHAkEgn44rnqZdyIAoB0EXuRyFjUeRFKvCkRTbQJJI6LLbBo2QTegNslYeORZ5rCczmUeC8GItFVSWDj18uIfTppCX0ygjlJahDChOiAX3CLGEtyfWWJGCSbDWvoQEvtVIlf2YvvLk06oubnzXN-FF0ASxUuTAyHOm9RR7Wc6DRLIemGF63SNiaHS3Vt1uK7990MvU48ryYwT_uNvPoUoP76N_92CA3AJ6Sg8HR_mNyiwEzxnM7N1wnnflsoZ4Ak52nTzVkUPL1qjHqN6N2sYc |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG9wAvwPhaYIBBSIBEQmI7H37s0D5AdEyDovEUOY4zECWtmlYI_nruHDdaYIjyVtXnqj7fnX-2734m5EksS9gkK-2HXClfZCXEwSJUflaC_cCmGVYdLBQeHSWHY_HmND7dIC9WtTDn7-95Gr10Gg1m09oEeN8IEOES2UxiQN4Dsjk-Oh5-ai-OmZ-wkLvquL917a0-lqS_C8WD2WTaXIQz_0yXvLysZ-rHdzWZnFuL9q-R0WoUbQrK12C5KAL98zeCx3WHeZ1cdaCUDlsr2iIbpr5BtpzbN_SZ46Z-fpN827O1glTbyk0bbuhsjpc99iNm0Z9RwJT04GTsj_Ax8Tad0n-LhwAHuyNqn96hePxLK2NZRRs6rejxHAkOFrQ0mOTuMslukfH-3odXh757scHXCWMLnzMD26GwjFTMksIow-OUS4MchLATqoSM4rKUXKcqklpoGcZgKUUVVWXJFKAvfpsMalDBNqGJZlwqUUSy4sKoWBVJqJC8MdVgRrrwCF_NZK4dnTm-qjHJ7R1dCtuaVnk56jR3OvWI3_WatXQe_5DfRSPpZJGM234Bk5c73851WHLDq0IUHNb6BBAfj7OUsSwTmUmE9shDNLG8rWztQko-hNEA4ORp6JHHVgIJOWrM-DlTy6bJX7_7uIbQ-5Oe0FMnVE1BHVq5KgsYExJ99SR3epIQVnSveRsdYqWVJmdpkgjAO3EGPVdOcnHzo64ZfxSz-GozXToZjgjdI3dan-o0y6FJQnePpD1v66m-31J_-Wz50GUmhGTwj4POL9ea3Lv_2-EeucIA4-IJXJTukMFivjT3AZMuigcuFP0Cd72Kjg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+consumption+prediction+using+the+GRU-MMattention-LightGBM+model+with+features+of+Prophet+decomposition&rft.jtitle=PloS+one&rft.au=Liang%2C+Shaokun&rft.au=Deng%2C+Tao&rft.au=Huang%2C+Anna&rft.au=Liu%2C+Ningxian&rft.date=2023-01-17&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=1&rft.spage=e0277085&rft_id=info:doi/10.1371%2Fjournal.pone.0277085&rft.externalDBID=IOV&rft.externalDocID=A733560370 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |