深度学习在缺陷修复者推荐中的应用
TP311.5; 目前许多软件项目使用缺陷追踪系统来自动化管理用户或者开发人员提交的缺陷报告.随着缺陷报告和开发人员数量的增长,如何快速将缺陷报告分配给合适的缺陷修复者正在成为缺陷快速解决的一个重要问题.分别使用长短期记忆模型和卷积神经网络两种深度学习方法来构建缺陷修复者推荐模型.该模型能够有效地学习缺陷报告的特征,并且根据该特征推荐合适的修复者.通过与传统机器学习方法(如贝叶斯方法和支持向量机方法)进行对比,该方法可以比较有效地在众多开发者中找出合适的缺陷修复者....
Saved in:
| Published in | 计算机科学与探索 Vol. 11; no. 5; pp. 700 - 707 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | Chinese |
| Published |
北京大学高可信软件技术教育部重点实验室,北京,100871
2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1673-9418 |
| DOI | 10.3778/j.issn.1673-9418.1609033 |
Cover
| Abstract | TP311.5; 目前许多软件项目使用缺陷追踪系统来自动化管理用户或者开发人员提交的缺陷报告.随着缺陷报告和开发人员数量的增长,如何快速将缺陷报告分配给合适的缺陷修复者正在成为缺陷快速解决的一个重要问题.分别使用长短期记忆模型和卷积神经网络两种深度学习方法来构建缺陷修复者推荐模型.该模型能够有效地学习缺陷报告的特征,并且根据该特征推荐合适的修复者.通过与传统机器学习方法(如贝叶斯方法和支持向量机方法)进行对比,该方法可以比较有效地在众多开发者中找出合适的缺陷修复者. |
|---|---|
| AbstractList | TP311.5; 目前许多软件项目使用缺陷追踪系统来自动化管理用户或者开发人员提交的缺陷报告.随着缺陷报告和开发人员数量的增长,如何快速将缺陷报告分配给合适的缺陷修复者正在成为缺陷快速解决的一个重要问题.分别使用长短期记忆模型和卷积神经网络两种深度学习方法来构建缺陷修复者推荐模型.该模型能够有效地学习缺陷报告的特征,并且根据该特征推荐合适的修复者.通过与传统机器学习方法(如贝叶斯方法和支持向量机方法)进行对比,该方法可以比较有效地在众多开发者中找出合适的缺陷修复者. |
| Abstract_FL | Open source projects typically support an open bug repository to which developers and users can report bugs.As the increase in bug reports and developers,it is a challenge to assign large amounts of bug reports effectively to the appropriate developers.This paper applies two deep learning approaches,long-short term memory and convolutional neural network,to learn the features of bug reports and then makes assignments.Deep learning approaches are expert in learning features and making assignments effectively with the help of features.Compared to the traditional machine learning approaches such as Bayesianlearning and support vector machine,the proposed approach can assign bug reports to developers effectively. |
| Author | 王千祥 胡星 |
| AuthorAffiliation | 北京大学高可信软件技术教育部重点实验室,北京,100871 |
| AuthorAffiliation_xml | – name: 北京大学高可信软件技术教育部重点实验室,北京,100871 |
| Author_FL | HU Xing WANG Qianxiang |
| Author_FL_xml | – sequence: 1 fullname: HU Xing – sequence: 2 fullname: WANG Qianxiang |
| Author_xml | – sequence: 1 fullname: 胡星 – sequence: 2 fullname: 王千祥 |
| BookMark | eNo9jbtKA0EYhaeIYIx5B1uLXf-575QSvEEgTfow2cxIVpmAo6idhZYRizSKhYWEbRKwii6CL7ObjW_hgmJ1Dh-H72ygmhs5g9AWhpBKGe0k4dB7F2IhaaAYjqoGCiitofo_W0dN74d94IwRLEVUR7BcvBXZtJhN84-X4jktP7Pvx0X-NS9ex6ubu-V9uho_5O-z8um2yCblJN1Ea1afetP8ywbq7u91W4dBu3Nw1NptB7EgJMDWaKMsk5JooSJu48harQjFoNhgQJnSxipjTYyt4LHmnALmwKut1H0d0wba_tVeame1O-4lo4szVx32Ep-cXF2fewJYAgcg9AfDvVww |
| ClassificationCodes | TP311.5 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3778/j.issn.1673-9418.1609033 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | Application of Deep Learning in Recommendation of Bug Reports Assignment |
| EndPage | 707 |
| ExternalDocumentID | jsjkxyts201705002 |
| GrantInformation_xml | – fundername: The National Natural Science Foundation of China under Grant Nos.61672045,61421091; the National Basic Research Program of China under Grant No.2015CB352201(国家重点基础研究发展计划 funderid: The National Natural Science Foundation of China under Grant Nos.61672045,61421091; (973计划)) |
| GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS M~E PSX TCJ |
| ID | FETCH-LOGICAL-c622-1feae9f4772a6985fc8ffa9231094dd349aef9efec1f65ca553015056987abac3 |
| ISSN | 1673-9418 |
| IngestDate | Thu May 29 04:00:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | deep learning 缺陷报告分配 缺陷追踪 issue tracking 深度学习 bug report assignment |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c622-1feae9f4772a6985fc8ffa9231094dd349aef9efec1f65ca553015056987abac3 |
| PageCount | 8 |
| ParticipantIDs | wanfang_journals_jsjkxyts201705002 |
| PublicationCentury | 2000 |
| PublicationDate | 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | 计算机科学与探索 |
| PublicationTitle_FL | Journal of Frontiers of Computer Science & Technology |
| PublicationYear | 2017 |
| Publisher | 北京大学高可信软件技术教育部重点实验室,北京,100871 |
| Publisher_xml | – name: 北京大学高可信软件技术教育部重点实验室,北京,100871 |
| SSID | ssib054421768 ssib002040941 ssib002423894 ssib051375751 ssib023646573 ssib036438069 ssib002040926 |
| Score | 2.0859325 |
| Snippet | TP311.5; 目前许多软件项目使用缺陷追踪系统来自动化管理用户或者开发人员提交的缺陷报告.随着缺陷报告和开发人员数量的增长,如何快速将缺陷报告分配给合适的缺陷修复者正... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 700 |
| Title | 深度学习在缺陷修复者推荐中的应用 |
| URI | https://d.wanfangdata.com.cn/periodical/jsjkxyts201705002 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1673-9418 databaseCode: M~E dateStart: 20070101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib054421768 providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27btRA0AqhoUEgQLyFEFs6-LHeR2n7fIqQoDqkdNHaZ4OCdKDcRYIUiALKIIo0IAoKFF0TJKrACYmfucuFv2Bm7PM5IUiBxlrPzs7Mzpx3Zvb2YVl3HHB6bpoJO9UitTlPhW0Knttupo0JYHhMHdycfP-BWH7I760EKwunnjVWLW0M0qVs89h9Jf9jVYCBXXGX7D9YtiYKACiDfeEJFobniWzMEsEiySKXJQGLQhYKLIQtKnAWaRY6CNExCxVLADNGtEQzrbEh4rRZmFArCCpbLFG49EEFSFkl1EohXDuErJA40NEhU7xiqjlBOCA3I11sCJRDF2uhoCXS1KUAAIEm7mFpFXKs-HokLdCsFz-TID7RAzKK6fa8RmIbFSE5kBWwkAGQDppzGuXmTfr9EWJMInHSW1xpAKSaiwTai5ATIoOW2jN1uShK1JpBIhYJEjtE1ZV9xCooBKhnlNtjkYcEsQOKCpK0LalKE1NQUUJMQ5SthIBIXnyMtF6MpyWVt8pULkVI39a88jIzn-M2vq2g4UCk4zRiEVneCHzUzflSKnJzyGCpZoAzhdopzxU5coj4Wn_tyfMXg75HxyfR6aunPZzBwsWuL5N5wAZjum4mnPjOD-18hgi3HsHx9gERzANgePWVI-oAOXB9iX_s1e-cQwpc7k-dSV0ur8Mu3f1bh2hDXa8wvUeN2K9zzjpbJW23wvILPG8tbD6-YDn7e18no53J7s74-6fJx-H0x-jX-73xzy-Tz1sHr97svx0ebL0bf9udfng9GW1Pt4cXrU476cTLdnX_iJ0Jz7PdIje5Ljjkn0ZohYsdi8JQQqR5t-tzbfJC50WeuYUIMoMXcLmYUGglTWoy_5K12Hvayy9DBzMOgXfqoA-F_ERpmRfdNPW6BnCF8q5Yt6sOrlbDS3_1D5NdPQnSNesMlstJwuvW4mB9I78BYfMgvUmW_g3sDYx8 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E5%9C%A8%E7%BC%BA%E9%99%B7%E4%BF%AE%E5%A4%8D%E8%80%85%E6%8E%A8%E8%8D%90%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E8%83%A1%E6%98%9F&rft.au=%E7%8E%8B%E5%8D%83%E7%A5%A5&rft.date=2017&rft.pub=%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E9%AB%98%E5%8F%AF%E4%BF%A1%E8%BD%AF%E4%BB%B6%E6%8A%80%E6%9C%AF%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC%2C100871&rft.issn=1673-9418&rft.volume=11&rft.issue=5&rft.spage=700&rft.epage=707&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1609033&rft.externalDocID=jsjkxyts201705002 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg |