A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis

The energetic utilisation of agricultural residues is considered to be an important element in any strategy to achieve renewable energy targets. In the approximately 80 cane-sugar producing countries there is potential to make better use of the fibrous residue known as bagasse. Subject to improved e...

Full description

Saved in:
Bibliographic Details
Published inEnergy policy Vol. 34; no. 17; pp. 2654 - 2661
Main Authors Botha, Tyron, von Blottnitz, Harro
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2006
Elsevier
Elsevier Science Ltd
SeriesEnergy Policy
Subjects
Online AccessGet full text
ISSN0301-4215
1873-6777
DOI10.1016/j.enpol.2004.12.017

Cover

Abstract The energetic utilisation of agricultural residues is considered to be an important element in any strategy to achieve renewable energy targets. In the approximately 80 cane-sugar producing countries there is potential to make better use of the fibrous residue known as bagasse. Subject to improved energy efficiency, sugar producers could supply energy either as “green”, co-generated electricity, or as fuel ethanol through cellulose hydrolysis followed by fermentation. This paper compares their projected environmental benefits from a life-cycle perspective, using South African data. Mass and energy analyses were prepared for the two systems and a base case (producing sugar with current methods), relative to the annual sugarcane production on one hectare. In both cases, the environmental burdens avoided by replacing an equivalent amount of fossil energy were included. The results obtained confirm that for all the impact categories considered, both “bioenergy” products result in environmental benefits. The co-generation option results in lower energy-related emissions (i.e. lower global warming, acidification and eutrophication potentials), whereas the fuel ethanol option is preferred in terms of resource conservation (since it is assumed to replace oil not coal), and also scores better in terms of human and eco-toxicity if assumed to replace lead-bearing oxygenates.
AbstractList The energetic utilisation of agricultural residues is considered to be an important element in any strategy to achieve renewable energy targets. In the approximately 80 cane-sugar producing countries there is potential to make better use of the fibrous residue known as bagasse. Subject to improved energy efficiency, sugar producers could supply energy either as ''green'', co-generated electricity, or as fuel ethanol through cellulose hydrolysis followed by fermentation. This paper compares their projected environmental benefits from a life-cycle perspective, using South African data. Mass and energy analyses were prepared for the two systems and a base case (producing sugar with current methods), relative to the annual sugarcane production on one hectare. In both cases, the environmental burdens avoided by replacing an equivalent amount of fossil energy were included. The results obtained confirm that for all the impact categories considered, both ''bioenergy'' products result in environmental benefits. The co-generation option results in lower energy-related emissions (i.e. lower global warming, acidification and eutrophication potentials), whereas the fuel ethanol option is preferred in terms of resource conservation (since it is assumed to replace oil not coal), and also scores better in terms of human and eco-toxicity if assumed to replace lead-bearing oxygenates. All rights reserved, Elsevier
The energetic utilisation of agricultural residues is considered to be an important element in any strategy to achieve renewable energy targets. In the approximately 80 cane-sugar producing countries there is potential to make better use of the fibrous residue known as bagasse. Subject to improved energy efficiency, sugar producers could supply energy either as "green", co-generated electricity, or as fuel ethanol through cellulose hydrolysis followed by fermentation. This paper compares their projected environmental benefits from a life-cycle perspective, using South African data. Mass and energy analyses were prepared for the two systems and a base case (producing sugar with current methods), relative to the annual sugarcane production on one hectare. In both cases, the environmental burdens avoided by replacing an equivalent amount of fossil energy were included. The results obtained confirm that for all the impact categories considered, both "bioenergy" products result in environmental benefits. The co- generation option results in lower energy-related emissions (i.e. lower global warming, acidification and eutrophication potentials), whereas the fuel ethanol option is preferred in terms of resource conservation (since it is assumed to replace oil not coal), and also scores better in terms of human and eco-toxicity if assumed to replace lead-bearing oxygenates. [PUBLICATION ABSTRACT]
The energetic utilisation of agricultural residues is considered to be an important element in any strategy to achieve renewable energy targets. In the approximately 80 cane-sugar producing countries there is potential to make better use of the fibrous residue known as bagasse. Subject to improved energy efficiency, sugar producers could supply energy either as “green”, co-generated electricity, or as fuel ethanol through cellulose hydrolysis followed by fermentation. This paper compares their projected environmental benefits from a life-cycle perspective, using South African data. Mass and energy analyses were prepared for the two systems and a base case (producing sugar with current methods), relative to the annual sugarcane production on one hectare. In both cases, the environmental burdens avoided by replacing an equivalent amount of fossil energy were included. The results obtained confirm that for all the impact categories considered, both “bioenergy” products result in environmental benefits. The co-generation option results in lower energy-related emissions (i.e. lower global warming, acidification and eutrophication potentials), whereas the fuel ethanol option is preferred in terms of resource conservation (since it is assumed to replace oil not coal), and also scores better in terms of human and eco-toxicity if assumed to replace lead-bearing oxygenates.
Author Botha, Tyron
von Blottnitz, Harro
Author_xml – sequence: 1
  givenname: Tyron
  surname: Botha
  fullname: Botha, Tyron
– sequence: 2
  givenname: Harro
  surname: von Blottnitz
  fullname: von Blottnitz, Harro
  email: hvb@chemeng.uct.ac.za
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18187426$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeenepol/v_3a34_3ay_3a2006_3ai_3a17_3ap_3a2654-2661.htm$$DView record in RePEc
BookMark eNqFkktvGyEUhUdVKtVx-wu6GVVquxqX18Cw6CKK0oeUqpt2jTBzqbEwTGFsyf--13WURRYOEvdK8J0DgnPdXKWcoGneUrKihMpP2xWkKccVI0SsKFsRql40Czoo3kml1FWzIJzQTjDav2qua90SBActFs1007q8m2wJNac2-3beQAvpEEpOO0izje0aEvgw19Pu2v6xtUI3QgkHGFuI4OYSXJiPrU1j6_cQW5g3NuXYoqFtY_DQuaOLgOIa6uvmpbexwpuHvmx-f7n7dfutu__59fvtzX3nJKNz50H0ShNGOJd0wCXq-Hrs-aAlEFj3WlotnZC299pL70YnCdFqYBosdSPjy-bj2Xcq-e8e6mx2oTqI0SbI-2pUL5QYek6R_HCR5FIoqZl-FmSECd5L8ixIxUB6yU7guyfgNu9LwndBM7xbz7Eumx9nqMAEzkwl7Gw5GsCRAH_dHAy3XGA54sQISGwBJ1VYptOa7IVhUlKzmXfo9_7hUFudjb7Y5EJ99KUD5kYwiZw-c67kWgt4g99s55DTXGyIhhJzCp_Zmv_hM6fwGcoMhg-1_In20f6i6vNZBRiMQ4BiqguQHIyhYM7MmMNF_T-qhPRs
CODEN ENPYAC
CitedBy_id crossref_primary_10_1016_j_apenergy_2011_08_045
crossref_primary_10_1016_j_rser_2023_113870
crossref_primary_10_1016_j_enconman_2014_12_002
crossref_primary_10_1080_09593330_2018_1491633
crossref_primary_10_1016_j_enpol_2007_06_008
crossref_primary_10_1051_agro_2007006
crossref_primary_10_1016_j_rser_2017_03_047
crossref_primary_10_1016_j_esr_2015_09_003
crossref_primary_10_1016_j_enconman_2018_03_057
crossref_primary_10_1016_j_biortech_2010_08_010
crossref_primary_10_1007_s12649_016_9665_3
crossref_primary_10_1016_j_seta_2021_101246
crossref_primary_10_1155_2010_740962
crossref_primary_10_1016_j_rser_2021_111228
crossref_primary_10_4155_bfs_10_19
crossref_primary_10_1021_ie101400g
crossref_primary_10_1016_j_biombioe_2011_02_017
crossref_primary_10_1016_j_biombioe_2012_09_007
crossref_primary_10_1016_j_pmatsci_2022_100965
crossref_primary_10_6090_jarq_46_41
crossref_primary_10_1016_j_biombioe_2017_05_017
crossref_primary_10_1016_j_ecolecon_2008_08_020
crossref_primary_10_1016_j_cjche_2014_09_048
crossref_primary_10_1016_j_jclepro_2010_08_021
crossref_primary_10_1016_j_ecolmodel_2011_06_021
crossref_primary_10_1080_15567036_2019_1647311
crossref_primary_10_1007_s13201_015_0264_4
crossref_primary_10_1002_tqem_21373
crossref_primary_10_1007_s11367_012_0502_z
crossref_primary_10_1016_j_aoas_2020_10_001
crossref_primary_10_3920_JCNS2008_x095
crossref_primary_10_1016_j_rser_2018_12_025
crossref_primary_10_1016_j_enpol_2013_02_020
crossref_primary_10_31590_ejosat_1084940
crossref_primary_10_1021_es100681g
crossref_primary_10_1126_science_1218930
crossref_primary_10_1016_j_biombioe_2014_06_005
crossref_primary_10_1016_j_bej_2012_11_008
crossref_primary_10_1016_j_enpol_2011_06_036
crossref_primary_10_1016_j_enpol_2010_10_019
crossref_primary_10_2139_ssrn_4833054
crossref_primary_10_4028_www_scientific_net_AMM_535_519
crossref_primary_10_1016_j_jclepro_2021_126339
crossref_primary_10_1007_s12040_020_1339_7
crossref_primary_10_1016_j_energy_2013_03_037
crossref_primary_10_1021_ie101767x
crossref_primary_10_1016_j_biortech_2020_123902
crossref_primary_10_1016_j_fuel_2019_05_105
crossref_primary_10_1098_rsfs_2010_0017
crossref_primary_10_1016_j_indcrop_2016_10_003
crossref_primary_10_1016_j_biortech_2023_129855
crossref_primary_10_1016_j_jclepro_2018_10_302
crossref_primary_10_1007_s42947_022_00152_3
crossref_primary_10_1016_j_jclepro_2012_08_034
crossref_primary_10_1016_j_apenergy_2012_03_039
crossref_primary_10_1016_j_jclepro_2012_08_036
crossref_primary_10_1016_j_fuel_2016_11_105
crossref_primary_10_1016_j_jclepro_2014_05_082
crossref_primary_10_1080_17597269_2019_1670465
crossref_primary_10_1016_j_biortech_2009_10_097
crossref_primary_10_3390_en14102939
crossref_primary_10_1016_j_biortech_2009_11_062
crossref_primary_10_1016_j_enconman_2013_07_024
crossref_primary_10_1007_s12649_022_01829_3
crossref_primary_10_1016_j_sajce_2016_10_003
crossref_primary_10_1016_j_jclepro_2018_12_026
crossref_primary_10_1016_j_scitotenv_2018_04_410
crossref_primary_10_1016_j_jclepro_2018_06_151
crossref_primary_10_1016_j_rser_2012_04_035
crossref_primary_10_1186_1754_6834_7_105
crossref_primary_10_4155_bfs_10_51
crossref_primary_10_1007_s11367_010_0233_y
crossref_primary_10_1016_j_enpol_2007_02_017
crossref_primary_10_1016_j_biombioe_2024_107244
crossref_primary_10_1016_j_biombioe_2016_06_019
crossref_primary_10_1007_s13399_020_00871_2
crossref_primary_10_3390_asi6010013
crossref_primary_10_3390_en15155421
crossref_primary_10_3390_app10186481
crossref_primary_10_1016_j_rser_2014_07_024
crossref_primary_10_1016_j_carbpol_2007_11_010
crossref_primary_10_1002_bbb_1833
crossref_primary_10_1007_s10098_018_1535_1
crossref_primary_10_1007_s11367_010_0226_x
crossref_primary_10_1590_S0104_66322013000200001
crossref_primary_10_1016_j_rser_2012_11_080
crossref_primary_10_1016_j_copbio_2009_05_010
crossref_primary_10_1038_s43247_022_00521_7
crossref_primary_10_1016_j_chemosphere_2019_124975
crossref_primary_10_1021_es202154k
crossref_primary_10_1016_j_cherd_2017_01_001
crossref_primary_10_1021_ie901529q
crossref_primary_10_1016_j_biortech_2017_03_079
crossref_primary_10_1007_s11367_012_0465_0
crossref_primary_10_1016_j_biombioe_2022_106365
crossref_primary_10_1080_14786451_2012_748766
crossref_primary_10_1016_j_rser_2017_01_163
crossref_primary_10_1016_j_rser_2013_12_056
crossref_primary_10_1108_BFJ_07_2014_0259
crossref_primary_10_1016_j_rser_2011_04_033
crossref_primary_10_1111_j_1757_1707_2008_01001_x
crossref_primary_10_1016_j_jclepro_2012_08_006
Cites_doi 10.1016/S0961-9534(96)00050-5
10.1016/S0961-9534(97)10032-0
10.1016/S0961-9534(97)00038-X
10.1016/S1161-0301(00)00098-8
10.1016/0960-1481(96)00079-1
10.1162/108819803323059433
10.1016/S0961-9534(03)00125-9
10.1016/S0301-4215(01)00041-6
10.1016/S0301-4215(01)00104-5
10.1016/S0016-2361(98)00085-4
10.1007/978-1-4612-0223-3_70
10.1016/S0961-9534(99)00026-4
10.1016/S1359-4311(01)00027-8
10.1016/S0961-9534(96)00071-2
10.1016/S0961-9534(00)00094-5
ContentType Journal Article
Copyright 2005 Elsevier Ltd
2006 INIST-CNRS
Copyright Elsevier Science Ltd. Nov 2006
Copyright_xml – notice: 2005 Elsevier Ltd
– notice: 2006 INIST-CNRS
– notice: Copyright Elsevier Science Ltd. Nov 2006
DBID AAYXX
CITATION
IQODW
DKI
X2L
7SP
7TA
7TB
7TQ
8BJ
8FD
DHY
DON
F28
FQK
FR3
H8D
JBE
JG9
KR7
L7M
7ST
C1K
SOI
7QO
7TV
7U6
P64
DOI 10.1016/j.enpol.2004.12.017
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Electronics & Communications Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
PAIS Index
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
PAIS International
PAIS International (Ovid)
ANTE: Abstracts in New Technology & Engineering
International Bibliography of the Social Sciences
Engineering Research Database
Aerospace Database
International Bibliography of the Social Sciences
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Biotechnology Research Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Civil Engineering Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
PAIS International
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Materials Business File
Environment Abstracts
Environmental Sciences and Pollution Management
Biotechnology Research Abstracts
Sustainability Science Abstracts
Pollution Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)
Materials Research Database

Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Environmental Sciences
Applied Sciences
EISSN 1873-6777
EndPage 2661
ExternalDocumentID 1135554261
eeeenepol_v_3a34_3ay_3a2006_3ai_3a17_3ap_3a2654_2661_htm
18187426
10_1016_j_enpol_2004_12_017
S0301421505000066
Genre Feature
GeographicLocations South Africa
Africa
GeographicLocations_xml – name: South Africa
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEYQN
AFKWA
AFODL
AFRAH
AFTJW
AFXIZ
AGHFR
AGTHC
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BELTK
BEZPJ
BGSCR
BKOJK
BKOMP
BLECG
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
H~9
IHE
IXIXF
J1W
JARJE
KCYFY
KOM
LY6
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSB
SSF
SSJ
SSO
SSR
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
02
0R
1
1AW
8P
8RP
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
X
X2L
Z
7SP
7TA
7TB
7TQ
8BJ
8FD
DHY
DON
F28
FQK
FR3
H8D
JBE
JG9
KR7
L7M
7ST
C1K
SOI
7QO
7TV
7U6
P64
ID FETCH-LOGICAL-c621t-fe4579020336186211c3bd53896e0eb596a96c46a5f9f6fcdc60097829ea1cd23
IEDL.DBID AIKHN
ISSN 0301-4215
IngestDate Thu Sep 04 16:27:22 EDT 2025
Fri Sep 05 10:43:41 EDT 2025
Fri Sep 05 00:01:03 EDT 2025
Thu Sep 04 17:40:01 EDT 2025
Sun Sep 07 13:31:51 EDT 2025
Wed Aug 18 04:17:51 EDT 2021
Mon Jul 21 09:12:40 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Tue Jul 01 00:22:44 EDT 2025
Fri Feb 23 02:33:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Ethanol
Co-generation
Life-cycle assessment
Bagasse
Case study
Cogeneration
Environment impact
Life cycle analysis
Production
Biofuel
Electric power production
Comparative study
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c621t-fe4579020336186211c3bd53896e0eb596a96c46a5f9f6fcdc60097829ea1cd23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 205315305
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_754748531
proquest_miscellaneous_36476929
proquest_miscellaneous_20243560
proquest_miscellaneous_14805620
proquest_journals_205315305
repec_primary_eeeenepol_v_3a34_3ay_3a2006_3ai_3a17_3ap_3a2654_2661_htm
pascalfrancis_primary_18187426
crossref_citationtrail_10_1016_j_enpol_2004_12_017
crossref_primary_10_1016_j_enpol_2004_12_017
elsevier_sciencedirect_doi_10_1016_j_enpol_2004_12_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-11-01
PublicationDateYYYYMMDD 2006-11-01
PublicationDate_xml – month: 11
  year: 2006
  text: 2006-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: Kidlington
PublicationSeriesTitle Energy Policy
PublicationTitle Energy policy
PublicationYear 2006
Publisher Elsevier Ltd
Elsevier
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Elsevier Science Ltd
References Cuzens, Miller (bib6) 1997; 102
Mohee, Beeharry (bib13) 1999; 17
Thomas, Kwong (bib18) 2001; 29
Beeharry (bib2) 2001; 20
Kadam (bib9) 2002; 30
Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., Nelson, R., 2004. Energy and environmental aspects of using corn stover for fuel ethanol. Journal of Industrial Ecology, 117–146.
Reid, M., 2002. Illovo Sugar, Personal communication.
Goldemberg, Coelho, Nastari, Lucon (bib8) 2004; 26
Macedo (bib22) 1998; 14
Beeharry (bib1) 1996; 11
Bhatt, Rajkumar (bib3) 2001; 21
Botha, T., 2003. M.Sc. Dissertation, University of Cape Town.
EPA, the United States Environmental Protection Agency, 1996. Bagasse combustion in sugar mills.
Lynd, L., Elander, R., Wyman, C., 1996. Likely features of a mature biomass ethanol technology. Applied Biochemistry and Biochemistry 741–761.
SASA, the South African Sugar Association, 2001. Sugar estimates.
Brentrup, Kusters, Kuhlmann, Lammel (bib5) 2001; 14
Mann, Spath (bib12) 1997
von Blottnitz, H., Ramjeawon, T., 2004. Using life cycle assessment to inform policy relating to energy products from the sugar industry: a review of studies from Mauritius and South Africa. Biomass and Bioenergy, submitted for publication.
von Blottnitz, H., Theka, E., Botha, T., 2002. Bio-ethanol as octane enhancing fuel additive in Southern Africa: an examination of its “environmental friendliness” from a life cycle perspective. Proceedings (on CD) of the National Association for Clean Air Annual Conference. 23–25 October, 2002, Durban.
Prakash, Henham, Bhat (bib14) 1998; 77
Schlamadinger, Apps, Bohlin, Gustavsson (bib17) 1997; 136
Kaltschmitt, Reinhardt, Telzer (bib10) 1997; 12
United Nations Development Programme, 2000. Bioenergy primer.
10.1016/j.enpol.2004.12.017_bib15
Bhatt (10.1016/j.enpol.2004.12.017_bib3) 2001; 21
Prakash (10.1016/j.enpol.2004.12.017_bib14) 1998; 77
10.1016/j.enpol.2004.12.017_bib23
Brentrup (10.1016/j.enpol.2004.12.017_bib5) 2001; 14
10.1016/j.enpol.2004.12.017_bib19
Beeharry (10.1016/j.enpol.2004.12.017_bib1) 1996; 11
Kadam (10.1016/j.enpol.2004.12.017_bib9) 2002; 30
10.1016/j.enpol.2004.12.017_bib16
Beeharry (10.1016/j.enpol.2004.12.017_bib2) 2001; 20
Goldemberg (10.1016/j.enpol.2004.12.017_bib8) 2004; 26
Cuzens (10.1016/j.enpol.2004.12.017_bib6) 1997; 102
Kaltschmitt (10.1016/j.enpol.2004.12.017_bib10) 1997; 12
Mann (10.1016/j.enpol.2004.12.017_bib12) 1997
Thomas (10.1016/j.enpol.2004.12.017_bib18) 2001; 29
10.1016/j.enpol.2004.12.017_bib11
10.1016/j.enpol.2004.12.017_bib4
10.1016/j.enpol.2004.12.017_bib21
10.1016/j.enpol.2004.12.017_bib20
10.1016/j.enpol.2004.12.017_bib7
Schlamadinger (10.1016/j.enpol.2004.12.017_bib17) 1997; 136
Macedo (10.1016/j.enpol.2004.12.017_bib22) 1998; 14
Mohee (10.1016/j.enpol.2004.12.017_bib13) 1999; 17
References_xml – volume: 20
  start-page: 361
  year: 2001
  end-page: 370
  ident: bib2
  article-title: Carbon balance of sugarcane bioenergy systems
  publication-title: Biomass and Bioenergy
– reference: SASA, the South African Sugar Association, 2001. Sugar estimates.
– volume: 136
  start-page: 359
  year: 1997
  end-page: 375
  ident: bib17
  article-title: Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems
  publication-title: Biomass and Bioenergy
– volume: 21
  start-page: 1707
  year: 2001
  end-page: 1719
  ident: bib3
  article-title: Mapping of combined heat and power systems in cane sugar industry
  publication-title: Applied Thermal Engineering
– reference: Reid, M., 2002. Illovo Sugar, Personal communication.
– volume: 12
  start-page: 121
  year: 1997
  end-page: 134
  ident: bib10
  article-title: Life cycle analysis of biofuels under different environmental aspects
  publication-title: Biomass and Bioenergy
– reference: Lynd, L., Elander, R., Wyman, C., 1996. Likely features of a mature biomass ethanol technology. Applied Biochemistry and Biochemistry 741–761.
– year: 1997
  ident: bib12
  article-title: Life-cycle Assessment of a Biomass Gasification Combined-cycle Power System, NREL/TP-430-23076
– volume: 102
  start-page: 285
  year: 1997
  end-page: 290
  ident: bib6
  article-title: Acid hydrolysis of bagasse for ethanol production
  publication-title: Renewable Energy
– volume: 14
  start-page: 77
  year: 1998
  end-page: 81
  ident: bib22
  article-title: Greenhouse gas emissions and energy balances in bio-ethanol production and utilisation in Brazil (1996)
  publication-title: Biomass and Bioenergy
– volume: 77
  start-page: 1629
  year: 1998
  end-page: 1633
  ident: bib14
  article-title: Net energy and gross pollution from bio-ethanol production in India
  publication-title: Fuel
– reference: von Blottnitz, H., Theka, E., Botha, T., 2002. Bio-ethanol as octane enhancing fuel additive in Southern Africa: an examination of its “environmental friendliness” from a life cycle perspective. Proceedings (on CD) of the National Association for Clean Air Annual Conference. 23–25 October, 2002, Durban.
– volume: 17
  start-page: 73
  year: 1999
  end-page: 83
  ident: bib13
  article-title: Life cycle analysis of compost incorporated sugarcane bioenergy systems in Mauritius
  publication-title: Biomass and Bioenergy
– volume: 29
  start-page: 1133
  year: 2001
  end-page: 1143
  ident: bib18
  article-title: Ethanol as a lead replacement
  publication-title: Energy Policy
– reference: von Blottnitz, H., Ramjeawon, T., 2004. Using life cycle assessment to inform policy relating to energy products from the sugar industry: a review of studies from Mauritius and South Africa. Biomass and Bioenergy, submitted for publication.
– volume: 11
  start-page: 441
  year: 1996
  end-page: 449
  ident: bib1
  article-title: Extended sugarcane biomass utilisation for exportable electricity production in Mauritius
  publication-title: Biomass and Bioenergy
– reference: EPA, the United States Environmental Protection Agency, 1996. Bagasse combustion in sugar mills.
– volume: 26
  start-page: 301
  year: 2004
  end-page: 304
  ident: bib8
  article-title: Ethanol learning curve—the Brazilian experience
  publication-title: Biomass and Bioenergy
– reference: United Nations Development Programme, 2000. Bioenergy primer.
– reference: Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., Nelson, R., 2004. Energy and environmental aspects of using corn stover for fuel ethanol. Journal of Industrial Ecology, 117–146.
– volume: 30
  start-page: 371
  year: 2002
  end-page: 384
  ident: bib9
  article-title: Environmental benefits on a life cycle basis of using bagasse—derived ethanol as a gasoline oxygenate in India
  publication-title: Energy Policy
– reference: Botha, T., 2003. M.Sc. Dissertation, University of Cape Town.
– volume: 14
  start-page: 221
  year: 2001
  end-page: 233
  ident: bib5
  article-title: Application of life cycle assessment methodology to agricultural production
  publication-title: European Journal of Agronomy
– volume: 11
  start-page: 441
  issue: 6
  year: 1996
  ident: 10.1016/j.enpol.2004.12.017_bib1
  article-title: Extended sugarcane biomass utilisation for exportable electricity production in Mauritius
  publication-title: Biomass and Bioenergy
  doi: 10.1016/S0961-9534(96)00050-5
– year: 1997
  ident: 10.1016/j.enpol.2004.12.017_bib12
– volume: 136
  start-page: 359
  year: 1997
  ident: 10.1016/j.enpol.2004.12.017_bib17
  article-title: Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems
  publication-title: Biomass and Bioenergy
  doi: 10.1016/S0961-9534(97)10032-0
– ident: 10.1016/j.enpol.2004.12.017_bib15
– ident: 10.1016/j.enpol.2004.12.017_bib4
– volume: 14
  start-page: 77
  issue: 1
  year: 1998
  ident: 10.1016/j.enpol.2004.12.017_bib22
  article-title: Greenhouse gas emissions and energy balances in bio-ethanol production and utilisation in Brazil (1996)
  publication-title: Biomass and Bioenergy
  doi: 10.1016/S0961-9534(97)00038-X
– ident: 10.1016/j.enpol.2004.12.017_bib16
– volume: 14
  start-page: 221
  year: 2001
  ident: 10.1016/j.enpol.2004.12.017_bib5
  article-title: Application of life cycle assessment methodology to agricultural production
  publication-title: European Journal of Agronomy
  doi: 10.1016/S1161-0301(00)00098-8
– volume: 102
  start-page: 285
  issue: 3
  year: 1997
  ident: 10.1016/j.enpol.2004.12.017_bib6
  article-title: Acid hydrolysis of bagasse for ethanol production
  publication-title: Renewable Energy
  doi: 10.1016/0960-1481(96)00079-1
– ident: 10.1016/j.enpol.2004.12.017_bib20
– ident: 10.1016/j.enpol.2004.12.017_bib23
  doi: 10.1162/108819803323059433
– volume: 26
  start-page: 301
  year: 2004
  ident: 10.1016/j.enpol.2004.12.017_bib8
  article-title: Ethanol learning curve—the Brazilian experience
  publication-title: Biomass and Bioenergy
  doi: 10.1016/S0961-9534(03)00125-9
– volume: 29
  start-page: 1133
  year: 2001
  ident: 10.1016/j.enpol.2004.12.017_bib18
  article-title: Ethanol as a lead replacement
  publication-title: Energy Policy
  doi: 10.1016/S0301-4215(01)00041-6
– volume: 30
  start-page: 371
  year: 2002
  ident: 10.1016/j.enpol.2004.12.017_bib9
  article-title: Environmental benefits on a life cycle basis of using bagasse—derived ethanol as a gasoline oxygenate in India
  publication-title: Energy Policy
  doi: 10.1016/S0301-4215(01)00104-5
– volume: 77
  start-page: 1629
  issue: 14
  year: 1998
  ident: 10.1016/j.enpol.2004.12.017_bib14
  article-title: Net energy and gross pollution from bio-ethanol production in India
  publication-title: Fuel
  doi: 10.1016/S0016-2361(98)00085-4
– ident: 10.1016/j.enpol.2004.12.017_bib21
– ident: 10.1016/j.enpol.2004.12.017_bib7
– ident: 10.1016/j.enpol.2004.12.017_bib11
  doi: 10.1007/978-1-4612-0223-3_70
– ident: 10.1016/j.enpol.2004.12.017_bib19
– volume: 17
  start-page: 73
  year: 1999
  ident: 10.1016/j.enpol.2004.12.017_bib13
  article-title: Life cycle analysis of compost incorporated sugarcane bioenergy systems in Mauritius
  publication-title: Biomass and Bioenergy
  doi: 10.1016/S0961-9534(99)00026-4
– volume: 21
  start-page: 1707
  year: 2001
  ident: 10.1016/j.enpol.2004.12.017_bib3
  article-title: Mapping of combined heat and power systems in cane sugar industry
  publication-title: Applied Thermal Engineering
  doi: 10.1016/S1359-4311(01)00027-8
– volume: 12
  start-page: 121
  year: 1997
  ident: 10.1016/j.enpol.2004.12.017_bib10
  article-title: Life cycle analysis of biofuels under different environmental aspects
  publication-title: Biomass and Bioenergy
  doi: 10.1016/S0961-9534(96)00071-2
– volume: 20
  start-page: 361
  issue: 5
  year: 2001
  ident: 10.1016/j.enpol.2004.12.017_bib2
  article-title: Carbon balance of sugarcane bioenergy systems
  publication-title: Biomass and Bioenergy
  doi: 10.1016/S0961-9534(00)00094-5
SSID ssj0004894
Score 2.2269216
Snippet The energetic utilisation of agricultural residues is considered to be an important element in any strategy to achieve renewable energy targets. In the...
SourceID proquest
repec
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2654
SubjectTerms Acidification
Alternative energy sources
Applied sciences
Bagasse
Benefits
Cellulose
Climate change
Co-generation
Coal
Cogeneration
Comparative studies
Conservation
Crop residues
Economic data
Electric energy
Electricity
Energy
Energy economics
Energy efficiency
Energy policy
Environmental protection
Ethanol
Eutrophication
Exact sciences and technology
Fermentation
Food processing industry
Fossils
Fuels
General, economic and professional studies
Global warming
Life cycles
Life-cycle assessment
Methodology. Modelling
Natural energy
Renewable energy
Residues
Resource conservation
Sugar
Sugarcane
Title A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis
URI https://dx.doi.org/10.1016/j.enpol.2004.12.017
http://econpapers.repec.org/article/eeeenepol/v_3a34_3ay_3a2006_3ai_3a17_3ap_3a2654-2661.htm
https://www.proquest.com/docview/205315305
https://www.proquest.com/docview/14805620
https://www.proquest.com/docview/20243560
https://www.proquest.com/docview/36476929
https://www.proquest.com/docview/754748531
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5t7QMghKAwEQbFDzwSmtiO0zxWY1XHpL3ApL1ZjmNDppJGSztpL_x2zk7SrRLdA5WSqMmd6_rs83eO7w7gE7WUT511khZFHnIRsTDXaRzG1lJmaO5iQrndFhdiccm_XSVXB3DS-8K4bZWd7m91utfW3Z1J15qTuiwn3701gDNWlHilKw5hSFkmkgEMZ2fni4t798hp1kaRQsvZMfTBh_w2L5ey3b-C4H5Z0Ccu--cE9bxWDTabbfNd7ADS4Y2pjX4wL81fwosOUJJZW-dXcGCqETzp_Y2bETx7EHJwBEen955tyNYN7eY11DOitzkJycoSRIbE7BDnqBdtuW7c01z9RNhtwgLLvTUFadPplBpBPVFVQezGLIlx6_KrJcECFVmW1oT6DiuJzE3ZvIHL-emPk0XYpWMItaDxOrSGJyg6GjHmguyj5ahZXqDCzISJTJ5kQmVCc6ESm1lhdaGF9xKhmVGxLig7gkG1qsxbIEy55eg8Q_yH5p-NVcaKSBQmTqcod6oCoL0MpO5ilbuUGUvZb0q7ll5wLosmlzGVKLgAPm-Z6jZUx-Pkoheu3OlxEieTxxnHO13h_semLsEhFQEc931DdhqhwQJQ2yWoXQP4uH2KQ9m9n1GVWW0atMKmDo5G-ymoix-JGHU_hUsHIBDyBkD2UKQJTzmCtDiAue-32_ob_FTG_dtbyRTjeLrDwy064aXEI07xVLt7IuHSYTv5a_373f-25DE89Sta3rXzPQzWNxvzATHeOh_D4Zc_8bgbyfjt6_nZX2_wUYc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8a22EghKAwEQabDxwJTWzHaY7TtKrA2IVN2s1yHJsFlTRa0km78Lfz7CTtKtEdiJRUSp5dx89-_j3nfQB8pJbyidNO0qLIQy4iFuY6jcPYWsoMzV1MKGdtcSFmV_zrdXK9A6eDL4wzq-xlfyfTvbTu74z73hzXZTn-4bUBXLGixAtd8QT2eMJSF0D_85-1nQc2pYshhXqzIx9CD3kjL5ew3X-A4H5T0Kct--fy9LxWDXaa7bJdbMDRvVtTG_1gVZq-hBc9nCQnXYtfwY6pRrA_eBs3I3j2IODgCA7O1n5tWKyf2M1rqE-IXmUkJAtLEBcSs0Gco1S0Zdu4p7n6iaDbhAXWe2cK0iXTKTVCeqKqgtilmRPjduUXc4IVKjIvrQn1PTYSCzdl8waupmeXp7OwT8YQakHjNrSGJ8g4GjHmQuyj3qhZXqC4zISJTJ5kQmVCc6ESm1lhdaGF9xGhmVGxLig7gN1qUZm3QJhym9F5hugPlT8bq4wVkShMnE6Q61QFQAceSN1HKncJM-ZyMEn7JT3jXA5NLmMqkXEBfFoVqrtAHY-Ti4G5cmO8SVxKHi94tDEU1n82cekNqQjgcBgbspcHDVaAsi5B2RrA8eopTmT3dUZVZrFsUAebODAabaegLnokItTtFC4ZgEDAGwDZQpEmPOUI0eIApn7crtpv8KiMe9s7yRTjeLnH02054U-JZ5zipXb3RMKlQ3bypv397n978hj2Z5ffz-X5l4tvh_DU7215J8_3sNveLs0HRHttfuRn819sNlFY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+the+environmental+benefits+of+bagasse-derived+electricity+and+fuel+ethanol+on+a+life-cycle+basis&rft.jtitle=Energy+policy&rft.au=Botha%2C+Tyron&rft.au=von+Blottnitz%2C+Harro&rft.date=2006-11-01&rft.issn=0301-4215&rft.volume=34&rft.issue=17&rft.spage=2654&rft.epage=2661&rft_id=info:doi/10.1016%2Fj.enpol.2004.12.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enpol_2004_12_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4215&client=summon