A survey on data‐efficient algorithms in big data era

The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because acquiring data involves a process that is expensive or time-consuming. This has triggered a serious debate in both the industrial and academic commun...

Full description

Saved in:
Bibliographic Details
Published inJournal of big data Vol. 8; no. 1; pp. 1 - 54
Main Author Adadi, Amina
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 26.01.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2196-1115
2196-1115
DOI10.1186/s40537-021-00419-9

Cover

Abstract The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because acquiring data involves a process that is expensive or time-consuming. This has triggered a serious debate in both the industrial and academic communities calling for more data-efficient models that harness the power of artificial learners while achieving good results with less training data and in particular less human supervision. In light of this debate, this work investigates the issue of algorithms’ data hungriness. First, it surveys the issue from different perspectives. Then, it presents a comprehensive review of existing data-efficient methods and systematizes them into four categories. Specifically, the survey covers solution strategies that handle data-efficiency by (i) using non-supervised algorithms that are, by nature, more data-efficient, by (ii) creating artificially more data, by (iii) transferring knowledge from rich-data domains into poor-data domains, or by (iv) altering data-hungry algorithms to reduce their dependency upon the amount of samples, in a way they can perform well in small samples regime. Each strategy is extensively reviewed and discussed. In addition, the emphasis is put on how the four strategies interplay with each other in order to motivate exploration of more robust and data-efficient algorithms. Finally, the survey delineates the limitations, discusses research challenges, and suggests future opportunities to advance the research on data-efficiency in machine learning.
AbstractList Abstract The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because acquiring data involves a process that is expensive or time-consuming. This has triggered a serious debate in both the industrial and academic communities calling for more data-efficient models that harness the power of artificial learners while achieving good results with less training data and in particular less human supervision. In light of this debate, this work investigates the issue of algorithms’ data hungriness. First, it surveys the issue from different perspectives. Then, it presents a comprehensive review of existing data-efficient methods and systematizes them into four categories. Specifically, the survey covers solution strategies that handle data-efficiency by (i) using non-supervised algorithms that are, by nature, more data-efficient, by (ii) creating artificially more data, by (iii) transferring knowledge from rich-data domains into poor-data domains, or by (iv) altering data-hungry algorithms to reduce their dependency upon the amount of samples, in a way they can perform well in small samples regime. Each strategy is extensively reviewed and discussed. In addition, the emphasis is put on how the four strategies interplay with each other in order to motivate exploration of more robust and data-efficient algorithms. Finally, the survey delineates the limitations, discusses research challenges, and suggests future opportunities to advance the research on data-efficiency in machine learning.
The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because acquiring data involves a process that is expensive or time-consuming. This has triggered a serious debate in both the industrial and academic communities calling for more data-efficient models that harness the power of artificial learners while achieving good results with less training data and in particular less human supervision. In light of this debate, this work investigates the issue of algorithms’ data hungriness. First, it surveys the issue from different perspectives. Then, it presents a comprehensive review of existing data-efficient methods and systematizes them into four categories. Specifically, the survey covers solution strategies that handle data-efficiency by (i) using non-supervised algorithms that are, by nature, more data-efficient, by (ii) creating artificially more data, by (iii) transferring knowledge from rich-data domains into poor-data domains, or by (iv) altering data-hungry algorithms to reduce their dependency upon the amount of samples, in a way they can perform well in small samples regime. Each strategy is extensively reviewed and discussed. In addition, the emphasis is put on how the four strategies interplay with each other in order to motivate exploration of more robust and data-efficient algorithms. Finally, the survey delineates the limitations, discusses research challenges, and suggests future opportunities to advance the research on data-efficiency in machine learning.
ArticleNumber 24
Author Adadi, Amina
Author_xml – sequence: 1
  givenname: Amina
  orcidid: 0000-0002-9697-666X
  surname: Adadi
  fullname: Adadi, Amina
  email: Amina.adadi@gmail.com
  organization: ISIC Research Team, L2MI Laboratory, Moulay Ismail University
BookMark eNqNkMtqHDEQRUVwwM8f8KrB63b06pa0NMZxDAPZJGtRo8dEQ1uaSBqb2eUT_I35kijTJjZZGK-qKO65VXWP0UFM0SF0TvAlIXL8VDgemOgxJT3GnKhefUBHlKixJ4QMB6_6Q3RWyhpjTFhjRn6ExFVXtvnB7boUOwsVfv96ct4HE1ysHUyrlEP9cV-6ELtlWO0lnctwij56mIo7e64n6Pvnm2_XX_rF19u766tFb0ZKam_BMu4k5oK55eCMV6NQUio3-gEEWOG5t6Mk0lsjuDGWegHSYcH8YDih7ATdzb42wVpvcriHvNMJgt4PUl5pyDWYyWkgQAVptBsUt0spmVVmaXjbzIwYTPNis9c2bmD3CNP0z5Bg_TdKPUepW5R6H6VWjbqYqU1OP7euVL1O2xzb05pyiaXiIx2aSs4qk1Mp2XltQoUaUqwZwvT2Avof-q6rnn8pTRxXLr9c9Qb1B4ZZpnc
CitedBy_id crossref_primary_10_1371_journal_pone_0301167
crossref_primary_10_1016_j_procs_2024_05_171
crossref_primary_10_1016_j_jksuci_2021_07_010
crossref_primary_10_3390_ma17071621
crossref_primary_10_1002_mp_15982
crossref_primary_10_1186_s40537_023_00687_7
crossref_primary_10_3390_sci4040049
crossref_primary_10_3390_su131910786
crossref_primary_10_1109_ACCESS_2023_3322193
crossref_primary_10_20935_AcadEng7407
crossref_primary_10_1029_2022JB024775
crossref_primary_10_1002_asi_24798
crossref_primary_10_1016_j_rsase_2024_101270
crossref_primary_10_14778_3561261_3561267
crossref_primary_10_3390_f14091768
crossref_primary_10_3389_fnhum_2022_1032724
crossref_primary_10_1016_j_procs_2024_10_249
crossref_primary_10_3390_s22124425
crossref_primary_10_3390_technologies13030094
crossref_primary_10_3390_modelling5030061
crossref_primary_10_1007_s10844_024_00841_4
crossref_primary_10_1186_s12859_024_05787_6
crossref_primary_10_1016_j_seta_2024_104057
crossref_primary_10_12688_f1000research_147107_1
crossref_primary_10_1109_ACCESS_2024_3366802
crossref_primary_10_1186_s40537_024_00933_6
crossref_primary_10_1007_s44244_024_00020_y
crossref_primary_10_1080_09349847_2024_2350398
crossref_primary_10_2478_amns_2024_3602
crossref_primary_10_1109_TAI_2023_3315272
crossref_primary_10_29121_shodhkosh_v5_iICITAICT_2024_1329
crossref_primary_10_1186_s40708_024_00243_w
crossref_primary_10_1016_j_compag_2023_107646
crossref_primary_10_1007_s43154_022_00089_2
crossref_primary_10_1080_10934529_2024_2309102
crossref_primary_10_3390_fi15010023
crossref_primary_10_1109_TCC_2024_3521978
crossref_primary_10_3390_electronics13050822
crossref_primary_10_3389_frwa_2022_886964
crossref_primary_10_1016_j_aei_2024_102699
crossref_primary_10_1016_j_jag_2024_104191
crossref_primary_10_1109_TGRS_2024_3401768
crossref_primary_10_14778_3574245_3574258
crossref_primary_10_1109_TAI_2022_3194503
crossref_primary_10_3390_su152215863
crossref_primary_10_3390_pr12061262
crossref_primary_10_3390_math12040506
crossref_primary_10_15370_maruifd_1565884
crossref_primary_10_1016_j_array_2022_100256
crossref_primary_10_1177_02841851221143496
crossref_primary_10_1002_ima_23034
crossref_primary_10_1016_j_engfracmech_2023_109285
crossref_primary_10_1016_j_jss_2024_112253
crossref_primary_10_1021_acsnano_4c05851
crossref_primary_10_1016_j_mfglet_2024_09_157
crossref_primary_10_2478_amns_2023_2_00168
crossref_primary_10_1186_s40537_024_00919_4
crossref_primary_10_1109_TNSM_2024_3368928
crossref_primary_10_1016_j_pmpp_2024_102381
crossref_primary_10_1109_ACCESS_2024_3516500
crossref_primary_10_1007_s11263_023_01860_4
crossref_primary_10_1016_j_jag_2023_103569
crossref_primary_10_1111_csp2_12844
crossref_primary_10_1016_j_resplu_2023_100499
crossref_primary_10_1038_s43705_022_00182_9
crossref_primary_10_1155_2023_9227348
crossref_primary_10_3389_feart_2025_1554864
crossref_primary_10_1109_JSEN_2023_3302868
crossref_primary_10_3390_bdcc7020062
crossref_primary_10_1021_acssensors_1c01618
crossref_primary_10_3390_e27020111
crossref_primary_10_1016_j_optlastec_2024_111992
crossref_primary_10_3390_en17153683
crossref_primary_10_1002_fut_22490
crossref_primary_10_1061_JBENF2_BEENG_6012
crossref_primary_10_1021_acs_molpharmaceut_2c01048
crossref_primary_10_1109_TASE_2023_3274648
crossref_primary_10_1083_jcb_202111094
crossref_primary_10_1007_s10462_024_10810_6
crossref_primary_10_17680_erciyesiletisim_1430017
crossref_primary_10_1371_journal_pone_0297190
crossref_primary_10_1016_j_compbiomed_2023_107893
crossref_primary_10_1109_TUFFC_2023_3245988
crossref_primary_10_3169_mta_13_126
crossref_primary_10_1051_e3sconf_202235101068
crossref_primary_10_3390_app131810427
crossref_primary_10_1016_j_image_2023_116938
crossref_primary_10_2139_ssrn_4199184
crossref_primary_10_1007_s10462_024_10820_4
crossref_primary_10_1080_21693277_2024_2305358
crossref_primary_10_1109_ACCESS_2022_3178100
crossref_primary_10_3390_bios12100869
crossref_primary_10_3390_min15040330
crossref_primary_10_7554_eLife_90502
crossref_primary_10_55525_tjst_1266144
crossref_primary_10_1109_ACCESS_2022_3159701
crossref_primary_10_3390_smartcities8010003
crossref_primary_10_1016_j_media_2023_102753
crossref_primary_10_3390_su13137156
crossref_primary_10_1007_s10639_022_11536_0
crossref_primary_10_7554_eLife_90502_3
crossref_primary_10_1016_j_grets_2025_100199
crossref_primary_10_1038_s41586_024_07382_4
crossref_primary_10_1016_j_ijmedinf_2022_104978
crossref_primary_10_1145_3682072
crossref_primary_10_1016_j_rineng_2024_101868
crossref_primary_10_1038_s41598_024_70432_4
crossref_primary_10_1109_ACCESS_2025_3528830
crossref_primary_10_1007_s13132_024_02099_1
crossref_primary_10_1016_j_watres_2024_122396
crossref_primary_10_3846_ntcs_2024_20515
crossref_primary_10_1016_j_nhres_2024_11_004
crossref_primary_10_1136_bmjopen_2023_072399
crossref_primary_10_21202_jdtl_2024_48
crossref_primary_10_4271_10_07_03_0017
crossref_primary_10_1145_3609225
crossref_primary_10_3390_su16208889
Cites_doi 10.1186/s40537-019-0197-0
10.1016/j.neucom.2019.12.130
10.3390/a11010009
10.1007/s10994-019-05855-6
10.1145/3191513
10.1007/s13042-015-0328-7
10.1109/TPAMI.2018.2857768
10.1016/j.eswa.2018.05.023
10.1080/095400996116929
10.1016/j.neunet.2017.07.006
10.1017/CBO9781107589056
10.1145/1968.1972
10.1016/j.neucom.2019.02.035
10.2196/jmir.6533
10.1613/jair.953
10.1016/j.im.2016.06.003
10.1007/s10994-008-5088-0
10.1109/TIP.2018.2855449
10.1016/j.neunet.2019.03.010
10.1145/361454.361514
10.1007/s10202-010-0078-2
10.1023/A:1007379606734
10.1038/530144a
10.1016/j.knosys.2012.07.020
10.1093/nsr/nwx155
10.1016/j.swevo.2019.04.008
10.1007/978-90-481-2512-8_7
10.1007/s10994-019-05847-6
10.1613/jair.5714
10.1007/s10994-017-5676-y
10.1109/MC.2018.2880015
10.1007/s11042-018-5609-1
10.1007/s42835-020-00343-7
10.1109/ACCESS.2020.3029234
10.1148/radiol.2020192224
10.1162/NECO_a_00052
10.1145/130994.131001
10.1007/s10115-013-0706-y
10.1145/2347736.2347755
10.1016/j.knosys.2017.11.019
10.1089/106652703321825928
10.1109/MIS.2009.36
10.1016/j.neucom.2018.09.013
10.1016/j.compmedimag.2019.101684
10.1093/mind/LIX.236.433
10.1016/j.neunet.2019.01.012
10.1145/3386252
10.1007/978-3-642-18192-4
10.1016/j.cobeha.2018.12.010
10.1017/CBO9780511804175
10.1016/j.eswa.2017.11.028
10.2200/S00196ED1V01Y200906AIM006
10.1109/TPAMI.2017.2652459
10.1186/s40537-016-0043-6
10.1016/j.ijinfomgt.2014.10.007
10.1016/S1672-6529(09)60240-7
10.1080/10438599.2018.1493075
10.1038/nature16961
10.1016/0375-9601(96)00453-7
10.1145/1553374.1553456
10.1007/s12559-019-09664-w
10.1007/978-3-030-34094-0_6
10.1145/1390156.1390164
10.1109/CVPR.2019.00020
10.3115/v1/P15-2123
10.1109/DICTA.2016.7797091
10.1007/978-3-642-15561-1_16
10.1109/CVPR.2016.90
10.3115/1218955.1218990
10.1109/5.726791
10.1007/978-3-642-79629-6_7
10.1109/CVPR.2017.18
10.1007/978-3-642-34166-3_79
10.1109/ICCV.2019.00822
10.1007/BF00992698
10.1007/11430919_71
10.1007/978-1-4613-1381-6
10.1007/978-3-642-21735-7_6
10.1609/aaai.v32i1.12329
10.1007/978-3-319-22156-4_2,2015
10.1109/CVPR42600.2020.00357
10.1609/aaai.v34i04.6131
10.1007/978-3-030-01237-3_27
10.2139/ssrn.3118022
10.1109/JPROC.2012.2197809
10.1109/ICCV.2017.310
10.1109/CVPR42600.2020.01238
10.1109/CVPR.2017.632
10.1007/978-3-030-37731-1_62
10.1007/978-3-030-01424-7_58
10.1016/j.imavis.2019.103853
10.1007/978-3-030-01231-1_14
10.24963/ijcai.2020/671
10.18653/v1/P19-1185
10.1016/j.neucom.2020.01.119
10.1007/978-3-642-24955-6_57
10.1609/aaai.v31i1.10744
10.1007/978-3-319-46493-0_36
10.1007/978-3-319-18356-5_27
10.1109/CVPRW50498.2020.00359
10.1609/aaai.v34i04.6139
10.1109/IGARSS.2019.8899343
10.1109/IRC.2019.00120
10.1007/978-3-030-03633-1_13
10.1109/ACCESS.2015.2513822
10.1109/ICCV.2017.244
10.1109/ICCV.2019.00851
10.1111/itor.12001
10.1609/aaai.v33i01.33018642
10.18653/v1/D19-1670
10.4018/978-1-60566-766-9
10.1109/IIPHDW.2018.8388338
10.1007/978-3-030-01240-3_44
10.1007/978-3-319-71246-8_42
10.1109/9780470544785.ch2
10.1109/CAC.2017.8243510
10.18653/v1/E17-1015
10.1145/2487575.2487629
10.3115/1073012.1073017
10.1109/IROS.2017.8205961
10.1109/ACCESS.2020.2992520
10.18653/v1/P17-1001
10.1109/CVPR.2018.00143
10.1109/TNNLS.2016.2603784
10.1007/978-3-031-01581-6
10.1609/aaai.v32i1.12007
10.1007/978-3-030-01267-0_9
10.1109/SMC.2018.00177
10.1109/CVPR.2019.00265
10.18653/v1/2020.acl-main.348
10.1007/978-3-030-10925-7_30
10.1109/CVPR.2018.00131
10.24963/ijcai.2018/627
10.1007/s11263-015-0812-2
10.1109/MLSP.2018.8516711
10.1109/CVPR.2016.265
10.18653/v1/D19-6101
10.1145/1718487.1718501
10.3390/a11090139
10.1145/2872427.2883086
10.1017/9781139061773.0102020
10.1609/aaai.v30i1.10373
10.1007/978-3-030-47436-2_64
10.1109/ICCT46805.2019.8947072
10.1093/nsr/nwx106
10.3389/fnbot.2019.00040
10.1007/s12559-020-09730-8
10.1609/aaai.v33i01.33019937
10.1017/9781139061773.0142020
10.1609/aaai.v32i1.11694
10.1109/ICCV.2011.6126344
10.1109/ICIP.2016.7533053
10.1007/978-3-030-00536-8_6
10.1007/978-3-540-30116-5_17
10.1109/CVPR.2017.754
10.1109/CVPR.2019.00672
10.1137/1.9781611975673.71
10.1007/978-3-030-58548-8_46
10.1007/978-3-319-49644-3_3
10.7551/mitpress/3897.001.0001
10.1017/CBO9781107589056.006
10.1109/CVPR.2019.00049
10.1109/MSP.2017.2743240
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
0-V
3V.
7WY
7WZ
7XB
87Z
88J
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
M2R
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
ADTOC
UNPAY
DOA
DOI 10.1186/s40537-021-00419-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Social Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Sociology & Social Sciences Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2196-1115
EndPage 54
ExternalDocumentID oai_doaj_org_article_a1a271a8ee594db883d9cbc43eb3c75c
10.1186/s40537-021-00419-9
10_1186_s40537_021_00419_9
GroupedDBID 0-V
0R~
3V.
5VS
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARALO
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
K60
K6V
K6~
K7-
M0C
M0N
M2R
M~E
OK1
P62
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
PQGLB
PRQQA
PUEGO
7XB
8AL
8FK
JQ2
L.-
PKEHL
POGQB
PQEST
PQUKI
PRINS
Q9U
ADTOC
AHSBF
EJD
UNPAY
ID FETCH-LOGICAL-c621t-dad34e80473eb5ecf9679889e6f5a7ad7f4fd6818fdc74ccd2f7a8e073f5c4123
IEDL.DBID UNPAY
ISSN 2196-1115
IngestDate Fri Oct 03 12:27:54 EDT 2025
Tue Aug 19 16:12:09 EDT 2025
Tue Oct 14 14:20:56 EDT 2025
Wed Oct 01 04:51:08 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Fri Feb 21 02:49:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Small sample learning
Data‐efficiency
Data augmentation
Transfer learning
Data hungry algorithms
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c621t-dad34e80473eb5ecf9679889e6f5a7ad7f4fd6818fdc74ccd2f7a8e073f5c4123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9697-666X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-021-00419-9
PQID 2480894625
PQPubID 2046140
PageCount 54
ParticipantIDs doaj_primary_oai_doaj_org_article_a1a271a8ee594db883d9cbc43eb3c75c
unpaywall_primary_10_1186_s40537_021_00419_9
proquest_journals_2480894625
crossref_citationtrail_10_1186_s40537_021_00419_9
crossref_primary_10_1186_s40537_021_00419_9
springer_journals_10_1186_s40537_021_00419_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-26
PublicationDateYYYYMMDD 2021-01-26
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-26
  day: 26
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of big data
PublicationTitleAbbrev J Big Data
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References CR162
CR163
CR284
CR160
CR281
CR161
Wang, Guo, Yang (CR192) 2018; 51
CR282
Knuth (CR12) 1972; 15
Li, Wang (CR95) 2013; 30
CR280
CR159
CR157
CR278
CR158
Jialin Pan, Yang (CR182) 2010; 22
CR155
CR276
Xie, Wu, Xiao, Hu (CR49) 2016; 53
CR156
CR153
CR274
Livieris, Kanavos, Tampakas, Pintelas (CR77) 2018; 11
CR154
CR275
Andrew, Brynjolfsson (CR52) 2012; 90
Chabert (CR13) 1999
Xian, Lampert, Schiele, Akata (CR240) 2018; 41
Zador (CR68) 2019; 10
Mitchell (CR17) 2002
CR173
CR294
CR174
CR295
CR171
CR292
CR172
CR293
Kitchin (CR9) 2014
CR290
CR170
CR166
Akhtar, Chauhan, Ekbal (CR213) 2020; 14
Silver, Mercer (CR221) 1996; 8
CR287
CR167
Liu, Xiao, Hao (CR185) 2018; 141
CR164
CR285
CR165
CR286
Ciresan, Meier, Gambardella, Schmid-huber (CR125) 2010; 22
van Engelen (CR71) 2020; 109
Tanha, van Someren, Afsarmanesh (CR76) 2017; 8
CR140
CR261
CR141
CR262
CR260
CR137
CR258
CR138
CR259
Milicevic, Obradovic, Zubrinic (CR289) 2018; 13
CR135
CR256
CR136
CR257
CR133
CR254
CR134
CR255
CR131
CR252
CR132
CR253
Shorten, Khoshgoftaar (CR122) 2019; 6
CR139
Zhou, Chen, Pan (CR210) 2020; 109
CR272
CR152
CR273
CR270
CR150
CR271
CR269
CR149
CR146
CR267
Brynjolfsson, McElheran (CR50) 2016; 106
CR147
CR268
CR144
CR265
CR145
CR266
CR142
CR263
CR143
CR264
Rummery, Niranjan (CR113) 1994
Zhu, Goldberg (CR79) 2009; 3
CR115
CR236
CR116
CR237
CR234
CR235
CR232
Lloyd (CR28) 2014
CR112
CR233
Batra (CR20) 2014; 4
CR110
CR231
CR119
CR238
CR118
Silver, Poirier, Currie (CR222) 2008; 73
CR239
Zhang, Zhao, Hao (CR211) 2018; 107
Evans, Grefenstette (CR283) 2018; 61
Ford (CR5) 2018
CR250
CR130
CR251
CR126
CR247
CR127
CR248
Kostopoulos, Karlos, Kotsiantis, Ragos (CR73) 2018; 35
CR124
CR245
CR246
CR243
Han, Liu, Fan (CR288) 2018; 95
CR123
CR244
CR120
CR241
CR121
CR242
Paz, Ceccarelli, Otero, Sanz (CR14) 2009
CR128
CR249
CR129
Melacci, Belkin (CR93) 2011; 12
Dornaika, Dahbi, Bosaghzadeh, Ruichek (CR89) 2017; 94
CR11
CR214
Wang, Yao, Kwok, Ni (CR7) 2020; 53
CR10
CR215
Davies (CR26) 2014
CR218
CR219
Quinonero-Candela, Sugiyama, Schwaighofer, Lawrence (CR151) 2009
Asperti, Ricciotti (CR15) 2012
CR29
Chawla, Bowyer, Hall, Kegelmeyer (CR148) 2002; 16
CR27
Zang, Zhang, Hapeshi (CR36) 2010; 7
CR25
CR23
CR22
CR104
CR225
Zhou (CR55) 2018; 5
CR105
CR226
CR102
CR223
CR103
CR224
CR101
Sutton (CR111) 2018
CR220
CR108
CR229
CR109
CR106
CR227
CR107
CR228
Zhang (CR203) 2019; 340
CR39
CR38
CR37
CR34
CR33
CR313
Landauer (CR24) 1996; 217
CR32
CR314
CR31
CR30
CR312
Miyato, Maeda, Ishii, Koyama (CR100) 2018; 41
CR319
CR317
CR318
Waldrop (CR18) 2016; 530
CR315
Lin, Wang, Meng, Zuo, Zhang (CR168) 2018; 40
CR316
Silver, Huang, Maddison, Guez (CR1) 2016; 529
CR47
CR46
CR45
CR44
CR204
CR42
CR201
CR202
CR320
CR200
CR321
Del Ser, Osaba (CR35) 2019; 48
Yang, Sun, Lai, Zheng, Cheng (CR291) 2018; 27
CR209
Han, Choi, Park (CR277) 2020; 15
CR207
CR208
CR205
CR206
Gibbons, Richards, Valderas, Campbell (CR41) 2017; 19
CR59
CR57
CR54
Maltoni, Lomonaco (CR217) 2019; 116
Frid-Adar, Diamant, Klang (CR177) 2018; 321
CR51
Parisi, Kemker, Part (CR216) 2019; 113
Caruana (CR199) 1997; 28
Weiss, Khoshgoftaar, M,Wang (CR183) 2016; 3
Turing (CR21) 1950; 59
CR69
CR67
CR66
CR302
Zhao, Tang, Dong, Huang, Zhang (CR212) 2019; 78
CR303
CR64
CR300
CR63
CR301
CR62
Jiang, Zhang, Zeng (CR82) 2013; 37
CR60
Chonga, Dinga, Yanb, Pana (CR84) 2020; 408
CR308
CR309
CR306
CR307
Valiant (CR40) 1984; 27
CR304
CR305
Ratner, Bach, Ehrenberg (CR169) 2017; 11
Arowolo, Isiaka, Abdulsalam (CR311) 2017; 4
Ding, Zhu, Zhang (CR96) 2015; 28
CR78
CR72
Arowolo, Adebiyi, Adebiyi (CR310) 2020; 8
CR197
CR70
CR198
Willemink, Koszek, Hardell (CR56) 2020; 295
Domingos (CR53) 2012; 55
Gandomi, Haider (CR19) 2015; 35
Zarsky, Incompatible (CR58) 2017; 47
CR2
Navathe (CR16) 1992; 35
CR4
CR3
CR6
CR8
CR88
Halevy, Norvig, Pereira (CR61) 2009; 24
CR87
CR86
CR85
Shinohara, Taguchi, Katsurada, Nitta (CR299) 2007; 22
CR83
Garnelo, Shanahan (CR279) 2019; 29
CR81
CR80
Niebel, Rasel, Viete (CR48) 2019; 28
Kim (CR74) 2018; 109
Watkins, Dayan (CR114) 1992; 8
Armanious, Jiang, Fischer (CR178) 2020; 79
Botvinick, Ritter, Wang, Kurth-Nelson (CR117) 2017; 23
Mitchell, Cohen, Hruschka (CR230) 2018; 61
CR184
CR180
Liebert, Schmidt (CR65) 2010; 7
CR181
CR99
CR98
CR97
CR179
Triguero, Garcia, Herrera (CR75) 2015; 42
CR298
CR94
CR175
CR296
CR92
CR176
CR297
CR91
CR90
CR195
CR196
CR193
CR194
CR191
CR190
CR188
CR189
CR186
CR187
Mukherjee, Tamayo, Rogers (CR43) 2003; 10
419_CR60
419_CR63
419_CR62
K Weiss (419_CR183) 2016; 3
J Tanha (419_CR76) 2017; 8
419_CR164
419_CR285
419_CR163
M Frid-Adar (419_CR177) 2018; 321
419_CR284
Y Wang (419_CR7) 2020; 53
419_CR166
419_CR287
419_CR165
419_CR286
419_CR160
419_CR281
419_CR280
419_CR162
419_CR161
419_CR282
EB Paz (419_CR14) 2009
419_CR157
419_CR278
419_CR156
Z Jiang (419_CR82) 2013; 37
419_CR159
419_CR158
419_CR69
419_CR64
419_CR67
419_CR66
C Zhang (419_CR211) 2018; 107
MJ Willemink (419_CR56) 2020; 295
M Andrew (419_CR52) 2012; 90
419_CR51
S Batra (419_CR20) 2014; 4
419_CR153
419_CR274
S Shinohara (419_CR299) 2007; 22
419_CR152
419_CR273
419_CR155
419_CR276
419_CR154
419_CR275
419_CR270
419_CR272
419_CR150
419_CR271
419_CR149
419_CR146
419_CR267
419_CR145
419_CR266
419_CR269
419_CR147
419_CR268
419_CR57
419_CR59
419_CR54
LG Valiant (419_CR40) 1984; 27
I Triguero (419_CR75) 2015; 42
419_CR180
A Gandomi (419_CR19) 2015; 35
419_CR186
419_CR188
419_CR187
419_CR181
419_CR184
D Han (419_CR288) 2018; 95
419_CR179
419_CR47
419_CR46
419_CR42
JE van Engelen (419_CR71) 2020; 109
419_CR45
419_CR44
419_CR30
419_CR290
419_CR175
419_CR296
419_CR174
419_CR295
Y Xian (419_CR240) 2018; 41
419_CR298
419_CR176
419_CR297
419_CR171
419_CR292
419_CR170
419_CR173
419_CR294
419_CR172
419_CR293
419_CR39
419_CR167
419_CR38
Y Chonga (419_CR84) 2020; 408
419_CR37
419_CR32
D Maltoni (419_CR217) 2019; 116
419_CR31
419_CR34
L Lin (419_CR168) 2018; 40
419_CR33
M Milicevic (419_CR289) 2018; 13
S Lloyd (419_CR28) 2014
IE Livieris (419_CR77) 2018; 11
K Armanious (419_CR178) 2020; 79
J Chabert (419_CR13) 1999
419_CR94
419_CR191
419_CR190
419_CR90
419_CR92
419_CR91
T Miyato (419_CR100) 2018; 41
419_CR197
419_CR196
419_CR198
419_CR193
E Brynjolfsson (419_CR50) 2016; 106
419_CR195
419_CR194
A Ratner (419_CR169) 2017; 11
419_CR189
419_CR98
419_CR97
419_CR99
419_CR83
419_CR85
419_CR81
419_CR80
M Botvinick (419_CR117) 2017; 23
T Niebel (419_CR48) 2019; 28
CJCH Watkins (419_CR114) 1992; 8
J Del Ser (419_CR35) 2019; 48
Y Zhao (419_CR212) 2019; 78
J Yang (419_CR291) 2018; 27
419_CR87
419_CR86
P Domingos (419_CR53) 2012; 55
419_CR88
419_CR72
419_CR70
J Quinonero-Candela (419_CR151) 2009
S Jialin Pan (419_CR182) 2010; 22
M Ford (419_CR5) 2018
DL Silver (419_CR221) 1996; 8
S Melacci (419_CR93) 2011; 12
G Kostopoulos (419_CR73) 2018; 35
DE Knuth (419_CR12) 1972; 15
419_CR78
W Liebert (419_CR65) 2010; 7
MO Arowolo (419_CR310) 2020; 8
419_CR320
Q Zhou (419_CR210) 2020; 109
419_CR315
419_CR314
GA Rummery (419_CR113) 1994
419_CR317
419_CR316
419_CR313
419_CR312
419_CR319
419_CR318
X Zhu (419_CR79) 2009; 3
D Silver (419_CR1) 2016; 529
S Mukherjee (419_CR43) 2003; 10
AM Zador (419_CR68) 2019; 10
419_CR304
B Liu (419_CR185) 2018; 141
419_CR303
419_CR306
419_CR305
419_CR300
419_CR302
419_CR301
SB Navathe (419_CR16) 1992; 35
ZH Zhou (419_CR55) 2018; 5
419_CR308
419_CR307
MO Arowolo (419_CR311) 2017; 4
419_CR309
J Han (419_CR277) 2020; 15
RS Sutton (419_CR111) 2018
419_CR220
F Dornaika (419_CR89) 2017; 94
T Mitchell (419_CR230) 2018; 61
419_CR215
419_CR218
419_CR214
R Caruana (419_CR199) 1997; 28
J Zhang (419_CR203) 2019; 340
DC Ciresan (419_CR125) 2010; 22
419_CR219
GI Parisi (419_CR216) 2019; 113
A Asperti (419_CR15) 2012
R Evans (419_CR283) 2018; 61
H Zang (419_CR36) 2010; 7
MS Akhtar (419_CR213) 2020; 14
419_CR205
419_CR204
419_CR207
419_CR206
419_CR201
R Kitchin (419_CR9) 2014
419_CR200
419_CR321
419_CR202
419_CR209
419_CR208
MM Waldrop (419_CR18) 2016; 530
419_CR120
419_CR241
JC Mitchell (419_CR17) 2002
419_CR243
419_CR121
419_CR242
P Davies (419_CR26) 2014
K Xie (419_CR49) 2016; 53
419_CR238
419_CR116
419_CR237
419_CR119
419_CR118
419_CR239
419_CR29
419_CR234
419_CR112
419_CR233
419_CR115
419_CR236
419_CR235
419_CR25
419_CR27
419_CR23
419_CR22
T Zarsky (419_CR58) 2017; 47
DL Silver (419_CR222) 2008; 73
419_CR232
419_CR110
419_CR231
C Shorten (419_CR122) 2019; 6
419_CR106
419_CR227
419_CR105
419_CR226
419_CR108
419_CR229
419_CR107
419_CR228
S Ding (419_CR96) 2015; 28
419_CR102
419_CR223
419_CR101
419_CR104
419_CR225
419_CR103
419_CR224
419_CR10
A Halevy (419_CR61) 2009; 24
419_CR109
419_CR11
419_CR142
419_CR263
419_CR141
419_CR262
419_CR144
419_CR265
419_CR143
419_CR264
419_CR140
419_CR261
NV Chawla (419_CR148) 2002; 16
419_CR260
419_CR139
419_CR138
L Wang (419_CR192) 2018; 51
419_CR259
419_CR135
419_CR256
K Kim (419_CR74) 2018; 109
419_CR134
419_CR255
R Landauer (419_CR24) 1996; 217
419_CR137
419_CR258
419_CR136
419_CR257
C Gibbons (419_CR41) 2017; 19
M Garnelo (419_CR279) 2019; 29
419_CR131
419_CR252
419_CR130
419_CR251
419_CR133
419_CR254
419_CR132
419_CR253
T Li (419_CR95) 2013; 30
419_CR250
419_CR2
419_CR128
419_CR249
419_CR3
419_CR127
419_CR248
419_CR4
419_CR129
419_CR6
419_CR124
419_CR245
419_CR123
419_CR244
419_CR8
419_CR126
419_CR247
419_CR246
AM Turing (419_CR21) 1950; 59
References_xml – ident: CR45
– ident: CR150
– ident: CR282
– ident: CR22
– volume: 6
  start-page: 48
  year: 2019
  end-page: 60
  ident: CR122
  article-title: A survey on image data augmentation for deep learning
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: CR173
– volume: 408
  start-page: 216
  year: 2020
  end-page: 30
  ident: CR84
  article-title: Graph-based semi-supervised learning: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.130
– ident: CR97
– volume: 11
  start-page: 9
  year: 2018
  ident: CR77
  article-title: An auto-adjustable semi-supervised self-training algorithm.
  publication-title: Algorithm
  doi: 10.3390/a11010009
– ident: CR196
– ident: CR39
– ident: CR51
– volume: 109
  start-page: 373
  issue: 2
  year: 2020
  end-page: 440
  ident: CR71
  article-title: Hoos. H. A survey on semi-supervised learning
  publication-title: Mach Learn
  doi: 10.1007/s10994-019-05855-6
– ident: CR115
– ident: CR247
– ident: CR138
– ident: CR224
– ident: CR80
– ident: CR201
– ident: CR309
– volume: 61
  start-page: 103
  issue: 5
  year: 2018
  end-page: 115
  ident: CR230
  article-title: Never-ending learning
  publication-title: Commun ACM
  doi: 10.1145/3191513
– ident: CR121
– ident: CR253
– ident: CR167
– volume: 22
  start-page: 10
  year: 2010
  ident: CR182
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on knowledge data engineering
– volume: 8
  start-page: 1
  year: 2017
  ident: CR76
  article-title: Semi-supervised self-training for decision tree classifiers
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-015-0328-7
– ident: CR144
– ident: CR276
– volume: 41
  start-page: 2251
  issue: 9
  year: 2018
  end-page: 2265
  ident: CR240
  article-title: Zero-shot learning—A comprehensive evaluation of the good, the bad and the ugly
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2857768
– volume: 109
  start-page: 49
  year: 2018
  end-page: 65
  ident: CR74
  article-title: An improved semi-supervised dimensionality reduction using feature weighting: Application to sentiment analysis
  publication-title: Expert Systems with Applications.
  doi: 10.1016/j.eswa.2018.05.023
– ident: CR235
– ident: CR92
– volume: 41
  start-page: 8
  year: 2018
  ident: CR100
  article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: CR132
– ident: CR287
– ident: CR191
– volume: 8
  start-page: 277
  year: 1996
  end-page: 294
  ident: CR221
  article-title: The parallel transfer of task knowledge using dynamic learning rates based on a measure of relatedness
  publication-title: Connect Sci
  doi: 10.1080/095400996116929
– ident: CR241
– ident: CR229
– ident: CR11
– volume: 10
  start-page: 1
  issue: 3770
  year: 2019
  end-page: 7
  ident: CR68
  article-title: A critique of pure learning and what artificial neural networks can learn from animal brains
  publication-title: Nat Commun
– ident: CR57
– ident: CR294
– volume: 94
  start-page: 192
  year: 2017
  end-page: 203
  ident: CR89
  article-title: Efficient dynamic graph construction for inductive semi-supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.07.006
– ident: CR218
– ident: CR85
– ident: CR242
– volume: 11
  start-page: 709
  issue: 3
  year: 2017
  end-page: 730
  ident: CR169
  article-title: Snorkel: Rapid training data creation with weak supervision
  publication-title: VLDB J
– start-page: 83
  year: 2014
  end-page: 117
  ident: CR26
  publication-title: Universe from Bit. In: Information and the Nature of Reality: From Physics to Metaphysics
  doi: 10.1017/CBO9781107589056
– ident: CR109
– volume: 27
  start-page: 1134
  issue: 11
  year: 1984
  end-page: 1142
  ident: CR40
  article-title: A theory of the learnable
  publication-title: Commun ACM
  doi: 10.1145/1968.1972
– ident: CR126
– ident: CR207
– volume: 340
  start-page: 76
  year: 2019
  end-page: 89
  ident: CR203
  article-title: Multi-task feature selection with sparse regularization to extract common and task-specific features
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2019.02.035
– volume: 19
  start-page: 3
  year: 2017
  ident: CR41
  article-title: Supervised Machine Learning Algorithms Can Classify Open-Text Feedback of Doctor Performance With Human-Level Accuracy
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.6533
– ident: CR91
– year: 2018
  ident: CR111
  publication-title: Barto AG reinforcement learning: an introduction
– ident: CR156
– ident: CR179
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR148
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J Artif Intellig Res.
  doi: 10.1613/jair.953
– ident: CR190
– volume: 53
  start-page: 1038
  issue: 8
  year: 2016
  end-page: 1048
  ident: CR49
  article-title: Value co-creation between firms and customers: The role of big data-based cooperative assets
  publication-title: Inf Manag
  doi: 10.1016/j.im.2016.06.003
– ident: CR10
– ident: CR33
– ident: CR137
– ident: CR269
– ident: CR270
– volume: 23
  start-page: 5
  year: 2017
  ident: CR117
  article-title: Reinforcement learning, fast and slow
  publication-title: Trends Cogn Sci
– ident: CR184
– ident: CR6
– volume: 73
  start-page: 313
  issue: 3
  year: 2008
  end-page: 36
  ident: CR222
  article-title: Inductive transfer with context-sensitive neural networks
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5088-0
– ident: CR86
– ident: CR63
– ident: CR27
– ident: CR236
– ident: CR108
– ident: CR69
– ident: CR281
– volume: 27
  start-page: 5303
  issue: 11
  year: 2018
  end-page: 5315
  ident: CR291
  article-title: Recognition from web data: a progressive Filtering approach
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2855449
– ident: CR315
– ident: CR44
– ident: CR103
– volume: 116
  start-page: 56
  year: 2019
  end-page: 73
  ident: CR217
  article-title: Continuous learning in single-incremental-task scenarios
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.03.010
– ident: CR38
– ident: CR264
– ident: CR321
– ident: CR139
– volume: 22
  start-page: 58
  year: 2007
  end-page: 68
  ident: CR299
  article-title: A model of belief formation based on causality and application to n-armed bandit problem
  publication-title: T Jpn Soc AI.
– ident: CR162
– ident: CR304
– ident: CR202
– ident: CR120
– ident: CR145
– ident: CR258
– ident: CR275
– ident: CR70
– ident: CR320
– ident: CR314
– ident: CR87
– start-page: 131
  year: 2009
  end-page: 160
  ident: CR151
  publication-title: Covariate shift by kernel mean matching. Dataset Shift in Machine Learning
– ident: CR154
– volume: 15
  start-page: 671
  issue: 7
  year: 1972
  end-page: 677
  ident: CR12
  article-title: Ancient Babylonian algorithms
  publication-title: Commun ACM
  doi: 10.1145/361454.361514
– ident: CR219
– ident: CR243
– volume: 7
  start-page: 55
  year: 2010
  end-page: 71
  ident: CR65
  article-title: Collingridge’s dilemma and technoscience
  publication-title: Poiesis Prax
  doi: 10.1007/s10202-010-0078-2
– ident: CR220
– volume: 4
  start-page: 5
  issue: 1
  year: 2014
  end-page: 17
  ident: CR20
  article-title: Big data analytics and its reflections on DIKW hierarchy
  publication-title: Rev Manag
– ident: CR272
– ident: CR208
– ident: CR195
– ident: CR231
– volume: 28
  start-page: 1
  year: 1997
  ident: CR199
  article-title: Multitask learning
  publication-title: Mach Learn
  doi: 10.1023/A:1007379606734
– ident: CR225
– ident: CR116
– ident: CR266
– ident: CR32
– ident: CR302
– ident: CR189
– ident: CR81
– volume: 14
  start-page: 3
  year: 2020
  ident: CR213
  article-title: A Deep Multi-task Contextual Attention Framework for Multi-modal Affect Analysis
  publication-title: ACM Trans Knowl Discovery Data
– ident: CR64
– year: 1994
  ident: CR113
  publication-title: On-line Q-learning using Connectionist Systems
– ident: CR214
– ident: CR105
– ident: CR298
– ident: CR99
– volume: 530
  start-page: 7589
  year: 2016
  ident: CR18
  article-title: The chips are down for Moore’s law
  publication-title: Nature
  doi: 10.1038/530144a
– volume: 37
  start-page: 137
  year: 2013
  end-page: 145
  ident: CR82
  article-title: A hybrid generative/discriminative method for semi-supervised classification
  publication-title: Knowl Based Syst.
  doi: 10.1016/j.knosys.2012.07.020
– volume: 5
  start-page: 1
  year: 2018
  ident: CR55
  article-title: A brief introduction to weakly supervised learning
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwx155
– ident: CR143
– ident: CR160
– ident: CR232
– volume: 28
  start-page: 5
  year: 2015
  ident: CR96
  article-title: An overview on semi-supervised support vector machine
  publication-title: Neural Comput Appl
– volume: 30
  start-page: 1
  year: 2013
  ident: CR95
  article-title: Semi-supervised SVM classification method based on cluster kernel
  publication-title: Appl Res Comput
– ident: CR2
– ident: CR37
– ident: CR194
– ident: CR226
– ident: CR133
– ident: CR265
– ident: CR303
– volume: 13
  start-page: 460
  year: 2018
  end-page: 465
  ident: CR289
  article-title: Data augmentation and transfer learning for limited dataset ship classification
  publication-title: WSEAS Trans Syst Control.
– ident: CR188
– volume: 48
  start-page: 220
  year: 2019
  end-page: 50
  ident: CR35
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm Evolutionary Computation
  doi: 10.1016/j.swevo.2019.04.008
– year: 2009
  ident: CR14
  publication-title: Machinery during the industrial revolution
  doi: 10.1007/978-90-481-2512-8_7
– ident: CR98
– ident: CR104
– ident: CR127
– ident: CR161
– ident: CR259
– ident: CR293
– ident: CR149
– ident: CR260
– ident: CR319
– volume: 109
  start-page: 569
  year: 2020
  end-page: 601
  ident: CR210
  article-title: Communication-efficient distributed multi-task learning with matrix sparsity regularization
  publication-title: Mach Learn
  doi: 10.1007/s10994-019-05847-6
– ident: CR155
– volume: 61
  start-page: 1
  year: 2018
  end-page: 64
  ident: CR283
  article-title: Learning explanatory rules from noisy data
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.5714
– ident: CR248
– ident: CR31
– ident: CR172
– ident: CR271
– ident: CR110
– volume: 107
  start-page: 727
  year: 2018
  end-page: 47
  ident: CR211
  article-title: Distributed multi-task classification: a decentralized online learning approach
  publication-title: Mach Learn
  doi: 10.1007/s10994-017-5676-y
– volume: 51
  start-page: 32
  issue: 12
  year: 2018
  end-page: 41
  ident: CR192
  article-title: Smart City Development With Urban Transfer Learning
  publication-title: Computer
  doi: 10.1109/MC.2018.2880015
– ident: CR308
– ident: CR59
– ident: CR166
– ident: CR237
– ident: CR254
– ident: CR209
– volume: 106
  start-page: 39
  issue: 9
  year: 2016
  end-page: 133
  ident: CR50
  article-title: The Rapid Adoption of Data-Driven Decision-Making
  publication-title: American Economic Review
– ident: CR318
– volume: 78
  start-page: 13131
  year: 2019
  end-page: 13148
  ident: CR212
  article-title: Joint face alignment and segmentation via deep multi-task learning
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-5609-1
– volume: 15
  start-page: 721
  year: 2020
  end-page: 726
  ident: CR277
  article-title: Hyperparameter optimization using a genetic algorithm considering verification time in a convolutional neural network
  publication-title: J Electr Eng Technol.
  doi: 10.1007/s42835-020-00343-7
– ident: CR158
– ident: CR301
– volume: 8
  start-page: 182422
  year: 2020
  end-page: 30
  ident: CR310
  article-title: A hybrid heuristic dimensionality reduction methods for classifying malaria vector gene expression data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029234
– ident: CR135
– ident: CR267
– ident: CR54
– ident: CR8
– volume: 295
  start-page: 4
  issue: 1
  year: 2020
  end-page: 15
  ident: CR56
  article-title: Preparing medical imaging data for machine learning
  publication-title: Radiology
  doi: 10.1148/radiol.2020192224
– ident: CR106
– ident: CR215
– ident: CR238
– ident: CR25
– ident: CR42
– volume: 22
  start-page: 3207
  issue: 12
  year: 2010
  end-page: 3220
  ident: CR125
  article-title: Deep big simple neural nets excel on digit recognition
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00052
– ident: CR129
– ident: CR101
– volume: 35
  start-page: 112
  issue: 9
  year: 1992
  end-page: 123
  ident: CR16
  article-title: Evolution of data modeling for databases
  publication-title: Commun ACM
  doi: 10.1145/130994.131001
– ident: CR256
– ident: CR313
– ident: CR204
– volume: 90
  start-page: 60
  issue: 10
  year: 2012
  end-page: 8
  ident: CR52
  article-title: Big data: the management revolution
  publication-title: Harvard Bus Rev.
– ident: CR88
– ident: CR262
– ident: CR153
– volume: 12
  start-page: 1149
  year: 2011
  end-page: 84
  ident: CR93
  article-title: Laplacian support vector machines trained in the primal
  publication-title: J Mach Learn Res
– volume: 42
  start-page: 2
  year: 2015
  ident: CR75
  article-title: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study
  publication-title: Knowledge Information systems
  doi: 10.1007/s10115-013-0706-y
– ident: CR170
– year: 2012
  ident: CR15
  article-title: Formalizing Turing Machines
  publication-title: Logic, Language, Information and Computation. WoLLIC 2012. Lecture Notes in Computer Science
– volume: 55
  start-page: 77
  issue: 10
  year: 2012
  end-page: 87
  ident: CR53
  article-title: A few useful things to know about machine learning
  publication-title: Commun ACM
  doi: 10.1145/2347736.2347755
– volume: 141
  start-page: 178
  year: 2018
  end-page: 87
  ident: CR185
  article-title: A Selective Multiple Instance Transfer Learning Method for Text Categorization Problems
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.11.019
– ident: CR60
– ident: CR112
– ident: CR306
– volume: 10
  start-page: 2
  year: 2003
  ident: CR43
  article-title: Estimating Dataset Size Requirements for Classifying DNA Microarray Data
  publication-title: J Comput Biol
  doi: 10.1089/106652703321825928
– ident: CR273
– ident: CR147
– ident: CR164
– ident: CR198
– ident: CR66
– ident: CR47
– ident: CR72
– volume: 24
  start-page: 8
  issue: 2
  year: 2009
  end-page: 12
  ident: CR61
  article-title: The Unreasonable Effectiveness of Data
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2009.36
– ident: CR30
– ident: CR171
– ident: CR261
– ident: CR249
– ident: CR284
– ident: CR307
– ident: CR312
– ident: CR165
– ident: CR278
– ident: CR297
– ident: CR123
– ident: CR255
– ident: CR142
– ident: CR94
– ident: CR233
– ident: CR176
– volume: 321
  start-page: 321
  year: 2018
  end-page: 331
  ident: CR177
  article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– volume: 79
  start-page: 101684
  year: 2020
  ident: CR178
  article-title: MedGAN: Medical image translation using GANs
  publication-title: Comput Med Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.101684
– ident: CR3
– ident: CR193
– ident: CR227
– ident: CR134
– ident: CR187
– ident: CR159
– ident: CR244
– volume: 35
  start-page: 2
  year: 2018
  ident: CR73
  article-title: Semi-supervised regression: A recent review
  publication-title: J Intell Fuzzy Syst
– ident: CR83
– volume: 47
  start-page: 4
  year: 2017
  ident: CR58
  article-title: The GDPR in the Age of Big Data
  publication-title: Seton Hall Law Review
– volume: 59
  start-page: 433
  issue: 236
  year: 1950
  end-page: 460
  ident: CR21
  article-title: Computing machinery and intelligence
  publication-title: Mind
  doi: 10.1093/mind/LIX.236.433
– ident: CR250
– ident: CR128
– volume: 113
  start-page: 54
  year: 2019
  end-page: 71
  ident: CR216
  article-title: Continual lifelong learning with neural networks: a review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.012
– ident: CR292
– ident: CR257
– ident: CR102
– ident: CR234
– ident: CR205
– volume: 53
  start-page: 1
  issue: 3
  year: 2020
  end-page: 34
  ident: CR7
  article-title: Generalizing from a few examples: A survey on few-shot learning
  publication-title: ACM Comput Surv
  doi: 10.1145/3386252
– ident: CR4
– ident: CR131
– ident: CR263
– ident: CR228
– ident: CR286
– ident: CR119
– year: 1999
  ident: CR13
  publication-title: A History of Algorithms: From the Pebble to the Microchip
  doi: 10.1007/978-3-642-18192-4
– ident: CR186
– ident: CR305
– ident: CR29
– volume: 8
  start-page: 279
  issue: 3
  year: 1992
  end-page: 292
  ident: CR114
  article-title: Q-Learning
  publication-title: Machine Learning.
– volume: 29
  start-page: 17
  year: 2019
  end-page: 23
  ident: CR279
  article-title: Reconciling deep learning with symbolic artificial intelligence: representing objects and relations
  publication-title: Curr Opin Behav Sci.
  doi: 10.1016/j.cobeha.2018.12.010
– ident: CR140
– ident: CR163
– ident: CR295
– year: 2002
  ident: CR17
  publication-title: Concepts in programming languages
  doi: 10.1017/CBO9780511804175
– ident: CR174
– ident: CR46
– year: 2018
  ident: CR5
  publication-title: Architects of Intelligence: the Truth About AI From the People Building It
– volume: 95
  start-page: 43
  year: 2018
  end-page: 56
  ident: CR288
  article-title: A new image classification method using CNN transfer learning and web data augmentation
  publication-title: Expert Syst Appl.
  doi: 10.1016/j.eswa.2017.11.028
– ident: CR317
– start-page: 118
  year: 2014
  end-page: 133
  ident: CR28
  publication-title: The computational universe. In Information and the Nature of Reality: from Physics to Metaphysics
– ident: CR67
– ident: CR157
– ident: CR136
– ident: CR246
– ident: CR78
– ident: CR200
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  end-page: 30
  ident: CR79
  article-title: Introduction to semi-supervised learning
  publication-title: Synth Lect Artif Intell Mach Learn.
  doi: 10.2200/S00196ED1V01Y200906AIM006
– volume: 40
  start-page: 7
  issue: 1
  year: 2018
  end-page: 19
  ident: CR168
  article-title: Active self-paced learning for cost-effective and progressive face identification
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2652459
– ident: CR181
– ident: CR239
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  end-page: 40
  ident: CR183
  article-title: A survey of transfer learning
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0043-6
– ident: CR252
– ident: CR290
– ident: CR316
– ident: CR175
– ident: CR280
– volume: 35
  start-page: 137
  issue: 2
  year: 2015
  end-page: 144
  ident: CR19
  article-title: Beyond the hype: Big data concepts, methods, and analytics
  publication-title: Int J Inf Manage
  doi: 10.1016/j.ijinfomgt.2014.10.007
– ident: CR152
– ident: CR245
– ident: CR180
– volume: 7
  start-page: 232
  year: 2010
  end-page: 7
  ident: CR36
  article-title: A Review of Nature-Inspired Algorithms
  publication-title: J Bionic Eng
  doi: 10.1016/S1672-6529(09)60240-7
– ident: CR251
– ident: CR146
– ident: CR23
– ident: CR274
– volume: 4
  start-page: 14
  year: 2017
  ident: CR311
  article-title: A comparative analysis of feature extraction methods for classifying colon cancer microarray data
  publication-title: EAI Endors Trans Scalable Inf Syst
– volume: 28
  start-page: 296
  issue: 3
  year: 2019
  end-page: 316
  ident: CR48
  article-title: BIG data – BIG gains? Understanding the link between big data analytics and innovation
  publication-title: Econ Innov New Technol
  doi: 10.1080/10438599.2018.1493075
– ident: CR124
– ident: CR197
– ident: CR206
– ident: CR90
– ident: CR130
– ident: CR300
– ident: CR285
– ident: CR118
– ident: CR268
– year: 2014
  ident: CR9
  publication-title: The data revolution: big data, open data, data infrastructures and their consequences
– ident: CR34
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: CR1
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: CR223
– volume: 217
  start-page: 188
  year: 1996
  end-page: 93
  ident: CR24
  article-title: The physical nature of information
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(96)00453-7
– ident: CR107
– ident: CR62
– ident: CR141
– ident: CR296
– ident: 419_CR92
– ident: 419_CR94
  doi: 10.1145/1553374.1553456
– ident: 419_CR72
  doi: 10.1007/s12559-019-09664-w
– ident: 419_CR238
  doi: 10.1007/978-3-030-34094-0_6
– ident: 419_CR86
– volume: 113
  start-page: 54
  year: 2019
  ident: 419_CR216
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.012
– volume: 7
  start-page: 232
  year: 2010
  ident: 419_CR36
  publication-title: J Bionic Eng
  doi: 10.1016/S1672-6529(09)60240-7
– ident: 419_CR207
– ident: 419_CR208
  doi: 10.1145/1390156.1390164
– ident: 419_CR145
– ident: 419_CR254
– volume: 22
  start-page: 3207
  issue: 12
  year: 2010
  ident: 419_CR125
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00052
– ident: 419_CR173
  doi: 10.1109/CVPR.2019.00020
– ident: 419_CR224
  doi: 10.3115/v1/P15-2123
– volume: 10
  start-page: 1
  issue: 3770
  year: 2019
  ident: 419_CR68
  publication-title: Nat Commun
– ident: 419_CR162
– ident: 419_CR110
– ident: 419_CR146
  doi: 10.1109/DICTA.2016.7797091
– ident: 419_CR271
– volume: 27
  start-page: 5303
  issue: 11
  year: 2018
  ident: 419_CR291
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2855449
– ident: 419_CR248
– volume: 24
  start-page: 8
  issue: 2
  year: 2009
  ident: 419_CR61
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2009.36
– ident: 419_CR202
– volume: 107
  start-page: 727
  year: 2018
  ident: 419_CR211
  publication-title: Mach Learn
  doi: 10.1007/s10994-017-5676-y
– ident: 419_CR152
  doi: 10.1007/978-3-642-15561-1_16
– volume: 109
  start-page: 49
  year: 2018
  ident: 419_CR74
  publication-title: Expert Systems with Applications.
  doi: 10.1016/j.eswa.2018.05.023
– ident: 419_CR2
  doi: 10.1109/CVPR.2016.90
– ident: 419_CR316
– volume: 61
  start-page: 103
  issue: 5
  year: 2018
  ident: 419_CR230
  publication-title: Commun ACM
  doi: 10.1145/3191513
– ident: 419_CR85
  doi: 10.3115/1218955.1218990
– ident: 419_CR124
  doi: 10.1109/5.726791
– ident: 419_CR259
– volume-title: The data revolution: big data, open data, data infrastructures and their consequences
  year: 2014
  ident: 419_CR9
– ident: 419_CR80
– volume: 8
  start-page: 1
  year: 2017
  ident: 419_CR76
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-015-0328-7
– ident: 419_CR98
– ident: 419_CR104
– ident: 419_CR218
  doi: 10.1007/978-3-642-79629-6_7
– ident: 419_CR305
– ident: 419_CR157
  doi: 10.1109/CVPR.2017.18
– ident: 419_CR81
  doi: 10.1007/978-3-642-34166-3_79
– ident: 419_CR272
– ident: 419_CR138
– ident: 419_CR106
  doi: 10.1109/ICCV.2019.00822
– volume: 8
  start-page: 279
  issue: 3
  year: 1992
  ident: 419_CR114
  publication-title: Machine Learning.
  doi: 10.1007/BF00992698
– ident: 419_CR46
– ident: 419_CR78
  doi: 10.1007/11430919_71
– volume: 28
  start-page: 296
  issue: 3
  year: 2019
  ident: 419_CR48
  publication-title: Econ Innov New Technol
  doi: 10.1080/10438599.2018.1493075
– ident: 419_CR167
– volume-title: On-line Q-learning using Connectionist Systems
  year: 1994
  ident: 419_CR113
– volume: 16
  start-page: 321
  year: 2002
  ident: 419_CR148
  publication-title: J Artif Intellig Res.
  doi: 10.1613/jair.953
– volume-title: Logic, Language, Information and Computation. WoLLIC 2012. Lecture Notes in Computer Science
  year: 2012
  ident: 419_CR15
– ident: 419_CR201
– ident: 419_CR317
– ident: 419_CR220
  doi: 10.1007/978-1-4613-1381-6
– ident: 419_CR103
  doi: 10.1007/978-3-642-21735-7_6
– ident: 419_CR51
– ident: 419_CR237
– ident: 419_CR300
– ident: 419_CR294
– volume: 22
  start-page: 58
  year: 2007
  ident: 419_CR299
  publication-title: T Jpn Soc AI.
– ident: 419_CR116
– ident: 419_CR133
– start-page: 131
  volume-title: Covariate shift by kernel mean matching. Dataset Shift in Machine Learning
  year: 2009
  ident: 419_CR151
– ident: 419_CR160
  doi: 10.1609/aaai.v32i1.12329
– volume: 55
  start-page: 77
  issue: 10
  year: 2012
  ident: 419_CR53
  publication-title: Commun ACM
  doi: 10.1145/2347736.2347755
– volume: 94
  start-page: 192
  year: 2017
  ident: 419_CR89
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.07.006
– ident: 419_CR11
  doi: 10.1007/978-3-319-22156-4_2,2015
– volume: 109
  start-page: 373
  issue: 2
  year: 2020
  ident: 419_CR71
  publication-title: Mach Learn
  doi: 10.1007/s10994-019-05855-6
– volume: 408
  start-page: 216
  year: 2020
  ident: 419_CR84
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.130
– ident: 419_CR232
– ident: 419_CR175
– ident: 419_CR127
– ident: 419_CR144
– volume: 35
  start-page: 137
  issue: 2
  year: 2015
  ident: 419_CR19
  publication-title: Int J Inf Manage
  doi: 10.1016/j.ijinfomgt.2014.10.007
– ident: 419_CR23
– ident: 419_CR260
  doi: 10.1109/CVPR42600.2020.00357
– volume: 15
  start-page: 671
  issue: 7
  year: 1972
  ident: 419_CR12
  publication-title: Commun ACM
  doi: 10.1145/361454.361514
– volume: 47
  start-page: 4
  year: 2017
  ident: 419_CR58
  publication-title: Seton Hall Law Review
– ident: 419_CR164
  doi: 10.1609/aaai.v34i04.6131
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: 419_CR1
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 37
  start-page: 137
  year: 2013
  ident: 419_CR82
  publication-title: Knowl Based Syst.
  doi: 10.1016/j.knosys.2012.07.020
– ident: 419_CR184
– volume: 40
  start-page: 7
  issue: 1
  year: 2018
  ident: 419_CR168
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2652459
– ident: 419_CR245
  doi: 10.1007/978-3-030-01237-3_27
– ident: 419_CR45
  doi: 10.2139/ssrn.3118022
– ident: 419_CR90
  doi: 10.1109/JPROC.2012.2197809
– ident: 419_CR139
  doi: 10.1109/ICCV.2017.310
– ident: 419_CR315
– volume: 116
  start-page: 56
  year: 2019
  ident: 419_CR217
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.03.010
– ident: 419_CR297
  doi: 10.1109/CVPR42600.2020.01238
– ident: 419_CR321
– volume: 42
  start-page: 2
  year: 2015
  ident: 419_CR75
  publication-title: Knowledge Information systems
  doi: 10.1007/s10115-013-0706-y
– ident: 419_CR244
– ident: 419_CR91
– volume: 41
  start-page: 2251
  issue: 9
  year: 2018
  ident: 419_CR240
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2857768
– ident: 419_CR136
  doi: 10.1109/CVPR.2017.632
– ident: 419_CR70
– ident: 419_CR296
– ident: 419_CR135
– ident: 419_CR141
– ident: 419_CR262
  doi: 10.1007/978-3-030-37731-1_62
– ident: 419_CR132
  doi: 10.1007/978-3-030-01424-7_58
– ident: 419_CR190
  doi: 10.1016/j.imavis.2019.103853
– ident: 419_CR87
– volume: 321
  start-page: 321
  year: 2018
  ident: 419_CR177
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– ident: 419_CR163
  doi: 10.1007/978-3-030-01231-1_14
– ident: 419_CR275
  doi: 10.24963/ijcai.2020/671
– ident: 419_CR295
  doi: 10.18653/v1/P19-1185
– ident: 419_CR206
– ident: 419_CR29
– ident: 419_CR309
– ident: 419_CR313
  doi: 10.1016/j.neucom.2020.01.119
– ident: 419_CR30
  doi: 10.1007/978-3-642-24955-6_57
– volume: 48
  start-page: 220
  year: 2019
  ident: 419_CR35
  publication-title: Swarm Evolutionary Computation
  doi: 10.1016/j.swevo.2019.04.008
– ident: 419_CR233
  doi: 10.1609/aaai.v31i1.10744
– ident: 419_CR42
– ident: 419_CR156
  doi: 10.1007/978-3-319-46493-0_36
– ident: 419_CR69
– ident: 419_CR140
– start-page: 118
  volume-title: The computational universe. In Information and the Nature of Reality: from Physics to Metaphysics
  year: 2014
  ident: 419_CR28
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 419_CR183
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0043-6
– ident: 419_CR134
– volume: 35
  start-page: 2
  year: 2018
  ident: 419_CR73
  publication-title: J Intell Fuzzy Syst
– volume: 78
  start-page: 13131
  year: 2019
  ident: 419_CR212
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-5609-1
– volume: 95
  start-page: 43
  year: 2018
  ident: 419_CR288
  publication-title: Expert Syst Appl.
  doi: 10.1016/j.eswa.2017.11.028
– volume: 79
  start-page: 101684
  year: 2020
  ident: 419_CR178
  publication-title: Comput Med Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.101684
– volume-title: Machinery during the industrial revolution
  year: 2009
  ident: 419_CR14
  doi: 10.1007/978-90-481-2512-8_7
– volume: 22
  start-page: 10
  year: 2010
  ident: 419_CR182
  publication-title: IEEE Transactions on knowledge data engineering
– ident: 419_CR223
  doi: 10.1007/978-3-319-18356-5_27
– ident: 419_CR101
– ident: 419_CR128
– ident: 419_CR97
– ident: 419_CR191
– ident: 419_CR6
– volume: 19
  start-page: 3
  year: 2017
  ident: 419_CR41
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.6533
– volume: 7
  start-page: 55
  year: 2010
  ident: 419_CR65
  publication-title: Poiesis Prax
  doi: 10.1007/s10202-010-0078-2
– ident: 419_CR174
  doi: 10.1109/CVPRW50498.2020.00359
– ident: 419_CR64
– ident: 419_CR267
– ident: 419_CR47
– ident: 419_CR290
– volume-title: Barto AG reinforcement learning: an introduction
  year: 2018
  ident: 419_CR111
– ident: 419_CR209
  doi: 10.1609/aaai.v34i04.6139
– ident: 419_CR205
  doi: 10.1109/IGARSS.2019.8899343
– ident: 419_CR304
  doi: 10.1109/IRC.2019.00120
– ident: 419_CR278
– ident: 419_CR123
– volume: 27
  start-page: 1134
  issue: 11
  year: 1984
  ident: 419_CR40
  publication-title: Commun ACM
  doi: 10.1145/1968.1972
– ident: 419_CR25
  doi: 10.1007/978-3-030-03633-1_13
– ident: 419_CR179
– volume: 61
  start-page: 1
  year: 2018
  ident: 419_CR283
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.5714
– ident: 419_CR67
  doi: 10.1109/ACCESS.2015.2513822
– ident: 419_CR268
– ident: 419_CR8
– ident: 419_CR302
– ident: 419_CR137
  doi: 10.1109/ICCV.2017.244
– ident: 419_CR107
– ident: 419_CR239
– ident: 419_CR274
– ident: 419_CR188
– ident: 419_CR243
  doi: 10.1109/ICCV.2019.00851
– ident: 419_CR37
  doi: 10.1111/itor.12001
– ident: 419_CR319
– ident: 419_CR250
  doi: 10.1609/aaai.v33i01.33018642
– ident: 419_CR180
  doi: 10.18653/v1/D19-1670
– ident: 419_CR200
  doi: 10.4018/978-1-60566-766-9
– ident: 419_CR129
  doi: 10.1109/IIPHDW.2018.8388338
– ident: 419_CR165
  doi: 10.1007/978-3-030-01240-3_44
– ident: 419_CR226
  doi: 10.1007/978-3-319-71246-8_42
– ident: 419_CR301
  doi: 10.1109/9780470544785.ch2
– ident: 419_CR60
– ident: 419_CR170
  doi: 10.1109/CAC.2017.8243510
– ident: 419_CR66
– volume: 29
  start-page: 17
  year: 2019
  ident: 419_CR279
  publication-title: Curr Opin Behav Sci.
  doi: 10.1016/j.cobeha.2018.12.010
– ident: 419_CR214
  doi: 10.18653/v1/E17-1015
– ident: 419_CR292
– volume: 51
  start-page: 32
  issue: 12
  year: 2018
  ident: 419_CR192
  publication-title: Computer
  doi: 10.1109/MC.2018.2880015
– ident: 419_CR131
– ident: 419_CR227
– volume-title: Concepts in programming languages
  year: 2002
  ident: 419_CR17
  doi: 10.1017/CBO9780511804175
– ident: 419_CR121
  doi: 10.1145/2487575.2487629
– volume: 73
  start-page: 313
  issue: 3
  year: 2008
  ident: 419_CR222
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5088-0
– ident: 419_CR31
– ident: 419_CR234
– volume: 35
  start-page: 112
  issue: 9
  year: 1992
  ident: 419_CR16
  publication-title: Commun ACM
  doi: 10.1145/130994.131001
– ident: 419_CR62
  doi: 10.3115/1073012.1073017
– ident: 419_CR118
– ident: 419_CR286
– ident: 419_CR194
– volume: 217
  start-page: 188
  year: 1996
  ident: 419_CR24
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(96)00453-7
– ident: 419_CR181
  doi: 10.1109/IROS.2017.8205961
– ident: 419_CR186
  doi: 10.1109/ACCESS.2020.2992520
– ident: 419_CR204
  doi: 10.18653/v1/P17-1001
– ident: 419_CR130
– ident: 419_CR161
  doi: 10.1109/CVPR.2018.00143
– ident: 419_CR88
– volume: 14
  start-page: 3
  year: 2020
  ident: 419_CR213
  publication-title: ACM Trans Knowl Discovery Data
– ident: 419_CR147
– ident: 419_CR172
– ident: 419_CR284
  doi: 10.1109/TNNLS.2016.2603784
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  ident: 419_CR79
  publication-title: Synth Lect Artif Intell Mach Learn.
– ident: 419_CR119
– ident: 419_CR153
– ident: 419_CR285
– volume: 530
  start-page: 7589
  year: 2016
  ident: 419_CR18
  publication-title: Nature
  doi: 10.1038/530144a
– ident: 419_CR59
– ident: 419_CR235
  doi: 10.1007/978-3-031-01581-6
– ident: 419_CR252
– ident: 419_CR266
  doi: 10.1609/aaai.v32i1.12007
– volume: 23
  start-page: 5
  year: 2017
  ident: 419_CR117
  publication-title: Trends Cogn Sci
– ident: 419_CR83
  doi: 10.1007/978-3-030-01267-0_9
– ident: 419_CR308
– ident: 419_CR303
– ident: 419_CR158
– ident: 419_CR246
– ident: 419_CR32
  doi: 10.1109/SMC.2018.00177
– ident: 419_CR263
– volume: 8
  start-page: 182422
  year: 2020
  ident: 419_CR310
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029234
– volume: 41
  start-page: 8
  year: 2018
  ident: 419_CR100
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: 419_CR105
  doi: 10.1109/CVPR.2019.00265
– ident: 419_CR261
  doi: 10.18653/v1/2020.acl-main.348
– ident: 419_CR102
– ident: 419_CR265
  doi: 10.1007/978-3-030-10925-7_30
– ident: 419_CR249
  doi: 10.1109/CVPR.2018.00131
– ident: 419_CR280
– ident: 419_CR54
– ident: 419_CR257
– ident: 419_CR215
– ident: 419_CR320
– volume: 59
  start-page: 433
  issue: 236
  year: 1950
  ident: 419_CR21
  publication-title: Mind
  doi: 10.1093/mind/LIX.236.433
– ident: 419_CR273
  doi: 10.24963/ijcai.2018/627
– ident: 419_CR293
– volume: 4
  start-page: 14
  year: 2017
  ident: 419_CR311
  publication-title: EAI Endors Trans Scalable Inf Syst
– ident: 419_CR270
– volume: 13
  start-page: 460
  year: 2018
  ident: 419_CR289
  publication-title: WSEAS Trans Syst Control.
– volume: 12
  start-page: 1149
  year: 2011
  ident: 419_CR93
  publication-title: J Mach Learn Res
– ident: 419_CR264
– ident: 419_CR38
– volume: 340
  start-page: 76
  year: 2019
  ident: 419_CR203
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2019.02.035
– ident: 419_CR63
  doi: 10.1007/s11263-015-0812-2
– ident: 419_CR241
– ident: 419_CR312
– ident: 419_CR143
  doi: 10.1109/MLSP.2018.8516711
– ident: 419_CR159
  doi: 10.1109/CVPR.2016.265
– volume: 90
  start-page: 60
  issue: 10
  year: 2012
  ident: 419_CR52
  publication-title: Harvard Bus Rev.
– ident: 419_CR150
  doi: 10.18653/v1/D19-6101
– volume: 109
  start-page: 569
  year: 2020
  ident: 419_CR210
  publication-title: Mach Learn
  doi: 10.1007/s10994-019-05847-6
– ident: 419_CR149
– ident: 419_CR231
  doi: 10.1145/1718487.1718501
– volume: 11
  start-page: 9
  year: 2018
  ident: 419_CR77
  publication-title: Algorithm
  doi: 10.3390/a11090139
– ident: 419_CR126
– volume: 8
  start-page: 277
  year: 1996
  ident: 419_CR221
  publication-title: Connect Sci
  doi: 10.1080/095400996116929
– ident: 419_CR155
– ident: 419_CR287
– ident: 419_CR193
– ident: 419_CR228
  doi: 10.1145/2872427.2883086
– ident: 419_CR189
  doi: 10.1017/9781139061773.0102020
– ident: 419_CR306
– ident: 419_CR99
– ident: 419_CR4
– volume: 4
  start-page: 5
  issue: 1
  year: 2014
  ident: 419_CR20
  publication-title: Rev Manag
– volume: 6
  start-page: 48
  year: 2019
  ident: 419_CR122
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: 419_CR229
  doi: 10.1609/aaai.v30i1.10373
– ident: 419_CR269
– volume-title: Architects of Intelligence: the Truth About AI From the People Building It
  year: 2018
  ident: 419_CR5
– ident: 419_CR108
– ident: 419_CR166
– ident: 419_CR258
  doi: 10.1007/978-3-030-47436-2_64
– ident: 419_CR10
– ident: 419_CR187
– ident: 419_CR196
  doi: 10.1109/ICCT46805.2019.8947072
– volume: 5
  start-page: 1
  year: 2018
  ident: 419_CR55
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwx106
– ident: 419_CR33
  doi: 10.3389/fnbot.2019.00040
– ident: 419_CR34
  doi: 10.1007/s12559-020-09730-8
– ident: 419_CR255
  doi: 10.1609/aaai.v33i01.33019937
– volume: 141
  start-page: 178
  year: 2018
  ident: 419_CR185
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.11.019
– ident: 419_CR276
– ident: 419_CR282
– volume-title: A History of Algorithms: From the Pebble to the Microchip
  year: 1999
  ident: 419_CR13
  doi: 10.1007/978-3-642-18192-4
– ident: 419_CR197
  doi: 10.1017/9781139061773.0142020
– ident: 419_CR115
  doi: 10.1609/aaai.v32i1.11694
– ident: 419_CR154
  doi: 10.1109/ICCV.2011.6126344
– volume: 53
  start-page: 1
  issue: 3
  year: 2020
  ident: 419_CR7
  publication-title: ACM Comput Surv
  doi: 10.1145/3386252
– ident: 419_CR198
– volume: 15
  start-page: 721
  year: 2020
  ident: 419_CR277
  publication-title: J Electr Eng Technol.
  doi: 10.1007/s42835-020-00343-7
– ident: 419_CR314
  doi: 10.1109/ICIP.2016.7533053
– ident: 419_CR171
  doi: 10.1007/978-3-030-00536-8_6
– ident: 419_CR247
– ident: 419_CR44
  doi: 10.1007/978-3-540-30116-5_17
– ident: 419_CR109
– volume: 106
  start-page: 39
  issue: 9
  year: 2016
  ident: 419_CR50
  publication-title: American Economic Review
– ident: 419_CR195
  doi: 10.1109/CVPR.2017.754
– volume: 28
  start-page: 1
  year: 1997
  ident: 419_CR199
  publication-title: Mach Learn
  doi: 10.1023/A:1007379606734
– ident: 419_CR281
– volume: 28
  start-page: 5
  year: 2015
  ident: 419_CR96
  publication-title: Neural Comput Appl
– ident: 419_CR251
  doi: 10.1109/CVPR.2019.00672
– ident: 419_CR142
  doi: 10.1137/1.9781611975673.71
– volume: 53
  start-page: 1038
  issue: 8
  year: 2016
  ident: 419_CR49
  publication-title: Inf Manag
  doi: 10.1016/j.im.2016.06.003
– ident: 419_CR298
  doi: 10.1007/978-3-030-58548-8_46
– ident: 419_CR57
  doi: 10.1007/978-3-319-49644-3_3
– ident: 419_CR120
– ident: 419_CR22
– ident: 419_CR39
  doi: 10.7551/mitpress/3897.001.0001
– ident: 419_CR176
– volume: 30
  start-page: 1
  year: 2013
  ident: 419_CR95
  publication-title: Appl Res Comput
– ident: 419_CR219
– ident: 419_CR242
– volume: 10
  start-page: 2
  year: 2003
  ident: 419_CR43
  publication-title: J Comput Biol
  doi: 10.1089/106652703321825928
– ident: 419_CR225
– ident: 419_CR318
– start-page: 83
  volume-title: Universe from Bit. In: Information and the Nature of Reality: From Physics to Metaphysics
  year: 2014
  ident: 419_CR26
  doi: 10.1017/CBO9781107589056.006
– volume: 11
  start-page: 709
  issue: 3
  year: 2017
  ident: 419_CR169
  publication-title: VLDB J
– ident: 419_CR256
  doi: 10.1109/CVPR.2019.00049
– ident: 419_CR27
– volume: 295
  start-page: 4
  issue: 1
  year: 2020
  ident: 419_CR56
  publication-title: Radiology
  doi: 10.1148/radiol.2020192224
– ident: 419_CR253
– ident: 419_CR112
  doi: 10.1109/MSP.2017.2743240
– ident: 419_CR3
– ident: 419_CR236
– ident: 419_CR307
SSID ssj0001340564
Score 2.594612
Snippet The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because...
Abstract The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Big Data
Communications Engineering
Computational Science and Engineering
Computer Science
Data acquisition
Data augmentation
Data hungry algorithms
Data Mining and Knowledge Discovery
Database Management
Data‐efficiency
Domains
Information Storage and Retrieval
Machine learning
Mathematical Applications in Computer Science
Networks
Small sample learning
Survey Paper
Transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLoVD36jb0sqH3orFJpn4caRVEeqhpyJxs5yxDStts2gfIG78BH4jv6RjJ1mWC_RQKad4ItnfzGRmYucbxr5IGhjHphZNgSjAuVK4GgpROI8xeGd0yGyfv-TxCfw8rU83Wn2lM2EdPXAH3IErXKkKp0OoDfhG68obbBAqqgJR1ZjevmNtNoqp_HWlokREwvCXjJYHC0jMJSKdSEgcU0aYB5EoE_Y_yDLXG6M77PmqvXDXV2463Yg9R6_Yiz5p5IfdZF-zZ6F9w14ODRl4759vmTrki9X8MlzzWcvT2c-7m9uQOSIotHA3PZvNJ8vzPws-aXkzOcsiPMzdO3Zy9OP392PRd0YQKMtiKbzzFQQ9BkUw1AGjSZsp2gQZa6ecVxGilxSLo0cFiL6MiiAkd441AgWrXbbVztrwnvExiSbawYouKJVqFJrKOAQK9QgBR6wYULLY04an7hVTm8sHLW2HrCVkbUbWmhH7un7moiPNeFT6WwJ_LZkIr_MNMgPbm4F9ygxGbG9Qne29cGFL0GQaQCXeiO0P6rwffmxK-2uV_8MKPvyPFXxk22W2zkKUco9tLeer8IkSnmXzOdv2X2_O-pQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9AAceCMCBfnAjVrNer1-HBBqq1YVhwghKvVmecd2qJRuQh6g3vgJ_Mb-ktrObtJeIqQ9rWe1nhmPZ-yxvwH4KGLDINQVrQtEyq1l1Fa8oIV1GLyzWvmM9jkUZ-f860V1sQPD7i5MOlbZzYl5onYTTHvkB4yrgdI8hutfpr9oqhqVsqtdCQ3bllZwnzPE2APYZQkZqwe7RyfDb983uy5lDFAE727PKHEw5wnRhKaTCgl7SlN9z0NlIP970ec6YfoYHi6bqb3-Y8fjOz7p9Bk8aYNJcrjS_nPY8c0LeNoVaiCt3b4EeUjmy9lvf00mDUlnQm_-_vMZOyK6HGLHo8jo4ufVnFw2pL4cZRLiZ_YVnJ-e_Dg-o23FBIqCFQvqrCu5VwMuS19XHoNOSRalvQiVldbJwIMT0UcHh5IjOhakVT6aeaiQRyf2GnrNpPFvgAwiaYIjLOPDmZS1RF1qizyGAMg99qHopGSwhRNPVS3GJi8rlDAryZooWZMla3QfPq2_ma7ANLZSHyXhrykTEHZ-MZmNTGtXxhaWySLy4CvNXa1U6TTWyCP_JcoqdnOvU51prXNuNmOpD_udOjfN27q0v1b5f3DwdvvP38EjlsddQZnYg95itvTvY4izqD-04_YW9Un3Zw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYoHFoOpb9igVY-9FasbpyJf44UFSEOnIrEzXLG9nalbRYlu0XceIQ-Y58E25tsQaoQlXKKx5E948mM7ZlvCPkkYsM41BWrC0QG1nJmKyhYYR0G76xWPqN9novTCzi7rC77pLBuiHYfriTznzqrtRJfOkjQIyyFFCSQKM30M7IV_Q-eCjYc9zkO-WSljJQChgyZf3Z9YIUyWP8DD3N9KbpNni-bK3tzbWeze3bn5BV52TuM9Ggl4ddkwzdvyM5QjIH2uvmWyCPaLdtf_obOG5riPv_c_vYZHyKaFWpnk3k7Xfz42dFpQ-vpJJNQ39p35OLk2_fjU9ZXRWAoeLFgzroSvBqDLH1deQw6XaQo7UWorLROBghORDscHEpAdDxIq3xU5VAhREP1nmw288bvEjqOpAlysIwPcClribrUFiGaeQSPI1IMXDLYQ4anyhUzk7cOSpgVZ03krMmcNXpEPq_7XK0AMx6l_pqYv6ZMYNf5xbydmF53jC0sl0Wcg680uFqp0mmsEeL8S5RVHObBIDrTa2BnOKix0hC3dyNyOIjzb_NjQzpci_wJM9j7v6_vkxc8r8OCcXFANhft0n-Ibs2i_phX8R0I4e2Q
  priority: 102
  providerName: Springer Nature
Title A survey on data‐efficient algorithms in big data era
URI https://link.springer.com/article/10.1186/s40537-021-00419-9
https://www.proquest.com/docview/2480894625
https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-021-00419-9
https://doaj.org/article/a1a271a8ee594db883d9cbc43eb3c75c
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: ADMLS
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: 8FG
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: AAJSJ
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: C6C
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61yQE4UJ4iUCIfuNFNY3ufRzdqqHKIKiBSOVnrfaRRgx05Dqic-An8Rn4Ju44dKEIVSEiWLe2O5Z2dmZ1Z7-43AK-oqxjajKAsVAphKSMkCQ5RKLWyRkvBTY32OaVnMzy5IBd7MG3PwjQ9WNhsMfd7JAft8qRPJlWP3FUp1dXxStutwXN6vMYelAT5zQYePkogsQ9dSlxs3oHubHqefPAZ5pyqIWfYpD0588cXb3inGsT_RuS5Wyy9B3c2-Upef5bL5S_-aHwARcvJdhvK1WBTZQP15TeQx__H6gO434SuQbLVtYewZ_JHcNCmhQiaUeIxsCRYb8pP5joo8sB_8vvXb6ZGqnAOLpDLeVEuqsuP62CRB65RNUlgSvkEZuPT96Mz1ORnQIpGYYW01DE2fIhZbDJilBV-SYcLQy2RTGpmsdXURQRWK4aV0pFlkhs3qFiisHOZT6GTF7l5BsHQkXrww9hdOGIsY0rEQirsAg6FjepB2MolVQ14uc-hsUzrSQyn6bZnUtczad0zqejB6907qy10x63UJ17cO0oPu10XFOU8baw4laGMWOh4MERgnXEea6EyhR3_sWLENfOwVZa0Ee86jTAfcoHdRLMHR62Mf1bf1qSjnZL9BQfP_438BdyNaj0KUUQPoVOVG_PSBVhV1od9Pn7Th26STN5N3PPkdHr-1pWOIuzvdNSvf130G-v6ASvKJRg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9lA48EakFPABTtRq1ju7tg8VaqFVSkuEUCv1Zry2N1QKmzQPqtz4Cfwifgy_hLGzm9BLxKXSntazWntmPA8_viHkdY4N7bLIWJFYy8AYzkwGCUuMs6V3Rkkf0T67eeccPl5kF2vkd3MXJhyrbGxiNNRuYMMa-S4H2ZYKMFx_N7xioWpU2F1tSmiYurSC24sQY_XFjhM_u8YUbrx3_AHl_Ybzo8Oz9x1WVxlgNufJhDnjUvCyDSL1ReZtqcLGhFQ-LzMjjBMllC5Hv1Y6K8Bax0thpMepUWYWkgB8gC5gA1JQmPxtHBx2P39ZrvKkGBDl0NzWkfnuGAKCCgsnIwLWlWLqhkeMhQNuRLuLDdq7ZHNaDc3s2vT7__jAowfkXh280v25tj0ka756RO43hSFobSceE7FPx9PRDz-jg4qGM6h_fv7yEasCXRw1_R4ydvLt-5heVrS47EUS6kfmCTm_Fd49JevVoPLPCG0jaYA_TPEBLkQhrEqVsYAhhwVvWyRpuKRtDV8eqmj0dUxjZK7nnNXIWR05q1WLvF18M5yDd6ykPgjMX1AG4O34YjDq6Xoea5MYLhIcg88UuELK1ClbWMDxp1Zk2M3tRnS6tgZjvdTdFtlpxLlsXtWlnYXI_2MEW6t__opsds4-nerT4-7Jc3KHRx1MGM-3yfpkNPUvMLyaFC9rHabk621Pm79bHTYE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkXgceCMWCvjAjVrdJBM_jmVhVR6qOFCpN8vxY7vSkl1ls6De-An8Rn4JtpNsWwlVIOUUjyPPjEdjZ2a-AXjNwsDYVyWtMmMoap1TXWJGM22Nd1ZL4RLa5xE7PMaPJ-XJhSr-lO0-hCS7moaI0lS3-yvrOxMXbH-NEYaExvSCCBglqbwONzB4t9jDYMIm539ZikDJcKiW-evUSx4pAfdfOm1uA6R34NamXumzH3qxuOCDpvfhbn94JAedth_ANVc_hHtDYwbS2-kj4AdkvWm-uzOyrEnMAf3985dLWBGBRaIXs2Uzb0-_rcm8JtV8lkiIa_RjOJ6-_zo5pH2HBGpYnrXUalugE2PkhatKZ7yMQRUhHfOl5tpyj96y4JO9NRyNsbnnWrhg1r40GJzWE9ipl7V7CmQcSCP8YBEezDmvuJGF1AaDyzfozAiyQUrK9PDhsYvFQqVrhGCqk6wKklVJskqO4M12zqoDz7iS-m0U_pYyAl-nF8tmpno7UjrTOc8CD66UaCshCitNZTDwXxhehmXuDqpTvTWuVY5iLCSGq94I9gZ1ng9ftaS9rcr_gYNn__f1V3Dzy7up-vzh6NNzuJ2nLZnRnO3CTtts3Itw2mmrl2lD_wGDS_Th
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFH8a3QE4MP6KwkA-cGPumsSO7WNBTBOHigOVxslynu1SrUuqNAWNEx-Bz8gnwU6TwhCaQELKyX5W_P75Pcv27wG8yEPH2BecFgkiZcak1HCW0MRY9M4aJV2L9jnNT2fs7Rk_24Np_xamk2Dli8U83pEc9ceTsZhUu3I3tcHz45X1W4eX-fGaRVASGi8bRPgoRdUN2M95yM0HsD-bvpt8iBXmgqnR4Ni8fznzx4FXolML4n8l89wdlt6Gm5tyZS4_m-Xyl3h0cgBVz8n2Gsr5aNMUI_zyG8jj_2P1LtzpUlcy2draPdhz5X046MtCkG6VeABiQtab-pO7JFVJ4i-_f_3mWqSKEOCIWc6retF8vFiTRUnCpFoS4mrzEGYnb96_PqVdfQaKeZo01BqbMSfHTGSu4A69ikc6UrnccyOMFZ55m4eMwFsUDNGmXhjpwqLiObIQMh_BoKxK9xjIOJBG8MMsfCwVohCoMmWQhYQDmcMhJL1eNHbg5bGGxlK3mxiZ661kdJCMbiWj1RBe7sasttAd11K_iureUUbY7bahque682JtEpOKJPDguGK2kDKzCgtkgf8MBQ_TPOyNRXfqXeuUybFULGw0h3DU6_hn93VTOtoZ2V9w8OTfyJ_CrbS1o4Sm-SEMmnrjnoUEqymed17zA_KGHnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+data%E2%80%90efficient+algorithms+in+big+data+era&rft.jtitle=Journal+of+big+data&rft.au=Amina+Adadi&rft.date=2021-01-26&rft.pub=SpringerOpen&rft.eissn=2196-1115&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=54&rft_id=info:doi/10.1186%2Fs40537-021-00419-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a1a271a8ee594db883d9cbc43eb3c75c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon