A survey on data‐efficient algorithms in big data era
The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because acquiring data involves a process that is expensive or time-consuming. This has triggered a serious debate in both the industrial and academic commun...
Saved in:
| Published in | Journal of big data Vol. 8; no. 1; pp. 1 - 54 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
26.01.2021
Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2196-1115 2196-1115 |
| DOI | 10.1186/s40537-021-00419-9 |
Cover
| Abstract | The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because acquiring data involves a process that is expensive or time-consuming. This has triggered a serious debate in both the industrial and academic communities calling for more data-efficient models that harness the power of artificial learners while achieving good results with less training data and in particular less human supervision. In light of this debate, this work investigates the issue of algorithms’ data hungriness. First, it surveys the issue from different perspectives. Then, it presents a comprehensive review of existing data-efficient methods and systematizes them into four categories. Specifically, the survey covers solution strategies that handle data-efficiency by (i) using non-supervised algorithms that are, by nature, more data-efficient, by (ii) creating artificially more data, by (iii) transferring knowledge from rich-data domains into poor-data domains, or by (iv) altering data-hungry algorithms to reduce their dependency upon the amount of samples, in a way they can perform well in small samples regime. Each strategy is extensively reviewed and discussed. In addition, the emphasis is put on how the four strategies interplay with each other in order to motivate exploration of more robust and data-efficient algorithms. Finally, the survey delineates the limitations, discusses research challenges, and suggests future opportunities to advance the research on data-efficiency in machine learning. |
|---|---|
| AbstractList | Abstract The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because acquiring data involves a process that is expensive or time-consuming. This has triggered a serious debate in both the industrial and academic communities calling for more data-efficient models that harness the power of artificial learners while achieving good results with less training data and in particular less human supervision. In light of this debate, this work investigates the issue of algorithms’ data hungriness. First, it surveys the issue from different perspectives. Then, it presents a comprehensive review of existing data-efficient methods and systematizes them into four categories. Specifically, the survey covers solution strategies that handle data-efficiency by (i) using non-supervised algorithms that are, by nature, more data-efficient, by (ii) creating artificially more data, by (iii) transferring knowledge from rich-data domains into poor-data domains, or by (iv) altering data-hungry algorithms to reduce their dependency upon the amount of samples, in a way they can perform well in small samples regime. Each strategy is extensively reviewed and discussed. In addition, the emphasis is put on how the four strategies interplay with each other in order to motivate exploration of more robust and data-efficient algorithms. Finally, the survey delineates the limitations, discusses research challenges, and suggests future opportunities to advance the research on data-efficiency in machine learning. The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because acquiring data involves a process that is expensive or time-consuming. This has triggered a serious debate in both the industrial and academic communities calling for more data-efficient models that harness the power of artificial learners while achieving good results with less training data and in particular less human supervision. In light of this debate, this work investigates the issue of algorithms’ data hungriness. First, it surveys the issue from different perspectives. Then, it presents a comprehensive review of existing data-efficient methods and systematizes them into four categories. Specifically, the survey covers solution strategies that handle data-efficiency by (i) using non-supervised algorithms that are, by nature, more data-efficient, by (ii) creating artificially more data, by (iii) transferring knowledge from rich-data domains into poor-data domains, or by (iv) altering data-hungry algorithms to reduce their dependency upon the amount of samples, in a way they can perform well in small samples regime. Each strategy is extensively reviewed and discussed. In addition, the emphasis is put on how the four strategies interplay with each other in order to motivate exploration of more robust and data-efficient algorithms. Finally, the survey delineates the limitations, discusses research challenges, and suggests future opportunities to advance the research on data-efficiency in machine learning. |
| ArticleNumber | 24 |
| Author | Adadi, Amina |
| Author_xml | – sequence: 1 givenname: Amina orcidid: 0000-0002-9697-666X surname: Adadi fullname: Adadi, Amina email: Amina.adadi@gmail.com organization: ISIC Research Team, L2MI Laboratory, Moulay Ismail University |
| BookMark | eNqNkMtqHDEQRUVwwM8f8KrB63b06pa0NMZxDAPZJGtRo8dEQ1uaSBqb2eUT_I35kijTJjZZGK-qKO65VXWP0UFM0SF0TvAlIXL8VDgemOgxJT3GnKhefUBHlKixJ4QMB6_6Q3RWyhpjTFhjRn6ExFVXtvnB7boUOwsVfv96ct4HE1ysHUyrlEP9cV-6ELtlWO0lnctwij56mIo7e64n6Pvnm2_XX_rF19u766tFb0ZKam_BMu4k5oK55eCMV6NQUio3-gEEWOG5t6Mk0lsjuDGWegHSYcH8YDih7ATdzb42wVpvcriHvNMJgt4PUl5pyDWYyWkgQAVptBsUt0spmVVmaXjbzIwYTPNis9c2bmD3CNP0z5Bg_TdKPUepW5R6H6VWjbqYqU1OP7euVL1O2xzb05pyiaXiIx2aSs4qk1Mp2XltQoUaUqwZwvT2Avof-q6rnn8pTRxXLr9c9Qb1B4ZZpnc |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0301167 crossref_primary_10_1016_j_procs_2024_05_171 crossref_primary_10_1016_j_jksuci_2021_07_010 crossref_primary_10_3390_ma17071621 crossref_primary_10_1002_mp_15982 crossref_primary_10_1186_s40537_023_00687_7 crossref_primary_10_3390_sci4040049 crossref_primary_10_3390_su131910786 crossref_primary_10_1109_ACCESS_2023_3322193 crossref_primary_10_20935_AcadEng7407 crossref_primary_10_1029_2022JB024775 crossref_primary_10_1002_asi_24798 crossref_primary_10_1016_j_rsase_2024_101270 crossref_primary_10_14778_3561261_3561267 crossref_primary_10_3390_f14091768 crossref_primary_10_3389_fnhum_2022_1032724 crossref_primary_10_1016_j_procs_2024_10_249 crossref_primary_10_3390_s22124425 crossref_primary_10_3390_technologies13030094 crossref_primary_10_3390_modelling5030061 crossref_primary_10_1007_s10844_024_00841_4 crossref_primary_10_1186_s12859_024_05787_6 crossref_primary_10_1016_j_seta_2024_104057 crossref_primary_10_12688_f1000research_147107_1 crossref_primary_10_1109_ACCESS_2024_3366802 crossref_primary_10_1186_s40537_024_00933_6 crossref_primary_10_1007_s44244_024_00020_y crossref_primary_10_1080_09349847_2024_2350398 crossref_primary_10_2478_amns_2024_3602 crossref_primary_10_1109_TAI_2023_3315272 crossref_primary_10_29121_shodhkosh_v5_iICITAICT_2024_1329 crossref_primary_10_1186_s40708_024_00243_w crossref_primary_10_1016_j_compag_2023_107646 crossref_primary_10_1007_s43154_022_00089_2 crossref_primary_10_1080_10934529_2024_2309102 crossref_primary_10_3390_fi15010023 crossref_primary_10_1109_TCC_2024_3521978 crossref_primary_10_3390_electronics13050822 crossref_primary_10_3389_frwa_2022_886964 crossref_primary_10_1016_j_aei_2024_102699 crossref_primary_10_1016_j_jag_2024_104191 crossref_primary_10_1109_TGRS_2024_3401768 crossref_primary_10_14778_3574245_3574258 crossref_primary_10_1109_TAI_2022_3194503 crossref_primary_10_3390_su152215863 crossref_primary_10_3390_pr12061262 crossref_primary_10_3390_math12040506 crossref_primary_10_15370_maruifd_1565884 crossref_primary_10_1016_j_array_2022_100256 crossref_primary_10_1177_02841851221143496 crossref_primary_10_1002_ima_23034 crossref_primary_10_1016_j_engfracmech_2023_109285 crossref_primary_10_1016_j_jss_2024_112253 crossref_primary_10_1021_acsnano_4c05851 crossref_primary_10_1016_j_mfglet_2024_09_157 crossref_primary_10_2478_amns_2023_2_00168 crossref_primary_10_1186_s40537_024_00919_4 crossref_primary_10_1109_TNSM_2024_3368928 crossref_primary_10_1016_j_pmpp_2024_102381 crossref_primary_10_1109_ACCESS_2024_3516500 crossref_primary_10_1007_s11263_023_01860_4 crossref_primary_10_1016_j_jag_2023_103569 crossref_primary_10_1111_csp2_12844 crossref_primary_10_1016_j_resplu_2023_100499 crossref_primary_10_1038_s43705_022_00182_9 crossref_primary_10_1155_2023_9227348 crossref_primary_10_3389_feart_2025_1554864 crossref_primary_10_1109_JSEN_2023_3302868 crossref_primary_10_3390_bdcc7020062 crossref_primary_10_1021_acssensors_1c01618 crossref_primary_10_3390_e27020111 crossref_primary_10_1016_j_optlastec_2024_111992 crossref_primary_10_3390_en17153683 crossref_primary_10_1002_fut_22490 crossref_primary_10_1061_JBENF2_BEENG_6012 crossref_primary_10_1021_acs_molpharmaceut_2c01048 crossref_primary_10_1109_TASE_2023_3274648 crossref_primary_10_1083_jcb_202111094 crossref_primary_10_1007_s10462_024_10810_6 crossref_primary_10_17680_erciyesiletisim_1430017 crossref_primary_10_1371_journal_pone_0297190 crossref_primary_10_1016_j_compbiomed_2023_107893 crossref_primary_10_1109_TUFFC_2023_3245988 crossref_primary_10_3169_mta_13_126 crossref_primary_10_1051_e3sconf_202235101068 crossref_primary_10_3390_app131810427 crossref_primary_10_1016_j_image_2023_116938 crossref_primary_10_2139_ssrn_4199184 crossref_primary_10_1007_s10462_024_10820_4 crossref_primary_10_1080_21693277_2024_2305358 crossref_primary_10_1109_ACCESS_2022_3178100 crossref_primary_10_3390_bios12100869 crossref_primary_10_3390_min15040330 crossref_primary_10_7554_eLife_90502 crossref_primary_10_55525_tjst_1266144 crossref_primary_10_1109_ACCESS_2022_3159701 crossref_primary_10_3390_smartcities8010003 crossref_primary_10_1016_j_media_2023_102753 crossref_primary_10_3390_su13137156 crossref_primary_10_1007_s10639_022_11536_0 crossref_primary_10_7554_eLife_90502_3 crossref_primary_10_1016_j_grets_2025_100199 crossref_primary_10_1038_s41586_024_07382_4 crossref_primary_10_1016_j_ijmedinf_2022_104978 crossref_primary_10_1145_3682072 crossref_primary_10_1016_j_rineng_2024_101868 crossref_primary_10_1038_s41598_024_70432_4 crossref_primary_10_1109_ACCESS_2025_3528830 crossref_primary_10_1007_s13132_024_02099_1 crossref_primary_10_1016_j_watres_2024_122396 crossref_primary_10_3846_ntcs_2024_20515 crossref_primary_10_1016_j_nhres_2024_11_004 crossref_primary_10_1136_bmjopen_2023_072399 crossref_primary_10_21202_jdtl_2024_48 crossref_primary_10_4271_10_07_03_0017 crossref_primary_10_1145_3609225 crossref_primary_10_3390_su16208889 |
| Cites_doi | 10.1186/s40537-019-0197-0 10.1016/j.neucom.2019.12.130 10.3390/a11010009 10.1007/s10994-019-05855-6 10.1145/3191513 10.1007/s13042-015-0328-7 10.1109/TPAMI.2018.2857768 10.1016/j.eswa.2018.05.023 10.1080/095400996116929 10.1016/j.neunet.2017.07.006 10.1017/CBO9781107589056 10.1145/1968.1972 10.1016/j.neucom.2019.02.035 10.2196/jmir.6533 10.1613/jair.953 10.1016/j.im.2016.06.003 10.1007/s10994-008-5088-0 10.1109/TIP.2018.2855449 10.1016/j.neunet.2019.03.010 10.1145/361454.361514 10.1007/s10202-010-0078-2 10.1023/A:1007379606734 10.1038/530144a 10.1016/j.knosys.2012.07.020 10.1093/nsr/nwx155 10.1016/j.swevo.2019.04.008 10.1007/978-90-481-2512-8_7 10.1007/s10994-019-05847-6 10.1613/jair.5714 10.1007/s10994-017-5676-y 10.1109/MC.2018.2880015 10.1007/s11042-018-5609-1 10.1007/s42835-020-00343-7 10.1109/ACCESS.2020.3029234 10.1148/radiol.2020192224 10.1162/NECO_a_00052 10.1145/130994.131001 10.1007/s10115-013-0706-y 10.1145/2347736.2347755 10.1016/j.knosys.2017.11.019 10.1089/106652703321825928 10.1109/MIS.2009.36 10.1016/j.neucom.2018.09.013 10.1016/j.compmedimag.2019.101684 10.1093/mind/LIX.236.433 10.1016/j.neunet.2019.01.012 10.1145/3386252 10.1007/978-3-642-18192-4 10.1016/j.cobeha.2018.12.010 10.1017/CBO9780511804175 10.1016/j.eswa.2017.11.028 10.2200/S00196ED1V01Y200906AIM006 10.1109/TPAMI.2017.2652459 10.1186/s40537-016-0043-6 10.1016/j.ijinfomgt.2014.10.007 10.1016/S1672-6529(09)60240-7 10.1080/10438599.2018.1493075 10.1038/nature16961 10.1016/0375-9601(96)00453-7 10.1145/1553374.1553456 10.1007/s12559-019-09664-w 10.1007/978-3-030-34094-0_6 10.1145/1390156.1390164 10.1109/CVPR.2019.00020 10.3115/v1/P15-2123 10.1109/DICTA.2016.7797091 10.1007/978-3-642-15561-1_16 10.1109/CVPR.2016.90 10.3115/1218955.1218990 10.1109/5.726791 10.1007/978-3-642-79629-6_7 10.1109/CVPR.2017.18 10.1007/978-3-642-34166-3_79 10.1109/ICCV.2019.00822 10.1007/BF00992698 10.1007/11430919_71 10.1007/978-1-4613-1381-6 10.1007/978-3-642-21735-7_6 10.1609/aaai.v32i1.12329 10.1007/978-3-319-22156-4_2,2015 10.1109/CVPR42600.2020.00357 10.1609/aaai.v34i04.6131 10.1007/978-3-030-01237-3_27 10.2139/ssrn.3118022 10.1109/JPROC.2012.2197809 10.1109/ICCV.2017.310 10.1109/CVPR42600.2020.01238 10.1109/CVPR.2017.632 10.1007/978-3-030-37731-1_62 10.1007/978-3-030-01424-7_58 10.1016/j.imavis.2019.103853 10.1007/978-3-030-01231-1_14 10.24963/ijcai.2020/671 10.18653/v1/P19-1185 10.1016/j.neucom.2020.01.119 10.1007/978-3-642-24955-6_57 10.1609/aaai.v31i1.10744 10.1007/978-3-319-46493-0_36 10.1007/978-3-319-18356-5_27 10.1109/CVPRW50498.2020.00359 10.1609/aaai.v34i04.6139 10.1109/IGARSS.2019.8899343 10.1109/IRC.2019.00120 10.1007/978-3-030-03633-1_13 10.1109/ACCESS.2015.2513822 10.1109/ICCV.2017.244 10.1109/ICCV.2019.00851 10.1111/itor.12001 10.1609/aaai.v33i01.33018642 10.18653/v1/D19-1670 10.4018/978-1-60566-766-9 10.1109/IIPHDW.2018.8388338 10.1007/978-3-030-01240-3_44 10.1007/978-3-319-71246-8_42 10.1109/9780470544785.ch2 10.1109/CAC.2017.8243510 10.18653/v1/E17-1015 10.1145/2487575.2487629 10.3115/1073012.1073017 10.1109/IROS.2017.8205961 10.1109/ACCESS.2020.2992520 10.18653/v1/P17-1001 10.1109/CVPR.2018.00143 10.1109/TNNLS.2016.2603784 10.1007/978-3-031-01581-6 10.1609/aaai.v32i1.12007 10.1007/978-3-030-01267-0_9 10.1109/SMC.2018.00177 10.1109/CVPR.2019.00265 10.18653/v1/2020.acl-main.348 10.1007/978-3-030-10925-7_30 10.1109/CVPR.2018.00131 10.24963/ijcai.2018/627 10.1007/s11263-015-0812-2 10.1109/MLSP.2018.8516711 10.1109/CVPR.2016.265 10.18653/v1/D19-6101 10.1145/1718487.1718501 10.3390/a11090139 10.1145/2872427.2883086 10.1017/9781139061773.0102020 10.1609/aaai.v30i1.10373 10.1007/978-3-030-47436-2_64 10.1109/ICCT46805.2019.8947072 10.1093/nsr/nwx106 10.3389/fnbot.2019.00040 10.1007/s12559-020-09730-8 10.1609/aaai.v33i01.33019937 10.1017/9781139061773.0142020 10.1609/aaai.v32i1.11694 10.1109/ICCV.2011.6126344 10.1109/ICIP.2016.7533053 10.1007/978-3-030-00536-8_6 10.1007/978-3-540-30116-5_17 10.1109/CVPR.2017.754 10.1109/CVPR.2019.00672 10.1137/1.9781611975673.71 10.1007/978-3-030-58548-8_46 10.1007/978-3-319-49644-3_3 10.7551/mitpress/3897.001.0001 10.1017/CBO9781107589056.006 10.1109/CVPR.2019.00049 10.1109/MSP.2017.2743240 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7XB 87Z 88J 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N M2R P5Z P62 PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U ADTOC UNPAY DOA |
| DOI | 10.1186/s40537-021-00419-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Social Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Computing Database Social Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2196-1115 |
| EndPage | 54 |
| ExternalDocumentID | oai_doaj_org_article_a1a271a8ee594db883d9cbc43eb3c75c 10.1186/s40537-021-00419-9 10_1186_s40537_021_00419_9 |
| GroupedDBID | 0-V 0R~ 3V. 5VS 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARALO ARAPS ASPBG AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K60 K6V K6~ K7- M0C M0N M2R M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ AASML AAYXX CITATION PHGZM PHGZT PQGLB PRQQA PUEGO 7XB 8AL 8FK JQ2 L.- PKEHL POGQB PQEST PQUKI PRINS Q9U ADTOC AHSBF EJD UNPAY |
| ID | FETCH-LOGICAL-c621t-dad34e80473eb5ecf9679889e6f5a7ad7f4fd6818fdc74ccd2f7a8e073f5c4123 |
| IEDL.DBID | UNPAY |
| ISSN | 2196-1115 |
| IngestDate | Fri Oct 03 12:27:54 EDT 2025 Tue Aug 19 16:12:09 EDT 2025 Tue Oct 14 14:20:56 EDT 2025 Wed Oct 01 04:51:08 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Fri Feb 21 02:49:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Small sample learning Data‐efficiency Data augmentation Transfer learning Data hungry algorithms |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c621t-dad34e80473eb5ecf9679889e6f5a7ad7f4fd6818fdc74ccd2f7a8e073f5c4123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9697-666X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-021-00419-9 |
| PQID | 2480894625 |
| PQPubID | 2046140 |
| PageCount | 54 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a1a271a8ee594db883d9cbc43eb3c75c unpaywall_primary_10_1186_s40537_021_00419_9 proquest_journals_2480894625 crossref_citationtrail_10_1186_s40537_021_00419_9 crossref_primary_10_1186_s40537_021_00419_9 springer_journals_10_1186_s40537_021_00419_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-26 |
| PublicationDateYYYYMMDD | 2021-01-26 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of big data |
| PublicationTitleAbbrev | J Big Data |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | CR162 CR163 CR284 CR160 CR281 CR161 Wang, Guo, Yang (CR192) 2018; 51 CR282 Knuth (CR12) 1972; 15 Li, Wang (CR95) 2013; 30 CR280 CR159 CR157 CR278 CR158 Jialin Pan, Yang (CR182) 2010; 22 CR155 CR276 Xie, Wu, Xiao, Hu (CR49) 2016; 53 CR156 CR153 CR274 Livieris, Kanavos, Tampakas, Pintelas (CR77) 2018; 11 CR154 CR275 Andrew, Brynjolfsson (CR52) 2012; 90 Chabert (CR13) 1999 Xian, Lampert, Schiele, Akata (CR240) 2018; 41 Zador (CR68) 2019; 10 Mitchell (CR17) 2002 CR173 CR294 CR174 CR295 CR171 CR292 CR172 CR293 Kitchin (CR9) 2014 CR290 CR170 CR166 Akhtar, Chauhan, Ekbal (CR213) 2020; 14 Silver, Mercer (CR221) 1996; 8 CR287 CR167 Liu, Xiao, Hao (CR185) 2018; 141 CR164 CR285 CR165 CR286 Ciresan, Meier, Gambardella, Schmid-huber (CR125) 2010; 22 van Engelen (CR71) 2020; 109 Tanha, van Someren, Afsarmanesh (CR76) 2017; 8 CR140 CR261 CR141 CR262 CR260 CR137 CR258 CR138 CR259 Milicevic, Obradovic, Zubrinic (CR289) 2018; 13 CR135 CR256 CR136 CR257 CR133 CR254 CR134 CR255 CR131 CR252 CR132 CR253 Shorten, Khoshgoftaar (CR122) 2019; 6 CR139 Zhou, Chen, Pan (CR210) 2020; 109 CR272 CR152 CR273 CR270 CR150 CR271 CR269 CR149 CR146 CR267 Brynjolfsson, McElheran (CR50) 2016; 106 CR147 CR268 CR144 CR265 CR145 CR266 CR142 CR263 CR143 CR264 Rummery, Niranjan (CR113) 1994 Zhu, Goldberg (CR79) 2009; 3 CR115 CR236 CR116 CR237 CR234 CR235 CR232 Lloyd (CR28) 2014 CR112 CR233 Batra (CR20) 2014; 4 CR110 CR231 CR119 CR238 CR118 Silver, Poirier, Currie (CR222) 2008; 73 CR239 Zhang, Zhao, Hao (CR211) 2018; 107 Evans, Grefenstette (CR283) 2018; 61 Ford (CR5) 2018 CR250 CR130 CR251 CR126 CR247 CR127 CR248 Kostopoulos, Karlos, Kotsiantis, Ragos (CR73) 2018; 35 CR124 CR245 CR246 CR243 Han, Liu, Fan (CR288) 2018; 95 CR123 CR244 CR120 CR241 CR121 CR242 Paz, Ceccarelli, Otero, Sanz (CR14) 2009 CR128 CR249 CR129 Melacci, Belkin (CR93) 2011; 12 Dornaika, Dahbi, Bosaghzadeh, Ruichek (CR89) 2017; 94 CR11 CR214 Wang, Yao, Kwok, Ni (CR7) 2020; 53 CR10 CR215 Davies (CR26) 2014 CR218 CR219 Quinonero-Candela, Sugiyama, Schwaighofer, Lawrence (CR151) 2009 Asperti, Ricciotti (CR15) 2012 CR29 Chawla, Bowyer, Hall, Kegelmeyer (CR148) 2002; 16 CR27 Zang, Zhang, Hapeshi (CR36) 2010; 7 CR25 CR23 CR22 CR104 CR225 Zhou (CR55) 2018; 5 CR105 CR226 CR102 CR223 CR103 CR224 CR101 Sutton (CR111) 2018 CR220 CR108 CR229 CR109 CR106 CR227 CR107 CR228 Zhang (CR203) 2019; 340 CR39 CR38 CR37 CR34 CR33 CR313 Landauer (CR24) 1996; 217 CR32 CR314 CR31 CR30 CR312 Miyato, Maeda, Ishii, Koyama (CR100) 2018; 41 CR319 CR317 CR318 Waldrop (CR18) 2016; 530 CR315 Lin, Wang, Meng, Zuo, Zhang (CR168) 2018; 40 CR316 Silver, Huang, Maddison, Guez (CR1) 2016; 529 CR47 CR46 CR45 CR44 CR204 CR42 CR201 CR202 CR320 CR200 CR321 Del Ser, Osaba (CR35) 2019; 48 Yang, Sun, Lai, Zheng, Cheng (CR291) 2018; 27 CR209 Han, Choi, Park (CR277) 2020; 15 CR207 CR208 CR205 CR206 Gibbons, Richards, Valderas, Campbell (CR41) 2017; 19 CR59 CR57 CR54 Maltoni, Lomonaco (CR217) 2019; 116 Frid-Adar, Diamant, Klang (CR177) 2018; 321 CR51 Parisi, Kemker, Part (CR216) 2019; 113 Caruana (CR199) 1997; 28 Weiss, Khoshgoftaar, M,Wang (CR183) 2016; 3 Turing (CR21) 1950; 59 CR69 CR67 CR66 CR302 Zhao, Tang, Dong, Huang, Zhang (CR212) 2019; 78 CR303 CR64 CR300 CR63 CR301 CR62 Jiang, Zhang, Zeng (CR82) 2013; 37 CR60 Chonga, Dinga, Yanb, Pana (CR84) 2020; 408 CR308 CR309 CR306 CR307 Valiant (CR40) 1984; 27 CR304 CR305 Ratner, Bach, Ehrenberg (CR169) 2017; 11 Arowolo, Isiaka, Abdulsalam (CR311) 2017; 4 Ding, Zhu, Zhang (CR96) 2015; 28 CR78 CR72 Arowolo, Adebiyi, Adebiyi (CR310) 2020; 8 CR197 CR70 CR198 Willemink, Koszek, Hardell (CR56) 2020; 295 Domingos (CR53) 2012; 55 Gandomi, Haider (CR19) 2015; 35 Zarsky, Incompatible (CR58) 2017; 47 CR2 Navathe (CR16) 1992; 35 CR4 CR3 CR6 CR8 CR88 Halevy, Norvig, Pereira (CR61) 2009; 24 CR87 CR86 CR85 Shinohara, Taguchi, Katsurada, Nitta (CR299) 2007; 22 CR83 Garnelo, Shanahan (CR279) 2019; 29 CR81 CR80 Niebel, Rasel, Viete (CR48) 2019; 28 Kim (CR74) 2018; 109 Watkins, Dayan (CR114) 1992; 8 Armanious, Jiang, Fischer (CR178) 2020; 79 Botvinick, Ritter, Wang, Kurth-Nelson (CR117) 2017; 23 Mitchell, Cohen, Hruschka (CR230) 2018; 61 CR184 CR180 Liebert, Schmidt (CR65) 2010; 7 CR181 CR99 CR98 CR97 CR179 Triguero, Garcia, Herrera (CR75) 2015; 42 CR298 CR94 CR175 CR296 CR92 CR176 CR297 CR91 CR90 CR195 CR196 CR193 CR194 CR191 CR190 CR188 CR189 CR186 CR187 Mukherjee, Tamayo, Rogers (CR43) 2003; 10 419_CR60 419_CR63 419_CR62 K Weiss (419_CR183) 2016; 3 J Tanha (419_CR76) 2017; 8 419_CR164 419_CR285 419_CR163 M Frid-Adar (419_CR177) 2018; 321 419_CR284 Y Wang (419_CR7) 2020; 53 419_CR166 419_CR287 419_CR165 419_CR286 419_CR160 419_CR281 419_CR280 419_CR162 419_CR161 419_CR282 EB Paz (419_CR14) 2009 419_CR157 419_CR278 419_CR156 Z Jiang (419_CR82) 2013; 37 419_CR159 419_CR158 419_CR69 419_CR64 419_CR67 419_CR66 C Zhang (419_CR211) 2018; 107 MJ Willemink (419_CR56) 2020; 295 M Andrew (419_CR52) 2012; 90 419_CR51 S Batra (419_CR20) 2014; 4 419_CR153 419_CR274 S Shinohara (419_CR299) 2007; 22 419_CR152 419_CR273 419_CR155 419_CR276 419_CR154 419_CR275 419_CR270 419_CR272 419_CR150 419_CR271 419_CR149 419_CR146 419_CR267 419_CR145 419_CR266 419_CR269 419_CR147 419_CR268 419_CR57 419_CR59 419_CR54 LG Valiant (419_CR40) 1984; 27 I Triguero (419_CR75) 2015; 42 419_CR180 A Gandomi (419_CR19) 2015; 35 419_CR186 419_CR188 419_CR187 419_CR181 419_CR184 D Han (419_CR288) 2018; 95 419_CR179 419_CR47 419_CR46 419_CR42 JE van Engelen (419_CR71) 2020; 109 419_CR45 419_CR44 419_CR30 419_CR290 419_CR175 419_CR296 419_CR174 419_CR295 Y Xian (419_CR240) 2018; 41 419_CR298 419_CR176 419_CR297 419_CR171 419_CR292 419_CR170 419_CR173 419_CR294 419_CR172 419_CR293 419_CR39 419_CR167 419_CR38 Y Chonga (419_CR84) 2020; 408 419_CR37 419_CR32 D Maltoni (419_CR217) 2019; 116 419_CR31 419_CR34 L Lin (419_CR168) 2018; 40 419_CR33 M Milicevic (419_CR289) 2018; 13 S Lloyd (419_CR28) 2014 IE Livieris (419_CR77) 2018; 11 K Armanious (419_CR178) 2020; 79 J Chabert (419_CR13) 1999 419_CR94 419_CR191 419_CR190 419_CR90 419_CR92 419_CR91 T Miyato (419_CR100) 2018; 41 419_CR197 419_CR196 419_CR198 419_CR193 E Brynjolfsson (419_CR50) 2016; 106 419_CR195 419_CR194 A Ratner (419_CR169) 2017; 11 419_CR189 419_CR98 419_CR97 419_CR99 419_CR83 419_CR85 419_CR81 419_CR80 M Botvinick (419_CR117) 2017; 23 T Niebel (419_CR48) 2019; 28 CJCH Watkins (419_CR114) 1992; 8 J Del Ser (419_CR35) 2019; 48 Y Zhao (419_CR212) 2019; 78 J Yang (419_CR291) 2018; 27 419_CR87 419_CR86 P Domingos (419_CR53) 2012; 55 419_CR88 419_CR72 419_CR70 J Quinonero-Candela (419_CR151) 2009 S Jialin Pan (419_CR182) 2010; 22 M Ford (419_CR5) 2018 DL Silver (419_CR221) 1996; 8 S Melacci (419_CR93) 2011; 12 G Kostopoulos (419_CR73) 2018; 35 DE Knuth (419_CR12) 1972; 15 419_CR78 W Liebert (419_CR65) 2010; 7 MO Arowolo (419_CR310) 2020; 8 419_CR320 Q Zhou (419_CR210) 2020; 109 419_CR315 419_CR314 GA Rummery (419_CR113) 1994 419_CR317 419_CR316 419_CR313 419_CR312 419_CR319 419_CR318 X Zhu (419_CR79) 2009; 3 D Silver (419_CR1) 2016; 529 S Mukherjee (419_CR43) 2003; 10 AM Zador (419_CR68) 2019; 10 419_CR304 B Liu (419_CR185) 2018; 141 419_CR303 419_CR306 419_CR305 419_CR300 419_CR302 419_CR301 SB Navathe (419_CR16) 1992; 35 ZH Zhou (419_CR55) 2018; 5 419_CR308 419_CR307 MO Arowolo (419_CR311) 2017; 4 419_CR309 J Han (419_CR277) 2020; 15 RS Sutton (419_CR111) 2018 419_CR220 F Dornaika (419_CR89) 2017; 94 T Mitchell (419_CR230) 2018; 61 419_CR215 419_CR218 419_CR214 R Caruana (419_CR199) 1997; 28 J Zhang (419_CR203) 2019; 340 DC Ciresan (419_CR125) 2010; 22 419_CR219 GI Parisi (419_CR216) 2019; 113 A Asperti (419_CR15) 2012 R Evans (419_CR283) 2018; 61 H Zang (419_CR36) 2010; 7 MS Akhtar (419_CR213) 2020; 14 419_CR205 419_CR204 419_CR207 419_CR206 419_CR201 R Kitchin (419_CR9) 2014 419_CR200 419_CR321 419_CR202 419_CR209 419_CR208 MM Waldrop (419_CR18) 2016; 530 419_CR120 419_CR241 JC Mitchell (419_CR17) 2002 419_CR243 419_CR121 419_CR242 P Davies (419_CR26) 2014 K Xie (419_CR49) 2016; 53 419_CR238 419_CR116 419_CR237 419_CR119 419_CR118 419_CR239 419_CR29 419_CR234 419_CR112 419_CR233 419_CR115 419_CR236 419_CR235 419_CR25 419_CR27 419_CR23 419_CR22 T Zarsky (419_CR58) 2017; 47 DL Silver (419_CR222) 2008; 73 419_CR232 419_CR110 419_CR231 C Shorten (419_CR122) 2019; 6 419_CR106 419_CR227 419_CR105 419_CR226 419_CR108 419_CR229 419_CR107 419_CR228 S Ding (419_CR96) 2015; 28 419_CR102 419_CR223 419_CR101 419_CR104 419_CR225 419_CR103 419_CR224 419_CR10 A Halevy (419_CR61) 2009; 24 419_CR109 419_CR11 419_CR142 419_CR263 419_CR141 419_CR262 419_CR144 419_CR265 419_CR143 419_CR264 419_CR140 419_CR261 NV Chawla (419_CR148) 2002; 16 419_CR260 419_CR139 419_CR138 L Wang (419_CR192) 2018; 51 419_CR259 419_CR135 419_CR256 K Kim (419_CR74) 2018; 109 419_CR134 419_CR255 R Landauer (419_CR24) 1996; 217 419_CR137 419_CR258 419_CR136 419_CR257 C Gibbons (419_CR41) 2017; 19 M Garnelo (419_CR279) 2019; 29 419_CR131 419_CR252 419_CR130 419_CR251 419_CR133 419_CR254 419_CR132 419_CR253 T Li (419_CR95) 2013; 30 419_CR250 419_CR2 419_CR128 419_CR249 419_CR3 419_CR127 419_CR248 419_CR4 419_CR129 419_CR6 419_CR124 419_CR245 419_CR123 419_CR244 419_CR8 419_CR126 419_CR247 419_CR246 AM Turing (419_CR21) 1950; 59 |
| References_xml | – ident: CR45 – ident: CR150 – ident: CR282 – ident: CR22 – volume: 6 start-page: 48 year: 2019 end-page: 60 ident: CR122 article-title: A survey on image data augmentation for deep learning publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – ident: CR173 – volume: 408 start-page: 216 year: 2020 end-page: 30 ident: CR84 article-title: Graph-based semi-supervised learning: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.130 – ident: CR97 – volume: 11 start-page: 9 year: 2018 ident: CR77 article-title: An auto-adjustable semi-supervised self-training algorithm. publication-title: Algorithm doi: 10.3390/a11010009 – ident: CR196 – ident: CR39 – ident: CR51 – volume: 109 start-page: 373 issue: 2 year: 2020 end-page: 440 ident: CR71 article-title: Hoos. H. A survey on semi-supervised learning publication-title: Mach Learn doi: 10.1007/s10994-019-05855-6 – ident: CR115 – ident: CR247 – ident: CR138 – ident: CR224 – ident: CR80 – ident: CR201 – ident: CR309 – volume: 61 start-page: 103 issue: 5 year: 2018 end-page: 115 ident: CR230 article-title: Never-ending learning publication-title: Commun ACM doi: 10.1145/3191513 – ident: CR121 – ident: CR253 – ident: CR167 – volume: 22 start-page: 10 year: 2010 ident: CR182 article-title: A survey on transfer learning publication-title: IEEE Transactions on knowledge data engineering – volume: 8 start-page: 1 year: 2017 ident: CR76 article-title: Semi-supervised self-training for decision tree classifiers publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-015-0328-7 – ident: CR144 – ident: CR276 – volume: 41 start-page: 2251 issue: 9 year: 2018 end-page: 2265 ident: CR240 article-title: Zero-shot learning—A comprehensive evaluation of the good, the bad and the ugly publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2857768 – volume: 109 start-page: 49 year: 2018 end-page: 65 ident: CR74 article-title: An improved semi-supervised dimensionality reduction using feature weighting: Application to sentiment analysis publication-title: Expert Systems with Applications. doi: 10.1016/j.eswa.2018.05.023 – ident: CR235 – ident: CR92 – volume: 41 start-page: 8 year: 2018 ident: CR100 article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning publication-title: IEEE Trans Pattern Anal Mach Intell – ident: CR132 – ident: CR287 – ident: CR191 – volume: 8 start-page: 277 year: 1996 end-page: 294 ident: CR221 article-title: The parallel transfer of task knowledge using dynamic learning rates based on a measure of relatedness publication-title: Connect Sci doi: 10.1080/095400996116929 – ident: CR241 – ident: CR229 – ident: CR11 – volume: 10 start-page: 1 issue: 3770 year: 2019 end-page: 7 ident: CR68 article-title: A critique of pure learning and what artificial neural networks can learn from animal brains publication-title: Nat Commun – ident: CR57 – ident: CR294 – volume: 94 start-page: 192 year: 2017 end-page: 203 ident: CR89 article-title: Efficient dynamic graph construction for inductive semi-supervised learning publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.07.006 – ident: CR218 – ident: CR85 – ident: CR242 – volume: 11 start-page: 709 issue: 3 year: 2017 end-page: 730 ident: CR169 article-title: Snorkel: Rapid training data creation with weak supervision publication-title: VLDB J – start-page: 83 year: 2014 end-page: 117 ident: CR26 publication-title: Universe from Bit. In: Information and the Nature of Reality: From Physics to Metaphysics doi: 10.1017/CBO9781107589056 – ident: CR109 – volume: 27 start-page: 1134 issue: 11 year: 1984 end-page: 1142 ident: CR40 article-title: A theory of the learnable publication-title: Commun ACM doi: 10.1145/1968.1972 – ident: CR126 – ident: CR207 – volume: 340 start-page: 76 year: 2019 end-page: 89 ident: CR203 article-title: Multi-task feature selection with sparse regularization to extract common and task-specific features publication-title: Neurocomputing. doi: 10.1016/j.neucom.2019.02.035 – volume: 19 start-page: 3 year: 2017 ident: CR41 article-title: Supervised Machine Learning Algorithms Can Classify Open-Text Feedback of Doctor Performance With Human-Level Accuracy publication-title: J Med Internet Res doi: 10.2196/jmir.6533 – ident: CR91 – year: 2018 ident: CR111 publication-title: Barto AG reinforcement learning: an introduction – ident: CR156 – ident: CR179 – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: CR148 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J Artif Intellig Res. doi: 10.1613/jair.953 – ident: CR190 – volume: 53 start-page: 1038 issue: 8 year: 2016 end-page: 1048 ident: CR49 article-title: Value co-creation between firms and customers: The role of big data-based cooperative assets publication-title: Inf Manag doi: 10.1016/j.im.2016.06.003 – ident: CR10 – ident: CR33 – ident: CR137 – ident: CR269 – ident: CR270 – volume: 23 start-page: 5 year: 2017 ident: CR117 article-title: Reinforcement learning, fast and slow publication-title: Trends Cogn Sci – ident: CR184 – ident: CR6 – volume: 73 start-page: 313 issue: 3 year: 2008 end-page: 36 ident: CR222 article-title: Inductive transfer with context-sensitive neural networks publication-title: Mach Learn doi: 10.1007/s10994-008-5088-0 – ident: CR86 – ident: CR63 – ident: CR27 – ident: CR236 – ident: CR108 – ident: CR69 – ident: CR281 – volume: 27 start-page: 5303 issue: 11 year: 2018 end-page: 5315 ident: CR291 article-title: Recognition from web data: a progressive Filtering approach publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2855449 – ident: CR315 – ident: CR44 – ident: CR103 – volume: 116 start-page: 56 year: 2019 end-page: 73 ident: CR217 article-title: Continuous learning in single-incremental-task scenarios publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.03.010 – ident: CR38 – ident: CR264 – ident: CR321 – ident: CR139 – volume: 22 start-page: 58 year: 2007 end-page: 68 ident: CR299 article-title: A model of belief formation based on causality and application to n-armed bandit problem publication-title: T Jpn Soc AI. – ident: CR162 – ident: CR304 – ident: CR202 – ident: CR120 – ident: CR145 – ident: CR258 – ident: CR275 – ident: CR70 – ident: CR320 – ident: CR314 – ident: CR87 – start-page: 131 year: 2009 end-page: 160 ident: CR151 publication-title: Covariate shift by kernel mean matching. Dataset Shift in Machine Learning – ident: CR154 – volume: 15 start-page: 671 issue: 7 year: 1972 end-page: 677 ident: CR12 article-title: Ancient Babylonian algorithms publication-title: Commun ACM doi: 10.1145/361454.361514 – ident: CR219 – ident: CR243 – volume: 7 start-page: 55 year: 2010 end-page: 71 ident: CR65 article-title: Collingridge’s dilemma and technoscience publication-title: Poiesis Prax doi: 10.1007/s10202-010-0078-2 – ident: CR220 – volume: 4 start-page: 5 issue: 1 year: 2014 end-page: 17 ident: CR20 article-title: Big data analytics and its reflections on DIKW hierarchy publication-title: Rev Manag – ident: CR272 – ident: CR208 – ident: CR195 – ident: CR231 – volume: 28 start-page: 1 year: 1997 ident: CR199 article-title: Multitask learning publication-title: Mach Learn doi: 10.1023/A:1007379606734 – ident: CR225 – ident: CR116 – ident: CR266 – ident: CR32 – ident: CR302 – ident: CR189 – ident: CR81 – volume: 14 start-page: 3 year: 2020 ident: CR213 article-title: A Deep Multi-task Contextual Attention Framework for Multi-modal Affect Analysis publication-title: ACM Trans Knowl Discovery Data – ident: CR64 – year: 1994 ident: CR113 publication-title: On-line Q-learning using Connectionist Systems – ident: CR214 – ident: CR105 – ident: CR298 – ident: CR99 – volume: 530 start-page: 7589 year: 2016 ident: CR18 article-title: The chips are down for Moore’s law publication-title: Nature doi: 10.1038/530144a – volume: 37 start-page: 137 year: 2013 end-page: 145 ident: CR82 article-title: A hybrid generative/discriminative method for semi-supervised classification publication-title: Knowl Based Syst. doi: 10.1016/j.knosys.2012.07.020 – volume: 5 start-page: 1 year: 2018 ident: CR55 article-title: A brief introduction to weakly supervised learning publication-title: Natl Sci Rev doi: 10.1093/nsr/nwx155 – ident: CR143 – ident: CR160 – ident: CR232 – volume: 28 start-page: 5 year: 2015 ident: CR96 article-title: An overview on semi-supervised support vector machine publication-title: Neural Comput Appl – volume: 30 start-page: 1 year: 2013 ident: CR95 article-title: Semi-supervised SVM classification method based on cluster kernel publication-title: Appl Res Comput – ident: CR2 – ident: CR37 – ident: CR194 – ident: CR226 – ident: CR133 – ident: CR265 – ident: CR303 – volume: 13 start-page: 460 year: 2018 end-page: 465 ident: CR289 article-title: Data augmentation and transfer learning for limited dataset ship classification publication-title: WSEAS Trans Syst Control. – ident: CR188 – volume: 48 start-page: 220 year: 2019 end-page: 50 ident: CR35 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm Evolutionary Computation doi: 10.1016/j.swevo.2019.04.008 – year: 2009 ident: CR14 publication-title: Machinery during the industrial revolution doi: 10.1007/978-90-481-2512-8_7 – ident: CR98 – ident: CR104 – ident: CR127 – ident: CR161 – ident: CR259 – ident: CR293 – ident: CR149 – ident: CR260 – ident: CR319 – volume: 109 start-page: 569 year: 2020 end-page: 601 ident: CR210 article-title: Communication-efficient distributed multi-task learning with matrix sparsity regularization publication-title: Mach Learn doi: 10.1007/s10994-019-05847-6 – ident: CR155 – volume: 61 start-page: 1 year: 2018 end-page: 64 ident: CR283 article-title: Learning explanatory rules from noisy data publication-title: J Artif Intell Res doi: 10.1613/jair.5714 – ident: CR248 – ident: CR31 – ident: CR172 – ident: CR271 – ident: CR110 – volume: 107 start-page: 727 year: 2018 end-page: 47 ident: CR211 article-title: Distributed multi-task classification: a decentralized online learning approach publication-title: Mach Learn doi: 10.1007/s10994-017-5676-y – volume: 51 start-page: 32 issue: 12 year: 2018 end-page: 41 ident: CR192 article-title: Smart City Development With Urban Transfer Learning publication-title: Computer doi: 10.1109/MC.2018.2880015 – ident: CR308 – ident: CR59 – ident: CR166 – ident: CR237 – ident: CR254 – ident: CR209 – volume: 106 start-page: 39 issue: 9 year: 2016 end-page: 133 ident: CR50 article-title: The Rapid Adoption of Data-Driven Decision-Making publication-title: American Economic Review – ident: CR318 – volume: 78 start-page: 13131 year: 2019 end-page: 13148 ident: CR212 article-title: Joint face alignment and segmentation via deep multi-task learning publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-018-5609-1 – volume: 15 start-page: 721 year: 2020 end-page: 726 ident: CR277 article-title: Hyperparameter optimization using a genetic algorithm considering verification time in a convolutional neural network publication-title: J Electr Eng Technol. doi: 10.1007/s42835-020-00343-7 – ident: CR158 – ident: CR301 – volume: 8 start-page: 182422 year: 2020 end-page: 30 ident: CR310 article-title: A hybrid heuristic dimensionality reduction methods for classifying malaria vector gene expression data publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029234 – ident: CR135 – ident: CR267 – ident: CR54 – ident: CR8 – volume: 295 start-page: 4 issue: 1 year: 2020 end-page: 15 ident: CR56 article-title: Preparing medical imaging data for machine learning publication-title: Radiology doi: 10.1148/radiol.2020192224 – ident: CR106 – ident: CR215 – ident: CR238 – ident: CR25 – ident: CR42 – volume: 22 start-page: 3207 issue: 12 year: 2010 end-page: 3220 ident: CR125 article-title: Deep big simple neural nets excel on digit recognition publication-title: Neural Comput doi: 10.1162/NECO_a_00052 – ident: CR129 – ident: CR101 – volume: 35 start-page: 112 issue: 9 year: 1992 end-page: 123 ident: CR16 article-title: Evolution of data modeling for databases publication-title: Commun ACM doi: 10.1145/130994.131001 – ident: CR256 – ident: CR313 – ident: CR204 – volume: 90 start-page: 60 issue: 10 year: 2012 end-page: 8 ident: CR52 article-title: Big data: the management revolution publication-title: Harvard Bus Rev. – ident: CR88 – ident: CR262 – ident: CR153 – volume: 12 start-page: 1149 year: 2011 end-page: 84 ident: CR93 article-title: Laplacian support vector machines trained in the primal publication-title: J Mach Learn Res – volume: 42 start-page: 2 year: 2015 ident: CR75 article-title: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study publication-title: Knowledge Information systems doi: 10.1007/s10115-013-0706-y – ident: CR170 – year: 2012 ident: CR15 article-title: Formalizing Turing Machines publication-title: Logic, Language, Information and Computation. WoLLIC 2012. Lecture Notes in Computer Science – volume: 55 start-page: 77 issue: 10 year: 2012 end-page: 87 ident: CR53 article-title: A few useful things to know about machine learning publication-title: Commun ACM doi: 10.1145/2347736.2347755 – volume: 141 start-page: 178 year: 2018 end-page: 87 ident: CR185 article-title: A Selective Multiple Instance Transfer Learning Method for Text Categorization Problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.11.019 – ident: CR60 – ident: CR112 – ident: CR306 – volume: 10 start-page: 2 year: 2003 ident: CR43 article-title: Estimating Dataset Size Requirements for Classifying DNA Microarray Data publication-title: J Comput Biol doi: 10.1089/106652703321825928 – ident: CR273 – ident: CR147 – ident: CR164 – ident: CR198 – ident: CR66 – ident: CR47 – ident: CR72 – volume: 24 start-page: 8 issue: 2 year: 2009 end-page: 12 ident: CR61 article-title: The Unreasonable Effectiveness of Data publication-title: IEEE Intell Syst doi: 10.1109/MIS.2009.36 – ident: CR30 – ident: CR171 – ident: CR261 – ident: CR249 – ident: CR284 – ident: CR307 – ident: CR312 – ident: CR165 – ident: CR278 – ident: CR297 – ident: CR123 – ident: CR255 – ident: CR142 – ident: CR94 – ident: CR233 – ident: CR176 – volume: 321 start-page: 321 year: 2018 end-page: 331 ident: CR177 article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 – volume: 79 start-page: 101684 year: 2020 ident: CR178 article-title: MedGAN: Medical image translation using GANs publication-title: Comput Med Imaging Graph. doi: 10.1016/j.compmedimag.2019.101684 – ident: CR3 – ident: CR193 – ident: CR227 – ident: CR134 – ident: CR187 – ident: CR159 – ident: CR244 – volume: 35 start-page: 2 year: 2018 ident: CR73 article-title: Semi-supervised regression: A recent review publication-title: J Intell Fuzzy Syst – ident: CR83 – volume: 47 start-page: 4 year: 2017 ident: CR58 article-title: The GDPR in the Age of Big Data publication-title: Seton Hall Law Review – volume: 59 start-page: 433 issue: 236 year: 1950 end-page: 460 ident: CR21 article-title: Computing machinery and intelligence publication-title: Mind doi: 10.1093/mind/LIX.236.433 – ident: CR250 – ident: CR128 – volume: 113 start-page: 54 year: 2019 end-page: 71 ident: CR216 article-title: Continual lifelong learning with neural networks: a review publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.01.012 – ident: CR292 – ident: CR257 – ident: CR102 – ident: CR234 – ident: CR205 – volume: 53 start-page: 1 issue: 3 year: 2020 end-page: 34 ident: CR7 article-title: Generalizing from a few examples: A survey on few-shot learning publication-title: ACM Comput Surv doi: 10.1145/3386252 – ident: CR4 – ident: CR131 – ident: CR263 – ident: CR228 – ident: CR286 – ident: CR119 – year: 1999 ident: CR13 publication-title: A History of Algorithms: From the Pebble to the Microchip doi: 10.1007/978-3-642-18192-4 – ident: CR186 – ident: CR305 – ident: CR29 – volume: 8 start-page: 279 issue: 3 year: 1992 end-page: 292 ident: CR114 article-title: Q-Learning publication-title: Machine Learning. – volume: 29 start-page: 17 year: 2019 end-page: 23 ident: CR279 article-title: Reconciling deep learning with symbolic artificial intelligence: representing objects and relations publication-title: Curr Opin Behav Sci. doi: 10.1016/j.cobeha.2018.12.010 – ident: CR140 – ident: CR163 – ident: CR295 – year: 2002 ident: CR17 publication-title: Concepts in programming languages doi: 10.1017/CBO9780511804175 – ident: CR174 – ident: CR46 – year: 2018 ident: CR5 publication-title: Architects of Intelligence: the Truth About AI From the People Building It – volume: 95 start-page: 43 year: 2018 end-page: 56 ident: CR288 article-title: A new image classification method using CNN transfer learning and web data augmentation publication-title: Expert Syst Appl. doi: 10.1016/j.eswa.2017.11.028 – ident: CR317 – start-page: 118 year: 2014 end-page: 133 ident: CR28 publication-title: The computational universe. In Information and the Nature of Reality: from Physics to Metaphysics – ident: CR67 – ident: CR157 – ident: CR136 – ident: CR246 – ident: CR78 – ident: CR200 – volume: 3 start-page: 1 issue: 1 year: 2009 end-page: 30 ident: CR79 article-title: Introduction to semi-supervised learning publication-title: Synth Lect Artif Intell Mach Learn. doi: 10.2200/S00196ED1V01Y200906AIM006 – volume: 40 start-page: 7 issue: 1 year: 2018 end-page: 19 ident: CR168 article-title: Active self-paced learning for cost-effective and progressive face identification publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2652459 – ident: CR181 – ident: CR239 – volume: 3 start-page: 1 issue: 1 year: 2016 end-page: 40 ident: CR183 article-title: A survey of transfer learning publication-title: J Big Data doi: 10.1186/s40537-016-0043-6 – ident: CR252 – ident: CR290 – ident: CR316 – ident: CR175 – ident: CR280 – volume: 35 start-page: 137 issue: 2 year: 2015 end-page: 144 ident: CR19 article-title: Beyond the hype: Big data concepts, methods, and analytics publication-title: Int J Inf Manage doi: 10.1016/j.ijinfomgt.2014.10.007 – ident: CR152 – ident: CR245 – ident: CR180 – volume: 7 start-page: 232 year: 2010 end-page: 7 ident: CR36 article-title: A Review of Nature-Inspired Algorithms publication-title: J Bionic Eng doi: 10.1016/S1672-6529(09)60240-7 – ident: CR251 – ident: CR146 – ident: CR23 – ident: CR274 – volume: 4 start-page: 14 year: 2017 ident: CR311 article-title: A comparative analysis of feature extraction methods for classifying colon cancer microarray data publication-title: EAI Endors Trans Scalable Inf Syst – volume: 28 start-page: 296 issue: 3 year: 2019 end-page: 316 ident: CR48 article-title: BIG data – BIG gains? Understanding the link between big data analytics and innovation publication-title: Econ Innov New Technol doi: 10.1080/10438599.2018.1493075 – ident: CR124 – ident: CR197 – ident: CR206 – ident: CR90 – ident: CR130 – ident: CR300 – ident: CR285 – ident: CR118 – ident: CR268 – year: 2014 ident: CR9 publication-title: The data revolution: big data, open data, data infrastructures and their consequences – ident: CR34 – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: CR1 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – ident: CR223 – volume: 217 start-page: 188 year: 1996 end-page: 93 ident: CR24 article-title: The physical nature of information publication-title: Phys Lett A doi: 10.1016/0375-9601(96)00453-7 – ident: CR107 – ident: CR62 – ident: CR141 – ident: CR296 – ident: 419_CR92 – ident: 419_CR94 doi: 10.1145/1553374.1553456 – ident: 419_CR72 doi: 10.1007/s12559-019-09664-w – ident: 419_CR238 doi: 10.1007/978-3-030-34094-0_6 – ident: 419_CR86 – volume: 113 start-page: 54 year: 2019 ident: 419_CR216 publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.01.012 – volume: 7 start-page: 232 year: 2010 ident: 419_CR36 publication-title: J Bionic Eng doi: 10.1016/S1672-6529(09)60240-7 – ident: 419_CR207 – ident: 419_CR208 doi: 10.1145/1390156.1390164 – ident: 419_CR145 – ident: 419_CR254 – volume: 22 start-page: 3207 issue: 12 year: 2010 ident: 419_CR125 publication-title: Neural Comput doi: 10.1162/NECO_a_00052 – ident: 419_CR173 doi: 10.1109/CVPR.2019.00020 – ident: 419_CR224 doi: 10.3115/v1/P15-2123 – volume: 10 start-page: 1 issue: 3770 year: 2019 ident: 419_CR68 publication-title: Nat Commun – ident: 419_CR162 – ident: 419_CR110 – ident: 419_CR146 doi: 10.1109/DICTA.2016.7797091 – ident: 419_CR271 – volume: 27 start-page: 5303 issue: 11 year: 2018 ident: 419_CR291 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2855449 – ident: 419_CR248 – volume: 24 start-page: 8 issue: 2 year: 2009 ident: 419_CR61 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2009.36 – ident: 419_CR202 – volume: 107 start-page: 727 year: 2018 ident: 419_CR211 publication-title: Mach Learn doi: 10.1007/s10994-017-5676-y – ident: 419_CR152 doi: 10.1007/978-3-642-15561-1_16 – volume: 109 start-page: 49 year: 2018 ident: 419_CR74 publication-title: Expert Systems with Applications. doi: 10.1016/j.eswa.2018.05.023 – ident: 419_CR2 doi: 10.1109/CVPR.2016.90 – ident: 419_CR316 – volume: 61 start-page: 103 issue: 5 year: 2018 ident: 419_CR230 publication-title: Commun ACM doi: 10.1145/3191513 – ident: 419_CR85 doi: 10.3115/1218955.1218990 – ident: 419_CR124 doi: 10.1109/5.726791 – ident: 419_CR259 – volume-title: The data revolution: big data, open data, data infrastructures and their consequences year: 2014 ident: 419_CR9 – ident: 419_CR80 – volume: 8 start-page: 1 year: 2017 ident: 419_CR76 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-015-0328-7 – ident: 419_CR98 – ident: 419_CR104 – ident: 419_CR218 doi: 10.1007/978-3-642-79629-6_7 – ident: 419_CR305 – ident: 419_CR157 doi: 10.1109/CVPR.2017.18 – ident: 419_CR81 doi: 10.1007/978-3-642-34166-3_79 – ident: 419_CR272 – ident: 419_CR138 – ident: 419_CR106 doi: 10.1109/ICCV.2019.00822 – volume: 8 start-page: 279 issue: 3 year: 1992 ident: 419_CR114 publication-title: Machine Learning. doi: 10.1007/BF00992698 – ident: 419_CR46 – ident: 419_CR78 doi: 10.1007/11430919_71 – volume: 28 start-page: 296 issue: 3 year: 2019 ident: 419_CR48 publication-title: Econ Innov New Technol doi: 10.1080/10438599.2018.1493075 – ident: 419_CR167 – volume-title: On-line Q-learning using Connectionist Systems year: 1994 ident: 419_CR113 – volume: 16 start-page: 321 year: 2002 ident: 419_CR148 publication-title: J Artif Intellig Res. doi: 10.1613/jair.953 – volume-title: Logic, Language, Information and Computation. WoLLIC 2012. Lecture Notes in Computer Science year: 2012 ident: 419_CR15 – ident: 419_CR201 – ident: 419_CR317 – ident: 419_CR220 doi: 10.1007/978-1-4613-1381-6 – ident: 419_CR103 doi: 10.1007/978-3-642-21735-7_6 – ident: 419_CR51 – ident: 419_CR237 – ident: 419_CR300 – ident: 419_CR294 – volume: 22 start-page: 58 year: 2007 ident: 419_CR299 publication-title: T Jpn Soc AI. – ident: 419_CR116 – ident: 419_CR133 – start-page: 131 volume-title: Covariate shift by kernel mean matching. Dataset Shift in Machine Learning year: 2009 ident: 419_CR151 – ident: 419_CR160 doi: 10.1609/aaai.v32i1.12329 – volume: 55 start-page: 77 issue: 10 year: 2012 ident: 419_CR53 publication-title: Commun ACM doi: 10.1145/2347736.2347755 – volume: 94 start-page: 192 year: 2017 ident: 419_CR89 publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.07.006 – ident: 419_CR11 doi: 10.1007/978-3-319-22156-4_2,2015 – volume: 109 start-page: 373 issue: 2 year: 2020 ident: 419_CR71 publication-title: Mach Learn doi: 10.1007/s10994-019-05855-6 – volume: 408 start-page: 216 year: 2020 ident: 419_CR84 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.130 – ident: 419_CR232 – ident: 419_CR175 – ident: 419_CR127 – ident: 419_CR144 – volume: 35 start-page: 137 issue: 2 year: 2015 ident: 419_CR19 publication-title: Int J Inf Manage doi: 10.1016/j.ijinfomgt.2014.10.007 – ident: 419_CR23 – ident: 419_CR260 doi: 10.1109/CVPR42600.2020.00357 – volume: 15 start-page: 671 issue: 7 year: 1972 ident: 419_CR12 publication-title: Commun ACM doi: 10.1145/361454.361514 – volume: 47 start-page: 4 year: 2017 ident: 419_CR58 publication-title: Seton Hall Law Review – ident: 419_CR164 doi: 10.1609/aaai.v34i04.6131 – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: 419_CR1 publication-title: Nature doi: 10.1038/nature16961 – volume: 37 start-page: 137 year: 2013 ident: 419_CR82 publication-title: Knowl Based Syst. doi: 10.1016/j.knosys.2012.07.020 – ident: 419_CR184 – volume: 40 start-page: 7 issue: 1 year: 2018 ident: 419_CR168 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2652459 – ident: 419_CR245 doi: 10.1007/978-3-030-01237-3_27 – ident: 419_CR45 doi: 10.2139/ssrn.3118022 – ident: 419_CR90 doi: 10.1109/JPROC.2012.2197809 – ident: 419_CR139 doi: 10.1109/ICCV.2017.310 – ident: 419_CR315 – volume: 116 start-page: 56 year: 2019 ident: 419_CR217 publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.03.010 – ident: 419_CR297 doi: 10.1109/CVPR42600.2020.01238 – ident: 419_CR321 – volume: 42 start-page: 2 year: 2015 ident: 419_CR75 publication-title: Knowledge Information systems doi: 10.1007/s10115-013-0706-y – ident: 419_CR244 – ident: 419_CR91 – volume: 41 start-page: 2251 issue: 9 year: 2018 ident: 419_CR240 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2018.2857768 – ident: 419_CR136 doi: 10.1109/CVPR.2017.632 – ident: 419_CR70 – ident: 419_CR296 – ident: 419_CR135 – ident: 419_CR141 – ident: 419_CR262 doi: 10.1007/978-3-030-37731-1_62 – ident: 419_CR132 doi: 10.1007/978-3-030-01424-7_58 – ident: 419_CR190 doi: 10.1016/j.imavis.2019.103853 – ident: 419_CR87 – volume: 321 start-page: 321 year: 2018 ident: 419_CR177 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 – ident: 419_CR163 doi: 10.1007/978-3-030-01231-1_14 – ident: 419_CR275 doi: 10.24963/ijcai.2020/671 – ident: 419_CR295 doi: 10.18653/v1/P19-1185 – ident: 419_CR206 – ident: 419_CR29 – ident: 419_CR309 – ident: 419_CR313 doi: 10.1016/j.neucom.2020.01.119 – ident: 419_CR30 doi: 10.1007/978-3-642-24955-6_57 – volume: 48 start-page: 220 year: 2019 ident: 419_CR35 publication-title: Swarm Evolutionary Computation doi: 10.1016/j.swevo.2019.04.008 – ident: 419_CR233 doi: 10.1609/aaai.v31i1.10744 – ident: 419_CR42 – ident: 419_CR156 doi: 10.1007/978-3-319-46493-0_36 – ident: 419_CR69 – ident: 419_CR140 – start-page: 118 volume-title: The computational universe. In Information and the Nature of Reality: from Physics to Metaphysics year: 2014 ident: 419_CR28 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 419_CR183 publication-title: J Big Data doi: 10.1186/s40537-016-0043-6 – ident: 419_CR134 – volume: 35 start-page: 2 year: 2018 ident: 419_CR73 publication-title: J Intell Fuzzy Syst – volume: 78 start-page: 13131 year: 2019 ident: 419_CR212 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-018-5609-1 – volume: 95 start-page: 43 year: 2018 ident: 419_CR288 publication-title: Expert Syst Appl. doi: 10.1016/j.eswa.2017.11.028 – volume: 79 start-page: 101684 year: 2020 ident: 419_CR178 publication-title: Comput Med Imaging Graph. doi: 10.1016/j.compmedimag.2019.101684 – volume-title: Machinery during the industrial revolution year: 2009 ident: 419_CR14 doi: 10.1007/978-90-481-2512-8_7 – volume: 22 start-page: 10 year: 2010 ident: 419_CR182 publication-title: IEEE Transactions on knowledge data engineering – ident: 419_CR223 doi: 10.1007/978-3-319-18356-5_27 – ident: 419_CR101 – ident: 419_CR128 – ident: 419_CR97 – ident: 419_CR191 – ident: 419_CR6 – volume: 19 start-page: 3 year: 2017 ident: 419_CR41 publication-title: J Med Internet Res doi: 10.2196/jmir.6533 – volume: 7 start-page: 55 year: 2010 ident: 419_CR65 publication-title: Poiesis Prax doi: 10.1007/s10202-010-0078-2 – ident: 419_CR174 doi: 10.1109/CVPRW50498.2020.00359 – ident: 419_CR64 – ident: 419_CR267 – ident: 419_CR47 – ident: 419_CR290 – volume-title: Barto AG reinforcement learning: an introduction year: 2018 ident: 419_CR111 – ident: 419_CR209 doi: 10.1609/aaai.v34i04.6139 – ident: 419_CR205 doi: 10.1109/IGARSS.2019.8899343 – ident: 419_CR304 doi: 10.1109/IRC.2019.00120 – ident: 419_CR278 – ident: 419_CR123 – volume: 27 start-page: 1134 issue: 11 year: 1984 ident: 419_CR40 publication-title: Commun ACM doi: 10.1145/1968.1972 – ident: 419_CR25 doi: 10.1007/978-3-030-03633-1_13 – ident: 419_CR179 – volume: 61 start-page: 1 year: 2018 ident: 419_CR283 publication-title: J Artif Intell Res doi: 10.1613/jair.5714 – ident: 419_CR67 doi: 10.1109/ACCESS.2015.2513822 – ident: 419_CR268 – ident: 419_CR8 – ident: 419_CR302 – ident: 419_CR137 doi: 10.1109/ICCV.2017.244 – ident: 419_CR107 – ident: 419_CR239 – ident: 419_CR274 – ident: 419_CR188 – ident: 419_CR243 doi: 10.1109/ICCV.2019.00851 – ident: 419_CR37 doi: 10.1111/itor.12001 – ident: 419_CR319 – ident: 419_CR250 doi: 10.1609/aaai.v33i01.33018642 – ident: 419_CR180 doi: 10.18653/v1/D19-1670 – ident: 419_CR200 doi: 10.4018/978-1-60566-766-9 – ident: 419_CR129 doi: 10.1109/IIPHDW.2018.8388338 – ident: 419_CR165 doi: 10.1007/978-3-030-01240-3_44 – ident: 419_CR226 doi: 10.1007/978-3-319-71246-8_42 – ident: 419_CR301 doi: 10.1109/9780470544785.ch2 – ident: 419_CR60 – ident: 419_CR170 doi: 10.1109/CAC.2017.8243510 – ident: 419_CR66 – volume: 29 start-page: 17 year: 2019 ident: 419_CR279 publication-title: Curr Opin Behav Sci. doi: 10.1016/j.cobeha.2018.12.010 – ident: 419_CR214 doi: 10.18653/v1/E17-1015 – ident: 419_CR292 – volume: 51 start-page: 32 issue: 12 year: 2018 ident: 419_CR192 publication-title: Computer doi: 10.1109/MC.2018.2880015 – ident: 419_CR131 – ident: 419_CR227 – volume-title: Concepts in programming languages year: 2002 ident: 419_CR17 doi: 10.1017/CBO9780511804175 – ident: 419_CR121 doi: 10.1145/2487575.2487629 – volume: 73 start-page: 313 issue: 3 year: 2008 ident: 419_CR222 publication-title: Mach Learn doi: 10.1007/s10994-008-5088-0 – ident: 419_CR31 – ident: 419_CR234 – volume: 35 start-page: 112 issue: 9 year: 1992 ident: 419_CR16 publication-title: Commun ACM doi: 10.1145/130994.131001 – ident: 419_CR62 doi: 10.3115/1073012.1073017 – ident: 419_CR118 – ident: 419_CR286 – ident: 419_CR194 – volume: 217 start-page: 188 year: 1996 ident: 419_CR24 publication-title: Phys Lett A doi: 10.1016/0375-9601(96)00453-7 – ident: 419_CR181 doi: 10.1109/IROS.2017.8205961 – ident: 419_CR186 doi: 10.1109/ACCESS.2020.2992520 – ident: 419_CR204 doi: 10.18653/v1/P17-1001 – ident: 419_CR130 – ident: 419_CR161 doi: 10.1109/CVPR.2018.00143 – ident: 419_CR88 – volume: 14 start-page: 3 year: 2020 ident: 419_CR213 publication-title: ACM Trans Knowl Discovery Data – ident: 419_CR147 – ident: 419_CR172 – ident: 419_CR284 doi: 10.1109/TNNLS.2016.2603784 – volume: 3 start-page: 1 issue: 1 year: 2009 ident: 419_CR79 publication-title: Synth Lect Artif Intell Mach Learn. – ident: 419_CR119 – ident: 419_CR153 – ident: 419_CR285 – volume: 530 start-page: 7589 year: 2016 ident: 419_CR18 publication-title: Nature doi: 10.1038/530144a – ident: 419_CR59 – ident: 419_CR235 doi: 10.1007/978-3-031-01581-6 – ident: 419_CR252 – ident: 419_CR266 doi: 10.1609/aaai.v32i1.12007 – volume: 23 start-page: 5 year: 2017 ident: 419_CR117 publication-title: Trends Cogn Sci – ident: 419_CR83 doi: 10.1007/978-3-030-01267-0_9 – ident: 419_CR308 – ident: 419_CR303 – ident: 419_CR158 – ident: 419_CR246 – ident: 419_CR32 doi: 10.1109/SMC.2018.00177 – ident: 419_CR263 – volume: 8 start-page: 182422 year: 2020 ident: 419_CR310 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029234 – volume: 41 start-page: 8 year: 2018 ident: 419_CR100 publication-title: IEEE Trans Pattern Anal Mach Intell – ident: 419_CR105 doi: 10.1109/CVPR.2019.00265 – ident: 419_CR261 doi: 10.18653/v1/2020.acl-main.348 – ident: 419_CR102 – ident: 419_CR265 doi: 10.1007/978-3-030-10925-7_30 – ident: 419_CR249 doi: 10.1109/CVPR.2018.00131 – ident: 419_CR280 – ident: 419_CR54 – ident: 419_CR257 – ident: 419_CR215 – ident: 419_CR320 – volume: 59 start-page: 433 issue: 236 year: 1950 ident: 419_CR21 publication-title: Mind doi: 10.1093/mind/LIX.236.433 – ident: 419_CR273 doi: 10.24963/ijcai.2018/627 – ident: 419_CR293 – volume: 4 start-page: 14 year: 2017 ident: 419_CR311 publication-title: EAI Endors Trans Scalable Inf Syst – ident: 419_CR270 – volume: 13 start-page: 460 year: 2018 ident: 419_CR289 publication-title: WSEAS Trans Syst Control. – volume: 12 start-page: 1149 year: 2011 ident: 419_CR93 publication-title: J Mach Learn Res – ident: 419_CR264 – ident: 419_CR38 – volume: 340 start-page: 76 year: 2019 ident: 419_CR203 publication-title: Neurocomputing. doi: 10.1016/j.neucom.2019.02.035 – ident: 419_CR63 doi: 10.1007/s11263-015-0812-2 – ident: 419_CR241 – ident: 419_CR312 – ident: 419_CR143 doi: 10.1109/MLSP.2018.8516711 – ident: 419_CR159 doi: 10.1109/CVPR.2016.265 – volume: 90 start-page: 60 issue: 10 year: 2012 ident: 419_CR52 publication-title: Harvard Bus Rev. – ident: 419_CR150 doi: 10.18653/v1/D19-6101 – volume: 109 start-page: 569 year: 2020 ident: 419_CR210 publication-title: Mach Learn doi: 10.1007/s10994-019-05847-6 – ident: 419_CR149 – ident: 419_CR231 doi: 10.1145/1718487.1718501 – volume: 11 start-page: 9 year: 2018 ident: 419_CR77 publication-title: Algorithm doi: 10.3390/a11090139 – ident: 419_CR126 – volume: 8 start-page: 277 year: 1996 ident: 419_CR221 publication-title: Connect Sci doi: 10.1080/095400996116929 – ident: 419_CR155 – ident: 419_CR287 – ident: 419_CR193 – ident: 419_CR228 doi: 10.1145/2872427.2883086 – ident: 419_CR189 doi: 10.1017/9781139061773.0102020 – ident: 419_CR306 – ident: 419_CR99 – ident: 419_CR4 – volume: 4 start-page: 5 issue: 1 year: 2014 ident: 419_CR20 publication-title: Rev Manag – volume: 6 start-page: 48 year: 2019 ident: 419_CR122 publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – ident: 419_CR229 doi: 10.1609/aaai.v30i1.10373 – ident: 419_CR269 – volume-title: Architects of Intelligence: the Truth About AI From the People Building It year: 2018 ident: 419_CR5 – ident: 419_CR108 – ident: 419_CR166 – ident: 419_CR258 doi: 10.1007/978-3-030-47436-2_64 – ident: 419_CR10 – ident: 419_CR187 – ident: 419_CR196 doi: 10.1109/ICCT46805.2019.8947072 – volume: 5 start-page: 1 year: 2018 ident: 419_CR55 publication-title: Natl Sci Rev doi: 10.1093/nsr/nwx106 – ident: 419_CR33 doi: 10.3389/fnbot.2019.00040 – ident: 419_CR34 doi: 10.1007/s12559-020-09730-8 – ident: 419_CR255 doi: 10.1609/aaai.v33i01.33019937 – volume: 141 start-page: 178 year: 2018 ident: 419_CR185 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2017.11.019 – ident: 419_CR276 – ident: 419_CR282 – volume-title: A History of Algorithms: From the Pebble to the Microchip year: 1999 ident: 419_CR13 doi: 10.1007/978-3-642-18192-4 – ident: 419_CR197 doi: 10.1017/9781139061773.0142020 – ident: 419_CR115 doi: 10.1609/aaai.v32i1.11694 – ident: 419_CR154 doi: 10.1109/ICCV.2011.6126344 – volume: 53 start-page: 1 issue: 3 year: 2020 ident: 419_CR7 publication-title: ACM Comput Surv doi: 10.1145/3386252 – ident: 419_CR198 – volume: 15 start-page: 721 year: 2020 ident: 419_CR277 publication-title: J Electr Eng Technol. doi: 10.1007/s42835-020-00343-7 – ident: 419_CR314 doi: 10.1109/ICIP.2016.7533053 – ident: 419_CR171 doi: 10.1007/978-3-030-00536-8_6 – ident: 419_CR247 – ident: 419_CR44 doi: 10.1007/978-3-540-30116-5_17 – ident: 419_CR109 – volume: 106 start-page: 39 issue: 9 year: 2016 ident: 419_CR50 publication-title: American Economic Review – ident: 419_CR195 doi: 10.1109/CVPR.2017.754 – volume: 28 start-page: 1 year: 1997 ident: 419_CR199 publication-title: Mach Learn doi: 10.1023/A:1007379606734 – ident: 419_CR281 – volume: 28 start-page: 5 year: 2015 ident: 419_CR96 publication-title: Neural Comput Appl – ident: 419_CR251 doi: 10.1109/CVPR.2019.00672 – ident: 419_CR142 doi: 10.1137/1.9781611975673.71 – volume: 53 start-page: 1038 issue: 8 year: 2016 ident: 419_CR49 publication-title: Inf Manag doi: 10.1016/j.im.2016.06.003 – ident: 419_CR298 doi: 10.1007/978-3-030-58548-8_46 – ident: 419_CR57 doi: 10.1007/978-3-319-49644-3_3 – ident: 419_CR120 – ident: 419_CR22 – ident: 419_CR39 doi: 10.7551/mitpress/3897.001.0001 – ident: 419_CR176 – volume: 30 start-page: 1 year: 2013 ident: 419_CR95 publication-title: Appl Res Comput – ident: 419_CR219 – ident: 419_CR242 – volume: 10 start-page: 2 year: 2003 ident: 419_CR43 publication-title: J Comput Biol doi: 10.1089/106652703321825928 – ident: 419_CR225 – ident: 419_CR318 – start-page: 83 volume-title: Universe from Bit. In: Information and the Nature of Reality: From Physics to Metaphysics year: 2014 ident: 419_CR26 doi: 10.1017/CBO9781107589056.006 – volume: 11 start-page: 709 issue: 3 year: 2017 ident: 419_CR169 publication-title: VLDB J – ident: 419_CR256 doi: 10.1109/CVPR.2019.00049 – ident: 419_CR27 – volume: 295 start-page: 4 issue: 1 year: 2020 ident: 419_CR56 publication-title: Radiology doi: 10.1148/radiol.2020192224 – ident: 419_CR253 – ident: 419_CR112 doi: 10.1109/MSP.2017.2743240 – ident: 419_CR3 – ident: 419_CR236 – ident: 419_CR307 |
| SSID | ssj0001340564 |
| Score | 2.594612 |
| Snippet | The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because... Abstract The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately, many application domains do not have access to big data because... |
| SourceID | doaj unpaywall proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Big Data Communications Engineering Computational Science and Engineering Computer Science Data acquisition Data augmentation Data hungry algorithms Data Mining and Knowledge Discovery Database Management Data‐efficiency Domains Information Storage and Retrieval Machine learning Mathematical Applications in Computer Science Networks Small sample learning Survey Paper Transfer learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLoVD36jb0sqH3orFJpn4caRVEeqhpyJxs5yxDStts2gfIG78BH4jv6RjJ1mWC_RQKad4ItnfzGRmYucbxr5IGhjHphZNgSjAuVK4GgpROI8xeGd0yGyfv-TxCfw8rU83Wn2lM2EdPXAH3IErXKkKp0OoDfhG68obbBAqqgJR1ZjevmNtNoqp_HWlokREwvCXjJYHC0jMJSKdSEgcU0aYB5EoE_Y_yDLXG6M77PmqvXDXV2463Yg9R6_Yiz5p5IfdZF-zZ6F9w14ODRl4759vmTrki9X8MlzzWcvT2c-7m9uQOSIotHA3PZvNJ8vzPws-aXkzOcsiPMzdO3Zy9OP392PRd0YQKMtiKbzzFQQ9BkUw1AGjSZsp2gQZa6ecVxGilxSLo0cFiL6MiiAkd441AgWrXbbVztrwnvExiSbawYouKJVqFJrKOAQK9QgBR6wYULLY04an7hVTm8sHLW2HrCVkbUbWmhH7un7moiPNeFT6WwJ_LZkIr_MNMgPbm4F9ygxGbG9Qne29cGFL0GQaQCXeiO0P6rwffmxK-2uV_8MKPvyPFXxk22W2zkKUco9tLeer8IkSnmXzOdv2X2_O-pQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9AAceCMCBfnAjVrNer1-HBBqq1YVhwghKvVmecd2qJRuQh6g3vgJ_Mb-ktrObtJeIqQ9rWe1nhmPZ-yxvwH4KGLDINQVrQtEyq1l1Fa8oIV1GLyzWvmM9jkUZ-f860V1sQPD7i5MOlbZzYl5onYTTHvkB4yrgdI8hutfpr9oqhqVsqtdCQ3bllZwnzPE2APYZQkZqwe7RyfDb983uy5lDFAE727PKHEw5wnRhKaTCgl7SlN9z0NlIP970ec6YfoYHi6bqb3-Y8fjOz7p9Bk8aYNJcrjS_nPY8c0LeNoVaiCt3b4EeUjmy9lvf00mDUlnQm_-_vMZOyK6HGLHo8jo4ufVnFw2pL4cZRLiZ_YVnJ-e_Dg-o23FBIqCFQvqrCu5VwMuS19XHoNOSRalvQiVldbJwIMT0UcHh5IjOhakVT6aeaiQRyf2GnrNpPFvgAwiaYIjLOPDmZS1RF1qizyGAMg99qHopGSwhRNPVS3GJi8rlDAryZooWZMla3QfPq2_ma7ANLZSHyXhrykTEHZ-MZmNTGtXxhaWySLy4CvNXa1U6TTWyCP_JcoqdnOvU51prXNuNmOpD_udOjfN27q0v1b5f3DwdvvP38EjlsddQZnYg95itvTvY4izqD-04_YW9Un3Zw priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYoHFoOpb9igVY-9FasbpyJf44UFSEOnIrEzXLG9nalbRYlu0XceIQ-Y58E25tsQaoQlXKKx5E948mM7ZlvCPkkYsM41BWrC0QG1nJmKyhYYR0G76xWPqN9novTCzi7rC77pLBuiHYfriTznzqrtRJfOkjQIyyFFCSQKM30M7IV_Q-eCjYc9zkO-WSljJQChgyZf3Z9YIUyWP8DD3N9KbpNni-bK3tzbWeze3bn5BV52TuM9Ggl4ddkwzdvyM5QjIH2uvmWyCPaLdtf_obOG5riPv_c_vYZHyKaFWpnk3k7Xfz42dFpQ-vpJJNQ39p35OLk2_fjU9ZXRWAoeLFgzroSvBqDLH1deQw6XaQo7UWorLROBghORDscHEpAdDxIq3xU5VAhREP1nmw288bvEjqOpAlysIwPcClribrUFiGaeQSPI1IMXDLYQ4anyhUzk7cOSpgVZ03krMmcNXpEPq_7XK0AMx6l_pqYv6ZMYNf5xbydmF53jC0sl0Wcg680uFqp0mmsEeL8S5RVHObBIDrTa2BnOKix0hC3dyNyOIjzb_NjQzpci_wJM9j7v6_vkxc8r8OCcXFANhft0n-Ibs2i_phX8R0I4e2Q priority: 102 providerName: Springer Nature |
| Title | A survey on data‐efficient algorithms in big data era |
| URI | https://link.springer.com/article/10.1186/s40537-021-00419-9 https://www.proquest.com/docview/2480894625 https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-021-00419-9 https://doaj.org/article/a1a271a8ee594db883d9cbc43eb3c75c |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: ADMLS dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: 8FG dateStart: 20150201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: AAJSJ dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C6C dateStart: 20141201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61yQE4UJ4iUCIfuNFNY3ufRzdqqHKIKiBSOVnrfaRRgx05Dqic-An8Rn4Ju44dKEIVSEiWLe2O5Z2dmZ1Z7-43AK-oqxjajKAsVAphKSMkCQ5RKLWyRkvBTY32OaVnMzy5IBd7MG3PwjQ9WNhsMfd7JAft8qRPJlWP3FUp1dXxStutwXN6vMYelAT5zQYePkogsQ9dSlxs3oHubHqefPAZ5pyqIWfYpD0588cXb3inGsT_RuS5Wyy9B3c2-Upef5bL5S_-aHwARcvJdhvK1WBTZQP15TeQx__H6gO434SuQbLVtYewZ_JHcNCmhQiaUeIxsCRYb8pP5joo8sB_8vvXb6ZGqnAOLpDLeVEuqsuP62CRB65RNUlgSvkEZuPT96Mz1ORnQIpGYYW01DE2fIhZbDJilBV-SYcLQy2RTGpmsdXURQRWK4aV0pFlkhs3qFiisHOZT6GTF7l5BsHQkXrww9hdOGIsY0rEQirsAg6FjepB2MolVQ14uc-hsUzrSQyn6bZnUtczad0zqejB6907qy10x63UJ17cO0oPu10XFOU8baw4laGMWOh4MERgnXEea6EyhR3_sWLENfOwVZa0Ee86jTAfcoHdRLMHR62Mf1bf1qSjnZL9BQfP_438BdyNaj0KUUQPoVOVG_PSBVhV1od9Pn7Th26STN5N3PPkdHr-1pWOIuzvdNSvf130G-v6ASvKJRg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9lA48EakFPABTtRq1ju7tg8VaqFVSkuEUCv1Zry2N1QKmzQPqtz4Cfwifgy_hLGzm9BLxKXSntazWntmPA8_viHkdY4N7bLIWJFYy8AYzkwGCUuMs6V3Rkkf0T67eeccPl5kF2vkd3MXJhyrbGxiNNRuYMMa-S4H2ZYKMFx_N7xioWpU2F1tSmiYurSC24sQY_XFjhM_u8YUbrx3_AHl_Ybzo8Oz9x1WVxlgNufJhDnjUvCyDSL1ReZtqcLGhFQ-LzMjjBMllC5Hv1Y6K8Bax0thpMepUWYWkgB8gC5gA1JQmPxtHBx2P39ZrvKkGBDl0NzWkfnuGAKCCgsnIwLWlWLqhkeMhQNuRLuLDdq7ZHNaDc3s2vT7__jAowfkXh280v25tj0ka756RO43hSFobSceE7FPx9PRDz-jg4qGM6h_fv7yEasCXRw1_R4ydvLt-5heVrS47EUS6kfmCTm_Fd49JevVoPLPCG0jaYA_TPEBLkQhrEqVsYAhhwVvWyRpuKRtDV8eqmj0dUxjZK7nnNXIWR05q1WLvF18M5yDd6ykPgjMX1AG4O34YjDq6Xoea5MYLhIcg88UuELK1ClbWMDxp1Zk2M3tRnS6tgZjvdTdFtlpxLlsXtWlnYXI_2MEW6t__opsds4-nerT4-7Jc3KHRx1MGM-3yfpkNPUvMLyaFC9rHabk621Pm79bHTYE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkXgceCMWCvjAjVrdJBM_jmVhVR6qOFCpN8vxY7vSkl1ls6De-An8Rn4JtpNsWwlVIOUUjyPPjEdjZ2a-AXjNwsDYVyWtMmMoap1TXWJGM22Nd1ZL4RLa5xE7PMaPJ-XJhSr-lO0-hCS7moaI0lS3-yvrOxMXbH-NEYaExvSCCBglqbwONzB4t9jDYMIm539ZikDJcKiW-evUSx4pAfdfOm1uA6R34NamXumzH3qxuOCDpvfhbn94JAedth_ANVc_hHtDYwbS2-kj4AdkvWm-uzOyrEnMAf3985dLWBGBRaIXs2Uzb0-_rcm8JtV8lkiIa_RjOJ6-_zo5pH2HBGpYnrXUalugE2PkhatKZ7yMQRUhHfOl5tpyj96y4JO9NRyNsbnnWrhg1r40GJzWE9ipl7V7CmQcSCP8YBEezDmvuJGF1AaDyzfozAiyQUrK9PDhsYvFQqVrhGCqk6wKklVJskqO4M12zqoDz7iS-m0U_pYyAl-nF8tmpno7UjrTOc8CD66UaCshCitNZTDwXxhehmXuDqpTvTWuVY5iLCSGq94I9gZ1ng9ftaS9rcr_gYNn__f1V3Dzy7up-vzh6NNzuJ2nLZnRnO3CTtts3Itw2mmrl2lD_wGDS_Th |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFH8a3QE4MP6KwkA-cGPumsSO7WNBTBOHigOVxslynu1SrUuqNAWNEx-Bz8gnwU6TwhCaQELKyX5W_P75Pcv27wG8yEPH2BecFgkiZcak1HCW0MRY9M4aJV2L9jnNT2fs7Rk_24Np_xamk2Dli8U83pEc9ceTsZhUu3I3tcHz45X1W4eX-fGaRVASGi8bRPgoRdUN2M95yM0HsD-bvpt8iBXmgqnR4Ni8fznzx4FXolML4n8l89wdlt6Gm5tyZS4_m-Xyl3h0cgBVz8n2Gsr5aNMUI_zyG8jj_2P1LtzpUlcy2draPdhz5X046MtCkG6VeABiQtab-pO7JFVJ4i-_f_3mWqSKEOCIWc6retF8vFiTRUnCpFoS4mrzEGYnb96_PqVdfQaKeZo01BqbMSfHTGSu4A69ikc6UrnccyOMFZ55m4eMwFsUDNGmXhjpwqLiObIQMh_BoKxK9xjIOJBG8MMsfCwVohCoMmWQhYQDmcMhJL1eNHbg5bGGxlK3mxiZ661kdJCMbiWj1RBe7sasttAd11K_iureUUbY7bahque682JtEpOKJPDguGK2kDKzCgtkgf8MBQ_TPOyNRXfqXeuUybFULGw0h3DU6_hn93VTOtoZ2V9w8OTfyJ_CrbS1o4Sm-SEMmnrjnoUEqymed17zA_KGHnA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+data%E2%80%90efficient+algorithms+in+big+data+era&rft.jtitle=Journal+of+big+data&rft.au=Amina+Adadi&rft.date=2021-01-26&rft.pub=SpringerOpen&rft.eissn=2196-1115&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=54&rft_id=info:doi/10.1186%2Fs40537-021-00419-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a1a271a8ee594db883d9cbc43eb3c75c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon |