Locomotion Without a Brain: Physical Reservoir Computing in Tensegrity Structures
Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that...
Saved in:
| Published in | Artificial life Vol. 19; no. 1; pp. 35 - 66 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1064-5462 1530-9185 1530-9185 |
| DOI | 10.1162/ARTL_a_00080 |
Cover
| Abstract | Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term
. Recent work has linked this to the field of
, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called
, controlled by one of the simplest kinds of “brains.” These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system. |
|---|---|
| AbstractList | Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphologcal computation. Recent work has linked this to the field of nservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structum, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system. Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphological computation. Recent work has linked this to the field of reservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structures, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system. Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term . Recent work has linked this to the field of , allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called , controlled by one of the simplest kinds of “brains.” These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system. Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphological computation. Recent work has linked this to the field of reservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structures, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system.Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphological computation. Recent work has linked this to the field of reservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structures, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system. |
| Author | Verstraeten, D Schrauwen, B Caluwaerts, K D'Haene, M |
| Author_xml | – sequence: 1 givenname: K surname: Caluwaerts fullname: Caluwaerts, K organization: Ghent University – sequence: 2 givenname: M surname: D'Haene fullname: D'Haene, M organization: Ghent University – sequence: 3 givenname: D surname: Verstraeten fullname: Verstraeten, D organization: Ghent University – sequence: 4 givenname: B surname: Schrauwen fullname: Schrauwen, B organization: Ghent University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23186351$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUlv1TAUhS1URAfYsUZesiBwPcZhRXlikp4ElIdYWo7jtK4SO7WdosevJ-W1iKli5WvpO3c45xDthRgcQg8JPCVE0mfHJ5u1NhoAFNxBB0QwqBqixN5Sg-SV4JLuo8OczwEIA1bfQ_uUESWZIAfo4zraOMbiY8BffDmLc8EGv0zGh-f4w9k2e2sGfOKyS5fRJ7yK4zQXH06xD3jjQnanyZct_lTSbMucXL6P7vZmyO7B9XuEPr9-tVm9rdbv37xbHa8rKykplZGNMFzQHkgNihnWuVq2hLTcMdkoybteCdY01KrWLD_BeqJcpyx1ommhY0eo2vWdw2S2X80w6Cn50aStJqCvrNEmleHGmoV_vOOnFC9ml4sefbZuGExwcc6acK5qWoNo_o9SRYHTRvIFfXSNzu3oup8r3Di8AE92gE0x5-T6v7b8NcAFp3_g1hdzFU9ZMhluE73YiUZf9HmcU1iM_3H9JWk80Qwo1ExToGRRa1D6m59ucee3Fv-c9h2p3L51 |
| CitedBy_id | crossref_primary_10_1016_S1672_6529_16_60374_8 crossref_primary_10_1177_0278364919859443 crossref_primary_10_3390_biomimetics9030164 crossref_primary_10_3390_e20120954 crossref_primary_10_1089_soro_2015_0012 crossref_primary_10_1089_soro_2020_0110 crossref_primary_10_1038_s41598_021_98982_x crossref_primary_10_1038_s41598_020_80339_5 crossref_primary_10_1080_10255842_2019_1661389 crossref_primary_10_1177_0278364920912298 crossref_primary_10_35848_1347_4065_ab8d4f crossref_primary_10_1109_JSTQE_2020_3011879 crossref_primary_10_1007_s00422_013_0584_0 crossref_primary_10_1126_scirobotics_abq7278 crossref_primary_10_1089_soro_2018_0168 crossref_primary_10_1103_PhysRevApplied_7_054014 crossref_primary_10_1162_ARTL_a_00219 crossref_primary_10_1115_1_4051270 crossref_primary_10_1002_advs_202304402 crossref_primary_10_1007_s00340_019_7351_4 crossref_primary_10_1016_j_newideapsych_2017_09_002 crossref_primary_10_1177_1059712319847129 crossref_primary_10_1002_adfm_202302929 crossref_primary_10_1098_rstb_2018_0377 crossref_primary_10_1088_1751_8121_acfb54 crossref_primary_10_1016_j_mechrescom_2016_08_003 crossref_primary_10_1080_01691864_2017_1402703 crossref_primary_10_1002_advs_202001955 crossref_primary_10_3390_act12010018 crossref_primary_10_1007_s10514_021_09974_9 crossref_primary_10_1016_j_ccr_2018_03_018 crossref_primary_10_17352_ara_000019 crossref_primary_10_1109_TCDS_2019_2957006 crossref_primary_10_1038_ncomms7729 crossref_primary_10_1038_s41598_022_16874_0 crossref_primary_10_1002_zamm_201300031 crossref_primary_10_1016_j_biosystems_2017_04_007 crossref_primary_10_1109_LRA_2021_3139083 crossref_primary_10_1098_rsif_2014_0520 crossref_primary_10_1038_s41598_021_92257_1 crossref_primary_10_1515_nanoph_2016_0132 crossref_primary_10_1109_TRO_2020_2995067 crossref_primary_10_3390_s21092961 crossref_primary_10_1016_j_promfg_2020_11_048 crossref_primary_10_1109_LRA_2021_3052421 crossref_primary_10_1080_17445760_2016_1241880 crossref_primary_10_1007_s11047_024_09997_y crossref_primary_10_1016_j_cogsys_2019_08_002 crossref_primary_10_1038_srep10487 crossref_primary_10_1007_s10846_022_01700_6 crossref_primary_10_1002_advs_202305074 crossref_primary_10_1002_aisy_202300086 crossref_primary_10_1016_j_neunet_2019_03_005 crossref_primary_10_1016_j_optlastec_2020_106787 crossref_primary_10_1162_NECO_a_00694 crossref_primary_10_1098_rsif_2014_0437 crossref_primary_10_1002_aisy_202400534 crossref_primary_10_1162_ARTL_a_00163 crossref_primary_10_1038_s41467_024_44900_4 crossref_primary_10_1162_artl_a_00447 crossref_primary_10_1007_s11063_017_9628_0 crossref_primary_10_1063_1_5038038 crossref_primary_10_1089_soro_2018_0027 crossref_primary_10_3389_fnbot_2017_00016 crossref_primary_10_1016_j_istruc_2023_06_091 crossref_primary_10_1146_annurev_control_063022_094301 crossref_primary_10_1103_PhysRevE_108_064304 crossref_primary_10_1016_j_neunet_2024_106766 crossref_primary_10_1103_PhysRevE_109_064205 crossref_primary_10_1103_PhysRevE_105_044212 crossref_primary_10_3389_fnbot_2015_00009 |
| Cites_doi | 10.1017/S0022112005007925 10.1007/BF00235671 10.1016/j.robot.2006.03.003 10.1083/jcb.33.3.543 10.1016/S1937-6448(08)01402-0 10.1007/s00422-012-0471-0 10.1242/jcs.00360 10.1146/annurev.neuro.27.070203.144259 10.1016/0020-7683(78)90052-5 10.1016/j.neunet.2008.03.014 10.1016/0006-8993(87)91442-9 10.1162/089976602760407955 10.1016/j.neunet.2007.04.003 10.1098/rsif.2009.0240 10.1109/TNN.2011.2161771 10.1016/S0004-3702(03)00054-7 10.1126/science.1091277 10.1016/j.ijsolstr.2005.10.011 10.1073/pnas.1106904108 10.1137/0910062 10.1007/BF00449593 10.1016/S0141-0296(01)00130-4 10.1371/journal.pcbi.1000007 10.1515/9781400849512 10.1371/journal.pcbi.0020165 10.1038/ncomms1476 10.1109/BIOROB.2010.5628051 10.1073/pnas.0505220103 10.1023/A:1008857906763 10.1002/(SICI)1097-0169(1996)33:1<22::AID-CM3>3.0.CO;2-K 10.1016/j.robot.2006.03.005 10.1016/B978-190399637-9/50038-X 10.1038/35044563 10.1007/978-3-642-00196-3_37 10.1242/jcs.00359 10.7551/mitpress/5236.001.0001 10.1093/imamat/hxq065 10.1109/TBME.2006.889200 10.1007/3-540-32494-1_4 10.1016/0301-0082(96)00028-7 10.1099/mic.0.029595-0 10.1016/0004-3702(91)90053-M 10.1016/j.neuron.2009.07.018 10.1007/BF00275687 10.1109/ICAR.2005.1507415 10.1007/s00422-012-0516-4 10.1103/PhysRevLett.97.048104 10.1073/pnas.9.7.258 10.1007/BF00319514 10.1016/S0921-8890(05)80025-9 10.1146/annurev.physiol.59.1.575 10.1017/S0022112009992357 10.1016/0893-6080(89)90044-0 10.1038/nrm2594 10.1511/1998.2.142 10.1523/JNEUROSCI.4284-09.2010 10.3758/BF03196322 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 8FD F28 FR3 JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1162/ARTL_a_00080 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Computer Science |
| EISSN | 1530-9185 |
| EndPage | 66 |
| ExternalDocumentID | oai:zenodo.org:3439359 23186351 10_1162_ARTL_a_00080 artl_a_00080.pdf |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | - 0R 23N 4.4 4S 53G 5GY 6IK AAJGR AAPBV ABDBF ABPTK ADYLN AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS AVWKF AZFZN BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EAP EAS EBC EBD EBS EBX EDO EJD EMB EMK EPL EST ESX F5P HZ IPLJI JAVBF MCG O9- OCL P2P PK0 RMI SV3 TUS X --- -~X .4S .DC 0R~ 36B 6J9 AAYXX ABAZT ABDNZ ABJNI ABVLG ACGFO ACUHS ACYGS ADMLS AEGXH AI. AIAGR CAG CITATION COF EMOBN FNEHJ HZ~ MINIK MK~ VH1 ZWS AEILP CGR CUY CVF ECM EIF NPM 7X8 7SC 8FD F28 FR3 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c621t-a695a452f017083a3de76b11b4e369864df853992c8ba64d53f18ed8c2e59b0d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1064-5462 1530-9185 |
| IngestDate | Sun Oct 26 04:10:43 EDT 2025 Fri Sep 05 12:29:51 EDT 2025 Thu Oct 02 05:23:03 EDT 2025 Mon Jul 21 06:03:24 EDT 2025 Thu Apr 24 22:56:38 EDT 2025 Wed Oct 01 01:50:13 EDT 2025 Tue Mar 01 17:18:03 EST 2022 Tue Mar 01 17:36:41 EST 2022 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c621t-a695a452f017083a3de76b11b4e369864df853992c8ba64d53f18ed8c2e59b0d3 |
| Notes | Winter, 2013 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://zenodo.org/record/3439359 |
| PMID | 23186351 |
| PQID | 1282042964 |
| PQPubID | 23479 |
| PageCount | 32 |
| ParticipantIDs | proquest_miscellaneous_1448727059 crossref_primary_10_1162_ARTL_a_00080 proquest_miscellaneous_1282042964 unpaywall_primary_10_1162_artl_a_00080 mit_journals_artlv19i1_302073_2021_11_08_zip_artl_a_00080 mit_journals_10_1162_ARTL_a_00080 pubmed_primary_23186351 crossref_citationtrail_10_1162_ARTL_a_00080 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-00-00 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – year: 2013 text: 2013-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | One Rogers Street, Cambridge, MA 02142-1209, USA |
| PublicationPlace_xml | – name: One Rogers Street, Cambridge, MA 02142-1209, USA – name: United States |
| PublicationTitle | Artificial life |
| PublicationTitleAlternate | Artif Life |
| PublicationYear | 2013 |
| Publisher | MIT Press |
| Publisher_xml | – name: MIT Press |
| References | R61 R62 Tani J. (R63) 1998; 5 R65 R20 R64 R23 R67 Clark A. (R14) 1997 R22 R66 R25 R69 R24 R68 R26 R29 R1 R2 Skelton R. E. (R58) 2009 R3 R4 R5 Caluwaerts K. (R13) 2011 R7 R8 R9 R70 R72 R71 R30 R73 R32 R76 R31 R33 R77 R35 R38 R37 R39 Dambre J. (R17) 2012; 2 Pfeifer R. (R51) 2007 Sultan C. (R60) 2009 Hoerzer G. M. (R28) 2012 Hebb D. O. (R27) 1949 Biewener A. A. (R6) 2003 Reis M. (R52) 2011 R41 Rumelhart D. E. (R55) 1986; 1 R40 R43 R42 R45 R44 R47 R46 R49 R48 Kailath T. (R36) 2000 Connelly R. (R15) 1999 Fuller R. B. (R21) 1975 Snelson K. (R59) 1965 R50 R10 R54 R53 R12 R56 R11 R57 R16 R18 R19 |
| References_xml | – ident: R5 doi: 10.1017/S0022112005007925 – ident: R22 doi: 10.1007/BF00235671 – ident: R49 doi: 10.1016/j.robot.2006.03.003 – ident: R54 doi: 10.1083/jcb.33.3.543 – ident: R64 doi: 10.1016/S1937-6448(08)01402-0 – ident: R26 doi: 10.1007/s00422-012-0471-0 – ident: R33 doi: 10.1242/jcs.00360 – ident: R18 doi: 10.1146/annurev.neuro.27.070203.144259 – volume-title: Linear estimation. year: 2000 ident: R36 – ident: R12 doi: 10.1016/0020-7683(78)90052-5 – ident: R30 doi: 10.1016/j.neunet.2008.03.014 – ident: R4 doi: 10.1016/0006-8993(87)91442-9 – ident: R43 doi: 10.1162/089976602760407955 – ident: R68 doi: 10.1016/j.neunet.2007.04.003 – ident: R53 doi: 10.1098/rsif.2009.0240 – volume-title: How the body shapes the way we think: A new view of intelligence. year: 2007 ident: R51 – ident: R67 doi: 10.1109/TNN.2011.2161771 – ident: R2 doi: 10.1016/S0004-3702(03)00054-7 – ident: R35 doi: 10.1126/science.1091277 – ident: R77 doi: 10.1016/j.ijsolstr.2005.10.011 – start-page: 45 volume-title: 2nd International Conference on Morphological Computation year: 2011 ident: R13 – ident: R39 doi: 10.1073/pnas.1106904108 – volume-title: Continuous tension, discontinuous compression structures. year: 1965 ident: R59 – ident: R10 doi: 10.1137/0910062 – ident: R45 doi: 10.1007/BF00449593 – ident: R61 doi: 10.1016/S0141-0296(01)00130-4 – ident: R40 doi: 10.1371/journal.pcbi.1000007 – ident: R1 doi: 10.1515/9781400849512 – ident: R42 doi: 10.1371/journal.pcbi.0020165 – ident: R3 doi: 10.1038/ncomms1476 – ident: R73 doi: 10.1109/BIOROB.2010.5628051 – start-page: 90 volume-title: 2nd International Conference on Morphological Computation year: 2011 ident: R52 – ident: R41 doi: 10.1073/pnas.0505220103 – volume: 2 issue: 514 year: 2012 ident: R17 publication-title: Scientific Reports – ident: R19 doi: 10.1023/A:1008857906763 – ident: R76 doi: 10.1002/(SICI)1097-0169(1996)33:1<22::AID-CM3>3.0.CO;2-K – ident: R29 doi: 10.1016/j.robot.2006.03.005 – volume: 5 start-page: 516 issue: 5 year: 1998 ident: R63 publication-title: Journal of Consciousness Studies – ident: R47 doi: 10.1016/B978-190399637-9/50038-X – ident: R7 – volume-title: Synergetics: Explorations in the geometry of thinking. year: 1975 ident: R21 – start-page: 47 volume-title: Rigidity theory and applications year: 1999 ident: R15 – ident: R57 doi: 10.1038/35044563 – ident: R11 doi: 10.1007/978-3-642-00196-3_37 – volume-title: Being there: Putting brain, body and world together. year: 1997 ident: R14 – ident: R32 doi: 10.1242/jcs.00359 – volume: 1 start-page: 318 volume-title: Parallel distributed processing year: 1986 ident: R55 doi: 10.7551/mitpress/5236.001.0001 – ident: R23 doi: 10.1093/imamat/hxq065 – volume-title: Animal locomotion. year: 2003 ident: R6 – ident: R66 doi: 10.1109/TBME.2006.889200 – ident: R24 doi: 10.1007/3-540-32494-1_4 – ident: R70 doi: 10.1016/0301-0082(96)00028-7 – volume-title: Tensegrity systems. year: 2009 ident: R58 – ident: R65 doi: 10.1099/mic.0.029595-0 – ident: R9 doi: 10.1016/0004-3702(91)90053-M – ident: R62 doi: 10.1016/j.neuron.2009.07.018 – ident: R48 doi: 10.1007/BF00275687 – ident: R50 doi: 10.1109/ICAR.2005.1507415 – ident: R25 doi: 10.1007/s00422-012-0516-4 – ident: R20 doi: 10.1103/PhysRevLett.97.048104 – ident: R44 doi: 10.1073/pnas.9.7.258 – ident: R46 doi: 10.1007/BF00319514 – ident: R8 doi: 10.1016/S0921-8890(05)80025-9 – ident: R31 doi: 10.1146/annurev.physiol.59.1.575 – ident: R37 doi: 10.1017/S0022112009992357 – ident: R56 doi: 10.1016/0893-6080(89)90044-0 – ident: R69 doi: 10.1038/nrm2594 – volume-title: The organization of behavior. year: 1949 ident: R27 – ident: R16 doi: 10.1511/1998.2.142 – ident: R38 doi: 10.1523/JNEUROSCI.4284-09.2010 – start-page: 69 volume-title: Advances in applied mechanics year: 2009 ident: R60 – ident: R72 – year: 2012 ident: R28 publication-title: Submitted to Cerebral Cortex – ident: R71 doi: 10.3758/BF03196322 |
| SSID | ssj0013037 |
| Score | 2.3592424 |
| Snippet | Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the... |
| SourceID | unpaywall proquest pubmed crossref mit |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 35 |
| SubjectTerms | Algorithms Artificial Intelligence Biomechanical Phenomena Brain central pattern generator compliant robotics Computation Computer Simulation Control systems Control theory Dynamics Feedback Gait Humans Learning Least-Squares Analysis Locomotion Man-Machine Systems Morphological computation Motion Oscillometry - methods reservoir computing Robotics - methods Robotics - trends Robots tensegrity Tensegrity structures Tensile Strength |
| Title | Locomotion Without a Brain: Physical Reservoir Computing in Tensegrity Structures |
| URI | https://direct.mit.edu/artl/article/doi/10.1162/ARTL_a_00080 https://www.ncbi.nlm.nih.gov/pubmed/23186351 https://www.proquest.com/docview/1282042964 https://www.proquest.com/docview/1448727059 https://zenodo.org/record/3439359 |
| UnpaywallVersion | submittedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1530-9185 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0013037 issn: 1530-9185 databaseCode: ABDBF dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1530-9185 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0013037 issn: 1530-9185 databaseCode: ADMLS dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9trRDwwGB8lY_Jk4AXlBHHiePw1gLVhKZpiFWMJ8t2HIgoSTWSofWv55yP0gGbeIx0cWzfne538fl-AM-ygCWR0cbjsRZeaHXsJRkCOWNj3_o6TP2sqbY45Puz8P1JdLIBu_1dmKUtMB1rjvA7TjQWNrdHN2HII4TbAxjODo_Gn5tTTB56UdiQhqLj-ui4IuqL23nwCvd-LpVsUNGFsLP5Pa_-hShvwvW6WKjzn2o-X4sy063fd3Xa4pJve3Wl98zyj9aNVy7gNtzqMCYZt0ZxBzZssQ3XWtbJ823Y6pkcSOfYd-HDQWnKltCHfMqrr2VdEUUmjj7iNTnqVElcld7pWZmfknYEjHokL8gxZsL2iyPBIx-bbrQ1pvD3YDZ9d_xm3-vIFjzDA1p5iieRCqMgcw11BFMstTHXlOrQMu56uKeZaLrYGqEVPkUso8KmwgQ2SrSfsvswKMrCPgTClYkFVVQoBA82ViKhUZwhmKApZWnKR_Cy14U0XSdyR4gxl01GwgOJWP6g19wInq-kF20HjkvkdlGtsnPBH5fIJBdknIWc0SSnkiFsjpkMcJb4mvSFXOYLuW5BOH5vMBJd0J2rqMKWNX4J01YX13l4hQymwQgVEcyO4EFrbavVIMQWiPvoCF6szO-vpa5P5dH_Cj6GG0FD3-F-GT2BARqBfYogqtI7MBxP3k6mO507_QIxnhlB |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDLa2mxDwwGBscPxSJgEvqKNpmjTlbSCmCU3TEDsxnqIkTVnF0Z5GO7T763HT9rgBm3is5KZJbMufG8cfwPM8Yim3xgYiMTKInUmCNEcgZ10SutDEWZj7aotDsT-JP5zwkxXYHu7CzF2J6Zg_wu850Vjsb4-uwprgCLdHsDY5PNr94k8xRRzw2JOGouOG6LiSD8XtInqNez9VWnlUdCnsrH4v6n8hyttwsyln-uKnnk6Xosze-u-7Ol1xybedpjY7dv5H68ZrF3AX7vQYk-x2RnEPVly5ATc61smLDVgfmBxI79j34eNBZauO0Id8LurTqqmJJm9b-og35KhXJWmr9M7Oq-KMdCNg1CNFSY4xE3ZfWxI88sl3o20whd-Eyd7743f7QU-2EFgR0TrQIuU65lHeNtSRTLPMJcJQamLHRNvDPcul72JrpdH4xFlOpcukjRxPTZixLRiVVekeAhHaJpJqKjWCB5domVKe5AgmaEZZlokxvBp0oWzfibwlxJgqn5GISCGWPxg0N4YXC-lZ14HjCrltVKvqXfDHFTLpJZnWQs5pWlDFEDYnTEU4S3xNhVLNi5latiAcfzAYhS7Ynqvo0lUNfgnT1jaui_gaGUyDESoimB3Dg87aFqtBiC0R99ExvFyY319LXZ7Ko_8VfAy3Ik_f0f4yegIjNAL3FEFUbZ71bvQLcBYXzw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locomotion+Without+a+Brain%3A+Physical+Reservoir+Computing+in+Tensegrity+Structures&rft.jtitle=Artificial+life&rft.au=Caluwaerts%2C+K&rft.au=D%27Haene%2C+M&rft.au=Verstraeten%2C+D&rft.au=Schrauwen%2C+B&rft.date=2013&rft.pub=MIT+Press&rft.issn=1064-5462&rft.eissn=1530-9185&rft.volume=19&rft.issue=1&rft.spage=35&rft.epage=66&rft_id=info:doi/10.1162%2FARTL_a_00080&rft.externalDBID=n%2Fa&rft.externalDocID=artl_a_00080.pdf |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-5462&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-5462&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-5462&client=summon |