Locomotion Without a Brain: Physical Reservoir Computing in Tensegrity Structures

Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that...

Full description

Saved in:
Bibliographic Details
Published inArtificial life Vol. 19; no. 1; pp. 35 - 66
Main Authors Caluwaerts, K, D'Haene, M, Verstraeten, D, Schrauwen, B
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 2013
Subjects
Online AccessGet full text
ISSN1064-5462
1530-9185
1530-9185
DOI10.1162/ARTL_a_00080

Cover

Abstract Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term . Recent work has linked this to the field of , allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called , controlled by one of the simplest kinds of “brains.” These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system.
AbstractList Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphologcal computation. Recent work has linked this to the field of nservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structum, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system.
Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphological computation. Recent work has linked this to the field of reservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structures, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system.
Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term . Recent work has linked this to the field of , allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called , controlled by one of the simplest kinds of “brains.” These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system.
Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphological computation. Recent work has linked this to the field of reservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structures, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system.Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphological computation. Recent work has linked this to the field of reservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structures, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system.
Author Verstraeten, D
Schrauwen, B
Caluwaerts, K
D'Haene, M
Author_xml – sequence: 1
  givenname: K
  surname: Caluwaerts
  fullname: Caluwaerts, K
  organization: Ghent University
– sequence: 2
  givenname: M
  surname: D'Haene
  fullname: D'Haene, M
  organization: Ghent University
– sequence: 3
  givenname: D
  surname: Verstraeten
  fullname: Verstraeten, D
  organization: Ghent University
– sequence: 4
  givenname: B
  surname: Schrauwen
  fullname: Schrauwen, B
  organization: Ghent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23186351$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlv1TAUhS1URAfYsUZesiBwPcZhRXlikp4ElIdYWo7jtK4SO7WdosevJ-W1iKli5WvpO3c45xDthRgcQg8JPCVE0mfHJ5u1NhoAFNxBB0QwqBqixN5Sg-SV4JLuo8OczwEIA1bfQ_uUESWZIAfo4zraOMbiY8BffDmLc8EGv0zGh-f4w9k2e2sGfOKyS5fRJ7yK4zQXH06xD3jjQnanyZct_lTSbMucXL6P7vZmyO7B9XuEPr9-tVm9rdbv37xbHa8rKykplZGNMFzQHkgNihnWuVq2hLTcMdkoybteCdY01KrWLD_BeqJcpyx1ommhY0eo2vWdw2S2X80w6Cn50aStJqCvrNEmleHGmoV_vOOnFC9ml4sefbZuGExwcc6acK5qWoNo_o9SRYHTRvIFfXSNzu3oup8r3Di8AE92gE0x5-T6v7b8NcAFp3_g1hdzFU9ZMhluE73YiUZf9HmcU1iM_3H9JWk80Qwo1ExToGRRa1D6m59ucee3Fv-c9h2p3L51
CitedBy_id crossref_primary_10_1016_S1672_6529_16_60374_8
crossref_primary_10_1177_0278364919859443
crossref_primary_10_3390_biomimetics9030164
crossref_primary_10_3390_e20120954
crossref_primary_10_1089_soro_2015_0012
crossref_primary_10_1089_soro_2020_0110
crossref_primary_10_1038_s41598_021_98982_x
crossref_primary_10_1038_s41598_020_80339_5
crossref_primary_10_1080_10255842_2019_1661389
crossref_primary_10_1177_0278364920912298
crossref_primary_10_35848_1347_4065_ab8d4f
crossref_primary_10_1109_JSTQE_2020_3011879
crossref_primary_10_1007_s00422_013_0584_0
crossref_primary_10_1126_scirobotics_abq7278
crossref_primary_10_1089_soro_2018_0168
crossref_primary_10_1103_PhysRevApplied_7_054014
crossref_primary_10_1162_ARTL_a_00219
crossref_primary_10_1115_1_4051270
crossref_primary_10_1002_advs_202304402
crossref_primary_10_1007_s00340_019_7351_4
crossref_primary_10_1016_j_newideapsych_2017_09_002
crossref_primary_10_1177_1059712319847129
crossref_primary_10_1002_adfm_202302929
crossref_primary_10_1098_rstb_2018_0377
crossref_primary_10_1088_1751_8121_acfb54
crossref_primary_10_1016_j_mechrescom_2016_08_003
crossref_primary_10_1080_01691864_2017_1402703
crossref_primary_10_1002_advs_202001955
crossref_primary_10_3390_act12010018
crossref_primary_10_1007_s10514_021_09974_9
crossref_primary_10_1016_j_ccr_2018_03_018
crossref_primary_10_17352_ara_000019
crossref_primary_10_1109_TCDS_2019_2957006
crossref_primary_10_1038_ncomms7729
crossref_primary_10_1038_s41598_022_16874_0
crossref_primary_10_1002_zamm_201300031
crossref_primary_10_1016_j_biosystems_2017_04_007
crossref_primary_10_1109_LRA_2021_3139083
crossref_primary_10_1098_rsif_2014_0520
crossref_primary_10_1038_s41598_021_92257_1
crossref_primary_10_1515_nanoph_2016_0132
crossref_primary_10_1109_TRO_2020_2995067
crossref_primary_10_3390_s21092961
crossref_primary_10_1016_j_promfg_2020_11_048
crossref_primary_10_1109_LRA_2021_3052421
crossref_primary_10_1080_17445760_2016_1241880
crossref_primary_10_1007_s11047_024_09997_y
crossref_primary_10_1016_j_cogsys_2019_08_002
crossref_primary_10_1038_srep10487
crossref_primary_10_1007_s10846_022_01700_6
crossref_primary_10_1002_advs_202305074
crossref_primary_10_1002_aisy_202300086
crossref_primary_10_1016_j_neunet_2019_03_005
crossref_primary_10_1016_j_optlastec_2020_106787
crossref_primary_10_1162_NECO_a_00694
crossref_primary_10_1098_rsif_2014_0437
crossref_primary_10_1002_aisy_202400534
crossref_primary_10_1162_ARTL_a_00163
crossref_primary_10_1038_s41467_024_44900_4
crossref_primary_10_1162_artl_a_00447
crossref_primary_10_1007_s11063_017_9628_0
crossref_primary_10_1063_1_5038038
crossref_primary_10_1089_soro_2018_0027
crossref_primary_10_3389_fnbot_2017_00016
crossref_primary_10_1016_j_istruc_2023_06_091
crossref_primary_10_1146_annurev_control_063022_094301
crossref_primary_10_1103_PhysRevE_108_064304
crossref_primary_10_1016_j_neunet_2024_106766
crossref_primary_10_1103_PhysRevE_109_064205
crossref_primary_10_1103_PhysRevE_105_044212
crossref_primary_10_3389_fnbot_2015_00009
Cites_doi 10.1017/S0022112005007925
10.1007/BF00235671
10.1016/j.robot.2006.03.003
10.1083/jcb.33.3.543
10.1016/S1937-6448(08)01402-0
10.1007/s00422-012-0471-0
10.1242/jcs.00360
10.1146/annurev.neuro.27.070203.144259
10.1016/0020-7683(78)90052-5
10.1016/j.neunet.2008.03.014
10.1016/0006-8993(87)91442-9
10.1162/089976602760407955
10.1016/j.neunet.2007.04.003
10.1098/rsif.2009.0240
10.1109/TNN.2011.2161771
10.1016/S0004-3702(03)00054-7
10.1126/science.1091277
10.1016/j.ijsolstr.2005.10.011
10.1073/pnas.1106904108
10.1137/0910062
10.1007/BF00449593
10.1016/S0141-0296(01)00130-4
10.1371/journal.pcbi.1000007
10.1515/9781400849512
10.1371/journal.pcbi.0020165
10.1038/ncomms1476
10.1109/BIOROB.2010.5628051
10.1073/pnas.0505220103
10.1023/A:1008857906763
10.1002/(SICI)1097-0169(1996)33:1<22::AID-CM3>3.0.CO;2-K
10.1016/j.robot.2006.03.005
10.1016/B978-190399637-9/50038-X
10.1038/35044563
10.1007/978-3-642-00196-3_37
10.1242/jcs.00359
10.7551/mitpress/5236.001.0001
10.1093/imamat/hxq065
10.1109/TBME.2006.889200
10.1007/3-540-32494-1_4
10.1016/0301-0082(96)00028-7
10.1099/mic.0.029595-0
10.1016/0004-3702(91)90053-M
10.1016/j.neuron.2009.07.018
10.1007/BF00275687
10.1109/ICAR.2005.1507415
10.1007/s00422-012-0516-4
10.1103/PhysRevLett.97.048104
10.1073/pnas.9.7.258
10.1007/BF00319514
10.1016/S0921-8890(05)80025-9
10.1146/annurev.physiol.59.1.575
10.1017/S0022112009992357
10.1016/0893-6080(89)90044-0
10.1038/nrm2594
10.1511/1998.2.142
10.1523/JNEUROSCI.4284-09.2010
10.3758/BF03196322
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1162/ARTL_a_00080
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 1530-9185
EndPage 66
ExternalDocumentID oai:zenodo.org:3439359
23186351
10_1162_ARTL_a_00080
artl_a_00080.pdf
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
0R
23N
4.4
4S
53G
5GY
6IK
AAJGR
AAPBV
ABDBF
ABPTK
ADYLN
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EAP
EAS
EBC
EBD
EBS
EBX
EDO
EJD
EMB
EMK
EPL
EST
ESX
F5P
HZ
IPLJI
JAVBF
MCG
O9-
OCL
P2P
PK0
RMI
SV3
TUS
X
---
-~X
.4S
.DC
0R~
36B
6J9
AAYXX
ABAZT
ABDNZ
ABJNI
ABVLG
ACGFO
ACUHS
ACYGS
ADMLS
AEGXH
AI.
AIAGR
CAG
CITATION
COF
EMOBN
FNEHJ
HZ~
MINIK
MK~
VH1
ZWS
AEILP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c621t-a695a452f017083a3de76b11b4e369864df853992c8ba64d53f18ed8c2e59b0d3
IEDL.DBID UNPAY
ISSN 1064-5462
1530-9185
IngestDate Sun Oct 26 04:10:43 EDT 2025
Fri Sep 05 12:29:51 EDT 2025
Thu Oct 02 05:23:03 EDT 2025
Mon Jul 21 06:03:24 EDT 2025
Thu Apr 24 22:56:38 EDT 2025
Wed Oct 01 01:50:13 EDT 2025
Tue Mar 01 17:18:03 EST 2022
Tue Mar 01 17:36:41 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c621t-a695a452f017083a3de76b11b4e369864df853992c8ba64d53f18ed8c2e59b0d3
Notes Winter, 2013
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://zenodo.org/record/3439359
PMID 23186351
PQID 1282042964
PQPubID 23479
PageCount 32
ParticipantIDs proquest_miscellaneous_1448727059
crossref_primary_10_1162_ARTL_a_00080
proquest_miscellaneous_1282042964
unpaywall_primary_10_1162_artl_a_00080
mit_journals_artlv19i1_302073_2021_11_08_zip_artl_a_00080
mit_journals_10_1162_ARTL_a_00080
pubmed_primary_23186351
crossref_citationtrail_10_1162_ARTL_a_00080
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-00-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013-00-00
PublicationDecade 2010
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: United States
PublicationTitle Artificial life
PublicationTitleAlternate Artif Life
PublicationYear 2013
Publisher MIT Press
Publisher_xml – name: MIT Press
References R61
R62
Tani J. (R63) 1998; 5
R65
R20
R64
R23
R67
Clark A. (R14) 1997
R22
R66
R25
R69
R24
R68
R26
R29
R1
R2
Skelton R. E. (R58) 2009
R3
R4
R5
Caluwaerts K. (R13) 2011
R7
R8
R9
R70
R72
R71
R30
R73
R32
R76
R31
R33
R77
R35
R38
R37
R39
Dambre J. (R17) 2012; 2
Pfeifer R. (R51) 2007
Sultan C. (R60) 2009
Hoerzer G. M. (R28) 2012
Hebb D. O. (R27) 1949
Biewener A. A. (R6) 2003
Reis M. (R52) 2011
R41
Rumelhart D. E. (R55) 1986; 1
R40
R43
R42
R45
R44
R47
R46
R49
R48
Kailath T. (R36) 2000
Connelly R. (R15) 1999
Fuller R. B. (R21) 1975
Snelson K. (R59) 1965
R50
R10
R54
R53
R12
R56
R11
R57
R16
R18
R19
References_xml – ident: R5
  doi: 10.1017/S0022112005007925
– ident: R22
  doi: 10.1007/BF00235671
– ident: R49
  doi: 10.1016/j.robot.2006.03.003
– ident: R54
  doi: 10.1083/jcb.33.3.543
– ident: R64
  doi: 10.1016/S1937-6448(08)01402-0
– ident: R26
  doi: 10.1007/s00422-012-0471-0
– ident: R33
  doi: 10.1242/jcs.00360
– ident: R18
  doi: 10.1146/annurev.neuro.27.070203.144259
– volume-title: Linear estimation.
  year: 2000
  ident: R36
– ident: R12
  doi: 10.1016/0020-7683(78)90052-5
– ident: R30
  doi: 10.1016/j.neunet.2008.03.014
– ident: R4
  doi: 10.1016/0006-8993(87)91442-9
– ident: R43
  doi: 10.1162/089976602760407955
– ident: R68
  doi: 10.1016/j.neunet.2007.04.003
– ident: R53
  doi: 10.1098/rsif.2009.0240
– volume-title: How the body shapes the way we think: A new view of intelligence.
  year: 2007
  ident: R51
– ident: R67
  doi: 10.1109/TNN.2011.2161771
– ident: R2
  doi: 10.1016/S0004-3702(03)00054-7
– ident: R35
  doi: 10.1126/science.1091277
– ident: R77
  doi: 10.1016/j.ijsolstr.2005.10.011
– start-page: 45
  volume-title: 2nd International Conference on Morphological Computation
  year: 2011
  ident: R13
– ident: R39
  doi: 10.1073/pnas.1106904108
– volume-title: Continuous tension, discontinuous compression structures.
  year: 1965
  ident: R59
– ident: R10
  doi: 10.1137/0910062
– ident: R45
  doi: 10.1007/BF00449593
– ident: R61
  doi: 10.1016/S0141-0296(01)00130-4
– ident: R40
  doi: 10.1371/journal.pcbi.1000007
– ident: R1
  doi: 10.1515/9781400849512
– ident: R42
  doi: 10.1371/journal.pcbi.0020165
– ident: R3
  doi: 10.1038/ncomms1476
– ident: R73
  doi: 10.1109/BIOROB.2010.5628051
– start-page: 90
  volume-title: 2nd International Conference on Morphological Computation
  year: 2011
  ident: R52
– ident: R41
  doi: 10.1073/pnas.0505220103
– volume: 2
  issue: 514
  year: 2012
  ident: R17
  publication-title: Scientific Reports
– ident: R19
  doi: 10.1023/A:1008857906763
– ident: R76
  doi: 10.1002/(SICI)1097-0169(1996)33:1<22::AID-CM3>3.0.CO;2-K
– ident: R29
  doi: 10.1016/j.robot.2006.03.005
– volume: 5
  start-page: 516
  issue: 5
  year: 1998
  ident: R63
  publication-title: Journal of Consciousness Studies
– ident: R47
  doi: 10.1016/B978-190399637-9/50038-X
– ident: R7
– volume-title: Synergetics: Explorations in the geometry of thinking.
  year: 1975
  ident: R21
– start-page: 47
  volume-title: Rigidity theory and applications
  year: 1999
  ident: R15
– ident: R57
  doi: 10.1038/35044563
– ident: R11
  doi: 10.1007/978-3-642-00196-3_37
– volume-title: Being there: Putting brain, body and world together.
  year: 1997
  ident: R14
– ident: R32
  doi: 10.1242/jcs.00359
– volume: 1
  start-page: 318
  volume-title: Parallel distributed processing
  year: 1986
  ident: R55
  doi: 10.7551/mitpress/5236.001.0001
– ident: R23
  doi: 10.1093/imamat/hxq065
– volume-title: Animal locomotion.
  year: 2003
  ident: R6
– ident: R66
  doi: 10.1109/TBME.2006.889200
– ident: R24
  doi: 10.1007/3-540-32494-1_4
– ident: R70
  doi: 10.1016/0301-0082(96)00028-7
– volume-title: Tensegrity systems.
  year: 2009
  ident: R58
– ident: R65
  doi: 10.1099/mic.0.029595-0
– ident: R9
  doi: 10.1016/0004-3702(91)90053-M
– ident: R62
  doi: 10.1016/j.neuron.2009.07.018
– ident: R48
  doi: 10.1007/BF00275687
– ident: R50
  doi: 10.1109/ICAR.2005.1507415
– ident: R25
  doi: 10.1007/s00422-012-0516-4
– ident: R20
  doi: 10.1103/PhysRevLett.97.048104
– ident: R44
  doi: 10.1073/pnas.9.7.258
– ident: R46
  doi: 10.1007/BF00319514
– ident: R8
  doi: 10.1016/S0921-8890(05)80025-9
– ident: R31
  doi: 10.1146/annurev.physiol.59.1.575
– ident: R37
  doi: 10.1017/S0022112009992357
– ident: R56
  doi: 10.1016/0893-6080(89)90044-0
– ident: R69
  doi: 10.1038/nrm2594
– volume-title: The organization of behavior.
  year: 1949
  ident: R27
– ident: R16
  doi: 10.1511/1998.2.142
– ident: R38
  doi: 10.1523/JNEUROSCI.4284-09.2010
– start-page: 69
  volume-title: Advances in applied mechanics
  year: 2009
  ident: R60
– ident: R72
– year: 2012
  ident: R28
  publication-title: Submitted to Cerebral Cortex
– ident: R71
  doi: 10.3758/BF03196322
SSID ssj0013037
Score 2.3592424
Snippet Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the...
SourceID unpaywall
proquest
pubmed
crossref
mit
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35
SubjectTerms Algorithms
Artificial Intelligence
Biomechanical Phenomena
Brain
central pattern generator
compliant robotics
Computation
Computer Simulation
Control systems
Control theory
Dynamics
Feedback
Gait
Humans
Learning
Least-Squares Analysis
Locomotion
Man-Machine Systems
Morphological computation
Motion
Oscillometry - methods
reservoir computing
Robotics - methods
Robotics - trends
Robots
tensegrity
Tensegrity structures
Tensile Strength
Title Locomotion Without a Brain: Physical Reservoir Computing in Tensegrity Structures
URI https://direct.mit.edu/artl/article/doi/10.1162/ARTL_a_00080
https://www.ncbi.nlm.nih.gov/pubmed/23186351
https://www.proquest.com/docview/1282042964
https://www.proquest.com/docview/1448727059
https://zenodo.org/record/3439359
UnpaywallVersion submittedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1530-9185
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0013037
  issn: 1530-9185
  databaseCode: ABDBF
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1530-9185
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0013037
  issn: 1530-9185
  databaseCode: ADMLS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9trRDwwGB8lY_Jk4AXlBHHiePw1gLVhKZpiFWMJ8t2HIgoSTWSofWv55yP0gGbeIx0cWzfne538fl-AM-ygCWR0cbjsRZeaHXsJRkCOWNj3_o6TP2sqbY45Puz8P1JdLIBu_1dmKUtMB1rjvA7TjQWNrdHN2HII4TbAxjODo_Gn5tTTB56UdiQhqLj-ui4IuqL23nwCvd-LpVsUNGFsLP5Pa_-hShvwvW6WKjzn2o-X4sy063fd3Xa4pJve3Wl98zyj9aNVy7gNtzqMCYZt0ZxBzZssQ3XWtbJ823Y6pkcSOfYd-HDQWnKltCHfMqrr2VdEUUmjj7iNTnqVElcld7pWZmfknYEjHokL8gxZsL2iyPBIx-bbrQ1pvD3YDZ9d_xm3-vIFjzDA1p5iieRCqMgcw11BFMstTHXlOrQMu56uKeZaLrYGqEVPkUso8KmwgQ2SrSfsvswKMrCPgTClYkFVVQoBA82ViKhUZwhmKApZWnKR_Cy14U0XSdyR4gxl01GwgOJWP6g19wInq-kF20HjkvkdlGtsnPBH5fIJBdknIWc0SSnkiFsjpkMcJb4mvSFXOYLuW5BOH5vMBJd0J2rqMKWNX4J01YX13l4hQymwQgVEcyO4EFrbavVIMQWiPvoCF6szO-vpa5P5dH_Cj6GG0FD3-F-GT2BARqBfYogqtI7MBxP3k6mO507_QIxnhlB
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDLa2mxDwwGBscPxSJgEvqKNpmjTlbSCmCU3TEDsxnqIkTVnF0Z5GO7T763HT9rgBm3is5KZJbMufG8cfwPM8Yim3xgYiMTKInUmCNEcgZ10SutDEWZj7aotDsT-JP5zwkxXYHu7CzF2J6Zg_wu850Vjsb4-uwprgCLdHsDY5PNr94k8xRRzw2JOGouOG6LiSD8XtInqNez9VWnlUdCnsrH4v6n8hyttwsyln-uKnnk6Xosze-u-7Ol1xybedpjY7dv5H68ZrF3AX7vQYk-x2RnEPVly5ATc61smLDVgfmBxI79j34eNBZauO0Id8LurTqqmJJm9b-og35KhXJWmr9M7Oq-KMdCNg1CNFSY4xE3ZfWxI88sl3o20whd-Eyd7743f7QU-2EFgR0TrQIuU65lHeNtSRTLPMJcJQamLHRNvDPcul72JrpdH4xFlOpcukjRxPTZixLRiVVekeAhHaJpJqKjWCB5domVKe5AgmaEZZlokxvBp0oWzfibwlxJgqn5GISCGWPxg0N4YXC-lZ14HjCrltVKvqXfDHFTLpJZnWQs5pWlDFEDYnTEU4S3xNhVLNi5latiAcfzAYhS7Ynqvo0lUNfgnT1jaui_gaGUyDESoimB3Dg87aFqtBiC0R99ExvFyY319LXZ7Ko_8VfAy3Ik_f0f4yegIjNAL3FEFUbZ71bvQLcBYXzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locomotion+Without+a+Brain%3A+Physical+Reservoir+Computing+in+Tensegrity+Structures&rft.jtitle=Artificial+life&rft.au=Caluwaerts%2C+K&rft.au=D%27Haene%2C+M&rft.au=Verstraeten%2C+D&rft.au=Schrauwen%2C+B&rft.date=2013&rft.pub=MIT+Press&rft.issn=1064-5462&rft.eissn=1530-9185&rft.volume=19&rft.issue=1&rft.spage=35&rft.epage=66&rft_id=info:doi/10.1162%2FARTL_a_00080&rft.externalDBID=n%2Fa&rft.externalDocID=artl_a_00080.pdf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-5462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-5462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-5462&client=summon