Auto-segmentation of the tibia and femur from knee MR images via deep learning and its application to cartilage strain and recovery

The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 149; p. 111473
Main Authors Kim-Wang, Sophia Y., Bradley, Patrick X., Cutcliffe, Hattie C., Collins, Amber T., Crook, Bryan S., Paranjape, Chinmay S., Spritzer, Charles E., DeFrate, Louis E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2023
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2023.111473

Cover

Abstract The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and more specifically, convolutional neural networks, have shown potential to alleviate this bottleneck in research throughput. Thus, the purpose of this work was to develop a modified version of the convolutional neural network architecture U-Net to automate segmentation of the tibia and femur from double echo steady state knee magnetic resonance (MR) images. Our model was trained on a dataset of over 4,000 MR images from 34 subjects, segmented by three experienced researchers, and reviewed by a musculoskeletal radiologist. For our validation and testing sets, we achieved dice coefficients of 0.985 and 0.984, respectively. As further testing, we applied our trained model to a prior study of tibial cartilage strain and recovery. In this analysis, across all subjects, there were no statistically significant differences in cartilage strain between the machine learning and ground truth bone models, with a mean difference of 0.2 ± 0.7 % (mean ± 95 % confidence interval). This difference is within the measurement resolution of previous cartilage strain studies from our lab using manual segmentation. In summary, we successfully trained, validated, and tested a machine learning model capable of segmenting MR images of the knee, achieving results that are comparable to trained human segmenters.
AbstractList The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and more specifically, convolutional neural networks, have shown potential to alleviate this bottleneck in research throughput. Thus, the purpose of this work was to develop a modified version of the convolutional neural network architecture U-Net to automate segmentation of the tibia and femur from double echo steady state knee magnetic resonance (MR) images. Our model was trained on a dataset of over 4,000 MR images from 34 subjects, segmented by three experienced researchers, and reviewed by a musculoskeletal radiologist. For our validation and testing sets, we achieved dice coefficients of 0.985 and 0.984, respectively. As further testing, we applied our trained model to a prior study of tibial cartilage strain and recovery. In this analysis, across all subjects, there were no statistically significant differences in cartilage strain between the machine learning and ground truth bone models, with a mean difference of 0.2 ± 0.7 % (mean ± 95 % confidence interval). This difference is within the measurement resolution of previous cartilage strain studies from our lab using manual segmentation. In summary, we successfully trained, validated, and tested a machine learning model capable of segmenting MR images of the knee, achieving results that are comparable to trained human segmenters.
The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and more specifically, convolutional neural networks, have shown potential to alleviate this bottleneck in research throughput. Thus, the purpose of this work was to develop a modified version of the convolutional neural network architecture U-Net to automate segmentation of the tibia and femur from double echo steady state knee magnetic resonance (MR) images. Our model was trained on a dataset of over 4,000 MR images from 34 subjects, segmented by three experienced researchers, and reviewed by a musculoskeletal radiologist. For our validation and testing sets, we achieved dice coefficients of 0.985 and 0.984, respectively. As further testing, we applied our trained model to a prior study of tibial cartilage strain and recovery. In this analysis, across all subjects, there were no statistically significant differences in cartilage strain between the machine learning and ground truth bone models, with a mean difference of 0.2 ± 0.7 % (mean ± 95 % confidence interval). This difference is within the measurement resolution of previous cartilage strain studies from our lab using manual segmentation. In summary, we successfully trained, validated, and tested a machine learning model capable of segmenting MR images of the knee, achieving results that are comparable to trained human segmenters.The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and more specifically, convolutional neural networks, have shown potential to alleviate this bottleneck in research throughput. Thus, the purpose of this work was to develop a modified version of the convolutional neural network architecture U-Net to automate segmentation of the tibia and femur from double echo steady state knee magnetic resonance (MR) images. Our model was trained on a dataset of over 4,000 MR images from 34 subjects, segmented by three experienced researchers, and reviewed by a musculoskeletal radiologist. For our validation and testing sets, we achieved dice coefficients of 0.985 and 0.984, respectively. As further testing, we applied our trained model to a prior study of tibial cartilage strain and recovery. In this analysis, across all subjects, there were no statistically significant differences in cartilage strain between the machine learning and ground truth bone models, with a mean difference of 0.2 ± 0.7 % (mean ± 95 % confidence interval). This difference is within the measurement resolution of previous cartilage strain studies from our lab using manual segmentation. In summary, we successfully trained, validated, and tested a machine learning model capable of segmenting MR images of the knee, achieving results that are comparable to trained human segmenters.
The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and more specifically, convolutional neural networks, have shown potential to alleviate this bottleneck in research throughput. Thus, the purpose of this work was to develop a modified version of the convolutional neural network architecture U-Net to automate segmentation of the tibia and femur from double echo steady state knee magnetic resonance (MR) images. Our model was trained on a dataset of over 4,000 MR images from 34 subjects, segmented by three experienced researchers, and reviewed by a musculoskeletal radiologist. For our validation and testing sets, we achieved dice coefficients of 0.985 and 0.984, respectively. As further testing, we applied our trained model to a prior study of tibial cartilage strain and recovery. In this analysis, across all subjects, there were no statistically significant differences in cartilage strain between the machine learning and ground truth bone models, with a mean difference of 0.2 ± 0.7 % (mean ± 95 % confidence interval). This difference is within the measurement resolution of previous cartilage strain studies from our lab using manual segmentation. In summary, we successfully trained, validated, and tested a machine learning model capable of segmenting MR images of the knee, achieving results that are comparable to trained human segmenters.
ArticleNumber 111473
Author Cutcliffe, Hattie C.
Spritzer, Charles E.
Crook, Bryan S.
Collins, Amber T.
Kim-Wang, Sophia Y.
DeFrate, Louis E.
Bradley, Patrick X.
Paranjape, Chinmay S.
AuthorAffiliation 3 Department of Mechanical Engineering and Materials Science, Duke University
5 Department of Radiology, Duke University School of Medicine
1 Duke University School of Medicine
2 Department of Biomedical Engineering, Duke University
4 Department of Orthopaedic Surgery, Duke University School of Medicine
AuthorAffiliation_xml – name: 1 Duke University School of Medicine
– name: 4 Department of Orthopaedic Surgery, Duke University School of Medicine
– name: 5 Department of Radiology, Duke University School of Medicine
– name: 2 Department of Biomedical Engineering, Duke University
– name: 3 Department of Mechanical Engineering and Materials Science, Duke University
Author_xml – sequence: 1
  givenname: Sophia Y.
  surname: Kim-Wang
  fullname: Kim-Wang, Sophia Y.
  organization: Duke University School of Medicine, United States
– sequence: 2
  givenname: Patrick X.
  surname: Bradley
  fullname: Bradley, Patrick X.
  organization: Department of Mechanical Engineering and Materials Science, Duke University, United States
– sequence: 3
  givenname: Hattie C.
  surname: Cutcliffe
  fullname: Cutcliffe, Hattie C.
  organization: Department of Biomedical Engineering, Duke University, United States
– sequence: 4
  givenname: Amber T.
  surname: Collins
  fullname: Collins, Amber T.
  organization: Department of Orthopaedic Surgery, Duke University School of Medicine, United States
– sequence: 5
  givenname: Bryan S.
  surname: Crook
  fullname: Crook, Bryan S.
  organization: Department of Orthopaedic Surgery, Duke University School of Medicine, United States
– sequence: 6
  givenname: Chinmay S.
  surname: Paranjape
  fullname: Paranjape, Chinmay S.
  organization: Department of Orthopaedic Surgery, Duke University School of Medicine, United States
– sequence: 7
  givenname: Charles E.
  surname: Spritzer
  fullname: Spritzer, Charles E.
  organization: Department of Radiology, Duke University School of Medicine, United States
– sequence: 8
  givenname: Louis E.
  surname: DeFrate
  fullname: DeFrate, Louis E.
  email: Lou.DeFrate@duke.edu
  organization: Department of Biomedical Engineering, Duke University, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36791514$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURKeFv1BZYsMmgx9xnEgIqCpeUhESgrXlcW5mPHXsYDuDZs0fx9O0PLppV7bk7xzde45PiiPnHRTFGcFLgkn9crvcrowfQG-WFFO2JIRUgj0qFqQRrKSswUfFAmNKypa2-Lg4iXGLMRaVaJ8Ux6wWLeGkWhS_zqfkywjrAVxSyXiHfI_SBlAyK6OQch3qYZgC6oMf0JUDQJ-_IjOoNUS0y0QHMCILKjjj1te8SRGpcbRGz4bJI61CMjZrUExBGXfNBdB-B2H_tHjcKxvh2c15Wnx__-7bxcfy8suHTxfnl6WuKUklEyvgq6bua9y2FAvO84UqXHW445XuWwBSkY51lNesaRsGmNedZhyEaFui2GkhZt_JjWr_U1krx5A3CXtJsDzEKrfyNlZ5iFXOsWblm1k5TqsBOp2zCuqv2isj_39xZiPXfpdNaUM4J9nhxY1D8D8miEkOJmqwVjnwU5RUCFFhymmb0ed30K2fgsvJZKqhpMYM80yd_TvSn1luq83AqxnQwccYoJfazA0fGrD3r1zfkT84q7ezEHKVOwNBRm3AaehMLjzJzpv7LV7fsdDWuPyd7BXsH2LwG5tl-x0
CitedBy_id crossref_primary_10_1002_jor_25806
crossref_primary_10_1177_03635465241311246
crossref_primary_10_3390_app131910798
crossref_primary_10_1016_j_ocarto_2024_100556
crossref_primary_10_1038_s41598_024_52548_9
crossref_primary_10_1038_s41598_024_57618_6
crossref_primary_10_1016_j_jbiomech_2023_111887
crossref_primary_10_1038_s41598_025_94180_1
crossref_primary_10_3788_LOP232102
crossref_primary_10_1016_j_jbiomech_2024_112337
crossref_primary_10_1177_23259671241289096
Cites_doi 10.1007/978-981-13-1396-7_6
10.1109/TPAMI.2016.2644615
10.1136/ard.2004.022400
10.1093/rheumatology/ken345
10.1002/jor.24926
10.1038/s41598-018-38104-2
10.3390/diagnostics12030611
10.1007/s10334-020-00889-7
10.1016/j.artmed.2021.102213
10.1148/radiol.2018172322
10.1177/2325967120967512
10.1186/s13075-018-1727-4
10.1109/3DV.2016.79
10.1177/0363546512473568
10.1177/0363546515594446
10.1002/jor.24330
10.1016/j.orthres.2003.08.015
10.1186/1475-925X-4-28
10.1016/j.media.2018.11.009
10.3390/diagnostics12010123
10.1007/s10439-020-02558-1
10.1016/j.jbiomech.2015.08.006
10.1016/j.jbiomech.2020.110210
10.1007/978-3-319-24574-4_28
10.1007/978-3-642-40763-5_31
10.1016/j.jbiomech.2016.06.025
10.1002/mrm.27229
10.1016/j.jbiomech.2012.09.013
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.jbiomech.2023.111473
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Research Library (via ProQuest)
ProQuest Central Biological Science Database (via ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Research Library Prep

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 111473
ExternalDocumentID oai:pubmedcentral.nih.gov:10281551
PMC10281551
36791514
10_1016_j_jbiomech_2023_111473
S0021929023000428
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Massachusetts
GeographicLocations_xml – name: United States--US
– name: Massachusetts
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR074800
– fundername: NIAMS NIH HHS
  grantid: R01 AR065527
– fundername: NIAMS NIH HHS
  grantid: R01 AR079184
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HEE
HMCUK
HMK
HMO
HVGLF
HZ~
H~9
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
MVM
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
VH1
WUQ
X7M
XOL
XPP
YQT
Z5R
ZGI
ZMT
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFFDN
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
F3I
LCYCR
RIG
YCJ
AAYXX
CITATION
PUEGO
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c621t-37be5b86f6099207556092a04d0d54cf9ee141d3d25638983e056dc35e77991a3
IEDL.DBID BENPR
ISSN 0021-9290
1873-2380
IngestDate Sun Oct 26 03:42:40 EDT 2025
Tue Sep 30 17:10:02 EDT 2025
Sun Sep 28 08:33:06 EDT 2025
Tue Oct 07 06:22:36 EDT 2025
Mon Jul 21 05:40:42 EDT 2025
Wed Oct 01 05:14:59 EDT 2025
Thu Apr 24 23:05:00 EDT 2025
Fri Feb 23 02:37:45 EST 2024
Tue Oct 14 19:28:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Auto-segmentation
MRI
Machine Learning
U-Net
Strain
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c621t-37be5b86f6099207556092a04d0d54cf9ee141d3d25638983e056dc35e77991a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10281551/pdf/nihms-1873960.pdf
PMID 36791514
PQID 2782160305
PQPubID 1226346
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_jbiomech_2023_111473
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10281551
proquest_miscellaneous_2777402529
proquest_journals_2782160305
pubmed_primary_36791514
crossref_citationtrail_10_1016_j_jbiomech_2023_111473
crossref_primary_10_1016_j_jbiomech_2023_111473
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2023_111473
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2023_111473
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Norman, Pedoia, Majumdar (b0105) 2018; 288
Flannery, Kiapour, Edgar, Murray, Fleming (b0065) 2021; 39
Latif, Faye (b0090) 2021; 122
Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M., Year Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. Berlin, Heidelberg.
Kim, Spritzer, Utturkar, Toth, Garrett, DeFrate (b0080) 2015; 43
Zeng, Zheng (b0145) 2018; 1093
Milletari, F., Navab, N., Ahmadi, S., Year V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV).
Van Ginckel, Verdonk, Victor, Witvrouw (b0130) 2013; 41
Abreu, Mow, Huiskes (b0005) 2005; 4
Collins, Kulvaranon, Cutcliffe, Utturkar, Smith, Spritzer, Guilak, DeFrate (b0045) 2018; 20
Nagai, Gale, Chiba, Su, Fu, Anderst (b0100) 2019; 37
Wirth, Eckstein, Kemnitz, Baumgartner, Konukoglu, Fuerst, Chaudhari (b0140) 2021; 34
Cutcliffe, Davis, Spritzer, DeFrate (b0055) 2020; 48
Zhou, Zhao, Kijowski, Liu (b0150) 2018; 80
Ambellan, Tack, Ehlke, Zachow (b0020) 2019; 52
Coleman, Widmyer, Leddy, Utturkar, Spritzer, Moorman, Guilak, DeFrate (b0040) 2013; 46
Wang, Koff, Potter, Warren, Rodeo, Maher (b0135) 2015; 48
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O., Year 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Cham.
Patel, Hall, Ries, Lotz, Ozhinsky, Lindsey, Lu, Majumdar (b0115) 2004; 22
Almajalid, R., Zhang, M., Shan, J., 2022. Fully Automatic Knee Bone Detection and Segmentation on Three-Dimensional MRI. Diagnostics (Basel) 12.
Ahmed, S.M., Mstafa, R.J., 2022. A Comprehensive Survey on Bone Segmentation Techniques in Knee Osteoarthritis Research: From Conventional Methods to Deep Learning. Diagnostics (Basel) 12.
Heckelman, Riofrio, Vinson, Collins, Gwynn, Utturkar, Goode, Spritzer, DeFrate (b0070) 2020; 8
Bingham, Papannagari, Van de Velde, Gross, Gill, Felson, Rubash, Li (b0030) 2008; 47
Kashyap, Oguz, Zhang, Sonka (b0075) 2016; 9901
Lad, Liu, Ganapathy, Utturkar, Sutter, Moorman, Garrett, Spritzer, DeFrate (b0085) 2016; 49
Crook, Collins, Lad, Spritzer, Wittstein, DeFrate (b0050) 2021; 116
Badrinarayanan, Kendall, Cipolla (b0025) 2017; 39
Ronneberger, O., Fischer, P., Brox, T., Year U-Net: Convolutional networks for biomedical image segmentation. in medical image computing and computer-assisted intervention – MICCAI 2015. Cham.
Eckstein, Lemberger, Gratzke, Hudelmaier, Glaser, Englmeier, Reiser (b0060) 2005; 64
Paranjape, Cutcliffe, Grambow, Utturkar, Collins, Garrett, Spritzer, DeFrate (b0110) 2019; 9
Ambellan (10.1016/j.jbiomech.2023.111473_b0020) 2019; 52
Nagai (10.1016/j.jbiomech.2023.111473_b0100) 2019; 37
Van Ginckel (10.1016/j.jbiomech.2023.111473_b0130) 2013; 41
Wirth (10.1016/j.jbiomech.2023.111473_b0140) 2021; 34
Wang (10.1016/j.jbiomech.2023.111473_b0135) 2015; 48
Bingham (10.1016/j.jbiomech.2023.111473_b0030) 2008; 47
Kashyap (10.1016/j.jbiomech.2023.111473_b0075) 2016; 9901
Kim (10.1016/j.jbiomech.2023.111473_b0080) 2015; 43
10.1016/j.jbiomech.2023.111473_b0125
Heckelman (10.1016/j.jbiomech.2023.111473_b0070) 2020; 8
Paranjape (10.1016/j.jbiomech.2023.111473_b0110) 2019; 9
10.1016/j.jbiomech.2023.111473_b0095
10.1016/j.jbiomech.2023.111473_b0010
Abreu (10.1016/j.jbiomech.2023.111473_b0005) 2005; 4
Coleman (10.1016/j.jbiomech.2023.111473_b0040) 2013; 46
Collins (10.1016/j.jbiomech.2023.111473_b0045) 2018; 20
Zhou (10.1016/j.jbiomech.2023.111473_b0150) 2018; 80
Badrinarayanan (10.1016/j.jbiomech.2023.111473_b0025) 2017; 39
Latif (10.1016/j.jbiomech.2023.111473_b0090) 2021; 122
10.1016/j.jbiomech.2023.111473_b0035
10.1016/j.jbiomech.2023.111473_b0015
Eckstein (10.1016/j.jbiomech.2023.111473_b0060) 2005; 64
Crook (10.1016/j.jbiomech.2023.111473_b0050) 2021; 116
Cutcliffe (10.1016/j.jbiomech.2023.111473_b0055) 2020; 48
Patel (10.1016/j.jbiomech.2023.111473_b0115) 2004; 22
10.1016/j.jbiomech.2023.111473_b0120
Flannery (10.1016/j.jbiomech.2023.111473_b0065) 2021; 39
Zeng (10.1016/j.jbiomech.2023.111473_b0145) 2018; 1093
Lad (10.1016/j.jbiomech.2023.111473_b0085) 2016; 49
Norman (10.1016/j.jbiomech.2023.111473_b0105) 2018; 288
References_xml – volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b0025
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 1920
  year: 2019
  end-page: 1928
  ident: b0100
  article-title: The Complex relationship between in vivo ACL elongation and knee kinematics during walking and running
  publication-title: J. Orthop. Res.
– volume: 288
  start-page: 177
  year: 2018
  end-page: 185
  ident: b0105
  article-title: Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry
  publication-title: Radiology
– volume: 64
  start-page: 291
  year: 2005
  end-page: 295
  ident: b0060
  article-title: In vivo cartilage deformation after different types of activity and its dependence on physical training status
  publication-title: Ann Rheum Dis
– volume: 48
  start-page: 2934
  year: 2015
  end-page: 2940
  ident: b0135
  article-title: An MRI-compatible loading device to assess knee joint cartilage deformation: effect of preloading and inter-test repeatability
  publication-title: J. Biomech.
– reference: Ahmed, S.M., Mstafa, R.J., 2022. A Comprehensive Survey on Bone Segmentation Techniques in Knee Osteoarthritis Research: From Conventional Methods to Deep Learning. Diagnostics (Basel) 12.
– volume: 4
  start-page: 28
  year: 2005
  ident: b0005
  article-title: Basic Orthopaedic Biomechanics and Mechano-Biology
  publication-title: Biomed. Eng. Online
– volume: 46
  start-page: 541
  year: 2013
  end-page: 547
  ident: b0040
  article-title: Diurnal variations in articular cartilage thickness and strain in the human knee
  publication-title: J. Biomech.
– volume: 22
  start-page: 283
  year: 2004
  end-page: 292
  ident: b0115
  article-title: A three-dimensional MRI analysis of knee kinematics
  publication-title: J. Orthop. Res.
– volume: 47
  start-page: 1622
  year: 2008
  end-page: 1627
  ident: b0030
  article-title: In vivo cartilage contact deformation in the healthy human tibiofemoral joint
  publication-title: Rheumatology
– volume: 20
  start-page: 232
  year: 2018
  ident: b0045
  article-title: Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI
  publication-title: Arthritis Res. Ther.
– volume: 41
  start-page: 550
  year: 2013
  end-page: 559
  ident: b0130
  article-title: Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction
  publication-title: Am. J. Sports Med.
– volume: 52
  start-page: 109
  year: 2019
  end-page: 118
  ident: b0020
  article-title: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative
  publication-title: Med Image Anal.
– volume: 80
  start-page: 2759
  year: 2018
  end-page: 2770
  ident: b0150
  article-title: Deep convolutional neural network for segmentation of knee joint anatomy
  publication-title: Magn. Reson. Med.
– reference: Almajalid, R., Zhang, M., Shan, J., 2022. Fully Automatic Knee Bone Detection and Segmentation on Three-Dimensional MRI. Diagnostics (Basel) 12.
– volume: 116
  year: 2021
  ident: b0050
  article-title: Effect of walking on in vivo tibiofemoral cartilage strain in ACL-deficient versus intact knees
  publication-title: J. Biomech.
– volume: 48
  start-page: 2901
  year: 2020
  end-page: 2910
  ident: b0055
  article-title: The characteristic recovery time as a novel, noninvasive metric for assessing in vivo cartilage mechanical function
  publication-title: Ann. Biomed. Eng.
– volume: 122
  year: 2021
  ident: b0090
  article-title: Automated tibiofemoral joint segmentation based on deeply supervised 2D–3D ensemble U-Net: Data from the Osteoarthritis Initiative
  publication-title: Artif. Intell. Med.
– volume: 9
  start-page: 2283
  year: 2019
  ident: b0110
  article-title: A new stress test for knee joint cartilage
  publication-title: Sci. Rep.
– volume: 39
  start-page: 831
  year: 2021
  end-page: 840
  ident: b0065
  article-title: Automated magnetic resonance image segmentation of the anterior cruciate ligament
  publication-title: J. Orthop. Res.
– volume: 43
  start-page: 2515
  year: 2015
  end-page: 2521
  ident: b0080
  article-title: Knee kinematics during noncontact anterior cruciate ligament injury as determined from bone bruise location
  publication-title: Am. J. Sports Med.
– reference: Milletari, F., Navab, N., Ahmadi, S., Year V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV).
– reference: Ronneberger, O., Fischer, P., Brox, T., Year U-Net: Convolutional networks for biomedical image segmentation. in medical image computing and computer-assisted intervention – MICCAI 2015. Cham.
– volume: 8
  year: 2020
  ident: b0070
  article-title: Dose and recovery response of patellofemoral cartilage deformations to running
  publication-title: Orthopaedic J. Sports Med.
– reference: Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M., Year Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. Berlin, Heidelberg.
– volume: 1093
  start-page: 73
  year: 2018
  end-page: 79
  ident: b0145
  article-title: Deep learning-based automatic segmentation of the proximal femur from MR images
  publication-title: Adv. Experimental Med. Biol.
– volume: 49
  start-page: 2870
  year: 2016
  end-page: 2876
  ident: b0085
  article-title: Effect of normal gait on in vivo tibiofemoral cartilage strains
  publication-title: J. Biomech.
– volume: 34
  start-page: 337
  year: 2021
  end-page: 354
  ident: b0140
  article-title: Accuracy and longitudinal reproducibility of quantitative femorotibial cartilage measures derived from automated U-Net-based segmentation of two different MRI contrasts: data from the osteoarthritis initiative healthy reference cohort
  publication-title: MAGMA
– volume: 9901
  start-page: 344
  year: 2016
  end-page: 351
  ident: b0075
  article-title: Automated segmentation of knee MRI using hierarchical classifiers and just enough interaction based learning: data from osteoarthritis initiative
  publication-title: Med Image Comput Comput Assist Interv
– reference: Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O., Year 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Cham.
– volume: 1093
  start-page: 73
  year: 2018
  ident: 10.1016/j.jbiomech.2023.111473_b0145
  article-title: Deep learning-based automatic segmentation of the proximal femur from MR images
  publication-title: Adv. Experimental Med. Biol.
  doi: 10.1007/978-981-13-1396-7_6
– volume: 39
  start-page: 2481
  year: 2017
  ident: 10.1016/j.jbiomech.2023.111473_b0025
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 64
  start-page: 291
  year: 2005
  ident: 10.1016/j.jbiomech.2023.111473_b0060
  article-title: In vivo cartilage deformation after different types of activity and its dependence on physical training status
  publication-title: Ann Rheum Dis
  doi: 10.1136/ard.2004.022400
– ident: 10.1016/j.jbiomech.2023.111473_b0035
– volume: 47
  start-page: 1622
  year: 2008
  ident: 10.1016/j.jbiomech.2023.111473_b0030
  article-title: In vivo cartilage contact deformation in the healthy human tibiofemoral joint
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/ken345
– volume: 39
  start-page: 831
  year: 2021
  ident: 10.1016/j.jbiomech.2023.111473_b0065
  article-title: Automated magnetic resonance image segmentation of the anterior cruciate ligament
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.24926
– volume: 9
  start-page: 2283
  year: 2019
  ident: 10.1016/j.jbiomech.2023.111473_b0110
  article-title: A new stress test for knee joint cartilage
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-38104-2
– ident: 10.1016/j.jbiomech.2023.111473_b0010
  doi: 10.3390/diagnostics12030611
– volume: 34
  start-page: 337
  year: 2021
  ident: 10.1016/j.jbiomech.2023.111473_b0140
  article-title: Accuracy and longitudinal reproducibility of quantitative femorotibial cartilage measures derived from automated U-Net-based segmentation of two different MRI contrasts: data from the osteoarthritis initiative healthy reference cohort
  publication-title: MAGMA
  doi: 10.1007/s10334-020-00889-7
– volume: 122
  year: 2021
  ident: 10.1016/j.jbiomech.2023.111473_b0090
  article-title: Automated tibiofemoral joint segmentation based on deeply supervised 2D–3D ensemble U-Net: Data from the Osteoarthritis Initiative
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102213
– volume: 288
  start-page: 177
  year: 2018
  ident: 10.1016/j.jbiomech.2023.111473_b0105
  article-title: Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry
  publication-title: Radiology
  doi: 10.1148/radiol.2018172322
– volume: 8
  year: 2020
  ident: 10.1016/j.jbiomech.2023.111473_b0070
  article-title: Dose and recovery response of patellofemoral cartilage deformations to running
  publication-title: Orthopaedic J. Sports Med.
  doi: 10.1177/2325967120967512
– volume: 20
  start-page: 232
  year: 2018
  ident: 10.1016/j.jbiomech.2023.111473_b0045
  article-title: Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-018-1727-4
– ident: 10.1016/j.jbiomech.2023.111473_b0095
  doi: 10.1109/3DV.2016.79
– volume: 41
  start-page: 550
  year: 2013
  ident: 10.1016/j.jbiomech.2023.111473_b0130
  article-title: Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546512473568
– volume: 43
  start-page: 2515
  year: 2015
  ident: 10.1016/j.jbiomech.2023.111473_b0080
  article-title: Knee kinematics during noncontact anterior cruciate ligament injury as determined from bone bruise location
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546515594446
– volume: 37
  start-page: 1920
  year: 2019
  ident: 10.1016/j.jbiomech.2023.111473_b0100
  article-title: The Complex relationship between in vivo ACL elongation and knee kinematics during walking and running
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.24330
– volume: 22
  start-page: 283
  year: 2004
  ident: 10.1016/j.jbiomech.2023.111473_b0115
  article-title: A three-dimensional MRI analysis of knee kinematics
  publication-title: J. Orthop. Res.
  doi: 10.1016/j.orthres.2003.08.015
– volume: 4
  start-page: 28
  year: 2005
  ident: 10.1016/j.jbiomech.2023.111473_b0005
  article-title: Basic Orthopaedic Biomechanics and Mechano-Biology
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-4-28
– volume: 52
  start-page: 109
  year: 2019
  ident: 10.1016/j.jbiomech.2023.111473_b0020
  article-title: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2018.11.009
– ident: 10.1016/j.jbiomech.2023.111473_b0015
  doi: 10.3390/diagnostics12010123
– volume: 48
  start-page: 2901
  year: 2020
  ident: 10.1016/j.jbiomech.2023.111473_b0055
  article-title: The characteristic recovery time as a novel, noninvasive metric for assessing in vivo cartilage mechanical function
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-020-02558-1
– volume: 48
  start-page: 2934
  year: 2015
  ident: 10.1016/j.jbiomech.2023.111473_b0135
  article-title: An MRI-compatible loading device to assess knee joint cartilage deformation: effect of preloading and inter-test repeatability
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.08.006
– volume: 116
  year: 2021
  ident: 10.1016/j.jbiomech.2023.111473_b0050
  article-title: Effect of walking on in vivo tibiofemoral cartilage strain in ACL-deficient versus intact knees
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.110210
– ident: 10.1016/j.jbiomech.2023.111473_b0125
  doi: 10.1007/978-3-319-24574-4_28
– volume: 9901
  start-page: 344
  year: 2016
  ident: 10.1016/j.jbiomech.2023.111473_b0075
  article-title: Automated segmentation of knee MRI using hierarchical classifiers and just enough interaction based learning: data from osteoarthritis initiative
  publication-title: Med Image Comput Comput Assist Interv
– ident: 10.1016/j.jbiomech.2023.111473_b0120
  doi: 10.1007/978-3-642-40763-5_31
– volume: 49
  start-page: 2870
  year: 2016
  ident: 10.1016/j.jbiomech.2023.111473_b0085
  article-title: Effect of normal gait on in vivo tibiofemoral cartilage strains
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.06.025
– volume: 80
  start-page: 2759
  year: 2018
  ident: 10.1016/j.jbiomech.2023.111473_b0150
  article-title: Deep convolutional neural network for segmentation of knee joint anatomy
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27229
– volume: 46
  start-page: 541
  year: 2013
  ident: 10.1016/j.jbiomech.2023.111473_b0040
  article-title: Diurnal variations in articular cartilage thickness and strain in the human knee
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.09.013
SSID ssj0007479
Score 2.4999726
Snippet The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research....
The ability to efficiently and reproducibly generate subject specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111473
SubjectTerms Algorithms
Artificial neural networks
Auto-segmentation
Business metrics
Cartilage
Computer architecture
Confidence intervals
Deep Learning
Femur
Femur - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Knee
Knee Joint - diagnostic imaging
Learning algorithms
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
MRI
Neural networks
Recovery
Soft tissues
Statistical analysis
Strain
Three dimensional models
Tibia
Tibia - diagnostic imaging
U-Net
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3db9MwEMBP0x74eEDQAQsMZCTEW9Z8OE7yWE1ME1J5QEzaW-Q4zmhpk2pJQH3hhX-cO8cJrSa0STw2uYsan33-Ob47A7znSqikyLUruNQuDxWOuVB6bqI8ncik9Eufcofnn8XFJf90FV0dwNmQC0Nhldb39z7deGt7ZWpbc7pZLCjHF0dbkBJEG_KnDHYe0ykGp7_-hnkgLtswD98l6Z0s4eXp0uS4m02JICTvwePwXxPUbQC9HUf5sKs2cvtTrlY7k9T5U3hi6ZLN-hd4Bge6msDRrMKV9XrLPjAT72k-pE_g8U4pwgk8mNtN9iP4Peva2m309drmJVWsLhmCIjP5JUxWBSv1urthlJvCvuMz2PwLW6zRNTXsB0oUWm-YPY_i2sgv2obt7JWztmaKmnmFOqwx51QYOVqf4-DaPofL849fzy5ce1aDq0Tgt-inch3liSgFImeAHIIklQbS44VXRFyVqdY-94uwQMRCRkpCjeRVqDDScYyIKsMXcFjVlT4GFuTCV1HuK7-UHIEjVwEtupJSxLiGLoQD0WCgTNlC5vQ_V9kQsbbMBsNmZNisN6wD01Fv05fyuFMjHuyfDYmq6FoznG3u1ExHzb3ufC_dk6GrZdahNFmAJEcngnuRA-_G2-gKaH9HVrruSAZZHhk2SB142ffM8UVDEacId9yBZK_PjgJUZnz_TrX4ZsqNE4ISWDvgjd37ng346j-a4TU8ol99vN8JHLY3nX6DANjmb80I_wMHl1lk
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrcTjwGNbIFCQkRC3ZPN0kuOqolRIW1WIlcopShyn3W3iRE0CWq78ccbOQ1sq1CJxS-IZK7bm8dmeGQO8dxllQZpwnbox112Hoc45sakHzORBHGRWZsnc4cUJPV66n8-8sx34NOTCVAX2wpKVIfLCEKsLFVs5xIjNTheH0iFKNz-r0myGBEWtW4HvIBA38Ms92KUePk9gd3lyOv_WBXhYetjttkhKHZ2UuZUrvDbWKtNdHU3YjrQhru_8zU3dhKE3oykftKKKNz_iPN9yVUdP4GIcpIpQuTTaJjHYzz_qP_6HWXgKj3s4S-Yd0zPY4WIKe3OBS_liQz4QFWCqdu6n8Gir9uEU7i_6U_09-DVvm1Kv-XnRJ0IJUmYEkSlRCS0kFinJeNFeEZkMQy6xD7L4QlYF2sKafEeKlPOK9BdgnCv6VVOTrcN50pSEyaHlyENqdTGGopMbAqjNm31YHn38enis95dD6IzaVoOGMeFeEtCMIsa1EfggdAvt2HRTM_VcloWcW66VOiliOgRlgcMR6qXM8bjvIyaOnecwEaXgL4HYCbWYl1jMymIXEU7CbLnKCzLq46I9pRp4gyxErK-cLv8zj4YQuXU0yFAkZSjqZEiD2chXdbVDbuXwB1GLhsxYtOURurdbOcORs8dOHSa6E-_BINVRb8HqyEboKK8gNz0N3o3NaHvkgVIseNlKGlw8IGi2Qw1edEowDtShfoho0tUguKYeI4Gsa369BeVY1TcfhFsDc9SkO07gq39neQ0P5VsXV3gAk-aq5W8QaDbJ296I_AZMbHs3
  priority: 102
  providerName: Unpaywall
Title Auto-segmentation of the tibia and femur from knee MR images via deep learning and its application to cartilage strain and recovery
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929023000428
https://dx.doi.org/10.1016/j.jbiomech.2023.111473
https://www.ncbi.nlm.nih.gov/pubmed/36791514
https://www.proquest.com/docview/2782160305
https://www.proquest.com/docview/2777402529
https://pubmed.ncbi.nlm.nih.gov/PMC10281551
https://pmc.ncbi.nlm.nih.gov/articles/PMC10281551/pdf/nihms-1873960.pdf
UnpaywallVersion submittedVersion
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1873-2380
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3Nb9MwFMCftlbi44CgYywwKiMhbtnynfSAUEGbCqjRNFGpnCLHdkZLm3RrAuqFC_84z44TOk2wXdpD3qua-Pn55_h9ALz2WMAingoz8KgwPZfhnHOpZUbMEhGNMjuzZe7wOA5GE-_T1J_uQNzkwsiwysYnKkfNCybfkR87uJTJlsiW_251acquUfJ0tWmhQXVrBf5WlRjbha4jK2N1oPv-JD47b30zwrMO-rBNBANrK2d4fjRXGe_qiMJxpS_xQvdfy9VNHL0ZVXm_yld085MuFltL1uljeKRZkwxr43gCOyLvwd4wx332ckPeEBX9qV6r9-DhVmHCHtwb6yP3Pfg9rMrCXIuLpc5SykmREcRGorJNCM05ycSyuiIyU4V8x98g43MyW6KjWpMfKMGFWBHdneJCyc_KNdk6OSdlQZg04QXqkLXqWqHk5G4dp9rmKUxOT758GJm6c4PJAscu0Wulwk-jIAsQQB2kEuSqgUMtj1vc91g2EML2bO5yBC4kpsgVyGGcub4IQwRW6u5DJy9ycQDESQOb-anN7Ix6iB8pc-QWLMqCEHfUPDDAbwYoYbqsufyfi6SJX5snzcAmcmCTemANOG71VnVhj1s1wmb8kyZtFR1tgmvPrZqDVlODTQ0sd9I9bEwt0e5lnfydDAa8ai-jY5CnPTQXRSVlkOyRaJ2BAc9qy2xv1A3CAaKeZ0B0zWZbAVl0_PqVfPZNFR-XQCrnmAFWa953fIDP_38rL-CBFK4D_A6hU15V4iUSX5n2Yffol42f4TTsQ3f48fMo7uupjd-T-Gz49Q8iZ1rG
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVqJwQJDyMBRYJOBm6sf6dahQgFYpbSJUtVJvZr27LgmJHWqbKmf-F7-NWXttUlXQXnr2jhVnXt_svABeU-7zUCTS9CmTJnU56pzLLDPklgxZmNqprXqHhyN_cEw_n3gnK_C77YVRZZWtTawNtci5uiPfctCVqZXIlvd-_sNUW6NUdrVdocH0agWxXY8Y040d-3JxjiFcsb33Cfn9xnF2d44-Dky9ZcDkvmOXqGGJ9JLQT30ESw56UMQAkcMsKizhUZ5GUtrUFq5AcIDePXQlYgbBXU8GAYIr5uJ7b8EadWmEwd_ah53Rl8POFyBY10UmtolAxFrqUZ68m9Qd9nVKxHGV7aKB-y_3eBn-Xq7iXK-yOVucs-l0yUXu3od7GtuSfiOMD2BFZj3Y6GcY188W5C2pq03ra_we3F0ahNiD20Od4t-AX_2qzM1Cns50V1RG8pQgTCV1dwthmSCpnFVnRHXGkO_4DjI8JOMZGsaC_MQTQso50dswTuvz47IgS5l6UuaEK5WZIg0p6i0Z9Tl1O4CqvXgIxzfCw0ewmuWZfALESXybe4nN7ZRRhDsJd1TIF6Z-gBG88A3wWgbFXI9RV79zGrf1cpO4ZWysGBs3jDVgq6ObN4NErqQIWv7HbZssGvYYfd2VlFFHqYFUA5CuRbvZilqszVkR_1U-A151j9EQqewSy2ReqTMYSSCCdiIDHjeS2X2o6wcRQktqQHhBZrsDasj5xSfZ-Fs97FwBYKXTBlideF_zD3z6_095CeuDo-FBfLA32n8GdxRhU1y4CavlWSWfI9oskxdapQl8vWkr8gdbyJBL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhU4IEh5GAosEnAzsb1-HhCKKFFLSYUQlXJb7PW6JCR2qB2qnPlX_Dpm1g9SVdBeevaOFWde3-y8AF640pdhmijTd2NlulyizvHYMkNpqTAOMzuzqXd4dOjvHbkfxt54A363vTBUVtnaRG2o00LSHXnfQVdGK5Etr581ZRGfdodvFz9M2iBFmdZ2nUYtIgdqdYrhW_lmfxd5_dJxhu-_vNszmw0DpvQdu0LtSpSXhH7mI1By0Hui_4-c2HJTK_VcmUVK2a6d8hSBAXr2kCvEC6nkngoCBFYxx_deg-sB5xGVEwbjLtijufRNeYltIgSx1rqTp6-nurdeJ0McTlbLDfi_HON54Hu-fvPGMl_Eq9N4NltzjsM7cLtBtWxQi-Fd2FB5D7YHOUb08xV7xXSdqb7A78GttRGIPdgaNcn9bfg1WFaFWarjedMPlbMiYwhQme5rYXGeskzNlyeMemLYd3wHG31mkzmaxJL9xBOpUgvW7ME41ucnVcnWcvSsKpgkZZkhDSv1fgx9ju4FUKlX9-DoSjh4HzbzIlcPgTmJb0svsaWdxS4CnUQ6FOyFmR9g7J76Bngtg4RsBqjT75yJtlJuKlrGCmKsqBlrQL-jW9QjRC6kCFr-i7ZBFk26QC93IWXUUTYQqoZGl6LdaUVNNIasFH_VzoDn3WM0QZRXinNVLOkMxhCInZ3IgAe1ZHYfyv0gQlDpGhCekdnuAI03P_skn3zTY84J-hKgN8DqxPuSf-Cj_3_KM9hC2yE-7h8ePIabRFdXFe7AZnWyVE8QZlbJU63PDL5etQH5A1prjeU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrcTjwGNbIFCQkRC3ZPN0kuOqolRIW1WIlcopShyn3W3iRE0CWq78ccbOQ1sq1CJxS-IZK7bm8dmeGQO8dxllQZpwnbox112Hoc45sakHzORBHGRWZsnc4cUJPV66n8-8sx34NOTCVAX2wpKVIfLCEKsLFVs5xIjNTheH0iFKNz-r0myGBEWtW4HvIBA38Ms92KUePk9gd3lyOv_WBXhYetjttkhKHZ2UuZUrvDbWKtNdHU3YjrQhru_8zU3dhKE3oykftKKKNz_iPN9yVUdP4GIcpIpQuTTaJjHYzz_qP_6HWXgKj3s4S-Yd0zPY4WIKe3OBS_liQz4QFWCqdu6n8Gir9uEU7i_6U_09-DVvm1Kv-XnRJ0IJUmYEkSlRCS0kFinJeNFeEZkMQy6xD7L4QlYF2sKafEeKlPOK9BdgnCv6VVOTrcN50pSEyaHlyENqdTGGopMbAqjNm31YHn38enis95dD6IzaVoOGMeFeEtCMIsa1EfggdAvt2HRTM_VcloWcW66VOiliOgRlgcMR6qXM8bjvIyaOnecwEaXgL4HYCbWYl1jMymIXEU7CbLnKCzLq46I9pRp4gyxErK-cLv8zj4YQuXU0yFAkZSjqZEiD2chXdbVDbuXwB1GLhsxYtOURurdbOcORs8dOHSa6E-_BINVRb8HqyEboKK8gNz0N3o3NaHvkgVIseNlKGlw8IGi2Qw1edEowDtShfoho0tUguKYeI4Gsa369BeVY1TcfhFsDc9SkO07gq39neQ0P5VsXV3gAk-aq5W8QaDbJ296I_AZMbHs3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-segmentation+of+the+tibia+and+femur+from+knee+MR+images+via+deep+learning+and+its+application+to+cartilage+strain+and+recovery&rft.jtitle=Journal+of+biomechanics&rft.au=Kim-Wang%2C+Sophia+Y&rft.au=Bradley%2C+Patrick+X&rft.au=Cutcliffe%2C+Hattie+C&rft.au=Collins%2C+Amber+T&rft.date=2023-03-01&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=149&rft_id=info:doi/10.1016%2Fj.jbiomech.2023.111473&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon