Auto-segmentation of the tibia and femur from knee MR images via deep learning and its application to cartilage strain and recovery
The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and...
Saved in:
| Published in | Journal of biomechanics Vol. 149; p. 111473 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.03.2023
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9290 1873-2380 1873-2380 |
| DOI | 10.1016/j.jbiomech.2023.111473 |
Cover
| Abstract | The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and more specifically, convolutional neural networks, have shown potential to alleviate this bottleneck in research throughput. Thus, the purpose of this work was to develop a modified version of the convolutional neural network architecture U-Net to automate segmentation of the tibia and femur from double echo steady state knee magnetic resonance (MR) images. Our model was trained on a dataset of over 4,000 MR images from 34 subjects, segmented by three experienced researchers, and reviewed by a musculoskeletal radiologist. For our validation and testing sets, we achieved dice coefficients of 0.985 and 0.984, respectively. As further testing, we applied our trained model to a prior study of tibial cartilage strain and recovery. In this analysis, across all subjects, there were no statistically significant differences in cartilage strain between the machine learning and ground truth bone models, with a mean difference of 0.2 ± 0.7 % (mean ± 95 % confidence interval). This difference is within the measurement resolution of previous cartilage strain studies from our lab using manual segmentation. In summary, we successfully trained, validated, and tested a machine learning model capable of segmenting MR images of the knee, achieving results that are comparable to trained human segmenters. |
|---|---|
| AbstractList | The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and more specifically, convolutional neural networks, have shown potential to alleviate this bottleneck in research throughput. Thus, the purpose of this work was to develop a modified version of the convolutional neural network architecture U-Net to automate segmentation of the tibia and femur from double echo steady state knee magnetic resonance (MR) images. Our model was trained on a dataset of over 4,000 MR images from 34 subjects, segmented by three experienced researchers, and reviewed by a musculoskeletal radiologist. For our validation and testing sets, we achieved dice coefficients of 0.985 and 0.984, respectively. As further testing, we applied our trained model to a prior study of tibial cartilage strain and recovery. In this analysis, across all subjects, there were no statistically significant differences in cartilage strain between the machine learning and ground truth bone models, with a mean difference of 0.2 ± 0.7 % (mean ± 95 % confidence interval). This difference is within the measurement resolution of previous cartilage strain studies from our lab using manual segmentation. In summary, we successfully trained, validated, and tested a machine learning model capable of segmenting MR images of the knee, achieving results that are comparable to trained human segmenters. The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and more specifically, convolutional neural networks, have shown potential to alleviate this bottleneck in research throughput. Thus, the purpose of this work was to develop a modified version of the convolutional neural network architecture U-Net to automate segmentation of the tibia and femur from double echo steady state knee magnetic resonance (MR) images. Our model was trained on a dataset of over 4,000 MR images from 34 subjects, segmented by three experienced researchers, and reviewed by a musculoskeletal radiologist. For our validation and testing sets, we achieved dice coefficients of 0.985 and 0.984, respectively. As further testing, we applied our trained model to a prior study of tibial cartilage strain and recovery. In this analysis, across all subjects, there were no statistically significant differences in cartilage strain between the machine learning and ground truth bone models, with a mean difference of 0.2 ± 0.7 % (mean ± 95 % confidence interval). This difference is within the measurement resolution of previous cartilage strain studies from our lab using manual segmentation. In summary, we successfully trained, validated, and tested a machine learning model capable of segmenting MR images of the knee, achieving results that are comparable to trained human segmenters.The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and more specifically, convolutional neural networks, have shown potential to alleviate this bottleneck in research throughput. Thus, the purpose of this work was to develop a modified version of the convolutional neural network architecture U-Net to automate segmentation of the tibia and femur from double echo steady state knee magnetic resonance (MR) images. Our model was trained on a dataset of over 4,000 MR images from 34 subjects, segmented by three experienced researchers, and reviewed by a musculoskeletal radiologist. For our validation and testing sets, we achieved dice coefficients of 0.985 and 0.984, respectively. As further testing, we applied our trained model to a prior study of tibial cartilage strain and recovery. In this analysis, across all subjects, there were no statistically significant differences in cartilage strain between the machine learning and ground truth bone models, with a mean difference of 0.2 ± 0.7 % (mean ± 95 % confidence interval). This difference is within the measurement resolution of previous cartilage strain studies from our lab using manual segmentation. In summary, we successfully trained, validated, and tested a machine learning model capable of segmenting MR images of the knee, achieving results that are comparable to trained human segmenters. The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research. However, methodologies requiring such models have largely been limited by lengthy manual segmentation times. Recently, machine learning, and more specifically, convolutional neural networks, have shown potential to alleviate this bottleneck in research throughput. Thus, the purpose of this work was to develop a modified version of the convolutional neural network architecture U-Net to automate segmentation of the tibia and femur from double echo steady state knee magnetic resonance (MR) images. Our model was trained on a dataset of over 4,000 MR images from 34 subjects, segmented by three experienced researchers, and reviewed by a musculoskeletal radiologist. For our validation and testing sets, we achieved dice coefficients of 0.985 and 0.984, respectively. As further testing, we applied our trained model to a prior study of tibial cartilage strain and recovery. In this analysis, across all subjects, there were no statistically significant differences in cartilage strain between the machine learning and ground truth bone models, with a mean difference of 0.2 ± 0.7 % (mean ± 95 % confidence interval). This difference is within the measurement resolution of previous cartilage strain studies from our lab using manual segmentation. In summary, we successfully trained, validated, and tested a machine learning model capable of segmenting MR images of the knee, achieving results that are comparable to trained human segmenters. |
| ArticleNumber | 111473 |
| Author | Cutcliffe, Hattie C. Spritzer, Charles E. Crook, Bryan S. Collins, Amber T. Kim-Wang, Sophia Y. DeFrate, Louis E. Bradley, Patrick X. Paranjape, Chinmay S. |
| AuthorAffiliation | 3 Department of Mechanical Engineering and Materials Science, Duke University 5 Department of Radiology, Duke University School of Medicine 1 Duke University School of Medicine 2 Department of Biomedical Engineering, Duke University 4 Department of Orthopaedic Surgery, Duke University School of Medicine |
| AuthorAffiliation_xml | – name: 1 Duke University School of Medicine – name: 4 Department of Orthopaedic Surgery, Duke University School of Medicine – name: 5 Department of Radiology, Duke University School of Medicine – name: 2 Department of Biomedical Engineering, Duke University – name: 3 Department of Mechanical Engineering and Materials Science, Duke University |
| Author_xml | – sequence: 1 givenname: Sophia Y. surname: Kim-Wang fullname: Kim-Wang, Sophia Y. organization: Duke University School of Medicine, United States – sequence: 2 givenname: Patrick X. surname: Bradley fullname: Bradley, Patrick X. organization: Department of Mechanical Engineering and Materials Science, Duke University, United States – sequence: 3 givenname: Hattie C. surname: Cutcliffe fullname: Cutcliffe, Hattie C. organization: Department of Biomedical Engineering, Duke University, United States – sequence: 4 givenname: Amber T. surname: Collins fullname: Collins, Amber T. organization: Department of Orthopaedic Surgery, Duke University School of Medicine, United States – sequence: 5 givenname: Bryan S. surname: Crook fullname: Crook, Bryan S. organization: Department of Orthopaedic Surgery, Duke University School of Medicine, United States – sequence: 6 givenname: Chinmay S. surname: Paranjape fullname: Paranjape, Chinmay S. organization: Department of Orthopaedic Surgery, Duke University School of Medicine, United States – sequence: 7 givenname: Charles E. surname: Spritzer fullname: Spritzer, Charles E. organization: Department of Radiology, Duke University School of Medicine, United States – sequence: 8 givenname: Louis E. surname: DeFrate fullname: DeFrate, Louis E. email: Lou.DeFrate@duke.edu organization: Department of Biomedical Engineering, Duke University, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36791514$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURKeFv1BZYsMmgx9xnEgIqCpeUhESgrXlcW5mPHXsYDuDZs0fx9O0PLppV7bk7xzde45PiiPnHRTFGcFLgkn9crvcrowfQG-WFFO2JIRUgj0qFqQRrKSswUfFAmNKypa2-Lg4iXGLMRaVaJ8Ux6wWLeGkWhS_zqfkywjrAVxSyXiHfI_SBlAyK6OQch3qYZgC6oMf0JUDQJ-_IjOoNUS0y0QHMCILKjjj1te8SRGpcbRGz4bJI61CMjZrUExBGXfNBdB-B2H_tHjcKxvh2c15Wnx__-7bxcfy8suHTxfnl6WuKUklEyvgq6bua9y2FAvO84UqXHW445XuWwBSkY51lNesaRsGmNedZhyEaFui2GkhZt_JjWr_U1krx5A3CXtJsDzEKrfyNlZ5iFXOsWblm1k5TqsBOp2zCuqv2isj_39xZiPXfpdNaUM4J9nhxY1D8D8miEkOJmqwVjnwU5RUCFFhymmb0ed30K2fgsvJZKqhpMYM80yd_TvSn1luq83AqxnQwccYoJfazA0fGrD3r1zfkT84q7ezEHKVOwNBRm3AaehMLjzJzpv7LV7fsdDWuPyd7BXsH2LwG5tl-x0 |
| CitedBy_id | crossref_primary_10_1002_jor_25806 crossref_primary_10_1177_03635465241311246 crossref_primary_10_3390_app131910798 crossref_primary_10_1016_j_ocarto_2024_100556 crossref_primary_10_1038_s41598_024_52548_9 crossref_primary_10_1038_s41598_024_57618_6 crossref_primary_10_1016_j_jbiomech_2023_111887 crossref_primary_10_1038_s41598_025_94180_1 crossref_primary_10_3788_LOP232102 crossref_primary_10_1016_j_jbiomech_2024_112337 crossref_primary_10_1177_23259671241289096 |
| Cites_doi | 10.1007/978-981-13-1396-7_6 10.1109/TPAMI.2016.2644615 10.1136/ard.2004.022400 10.1093/rheumatology/ken345 10.1002/jor.24926 10.1038/s41598-018-38104-2 10.3390/diagnostics12030611 10.1007/s10334-020-00889-7 10.1016/j.artmed.2021.102213 10.1148/radiol.2018172322 10.1177/2325967120967512 10.1186/s13075-018-1727-4 10.1109/3DV.2016.79 10.1177/0363546512473568 10.1177/0363546515594446 10.1002/jor.24330 10.1016/j.orthres.2003.08.015 10.1186/1475-925X-4-28 10.1016/j.media.2018.11.009 10.3390/diagnostics12010123 10.1007/s10439-020-02558-1 10.1016/j.jbiomech.2015.08.006 10.1016/j.jbiomech.2020.110210 10.1007/978-3-319-24574-4_28 10.1007/978-3-642-40763-5_31 10.1016/j.jbiomech.2016.06.025 10.1002/mrm.27229 10.1016/j.jbiomech.2012.09.013 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. 2023. Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. – notice: 2023. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.jbiomech.2023.111473 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Research Library (via ProQuest) ProQuest Central Biological Science Database (via ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| EndPage | 111473 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:10281551 PMC10281551 36791514 10_1016_j_jbiomech_2023_111473 S0021929023000428 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States--US Massachusetts |
| GeographicLocations_xml | – name: United States--US – name: Massachusetts |
| GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR074800 – fundername: NIAMS NIH HHS grantid: R01 AR065527 – fundername: NIAMS NIH HHS grantid: R01 AR079184 |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFFDN AFKWA AHPSJ AJBFU AJOXV AMFUW F3I LCYCR RIG YCJ AAYXX CITATION PUEGO AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c621t-37be5b86f6099207556092a04d0d54cf9ee141d3d25638983e056dc35e77991a3 |
| IEDL.DBID | BENPR |
| ISSN | 0021-9290 1873-2380 |
| IngestDate | Sun Oct 26 03:42:40 EDT 2025 Tue Sep 30 17:10:02 EDT 2025 Sun Sep 28 08:33:06 EDT 2025 Tue Oct 07 06:22:36 EDT 2025 Mon Jul 21 05:40:42 EDT 2025 Wed Oct 01 05:14:59 EDT 2025 Thu Apr 24 23:05:00 EDT 2025 Fri Feb 23 02:37:45 EST 2024 Tue Oct 14 19:28:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Auto-segmentation MRI Machine Learning U-Net Strain |
| Language | English |
| License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c621t-37be5b86f6099207556092a04d0d54cf9ee141d3d25638983e056dc35e77991a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10281551/pdf/nihms-1873960.pdf |
| PMID | 36791514 |
| PQID | 2782160305 |
| PQPubID | 1226346 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jbiomech_2023_111473 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10281551 proquest_miscellaneous_2777402529 proquest_journals_2782160305 pubmed_primary_36791514 crossref_citationtrail_10_1016_j_jbiomech_2023_111473 crossref_primary_10_1016_j_jbiomech_2023_111473 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2023_111473 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2023_111473 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Norman, Pedoia, Majumdar (b0105) 2018; 288 Flannery, Kiapour, Edgar, Murray, Fleming (b0065) 2021; 39 Latif, Faye (b0090) 2021; 122 Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M., Year Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. Berlin, Heidelberg. Kim, Spritzer, Utturkar, Toth, Garrett, DeFrate (b0080) 2015; 43 Zeng, Zheng (b0145) 2018; 1093 Milletari, F., Navab, N., Ahmadi, S., Year V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). Van Ginckel, Verdonk, Victor, Witvrouw (b0130) 2013; 41 Abreu, Mow, Huiskes (b0005) 2005; 4 Collins, Kulvaranon, Cutcliffe, Utturkar, Smith, Spritzer, Guilak, DeFrate (b0045) 2018; 20 Nagai, Gale, Chiba, Su, Fu, Anderst (b0100) 2019; 37 Wirth, Eckstein, Kemnitz, Baumgartner, Konukoglu, Fuerst, Chaudhari (b0140) 2021; 34 Cutcliffe, Davis, Spritzer, DeFrate (b0055) 2020; 48 Zhou, Zhao, Kijowski, Liu (b0150) 2018; 80 Ambellan, Tack, Ehlke, Zachow (b0020) 2019; 52 Coleman, Widmyer, Leddy, Utturkar, Spritzer, Moorman, Guilak, DeFrate (b0040) 2013; 46 Wang, Koff, Potter, Warren, Rodeo, Maher (b0135) 2015; 48 Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O., Year 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Cham. Patel, Hall, Ries, Lotz, Ozhinsky, Lindsey, Lu, Majumdar (b0115) 2004; 22 Almajalid, R., Zhang, M., Shan, J., 2022. Fully Automatic Knee Bone Detection and Segmentation on Three-Dimensional MRI. Diagnostics (Basel) 12. Ahmed, S.M., Mstafa, R.J., 2022. A Comprehensive Survey on Bone Segmentation Techniques in Knee Osteoarthritis Research: From Conventional Methods to Deep Learning. Diagnostics (Basel) 12. Heckelman, Riofrio, Vinson, Collins, Gwynn, Utturkar, Goode, Spritzer, DeFrate (b0070) 2020; 8 Bingham, Papannagari, Van de Velde, Gross, Gill, Felson, Rubash, Li (b0030) 2008; 47 Kashyap, Oguz, Zhang, Sonka (b0075) 2016; 9901 Lad, Liu, Ganapathy, Utturkar, Sutter, Moorman, Garrett, Spritzer, DeFrate (b0085) 2016; 49 Crook, Collins, Lad, Spritzer, Wittstein, DeFrate (b0050) 2021; 116 Badrinarayanan, Kendall, Cipolla (b0025) 2017; 39 Ronneberger, O., Fischer, P., Brox, T., Year U-Net: Convolutional networks for biomedical image segmentation. in medical image computing and computer-assisted intervention – MICCAI 2015. Cham. Eckstein, Lemberger, Gratzke, Hudelmaier, Glaser, Englmeier, Reiser (b0060) 2005; 64 Paranjape, Cutcliffe, Grambow, Utturkar, Collins, Garrett, Spritzer, DeFrate (b0110) 2019; 9 Ambellan (10.1016/j.jbiomech.2023.111473_b0020) 2019; 52 Nagai (10.1016/j.jbiomech.2023.111473_b0100) 2019; 37 Van Ginckel (10.1016/j.jbiomech.2023.111473_b0130) 2013; 41 Wirth (10.1016/j.jbiomech.2023.111473_b0140) 2021; 34 Wang (10.1016/j.jbiomech.2023.111473_b0135) 2015; 48 Bingham (10.1016/j.jbiomech.2023.111473_b0030) 2008; 47 Kashyap (10.1016/j.jbiomech.2023.111473_b0075) 2016; 9901 Kim (10.1016/j.jbiomech.2023.111473_b0080) 2015; 43 10.1016/j.jbiomech.2023.111473_b0125 Heckelman (10.1016/j.jbiomech.2023.111473_b0070) 2020; 8 Paranjape (10.1016/j.jbiomech.2023.111473_b0110) 2019; 9 10.1016/j.jbiomech.2023.111473_b0095 10.1016/j.jbiomech.2023.111473_b0010 Abreu (10.1016/j.jbiomech.2023.111473_b0005) 2005; 4 Coleman (10.1016/j.jbiomech.2023.111473_b0040) 2013; 46 Collins (10.1016/j.jbiomech.2023.111473_b0045) 2018; 20 Zhou (10.1016/j.jbiomech.2023.111473_b0150) 2018; 80 Badrinarayanan (10.1016/j.jbiomech.2023.111473_b0025) 2017; 39 Latif (10.1016/j.jbiomech.2023.111473_b0090) 2021; 122 10.1016/j.jbiomech.2023.111473_b0035 10.1016/j.jbiomech.2023.111473_b0015 Eckstein (10.1016/j.jbiomech.2023.111473_b0060) 2005; 64 Crook (10.1016/j.jbiomech.2023.111473_b0050) 2021; 116 Cutcliffe (10.1016/j.jbiomech.2023.111473_b0055) 2020; 48 Patel (10.1016/j.jbiomech.2023.111473_b0115) 2004; 22 10.1016/j.jbiomech.2023.111473_b0120 Flannery (10.1016/j.jbiomech.2023.111473_b0065) 2021; 39 Zeng (10.1016/j.jbiomech.2023.111473_b0145) 2018; 1093 Lad (10.1016/j.jbiomech.2023.111473_b0085) 2016; 49 Norman (10.1016/j.jbiomech.2023.111473_b0105) 2018; 288 |
| References_xml | – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b0025 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 37 start-page: 1920 year: 2019 end-page: 1928 ident: b0100 article-title: The Complex relationship between in vivo ACL elongation and knee kinematics during walking and running publication-title: J. Orthop. Res. – volume: 288 start-page: 177 year: 2018 end-page: 185 ident: b0105 article-title: Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry publication-title: Radiology – volume: 64 start-page: 291 year: 2005 end-page: 295 ident: b0060 article-title: In vivo cartilage deformation after different types of activity and its dependence on physical training status publication-title: Ann Rheum Dis – volume: 48 start-page: 2934 year: 2015 end-page: 2940 ident: b0135 article-title: An MRI-compatible loading device to assess knee joint cartilage deformation: effect of preloading and inter-test repeatability publication-title: J. Biomech. – reference: Ahmed, S.M., Mstafa, R.J., 2022. A Comprehensive Survey on Bone Segmentation Techniques in Knee Osteoarthritis Research: From Conventional Methods to Deep Learning. Diagnostics (Basel) 12. – volume: 4 start-page: 28 year: 2005 ident: b0005 article-title: Basic Orthopaedic Biomechanics and Mechano-Biology publication-title: Biomed. Eng. Online – volume: 46 start-page: 541 year: 2013 end-page: 547 ident: b0040 article-title: Diurnal variations in articular cartilage thickness and strain in the human knee publication-title: J. Biomech. – volume: 22 start-page: 283 year: 2004 end-page: 292 ident: b0115 article-title: A three-dimensional MRI analysis of knee kinematics publication-title: J. Orthop. Res. – volume: 47 start-page: 1622 year: 2008 end-page: 1627 ident: b0030 article-title: In vivo cartilage contact deformation in the healthy human tibiofemoral joint publication-title: Rheumatology – volume: 20 start-page: 232 year: 2018 ident: b0045 article-title: Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI publication-title: Arthritis Res. Ther. – volume: 41 start-page: 550 year: 2013 end-page: 559 ident: b0130 article-title: Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction publication-title: Am. J. Sports Med. – volume: 52 start-page: 109 year: 2019 end-page: 118 ident: b0020 article-title: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative publication-title: Med Image Anal. – volume: 80 start-page: 2759 year: 2018 end-page: 2770 ident: b0150 article-title: Deep convolutional neural network for segmentation of knee joint anatomy publication-title: Magn. Reson. Med. – reference: Almajalid, R., Zhang, M., Shan, J., 2022. Fully Automatic Knee Bone Detection and Segmentation on Three-Dimensional MRI. Diagnostics (Basel) 12. – volume: 116 year: 2021 ident: b0050 article-title: Effect of walking on in vivo tibiofemoral cartilage strain in ACL-deficient versus intact knees publication-title: J. Biomech. – volume: 48 start-page: 2901 year: 2020 end-page: 2910 ident: b0055 article-title: The characteristic recovery time as a novel, noninvasive metric for assessing in vivo cartilage mechanical function publication-title: Ann. Biomed. Eng. – volume: 122 year: 2021 ident: b0090 article-title: Automated tibiofemoral joint segmentation based on deeply supervised 2D–3D ensemble U-Net: Data from the Osteoarthritis Initiative publication-title: Artif. Intell. Med. – volume: 9 start-page: 2283 year: 2019 ident: b0110 article-title: A new stress test for knee joint cartilage publication-title: Sci. Rep. – volume: 39 start-page: 831 year: 2021 end-page: 840 ident: b0065 article-title: Automated magnetic resonance image segmentation of the anterior cruciate ligament publication-title: J. Orthop. Res. – volume: 43 start-page: 2515 year: 2015 end-page: 2521 ident: b0080 article-title: Knee kinematics during noncontact anterior cruciate ligament injury as determined from bone bruise location publication-title: Am. J. Sports Med. – reference: Milletari, F., Navab, N., Ahmadi, S., Year V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). – reference: Ronneberger, O., Fischer, P., Brox, T., Year U-Net: Convolutional networks for biomedical image segmentation. in medical image computing and computer-assisted intervention – MICCAI 2015. Cham. – volume: 8 year: 2020 ident: b0070 article-title: Dose and recovery response of patellofemoral cartilage deformations to running publication-title: Orthopaedic J. Sports Med. – reference: Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M., Year Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. Berlin, Heidelberg. – volume: 1093 start-page: 73 year: 2018 end-page: 79 ident: b0145 article-title: Deep learning-based automatic segmentation of the proximal femur from MR images publication-title: Adv. Experimental Med. Biol. – volume: 49 start-page: 2870 year: 2016 end-page: 2876 ident: b0085 article-title: Effect of normal gait on in vivo tibiofemoral cartilage strains publication-title: J. Biomech. – volume: 34 start-page: 337 year: 2021 end-page: 354 ident: b0140 article-title: Accuracy and longitudinal reproducibility of quantitative femorotibial cartilage measures derived from automated U-Net-based segmentation of two different MRI contrasts: data from the osteoarthritis initiative healthy reference cohort publication-title: MAGMA – volume: 9901 start-page: 344 year: 2016 end-page: 351 ident: b0075 article-title: Automated segmentation of knee MRI using hierarchical classifiers and just enough interaction based learning: data from osteoarthritis initiative publication-title: Med Image Comput Comput Assist Interv – reference: Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O., Year 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Cham. – volume: 1093 start-page: 73 year: 2018 ident: 10.1016/j.jbiomech.2023.111473_b0145 article-title: Deep learning-based automatic segmentation of the proximal femur from MR images publication-title: Adv. Experimental Med. Biol. doi: 10.1007/978-981-13-1396-7_6 – volume: 39 start-page: 2481 year: 2017 ident: 10.1016/j.jbiomech.2023.111473_b0025 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 64 start-page: 291 year: 2005 ident: 10.1016/j.jbiomech.2023.111473_b0060 article-title: In vivo cartilage deformation after different types of activity and its dependence on physical training status publication-title: Ann Rheum Dis doi: 10.1136/ard.2004.022400 – ident: 10.1016/j.jbiomech.2023.111473_b0035 – volume: 47 start-page: 1622 year: 2008 ident: 10.1016/j.jbiomech.2023.111473_b0030 article-title: In vivo cartilage contact deformation in the healthy human tibiofemoral joint publication-title: Rheumatology doi: 10.1093/rheumatology/ken345 – volume: 39 start-page: 831 year: 2021 ident: 10.1016/j.jbiomech.2023.111473_b0065 article-title: Automated magnetic resonance image segmentation of the anterior cruciate ligament publication-title: J. Orthop. Res. doi: 10.1002/jor.24926 – volume: 9 start-page: 2283 year: 2019 ident: 10.1016/j.jbiomech.2023.111473_b0110 article-title: A new stress test for knee joint cartilage publication-title: Sci. Rep. doi: 10.1038/s41598-018-38104-2 – ident: 10.1016/j.jbiomech.2023.111473_b0010 doi: 10.3390/diagnostics12030611 – volume: 34 start-page: 337 year: 2021 ident: 10.1016/j.jbiomech.2023.111473_b0140 article-title: Accuracy and longitudinal reproducibility of quantitative femorotibial cartilage measures derived from automated U-Net-based segmentation of two different MRI contrasts: data from the osteoarthritis initiative healthy reference cohort publication-title: MAGMA doi: 10.1007/s10334-020-00889-7 – volume: 122 year: 2021 ident: 10.1016/j.jbiomech.2023.111473_b0090 article-title: Automated tibiofemoral joint segmentation based on deeply supervised 2D–3D ensemble U-Net: Data from the Osteoarthritis Initiative publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2021.102213 – volume: 288 start-page: 177 year: 2018 ident: 10.1016/j.jbiomech.2023.111473_b0105 article-title: Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry publication-title: Radiology doi: 10.1148/radiol.2018172322 – volume: 8 year: 2020 ident: 10.1016/j.jbiomech.2023.111473_b0070 article-title: Dose and recovery response of patellofemoral cartilage deformations to running publication-title: Orthopaedic J. Sports Med. doi: 10.1177/2325967120967512 – volume: 20 start-page: 232 year: 2018 ident: 10.1016/j.jbiomech.2023.111473_b0045 article-title: Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI publication-title: Arthritis Res. Ther. doi: 10.1186/s13075-018-1727-4 – ident: 10.1016/j.jbiomech.2023.111473_b0095 doi: 10.1109/3DV.2016.79 – volume: 41 start-page: 550 year: 2013 ident: 10.1016/j.jbiomech.2023.111473_b0130 article-title: Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction publication-title: Am. J. Sports Med. doi: 10.1177/0363546512473568 – volume: 43 start-page: 2515 year: 2015 ident: 10.1016/j.jbiomech.2023.111473_b0080 article-title: Knee kinematics during noncontact anterior cruciate ligament injury as determined from bone bruise location publication-title: Am. J. Sports Med. doi: 10.1177/0363546515594446 – volume: 37 start-page: 1920 year: 2019 ident: 10.1016/j.jbiomech.2023.111473_b0100 article-title: The Complex relationship between in vivo ACL elongation and knee kinematics during walking and running publication-title: J. Orthop. Res. doi: 10.1002/jor.24330 – volume: 22 start-page: 283 year: 2004 ident: 10.1016/j.jbiomech.2023.111473_b0115 article-title: A three-dimensional MRI analysis of knee kinematics publication-title: J. Orthop. Res. doi: 10.1016/j.orthres.2003.08.015 – volume: 4 start-page: 28 year: 2005 ident: 10.1016/j.jbiomech.2023.111473_b0005 article-title: Basic Orthopaedic Biomechanics and Mechano-Biology publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-4-28 – volume: 52 start-page: 109 year: 2019 ident: 10.1016/j.jbiomech.2023.111473_b0020 article-title: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative publication-title: Med Image Anal. doi: 10.1016/j.media.2018.11.009 – ident: 10.1016/j.jbiomech.2023.111473_b0015 doi: 10.3390/diagnostics12010123 – volume: 48 start-page: 2901 year: 2020 ident: 10.1016/j.jbiomech.2023.111473_b0055 article-title: The characteristic recovery time as a novel, noninvasive metric for assessing in vivo cartilage mechanical function publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-020-02558-1 – volume: 48 start-page: 2934 year: 2015 ident: 10.1016/j.jbiomech.2023.111473_b0135 article-title: An MRI-compatible loading device to assess knee joint cartilage deformation: effect of preloading and inter-test repeatability publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.08.006 – volume: 116 year: 2021 ident: 10.1016/j.jbiomech.2023.111473_b0050 article-title: Effect of walking on in vivo tibiofemoral cartilage strain in ACL-deficient versus intact knees publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.110210 – ident: 10.1016/j.jbiomech.2023.111473_b0125 doi: 10.1007/978-3-319-24574-4_28 – volume: 9901 start-page: 344 year: 2016 ident: 10.1016/j.jbiomech.2023.111473_b0075 article-title: Automated segmentation of knee MRI using hierarchical classifiers and just enough interaction based learning: data from osteoarthritis initiative publication-title: Med Image Comput Comput Assist Interv – ident: 10.1016/j.jbiomech.2023.111473_b0120 doi: 10.1007/978-3-642-40763-5_31 – volume: 49 start-page: 2870 year: 2016 ident: 10.1016/j.jbiomech.2023.111473_b0085 article-title: Effect of normal gait on in vivo tibiofemoral cartilage strains publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.06.025 – volume: 80 start-page: 2759 year: 2018 ident: 10.1016/j.jbiomech.2023.111473_b0150 article-title: Deep convolutional neural network for segmentation of knee joint anatomy publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27229 – volume: 46 start-page: 541 year: 2013 ident: 10.1016/j.jbiomech.2023.111473_b0040 article-title: Diurnal variations in articular cartilage thickness and strain in the human knee publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.09.013 |
| SSID | ssj0007479 |
| Score | 2.4999726 |
| Snippet | The ability to efficiently and reproducibly generate subject-specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research.... The ability to efficiently and reproducibly generate subject specific 3D models of bone and soft tissue is important to many areas of musculoskeletal research.... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 111473 |
| SubjectTerms | Algorithms Artificial neural networks Auto-segmentation Business metrics Cartilage Computer architecture Confidence intervals Deep Learning Femur Femur - diagnostic imaging Humans Image Processing, Computer-Assisted - methods Image segmentation Knee Knee Joint - diagnostic imaging Learning algorithms Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods MRI Neural networks Recovery Soft tissues Statistical analysis Strain Three dimensional models Tibia Tibia - diagnostic imaging U-Net |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3db9MwEMBP0x74eEDQAQsMZCTEW9Z8OE7yWE1ME1J5QEzaW-Q4zmhpk2pJQH3hhX-cO8cJrSa0STw2uYsan33-Ob47A7znSqikyLUruNQuDxWOuVB6bqI8ncik9Eufcofnn8XFJf90FV0dwNmQC0Nhldb39z7deGt7ZWpbc7pZLCjHF0dbkBJEG_KnDHYe0ykGp7_-hnkgLtswD98l6Z0s4eXp0uS4m02JICTvwePwXxPUbQC9HUf5sKs2cvtTrlY7k9T5U3hi6ZLN-hd4Bge6msDRrMKV9XrLPjAT72k-pE_g8U4pwgk8mNtN9iP4Peva2m309drmJVWsLhmCIjP5JUxWBSv1urthlJvCvuMz2PwLW6zRNTXsB0oUWm-YPY_i2sgv2obt7JWztmaKmnmFOqwx51QYOVqf4-DaPofL849fzy5ce1aDq0Tgt-inch3liSgFImeAHIIklQbS44VXRFyVqdY-94uwQMRCRkpCjeRVqDDScYyIKsMXcFjVlT4GFuTCV1HuK7-UHIEjVwEtupJSxLiGLoQD0WCgTNlC5vQ_V9kQsbbMBsNmZNisN6wD01Fv05fyuFMjHuyfDYmq6FoznG3u1ExHzb3ufC_dk6GrZdahNFmAJEcngnuRA-_G2-gKaH9HVrruSAZZHhk2SB142ffM8UVDEacId9yBZK_PjgJUZnz_TrX4ZsqNE4ISWDvgjd37ng346j-a4TU8ol99vN8JHLY3nX6DANjmb80I_wMHl1lk priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrcTjwGNbIFCQkRC3ZPN0kuOqolRIW1WIlcopShyn3W3iRE0CWq78ccbOQ1sq1CJxS-IZK7bm8dmeGQO8dxllQZpwnbox112Hoc45sakHzORBHGRWZsnc4cUJPV66n8-8sx34NOTCVAX2wpKVIfLCEKsLFVs5xIjNTheH0iFKNz-r0myGBEWtW4HvIBA38Ms92KUePk9gd3lyOv_WBXhYetjttkhKHZ2UuZUrvDbWKtNdHU3YjrQhru_8zU3dhKE3oykftKKKNz_iPN9yVUdP4GIcpIpQuTTaJjHYzz_qP_6HWXgKj3s4S-Yd0zPY4WIKe3OBS_liQz4QFWCqdu6n8Gir9uEU7i_6U_09-DVvm1Kv-XnRJ0IJUmYEkSlRCS0kFinJeNFeEZkMQy6xD7L4QlYF2sKafEeKlPOK9BdgnCv6VVOTrcN50pSEyaHlyENqdTGGopMbAqjNm31YHn38enis95dD6IzaVoOGMeFeEtCMIsa1EfggdAvt2HRTM_VcloWcW66VOiliOgRlgcMR6qXM8bjvIyaOnecwEaXgL4HYCbWYl1jMymIXEU7CbLnKCzLq46I9pRp4gyxErK-cLv8zj4YQuXU0yFAkZSjqZEiD2chXdbVDbuXwB1GLhsxYtOURurdbOcORs8dOHSa6E-_BINVRb8HqyEboKK8gNz0N3o3NaHvkgVIseNlKGlw8IGi2Qw1edEowDtShfoho0tUguKYeI4Gsa369BeVY1TcfhFsDc9SkO07gq39neQ0P5VsXV3gAk-aq5W8QaDbJ296I_AZMbHs3 priority: 102 providerName: Unpaywall |
| Title | Auto-segmentation of the tibia and femur from knee MR images via deep learning and its application to cartilage strain and recovery |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929023000428 https://dx.doi.org/10.1016/j.jbiomech.2023.111473 https://www.ncbi.nlm.nih.gov/pubmed/36791514 https://www.proquest.com/docview/2782160305 https://www.proquest.com/docview/2777402529 https://pubmed.ncbi.nlm.nih.gov/PMC10281551 https://pmc.ncbi.nlm.nih.gov/articles/PMC10281551/pdf/nihms-1873960.pdf |
| UnpaywallVersion | submittedVersion |
| Volume | 149 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1873-2380 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3Nb9MwFMCftlbi44CgYywwKiMhbtnynfSAUEGbCqjRNFGpnCLHdkZLm3RrAuqFC_84z44TOk2wXdpD3qua-Pn55_h9ALz2WMAingoz8KgwPZfhnHOpZUbMEhGNMjuzZe7wOA5GE-_T1J_uQNzkwsiwysYnKkfNCybfkR87uJTJlsiW_251acquUfJ0tWmhQXVrBf5WlRjbha4jK2N1oPv-JD47b30zwrMO-rBNBANrK2d4fjRXGe_qiMJxpS_xQvdfy9VNHL0ZVXm_yld085MuFltL1uljeKRZkwxr43gCOyLvwd4wx332ckPeEBX9qV6r9-DhVmHCHtwb6yP3Pfg9rMrCXIuLpc5SykmREcRGorJNCM05ycSyuiIyU4V8x98g43MyW6KjWpMfKMGFWBHdneJCyc_KNdk6OSdlQZg04QXqkLXqWqHk5G4dp9rmKUxOT758GJm6c4PJAscu0Wulwk-jIAsQQB2kEuSqgUMtj1vc91g2EML2bO5yBC4kpsgVyGGcub4IQwRW6u5DJy9ycQDESQOb-anN7Ix6iB8pc-QWLMqCEHfUPDDAbwYoYbqsufyfi6SJX5snzcAmcmCTemANOG71VnVhj1s1wmb8kyZtFR1tgmvPrZqDVlODTQ0sd9I9bEwt0e5lnfydDAa8ai-jY5CnPTQXRSVlkOyRaJ2BAc9qy2xv1A3CAaKeZ0B0zWZbAVl0_PqVfPZNFR-XQCrnmAFWa953fIDP_38rL-CBFK4D_A6hU15V4iUSX5n2Yffol42f4TTsQ3f48fMo7uupjd-T-Gz49Q8iZ1rG |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVqJwQJDyMBRYJOBm6sf6dahQgFYpbSJUtVJvZr27LgmJHWqbKmf-F7-NWXttUlXQXnr2jhVnXt_svABeU-7zUCTS9CmTJnU56pzLLDPklgxZmNqprXqHhyN_cEw_n3gnK_C77YVRZZWtTawNtci5uiPfctCVqZXIlvd-_sNUW6NUdrVdocH0agWxXY8Y040d-3JxjiFcsb33Cfn9xnF2d44-Dky9ZcDkvmOXqGGJ9JLQT30ESw56UMQAkcMsKizhUZ5GUtrUFq5AcIDePXQlYgbBXU8GAYIr5uJ7b8EadWmEwd_ah53Rl8POFyBY10UmtolAxFrqUZ68m9Qd9nVKxHGV7aKB-y_3eBn-Xq7iXK-yOVucs-l0yUXu3od7GtuSfiOMD2BFZj3Y6GcY188W5C2pq03ra_we3F0ahNiD20Od4t-AX_2qzM1Cns50V1RG8pQgTCV1dwthmSCpnFVnRHXGkO_4DjI8JOMZGsaC_MQTQso50dswTuvz47IgS5l6UuaEK5WZIg0p6i0Z9Tl1O4CqvXgIxzfCw0ewmuWZfALESXybe4nN7ZRRhDsJd1TIF6Z-gBG88A3wWgbFXI9RV79zGrf1cpO4ZWysGBs3jDVgq6ObN4NErqQIWv7HbZssGvYYfd2VlFFHqYFUA5CuRbvZilqszVkR_1U-A151j9EQqewSy2ReqTMYSSCCdiIDHjeS2X2o6wcRQktqQHhBZrsDasj5xSfZ-Fs97FwBYKXTBlideF_zD3z6_095CeuDo-FBfLA32n8GdxRhU1y4CavlWSWfI9oskxdapQl8vWkr8gdbyJBL |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhU4IEh5GAosEnAzsb1-HhCKKFFLSYUQlXJb7PW6JCR2qB2qnPlX_Dpm1g9SVdBeevaOFWde3-y8AF640pdhmijTd2NlulyizvHYMkNpqTAOMzuzqXd4dOjvHbkfxt54A363vTBUVtnaRG2o00LSHXnfQVdGK5Etr581ZRGfdodvFz9M2iBFmdZ2nUYtIgdqdYrhW_lmfxd5_dJxhu-_vNszmw0DpvQdu0LtSpSXhH7mI1By0Hui_4-c2HJTK_VcmUVK2a6d8hSBAXr2kCvEC6nkngoCBFYxx_deg-sB5xGVEwbjLtijufRNeYltIgSx1rqTp6-nurdeJ0McTlbLDfi_HON54Hu-fvPGMl_Eq9N4NltzjsM7cLtBtWxQi-Fd2FB5D7YHOUb08xV7xXSdqb7A78GttRGIPdgaNcn9bfg1WFaFWarjedMPlbMiYwhQme5rYXGeskzNlyeMemLYd3wHG31mkzmaxJL9xBOpUgvW7ME41ucnVcnWcvSsKpgkZZkhDSv1fgx9ju4FUKlX9-DoSjh4HzbzIlcPgTmJb0svsaWdxS4CnUQ6FOyFmR9g7J76Bngtg4RsBqjT75yJtlJuKlrGCmKsqBlrQL-jW9QjRC6kCFr-i7ZBFk26QC93IWXUUTYQqoZGl6LdaUVNNIasFH_VzoDn3WM0QZRXinNVLOkMxhCInZ3IgAe1ZHYfyv0gQlDpGhCekdnuAI03P_skn3zTY84J-hKgN8DqxPuSf-Cj_3_KM9hC2yE-7h8ePIabRFdXFe7AZnWyVE8QZlbJU63PDL5etQH5A1prjeU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrcTjwGNbIFCQkRC3ZPN0kuOqolRIW1WIlcopShyn3W3iRE0CWq78ccbOQ1sq1CJxS-IZK7bm8dmeGQO8dxllQZpwnbox112Hoc45sakHzORBHGRWZsnc4cUJPV66n8-8sx34NOTCVAX2wpKVIfLCEKsLFVs5xIjNTheH0iFKNz-r0myGBEWtW4HvIBA38Ms92KUePk9gd3lyOv_WBXhYetjttkhKHZ2UuZUrvDbWKtNdHU3YjrQhru_8zU3dhKE3oykftKKKNz_iPN9yVUdP4GIcpIpQuTTaJjHYzz_qP_6HWXgKj3s4S-Yd0zPY4WIKe3OBS_liQz4QFWCqdu6n8Gir9uEU7i_6U_09-DVvm1Kv-XnRJ0IJUmYEkSlRCS0kFinJeNFeEZkMQy6xD7L4QlYF2sKafEeKlPOK9BdgnCv6VVOTrcN50pSEyaHlyENqdTGGopMbAqjNm31YHn38enis95dD6IzaVoOGMeFeEtCMIsa1EfggdAvt2HRTM_VcloWcW66VOiliOgRlgcMR6qXM8bjvIyaOnecwEaXgL4HYCbWYl1jMymIXEU7CbLnKCzLq46I9pRp4gyxErK-cLv8zj4YQuXU0yFAkZSjqZEiD2chXdbVDbuXwB1GLhsxYtOURurdbOcORs8dOHSa6E-_BINVRb8HqyEboKK8gNz0N3o3NaHvkgVIseNlKGlw8IGi2Qw1edEowDtShfoho0tUguKYeI4Gsa369BeVY1TcfhFsDc9SkO07gq39neQ0P5VsXV3gAk-aq5W8QaDbJ296I_AZMbHs3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-segmentation+of+the+tibia+and+femur+from+knee+MR+images+via+deep+learning+and+its+application+to+cartilage+strain+and+recovery&rft.jtitle=Journal+of+biomechanics&rft.au=Kim-Wang%2C+Sophia+Y&rft.au=Bradley%2C+Patrick+X&rft.au=Cutcliffe%2C+Hattie+C&rft.au=Collins%2C+Amber+T&rft.date=2023-03-01&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=149&rft_id=info:doi/10.1016%2Fj.jbiomech.2023.111473&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |