Representing the UK's cattle herd as static and dynamic networks
Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be r...
Saved in:
Published in | Proceedings of the Royal Society. B, Biological sciences Vol. 276; no. 1656; pp. 469 - 476 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
The Royal Society
07.02.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0962-8452 1471-2954 |
DOI | 10.1098/rspb.2008.1009 |
Cover
Abstract | Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where a movement of animals has occurred. These network representations may vary from a simple static representation, to a more complex, fully dynamic one where daily movements are explicitly captured. Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are compared. We find that the simpler static network representations are often deficient when compared with a fully dynamic representation, and should therefore be used only with caution in epidemiological modelling. In particular, due to temporal structures within the dynamic network, static networks consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when parameterized to match early growth rates. |
---|---|
AbstractList | Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where a movement of animals has occurred. These network representations may vary from a simple static representation, to a more complex, fully dynamic one where daily movements are explicitly captured. Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are compared. We find that the simpler static network representations are often deficient when compared with a fully dynamic representation, and should therefore be used only with caution in epidemiological modelling. In particular, due to temporal structures within the dynamic network, static networks consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when parameterized to match early growth rates. Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where a movement of animals has occurred. These network representations may vary from a simple static representation, to a more complex, fully dynamic one where daily movements are explicitly captured. Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are compared. We find that the simpler static network representations are often deficient when compared with a fully dynamic representation, and should therefore be used only with caution in epidemiological modelling. In particular, due to temporal structures within the dynamic network, static networks consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when parameterized to match early growth rates.Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where a movement of animals has occurred. These network representations may vary from a simple static representation, to a more complex, fully dynamic one where daily movements are explicitly captured. Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are compared. We find that the simpler static network representations are often deficient when compared with a fully dynamic representation, and should therefore be used only with caution in epidemiological modelling. In particular, due to temporal structures within the dynamic network, static networks consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when parameterized to match early growth rates. Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where a movement of animals has occurred. These network representations may vary from a simple static representation, to a more complex, fully dynamic one where daily movements are explicitly captured. Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are compared. We find that the simpler static network representations are often deficient when compared with a fully dynamic representation, and should therefore be used only with caution in epidemiological modelling. In particular, due to temporal structures within the dynamic network, static networks consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when parameterized to match early growth rates. |
Author | Vernon, Matthew C Keeling, Matt J |
AuthorAffiliation | Department of Biological Sciences, University of Warwick Coventry CV4 7AL, UK |
AuthorAffiliation_xml | – name: Department of Biological Sciences, University of Warwick Coventry CV4 7AL, UK |
Author_xml | – sequence: 1 givenname: Matthew C surname: Vernon fullname: Vernon, Matthew C email: m.c.vernon@warwick.ac.uk organization: E-mail: m.c.vernon@warwick.ac.uk – sequence: 2 givenname: Matt J surname: Keeling fullname: Keeling, Matt J organization: Department of Biological Sciences, University of Warwick Coventry CV4 7AL, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18854300$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk2P0zAUtNAitrtw5QbKCU4ptmM7zoUFVnyJIiTEArcnx3Fad9O42A5L_z0OWSqKtHCyn97MvPEbn6Cj3vUGofsEzwmu5BMftvWcYixTiatbaEZYSXJacXaEZrgSNJeM02N0EsIaJwSX_A46JlJyVmA8Q88-mq03wfTR9sssrkx28e5xyLSKsTPZyvgmUyELUUWrM9U3WbPr1SbdexOvnL8Md9HtVnXB3Ls-T9HFq5efzt_kiw-v354_X-RaUBLzghhaCl2WWJWtUsI0NTdEl0JKWVWS4VIQJrloDK6ZZIxVVFPDqVCyEnWri1P0dNLdDvXGNDo59qqDrbcb5XfglIXDTm9XsHTfgfKKcl4kgUfXAt59G0yIsLFBm65TvXFDACHKcSfiv0CK0-Y4kwn48E9Ley-_t5sAbAJo70LwpgVtx0260aHtgGAYQ4QxRBhDhDHERJv_Rdsr30QoJoJ3u5SB09bEHazd4PtU3sx6MLHWITq_n1FgypiUJPXzqW9DND_2feUvQZRFyeGzZPBi8V7IL5zB14Q_m_Aru1xdWW_gwM6v6To9PeUD6S8AEVwAExW0Q5eCbNqkQP6p4HZbH-oDcvETk9bxKg |
CitedBy_id | crossref_primary_10_1016_j_epidem_2013_03_001 crossref_primary_10_1016_j_jtbi_2015_02_005 crossref_primary_10_1016_j_prevetmed_2009_08_022 crossref_primary_10_1016_j_epidem_2010_05_004 crossref_primary_10_1136_vr_102351 crossref_primary_10_1140_epjb_e2015_60657_4 crossref_primary_10_1186_1746_6148_7_66 crossref_primary_10_7717_peerj_17649 crossref_primary_10_1016_j_prevetmed_2011_12_016 crossref_primary_10_1088_0034_4885_77_2_026602 crossref_primary_10_1371_journal_pone_0011185 crossref_primary_10_1371_journal_pone_0019869 crossref_primary_10_1016_j_prevetmed_2023_105861 crossref_primary_10_1016_j_prevetmed_2018_07_004 crossref_primary_10_1038_srep20258 crossref_primary_10_1016_j_asoc_2022_109721 crossref_primary_10_1371_journal_pone_0036026 crossref_primary_10_1098_rsos_180719 crossref_primary_10_1016_j_prevetmed_2009_05_031 crossref_primary_10_1038_srep01178 crossref_primary_10_1016_j_prevetmed_2019_02_001 crossref_primary_10_1371_journal_pone_0247770 crossref_primary_10_1098_rsif_2015_1099 crossref_primary_10_1016_j_prevetmed_2010_12_009 crossref_primary_10_1371_journal_pone_0179915 crossref_primary_10_1016_j_prevetmed_2019_104740 crossref_primary_10_1016_j_prevetmed_2011_05_006 crossref_primary_10_1371_journal_pone_0093410 crossref_primary_10_1098_rspb_2010_1902 crossref_primary_10_1371_journal_pone_0053432 crossref_primary_10_1371_journal_pone_0217972 crossref_primary_10_1007_s11538_018_0484_5 crossref_primary_10_1098_rsif_2011_0625 crossref_primary_10_1186_s40064_016_2875_0 crossref_primary_10_2139_ssrn_4187609 crossref_primary_10_1016_j_prevetmed_2021_105524 crossref_primary_10_1371_journal_pcbi_1004152 crossref_primary_10_1016_j_prevetmed_2010_03_002 crossref_primary_10_1186_1297_9716_43_11 crossref_primary_10_1098_rspb_2015_0205 crossref_primary_10_1093_aobpla_plu007 crossref_primary_10_1016_j_prevetmed_2013_06_008 crossref_primary_10_1371_journal_pone_0055223 crossref_primary_10_1136_vr_c69 crossref_primary_10_1098_rsif_2012_0289 crossref_primary_10_1016_j_automatica_2024_111741 crossref_primary_10_1016_j_prevetmed_2013_08_002 crossref_primary_10_1016_j_prevetmed_2024_106409 crossref_primary_10_1080_17513758_2010_503376 crossref_primary_10_1016_j_tpb_2014_08_004 crossref_primary_10_1186_1751_0147_51_37 crossref_primary_10_3390_ani3020416 crossref_primary_10_1016_j_epidem_2015_02_007 crossref_primary_10_1016_j_prevetmed_2010_11_013 crossref_primary_10_1186_1746_6148_8_188 crossref_primary_10_1103_PhysRevLett_110_118701 crossref_primary_10_1103_PhysRevLett_120_068302 crossref_primary_10_1111_tbed_12245 crossref_primary_10_1007_s00500_020_05499_y crossref_primary_10_1016_j_prevetmed_2016_03_010 crossref_primary_10_1016_j_prevetmed_2016_01_022 crossref_primary_10_1016_j_prevetmed_2013_01_008 crossref_primary_10_1186_1471_2458_12_679 crossref_primary_10_1016_j_epidem_2015_02_008 crossref_primary_10_1371_journal_pcbi_1008009 crossref_primary_10_1094_PHYTO_07_10_0192 crossref_primary_10_3389_fvets_2020_00596 crossref_primary_10_25046_aj030512 crossref_primary_10_1371_journal_pcbi_1005301 crossref_primary_10_1016_j_vetmic_2015_09_010 crossref_primary_10_1016_j_prevetmed_2010_11_005 crossref_primary_10_1098_rspa_2011_0349 crossref_primary_10_1186_1746_6148_7_31 crossref_primary_10_1111_j_1461_0248_2009_01370_x crossref_primary_10_1186_s13567_016_0366_5 crossref_primary_10_1016_j_prevetmed_2015_12_003 crossref_primary_10_1098_rsos_170808 crossref_primary_10_1371_journal_pcbi_1002974 crossref_primary_10_1098_rsif_2010_0179 crossref_primary_10_1371_journal_pone_0155196 crossref_primary_10_1371_journal_pone_0232489 crossref_primary_10_1111_tbed_14640 crossref_primary_10_1016_j_prevetmed_2019_01_001 crossref_primary_10_1016_j_physrep_2012_03_001 crossref_primary_10_1016_j_prevetmed_2016_05_005 crossref_primary_10_1371_journal_pone_0313657 crossref_primary_10_1111_tbed_12106 crossref_primary_10_1371_journal_pone_0223652 crossref_primary_10_1098_rsif_2016_0166 crossref_primary_10_1371_journal_pone_0169881 crossref_primary_10_1098_rspa_2009_0456 crossref_primary_10_1155_2011_284909 crossref_primary_10_1016_j_procs_2012_04_092 crossref_primary_10_1073_pnas_1000416107 crossref_primary_10_1111_tbed_13960 crossref_primary_10_1098_rsif_2009_0221 crossref_primary_10_1016_j_prevetmed_2011_06_007 crossref_primary_10_1016_j_epidem_2018_04_003 crossref_primary_10_1007_s41109_021_00354_x crossref_primary_10_1186_s40064_016_1811_7 crossref_primary_10_1073_pnas_1220815110 crossref_primary_10_3389_fvets_2016_00048 |
Cites_doi | 10.1016/S0167-5877(03)00075-8 10.1016/S0378-8733(98)00010-0 10.1016/S0966-842X(02)02444-7 10.1126/science.286.5439.509 10.1073/pnas.97.16.9340 10.1136/vr.160.4.105 10.1103/PhysRevE.69.065102 10.1093/oso/9780198545996.001.0001 10.1038/nature03548 10.1017/CBO9780511811395.011 10.1016/j.prevetmed.2006.04.004 10.1098/rspb.2006.3648 10.1016/S0966-842X(02)02371-5 10.1017/CBO9780511811395 10.1098/rspb.2004.3046 10.1098/rsif.2007.0214 10.1126/science.1116869 |
ContentType | Journal Article |
Copyright | Copyright 2008 The Royal Society Copyright © 2008 The Royal Society Copyright © 2008 The Royal Society 2008 |
Copyright_xml | – notice: Copyright 2008 The Royal Society – notice: Copyright © 2008 The Royal Society – notice: Copyright © 2008 The Royal Society 2008 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN C1K 7X8 5PM |
DOI | 10.1098/rspb.2008.1009 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Ecology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Ecology Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1471-2954 |
EndPage | 476 |
ExternalDocumentID | PMC2592553 18854300 10_1098_rspb_2008_1009 30244881 ark_67375_V84_BLM68W54_X royprsb_276_1656_469 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust |
GroupedDBID | - 02 08R 0R 0VX 29P 2WC 36Y 4.4 5RE 85S ABBHK ABFLS ABPTK ACIWK ACNCT ACPRK ADACO ADBBV ADULT ADZLD AEUPB AFRAH ALMA_UNASSIGNED_HOLDINGS AS BAWUL BGBPD CS3 DCCCD DIK DNJUQ DOOOF DWIUU E3Z EBS EJD F5P FRP GX1 H13 HQ3 HTVGU HYE HZ JLS JPM JSG JSODD JST K-O KQ8 MVM O0- O9- OK1 OP1 RHF ROL RPM RRY SA0 V1E X --- -~X 0R~ AACGO AANCE ABPLY ABTLG ABXSQ ACQIA ADACV ADIYS AEXZC AJZGM ALMYZ AOIJS AQVQM AS~ BSCLL BTFSW HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF MRS TR2 W8F ~02 ACHIC ACRPL ADNMO ADQXQ AGPVY AGQPQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN C1K 7X8 5PM |
ID | FETCH-LOGICAL-c621t-31e276c770a7faa6edb5e1c76888998407614856de0b4844492c2e526a896bfc3 |
ISSN | 0962-8452 |
IngestDate | Thu Aug 21 17:42:57 EDT 2025 Fri Jul 11 15:11:41 EDT 2025 Fri Jul 11 00:28:02 EDT 2025 Mon Jul 21 06:06:14 EDT 2025 Tue Jul 01 02:06:44 EDT 2025 Thu Apr 24 22:55:39 EDT 2025 Wed Jan 17 02:37:26 EST 2024 Thu Jul 03 21:38:15 EDT 2025 Wed Oct 30 09:50:54 EDT 2024 Mon May 06 10:39:05 EDT 2019 Tue Jan 05 21:30:23 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1656 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/2.5/: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c621t-31e276c770a7faa6edb5e1c76888998407614856de0b4844492c2e526a896bfc3 |
Notes | ark:/67375/V84-BLM68W54-X ArticleID:rspb20081009 href:469.pdf istex:1EA1ACBF74D9A69E669DB120BA2CEC0A7A69F9D0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2592553 |
PMID | 18854300 |
PQID | 20300548 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | royalsociety_journals_10_1098_rspb_2008_1009 proquest_miscellaneous_20300548 highwire_royalsociety_royprsb_276_1656_469 istex_primary_ark_67375_V84_BLM68W54_X crossref_primary_10_1098_rspb_2008_1009 pubmed_primary_18854300 proquest_miscellaneous_66754306 crossref_citationtrail_10_1098_rspb_2008_1009 jstor_primary_30244881 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2592553 |
ProviderPackageCode | RHF CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-02-07 |
PublicationDateYYYYMMDD | 2009-02-07 |
PublicationDate_xml | – month: 02 year: 2009 text: 2009-02-07 day: 07 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Proceedings of the Royal Society. B, Biological sciences |
PublicationTitleAlternate | PROC R SOC B |
PublicationYear | 2009 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_2_16_1 e_1_3_2_9_1 Levins R (e_1_3_2_15_1) 1969; 15 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_20_1 e_1_3_2_10_1 e_1_3_2_21_1 e_1_3_2_11_1 e_1_3_2_22_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_23_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_24_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 10922082 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9340-6 15244650 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):065102 16024382 - Proc Biol Sci. 2005 Jun 22;272(1569):1195-202 15917808 - Nature. 2005 May 26;435(7041):491-6 12088664 - Trends Microbiol. 2002 Jun;10(6):279-86 16400149 - Science. 2006 Jan 6;311(5757):88-90 17015320 - Proc Biol Sci. 2006 Nov 7;273(1602):2729-35 17284415 - J R Soc Interface. 2007 Aug 22;4(15):669-74 16780975 - Prev Vet Med. 2006 Sep 15;76(1-2):11-39 12809760 - Prev Vet Med. 2003 Jun 12;59(3):147-67 12377548 - Trends Microbiol. 2002 Oct;10(10):441-4 10521342 - Science. 1999 Oct 15;286(5439):509-12 17259451 - Vet Rec. 2007 Jan 27;160(4):105-12 |
References_xml | – ident: e_1_3_2_8_1 – ident: e_1_3_2_22_1 – ident: e_1_3_2_9_1 doi: 10.1016/S0167-5877(03)00075-8 – ident: e_1_3_2_4_1 doi: 10.1016/S0378-8733(98)00010-0 – ident: e_1_3_2_23_1 doi: 10.1016/S0966-842X(02)02444-7 – ident: e_1_3_2_3_1 doi: 10.1126/science.286.5439.509 – ident: e_1_3_2_19_1 doi: 10.1073/pnas.97.16.9340 – ident: e_1_3_2_17_1 – ident: e_1_3_2_16_1 doi: 10.1136/vr.160.4.105 – ident: e_1_3_2_24_1 doi: 10.1103/PhysRevE.69.065102 – ident: e_1_3_2_2_1 doi: 10.1093/oso/9780198545996.001.0001 – ident: e_1_3_2_10_1 doi: 10.1038/nature03548 – volume: 15 start-page: 237 year: 1969 ident: e_1_3_2_15_1 article-title: Some demographic and genetic consequences of environmental heterogeneity for biological control publication-title: Bull. Entomol. Soc. Am – ident: e_1_3_2_20_1 doi: 10.1017/CBO9780511811395.011 – ident: e_1_3_2_5_1 doi: 10.1016/j.prevetmed.2006.04.004 – ident: e_1_3_2_11_1 doi: 10.1098/rspb.2006.3648 – ident: e_1_3_2_12_1 doi: 10.1016/S0966-842X(02)02371-5 – ident: e_1_3_2_7_1 – ident: e_1_3_2_6_1 doi: 10.1017/CBO9780511811395 – ident: e_1_3_2_13_1 doi: 10.1098/rspb.2004.3046 – ident: e_1_3_2_21_1 – ident: e_1_3_2_18_1 doi: 10.1098/rsif.2007.0214 – ident: e_1_3_2_14_1 doi: 10.1126/science.1116869 – reference: 16024382 - Proc Biol Sci. 2005 Jun 22;272(1569):1195-202 – reference: 12809760 - Prev Vet Med. 2003 Jun 12;59(3):147-67 – reference: 17259451 - Vet Rec. 2007 Jan 27;160(4):105-12 – reference: 16400149 - Science. 2006 Jan 6;311(5757):88-90 – reference: 15244650 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):065102 – reference: 12088664 - Trends Microbiol. 2002 Jun;10(6):279-86 – reference: 10521342 - Science. 1999 Oct 15;286(5439):509-12 – reference: 17284415 - J R Soc Interface. 2007 Aug 22;4(15):669-74 – reference: 15917808 - Nature. 2005 May 26;435(7041):491-6 – reference: 12377548 - Trends Microbiol. 2002 Oct;10(10):441-4 – reference: 17015320 - Proc Biol Sci. 2006 Nov 7;273(1602):2729-35 – reference: 16780975 - Prev Vet Med. 2006 Sep 15;76(1-2):11-39 – reference: 10922082 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9340-6 |
SSID | ssj0009585 |
Score | 2.3039367 |
Snippet | Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with
particular interest in the impact... Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact... |
SourceID | pubmedcentral proquest pubmed crossref royalsociety jstor istex highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 469 |
SubjectTerms | Animal diseases Animals Cattle Cattle Diseases - transmission Disease models Disease Outbreaks - veterinary Disease transmission Dynamic Networks Epidemics Epidemiology Foot and mouth disease Herds Infection Infections Infectious diseases Livestock Movements Models, Biological Time Factors Transmission United Kingdom |
Title | Representing the UK's cattle herd as static and dynamic networks |
URI | http://rspb.royalsocietypublishing.org/content/276/1656/469.abstract?cited-by=yes&legid=royprsb;276/1656/469 https://api.istex.fr/ark:/67375/V84-BLM68W54-X/fulltext.pdf https://www.jstor.org/stable/30244881 https://royalsocietypublishing.org/doi/full/10.1098/rspb.2008.1009 https://www.ncbi.nlm.nih.gov/pubmed/18854300 https://www.proquest.com/docview/20300548 https://www.proquest.com/docview/66754306 https://pubmed.ncbi.nlm.nih.gov/PMC2592553 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfQEBJfEBsMwtMfEANGujxsx_kGQ6BBGUKoG_1mJbYjJlCpkk4C_nrOj7gptBLjS5Qm1zzufrk72_dA6JFmMue80jHl8JETUicx10rFTa6oIipNpc1yPf7Ajk7IuymdLsOKbHbJoh7JX2vzSv5HqnAM5GqyZC8g2XBROAD7IF_YgoRh-08y_mTDWLVv9mA8yLGdf5e2MjE4ga0yfWRM0pAvy6pcA_r9mYv-7oa-6cdgy7o-csBNLvjIztH-oUXDWdCX3nwGt_xUtzMfje_aiC_nYMfaJr735_xqVD_dUNoI5SIAZPLnvYczigyUK3EFaUfa6VOwfbFZShwq3Mx1fOmRxehQgxLXucUbY-JI_9LzSWlyF2DkX7tw2DRJyqVFC3GGboWdC0PoGm6mNtvzMjwCswPwt-NBiWbbwDW8RijxyQ9Wb7TqwvRlpWF0Yz7MH31g67ohy5rI29Yws3O8HHg2k-vomh-S4JcOX9vokp7toCtOzD930LZX_x1-4muUP72BXgyhh0HU-GS812EHPGyAh6sOO-BhAB72wMM98G6ikzevJ6-OYt-MI5YsSxdgqzUwTRZFUhVNVTGtaqpTCaNVbobsxMyHEU6Z0klNOCGkzGSmacYqXrK6kfku2gII6tsIgweey0RqySsODqIqm1KTKlF1nRYNzZsIxT1_hfSV6k3DlG9ivTwjtBfo565Gy0bKZ724xJDx5se87YCyYMIAUgAMI8Q3EJtrmkwS0wd7-A9hlszEXMEbPLZYCI9TtV9NBGVBxSkn4vD9MeOfKRHTCO1asATCHHxmsKlphB726BGg8M0qXjXT3887eBnTYYLwzRSMFZTkCYvQLYe2JVc4N2eSCBUrOAwEptj86pnZ2RdbdD6jZUZpHqHnK7zw2rDbwPA7FyO_i64udc49tLVoz_V9cPoX9QP7rf4GVHoDdg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representing+the+UK%27s+cattle+herd+as+static+and+dynamic+networks&rft.jtitle=Proceedings+of+the+Royal+Society.+B%2C+Biological+sciences&rft.au=Vernon%2C+Matthew+C&rft.au=Keeling%2C+Matt+J&rft.date=2009-02-07&rft.pub=The+Royal+Society&rft.issn=0962-8452&rft.eissn=1471-2954&rft.volume=276&rft.issue=1656&rft.spage=469&rft.epage=476&rft_id=info:doi/10.1098%2Frspb.2008.1009&rft.externalDocID=10_1098_rspb_2008_1009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8452&client=summon |