Representing the UK's cattle herd as static and dynamic networks

Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be r...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 276; no. 1656; pp. 469 - 476
Main Authors Vernon, Matthew C, Keeling, Matt J
Format Journal Article
LanguageEnglish
Published London The Royal Society 07.02.2009
Subjects
Online AccessGet full text
ISSN0962-8452
1471-2954
DOI10.1098/rspb.2008.1009

Cover

Abstract Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where a movement of animals has occurred. These network representations may vary from a simple static representation, to a more complex, fully dynamic one where daily movements are explicitly captured. Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are compared. We find that the simpler static network representations are often deficient when compared with a fully dynamic representation, and should therefore be used only with caution in epidemiological modelling. In particular, due to temporal structures within the dynamic network, static networks consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when parameterized to match early growth rates.
AbstractList Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where a movement of animals has occurred. These network representations may vary from a simple static representation, to a more complex, fully dynamic one where daily movements are explicitly captured. Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are compared. We find that the simpler static network representations are often deficient when compared with a fully dynamic representation, and should therefore be used only with caution in epidemiological modelling. In particular, due to temporal structures within the dynamic network, static networks consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when parameterized to match early growth rates.
Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where a movement of animals has occurred. These network representations may vary from a simple static representation, to a more complex, fully dynamic one where daily movements are explicitly captured. Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are compared. We find that the simpler static network representations are often deficient when compared with a fully dynamic representation, and should therefore be used only with caution in epidemiological modelling. In particular, due to temporal structures within the dynamic network, static networks consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when parameterized to match early growth rates.Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where a movement of animals has occurred. These network representations may vary from a simple static representation, to a more complex, fully dynamic one where daily movements are explicitly captured. Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are compared. We find that the simpler static network representations are often deficient when compared with a fully dynamic representation, and should therefore be used only with caution in epidemiological modelling. In particular, due to temporal structures within the dynamic network, static networks consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when parameterized to match early growth rates.
Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact of animal movements upon the dynamics of infectious diseases. Detailed data collected by the UK government on the movement of cattle may be represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where a movement of animals has occurred. These network representations may vary from a simple static representation, to a more complex, fully dynamic one where daily movements are explicitly captured. Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are compared. We find that the simpler static network representations are often deficient when compared with a fully dynamic representation, and should therefore be used only with caution in epidemiological modelling. In particular, due to temporal structures within the dynamic network, static networks consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when parameterized to match early growth rates.
Author Vernon, Matthew C
Keeling, Matt J
AuthorAffiliation Department of Biological Sciences, University of Warwick Coventry CV4 7AL, UK
AuthorAffiliation_xml – name: Department of Biological Sciences, University of Warwick Coventry CV4 7AL, UK
Author_xml – sequence: 1
  givenname: Matthew C
  surname: Vernon
  fullname: Vernon, Matthew C
  email: m.c.vernon@warwick.ac.uk
  organization: E-mail: m.c.vernon@warwick.ac.uk
– sequence: 2
  givenname: Matt J
  surname: Keeling
  fullname: Keeling, Matt J
  organization: Department of Biological Sciences, University of Warwick Coventry CV4 7AL, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18854300$$D View this record in MEDLINE/PubMed
BookMark eNqFUk2P0zAUtNAitrtw5QbKCU4ptmM7zoUFVnyJIiTEArcnx3Fad9O42A5L_z0OWSqKtHCyn97MvPEbn6Cj3vUGofsEzwmu5BMftvWcYixTiatbaEZYSXJacXaEZrgSNJeM02N0EsIaJwSX_A46JlJyVmA8Q88-mq03wfTR9sssrkx28e5xyLSKsTPZyvgmUyELUUWrM9U3WbPr1SbdexOvnL8Md9HtVnXB3Ls-T9HFq5efzt_kiw-v354_X-RaUBLzghhaCl2WWJWtUsI0NTdEl0JKWVWS4VIQJrloDK6ZZIxVVFPDqVCyEnWri1P0dNLdDvXGNDo59qqDrbcb5XfglIXDTm9XsHTfgfKKcl4kgUfXAt59G0yIsLFBm65TvXFDACHKcSfiv0CK0-Y4kwn48E9Ley-_t5sAbAJo70LwpgVtx0260aHtgGAYQ4QxRBhDhDHERJv_Rdsr30QoJoJ3u5SB09bEHazd4PtU3sx6MLHWITq_n1FgypiUJPXzqW9DND_2feUvQZRFyeGzZPBi8V7IL5zB14Q_m_Aru1xdWW_gwM6v6To9PeUD6S8AEVwAExW0Q5eCbNqkQP6p4HZbH-oDcvETk9bxKg
CitedBy_id crossref_primary_10_1016_j_epidem_2013_03_001
crossref_primary_10_1016_j_jtbi_2015_02_005
crossref_primary_10_1016_j_prevetmed_2009_08_022
crossref_primary_10_1016_j_epidem_2010_05_004
crossref_primary_10_1136_vr_102351
crossref_primary_10_1140_epjb_e2015_60657_4
crossref_primary_10_1186_1746_6148_7_66
crossref_primary_10_7717_peerj_17649
crossref_primary_10_1016_j_prevetmed_2011_12_016
crossref_primary_10_1088_0034_4885_77_2_026602
crossref_primary_10_1371_journal_pone_0011185
crossref_primary_10_1371_journal_pone_0019869
crossref_primary_10_1016_j_prevetmed_2023_105861
crossref_primary_10_1016_j_prevetmed_2018_07_004
crossref_primary_10_1038_srep20258
crossref_primary_10_1016_j_asoc_2022_109721
crossref_primary_10_1371_journal_pone_0036026
crossref_primary_10_1098_rsos_180719
crossref_primary_10_1016_j_prevetmed_2009_05_031
crossref_primary_10_1038_srep01178
crossref_primary_10_1016_j_prevetmed_2019_02_001
crossref_primary_10_1371_journal_pone_0247770
crossref_primary_10_1098_rsif_2015_1099
crossref_primary_10_1016_j_prevetmed_2010_12_009
crossref_primary_10_1371_journal_pone_0179915
crossref_primary_10_1016_j_prevetmed_2019_104740
crossref_primary_10_1016_j_prevetmed_2011_05_006
crossref_primary_10_1371_journal_pone_0093410
crossref_primary_10_1098_rspb_2010_1902
crossref_primary_10_1371_journal_pone_0053432
crossref_primary_10_1371_journal_pone_0217972
crossref_primary_10_1007_s11538_018_0484_5
crossref_primary_10_1098_rsif_2011_0625
crossref_primary_10_1186_s40064_016_2875_0
crossref_primary_10_2139_ssrn_4187609
crossref_primary_10_1016_j_prevetmed_2021_105524
crossref_primary_10_1371_journal_pcbi_1004152
crossref_primary_10_1016_j_prevetmed_2010_03_002
crossref_primary_10_1186_1297_9716_43_11
crossref_primary_10_1098_rspb_2015_0205
crossref_primary_10_1093_aobpla_plu007
crossref_primary_10_1016_j_prevetmed_2013_06_008
crossref_primary_10_1371_journal_pone_0055223
crossref_primary_10_1136_vr_c69
crossref_primary_10_1098_rsif_2012_0289
crossref_primary_10_1016_j_automatica_2024_111741
crossref_primary_10_1016_j_prevetmed_2013_08_002
crossref_primary_10_1016_j_prevetmed_2024_106409
crossref_primary_10_1080_17513758_2010_503376
crossref_primary_10_1016_j_tpb_2014_08_004
crossref_primary_10_1186_1751_0147_51_37
crossref_primary_10_3390_ani3020416
crossref_primary_10_1016_j_epidem_2015_02_007
crossref_primary_10_1016_j_prevetmed_2010_11_013
crossref_primary_10_1186_1746_6148_8_188
crossref_primary_10_1103_PhysRevLett_110_118701
crossref_primary_10_1103_PhysRevLett_120_068302
crossref_primary_10_1111_tbed_12245
crossref_primary_10_1007_s00500_020_05499_y
crossref_primary_10_1016_j_prevetmed_2016_03_010
crossref_primary_10_1016_j_prevetmed_2016_01_022
crossref_primary_10_1016_j_prevetmed_2013_01_008
crossref_primary_10_1186_1471_2458_12_679
crossref_primary_10_1016_j_epidem_2015_02_008
crossref_primary_10_1371_journal_pcbi_1008009
crossref_primary_10_1094_PHYTO_07_10_0192
crossref_primary_10_3389_fvets_2020_00596
crossref_primary_10_25046_aj030512
crossref_primary_10_1371_journal_pcbi_1005301
crossref_primary_10_1016_j_vetmic_2015_09_010
crossref_primary_10_1016_j_prevetmed_2010_11_005
crossref_primary_10_1098_rspa_2011_0349
crossref_primary_10_1186_1746_6148_7_31
crossref_primary_10_1111_j_1461_0248_2009_01370_x
crossref_primary_10_1186_s13567_016_0366_5
crossref_primary_10_1016_j_prevetmed_2015_12_003
crossref_primary_10_1098_rsos_170808
crossref_primary_10_1371_journal_pcbi_1002974
crossref_primary_10_1098_rsif_2010_0179
crossref_primary_10_1371_journal_pone_0155196
crossref_primary_10_1371_journal_pone_0232489
crossref_primary_10_1111_tbed_14640
crossref_primary_10_1016_j_prevetmed_2019_01_001
crossref_primary_10_1016_j_physrep_2012_03_001
crossref_primary_10_1016_j_prevetmed_2016_05_005
crossref_primary_10_1371_journal_pone_0313657
crossref_primary_10_1111_tbed_12106
crossref_primary_10_1371_journal_pone_0223652
crossref_primary_10_1098_rsif_2016_0166
crossref_primary_10_1371_journal_pone_0169881
crossref_primary_10_1098_rspa_2009_0456
crossref_primary_10_1155_2011_284909
crossref_primary_10_1016_j_procs_2012_04_092
crossref_primary_10_1073_pnas_1000416107
crossref_primary_10_1111_tbed_13960
crossref_primary_10_1098_rsif_2009_0221
crossref_primary_10_1016_j_prevetmed_2011_06_007
crossref_primary_10_1016_j_epidem_2018_04_003
crossref_primary_10_1007_s41109_021_00354_x
crossref_primary_10_1186_s40064_016_1811_7
crossref_primary_10_1073_pnas_1220815110
crossref_primary_10_3389_fvets_2016_00048
Cites_doi 10.1016/S0167-5877(03)00075-8
10.1016/S0378-8733(98)00010-0
10.1016/S0966-842X(02)02444-7
10.1126/science.286.5439.509
10.1073/pnas.97.16.9340
10.1136/vr.160.4.105
10.1103/PhysRevE.69.065102
10.1093/oso/9780198545996.001.0001
10.1038/nature03548
10.1017/CBO9780511811395.011
10.1016/j.prevetmed.2006.04.004
10.1098/rspb.2006.3648
10.1016/S0966-842X(02)02371-5
10.1017/CBO9780511811395
10.1098/rspb.2004.3046
10.1098/rsif.2007.0214
10.1126/science.1116869
ContentType Journal Article
Copyright Copyright 2008 The Royal Society
Copyright © 2008 The Royal Society
Copyright © 2008 The Royal Society 2008
Copyright_xml – notice: Copyright 2008 The Royal Society
– notice: Copyright © 2008 The Royal Society
– notice: Copyright © 2008 The Royal Society 2008
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
C1K
7X8
5PM
DOI 10.1098/rspb.2008.1009
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Ecology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Ecology Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1471-2954
EndPage 476
ExternalDocumentID PMC2592553
18854300
10_1098_rspb_2008_1009
30244881
ark_67375_V84_BLM68W54_X
royprsb_276_1656_469
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
GroupedDBID -
02
08R
0R
0VX
29P
2WC
36Y
4.4
5RE
85S
ABBHK
ABFLS
ABPTK
ACIWK
ACNCT
ACPRK
ADACO
ADBBV
ADULT
ADZLD
AEUPB
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AS
BAWUL
BGBPD
CS3
DCCCD
DIK
DNJUQ
DOOOF
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HQ3
HTVGU
HYE
HZ
JLS
JPM
JSG
JSODD
JST
K-O
KQ8
MVM
O0-
O9-
OK1
OP1
RHF
ROL
RPM
RRY
SA0
V1E
X
---
-~X
0R~
AACGO
AANCE
ABPLY
ABTLG
ABXSQ
ACQIA
ADACV
ADIYS
AEXZC
AJZGM
ALMYZ
AOIJS
AQVQM
AS~
BSCLL
BTFSW
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
MRS
TR2
W8F
~02
ACHIC
ACRPL
ADNMO
ADQXQ
AGPVY
AGQPQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
C1K
7X8
5PM
ID FETCH-LOGICAL-c621t-31e276c770a7faa6edb5e1c76888998407614856de0b4844492c2e526a896bfc3
ISSN 0962-8452
IngestDate Thu Aug 21 17:42:57 EDT 2025
Fri Jul 11 15:11:41 EDT 2025
Fri Jul 11 00:28:02 EDT 2025
Mon Jul 21 06:06:14 EDT 2025
Tue Jul 01 02:06:44 EDT 2025
Thu Apr 24 22:55:39 EDT 2025
Wed Jan 17 02:37:26 EST 2024
Thu Jul 03 21:38:15 EDT 2025
Wed Oct 30 09:50:54 EDT 2024
Mon May 06 10:39:05 EDT 2019
Tue Jan 05 21:30:23 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1656
Language English
License open-access: http://creativecommons.org/licenses/by/2.5/: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c621t-31e276c770a7faa6edb5e1c76888998407614856de0b4844492c2e526a896bfc3
Notes ark:/67375/V84-BLM68W54-X
ArticleID:rspb20081009
href:469.pdf
istex:1EA1ACBF74D9A69E669DB120BA2CEC0A7A69F9D0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2592553
PMID 18854300
PQID 20300548
PQPubID 23462
PageCount 8
ParticipantIDs royalsociety_journals_10_1098_rspb_2008_1009
proquest_miscellaneous_20300548
highwire_royalsociety_royprsb_276_1656_469
istex_primary_ark_67375_V84_BLM68W54_X
crossref_primary_10_1098_rspb_2008_1009
pubmed_primary_18854300
proquest_miscellaneous_66754306
crossref_citationtrail_10_1098_rspb_2008_1009
jstor_primary_30244881
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2592553
ProviderPackageCode RHF
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-02-07
PublicationDateYYYYMMDD 2009-02-07
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02-07
  day: 07
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Proceedings of the Royal Society. B, Biological sciences
PublicationTitleAlternate PROC R SOC B
PublicationYear 2009
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_2_16_1
e_1_3_2_9_1
Levins R (e_1_3_2_15_1) 1969; 15
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_20_1
e_1_3_2_10_1
e_1_3_2_21_1
e_1_3_2_11_1
e_1_3_2_22_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_23_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_24_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
10922082 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9340-6
15244650 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):065102
16024382 - Proc Biol Sci. 2005 Jun 22;272(1569):1195-202
15917808 - Nature. 2005 May 26;435(7041):491-6
12088664 - Trends Microbiol. 2002 Jun;10(6):279-86
16400149 - Science. 2006 Jan 6;311(5757):88-90
17015320 - Proc Biol Sci. 2006 Nov 7;273(1602):2729-35
17284415 - J R Soc Interface. 2007 Aug 22;4(15):669-74
16780975 - Prev Vet Med. 2006 Sep 15;76(1-2):11-39
12809760 - Prev Vet Med. 2003 Jun 12;59(3):147-67
12377548 - Trends Microbiol. 2002 Oct;10(10):441-4
10521342 - Science. 1999 Oct 15;286(5439):509-12
17259451 - Vet Rec. 2007 Jan 27;160(4):105-12
References_xml – ident: e_1_3_2_8_1
– ident: e_1_3_2_22_1
– ident: e_1_3_2_9_1
  doi: 10.1016/S0167-5877(03)00075-8
– ident: e_1_3_2_4_1
  doi: 10.1016/S0378-8733(98)00010-0
– ident: e_1_3_2_23_1
  doi: 10.1016/S0966-842X(02)02444-7
– ident: e_1_3_2_3_1
  doi: 10.1126/science.286.5439.509
– ident: e_1_3_2_19_1
  doi: 10.1073/pnas.97.16.9340
– ident: e_1_3_2_17_1
– ident: e_1_3_2_16_1
  doi: 10.1136/vr.160.4.105
– ident: e_1_3_2_24_1
  doi: 10.1103/PhysRevE.69.065102
– ident: e_1_3_2_2_1
  doi: 10.1093/oso/9780198545996.001.0001
– ident: e_1_3_2_10_1
  doi: 10.1038/nature03548
– volume: 15
  start-page: 237
  year: 1969
  ident: e_1_3_2_15_1
  article-title: Some demographic and genetic consequences of environmental heterogeneity for biological control
  publication-title: Bull. Entomol. Soc. Am
– ident: e_1_3_2_20_1
  doi: 10.1017/CBO9780511811395.011
– ident: e_1_3_2_5_1
  doi: 10.1016/j.prevetmed.2006.04.004
– ident: e_1_3_2_11_1
  doi: 10.1098/rspb.2006.3648
– ident: e_1_3_2_12_1
  doi: 10.1016/S0966-842X(02)02371-5
– ident: e_1_3_2_7_1
– ident: e_1_3_2_6_1
  doi: 10.1017/CBO9780511811395
– ident: e_1_3_2_13_1
  doi: 10.1098/rspb.2004.3046
– ident: e_1_3_2_21_1
– ident: e_1_3_2_18_1
  doi: 10.1098/rsif.2007.0214
– ident: e_1_3_2_14_1
  doi: 10.1126/science.1116869
– reference: 16024382 - Proc Biol Sci. 2005 Jun 22;272(1569):1195-202
– reference: 12809760 - Prev Vet Med. 2003 Jun 12;59(3):147-67
– reference: 17259451 - Vet Rec. 2007 Jan 27;160(4):105-12
– reference: 16400149 - Science. 2006 Jan 6;311(5757):88-90
– reference: 15244650 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 2):065102
– reference: 12088664 - Trends Microbiol. 2002 Jun;10(6):279-86
– reference: 10521342 - Science. 1999 Oct 15;286(5439):509-12
– reference: 17284415 - J R Soc Interface. 2007 Aug 22;4(15):669-74
– reference: 15917808 - Nature. 2005 May 26;435(7041):491-6
– reference: 12377548 - Trends Microbiol. 2002 Oct;10(10):441-4
– reference: 17015320 - Proc Biol Sci. 2006 Nov 7;273(1602):2729-35
– reference: 16780975 - Prev Vet Med. 2006 Sep 15;76(1-2):11-39
– reference: 10922082 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9340-6
SSID ssj0009585
Score 2.3039367
Snippet Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact...
Network models are increasingly being used to understand the spread of diseases through sparsely connected populations, with particular interest in the impact...
SourceID pubmedcentral
proquest
pubmed
crossref
royalsociety
jstor
istex
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 469
SubjectTerms Animal diseases
Animals
Cattle
Cattle Diseases - transmission
Disease models
Disease Outbreaks - veterinary
Disease transmission
Dynamic Networks
Epidemics
Epidemiology
Foot and mouth disease
Herds
Infection
Infections
Infectious diseases
Livestock Movements
Models, Biological
Time Factors
Transmission
United Kingdom
Title Representing the UK's cattle herd as static and dynamic networks
URI http://rspb.royalsocietypublishing.org/content/276/1656/469.abstract?cited-by=yes&legid=royprsb;276/1656/469
https://api.istex.fr/ark:/67375/V84-BLM68W54-X/fulltext.pdf
https://www.jstor.org/stable/30244881
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2008.1009
https://www.ncbi.nlm.nih.gov/pubmed/18854300
https://www.proquest.com/docview/20300548
https://www.proquest.com/docview/66754306
https://pubmed.ncbi.nlm.nih.gov/PMC2592553
Volume 276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfQEBJfEBsMwtMfEANGujxsx_kGQ6BBGUKoG_1mJbYjJlCpkk4C_nrOj7gptBLjS5Qm1zzufrk72_dA6JFmMue80jHl8JETUicx10rFTa6oIipNpc1yPf7Ajk7IuymdLsOKbHbJoh7JX2vzSv5HqnAM5GqyZC8g2XBROAD7IF_YgoRh-08y_mTDWLVv9mA8yLGdf5e2MjE4ga0yfWRM0pAvy6pcA_r9mYv-7oa-6cdgy7o-csBNLvjIztH-oUXDWdCX3nwGt_xUtzMfje_aiC_nYMfaJr735_xqVD_dUNoI5SIAZPLnvYczigyUK3EFaUfa6VOwfbFZShwq3Mx1fOmRxehQgxLXucUbY-JI_9LzSWlyF2DkX7tw2DRJyqVFC3GGboWdC0PoGm6mNtvzMjwCswPwt-NBiWbbwDW8RijxyQ9Wb7TqwvRlpWF0Yz7MH31g67ohy5rI29Yws3O8HHg2k-vomh-S4JcOX9vokp7toCtOzD930LZX_x1-4muUP72BXgyhh0HU-GS812EHPGyAh6sOO-BhAB72wMM98G6ikzevJ6-OYt-MI5YsSxdgqzUwTRZFUhVNVTGtaqpTCaNVbobsxMyHEU6Z0klNOCGkzGSmacYqXrK6kfku2gII6tsIgweey0RqySsODqIqm1KTKlF1nRYNzZsIxT1_hfSV6k3DlG9ivTwjtBfo565Gy0bKZ724xJDx5se87YCyYMIAUgAMI8Q3EJtrmkwS0wd7-A9hlszEXMEbPLZYCI9TtV9NBGVBxSkn4vD9MeOfKRHTCO1asATCHHxmsKlphB726BGg8M0qXjXT3887eBnTYYLwzRSMFZTkCYvQLYe2JVc4N2eSCBUrOAwEptj86pnZ2RdbdD6jZUZpHqHnK7zw2rDbwPA7FyO_i64udc49tLVoz_V9cPoX9QP7rf4GVHoDdg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representing+the+UK%27s+cattle+herd+as+static+and+dynamic+networks&rft.jtitle=Proceedings+of+the+Royal+Society.+B%2C+Biological+sciences&rft.au=Vernon%2C+Matthew+C&rft.au=Keeling%2C+Matt+J&rft.date=2009-02-07&rft.pub=The+Royal+Society&rft.issn=0962-8452&rft.eissn=1471-2954&rft.volume=276&rft.issue=1656&rft.spage=469&rft.epage=476&rft_id=info:doi/10.1098%2Frspb.2008.1009&rft.externalDocID=10_1098_rspb_2008_1009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8452&client=summon