深度学习算法在藏文情感分析中的应用研究

TP391.1; 针对以往进行藏文情感分析时算法忽略藏文语句结构、词序等重要信息而导致结果准确率较低的问题,将深度学习领域内的递归自编码算法引入藏文情感分析中,以更深层次提取语义情感信息.将藏文分词后,用词向量表示词语,则藏文语句变为由词向量组成的矩阵;利用无监督递归自编码算法对该矩阵向量化,此时获得的最佳藏文语句向量编码融合了语义、语序等重要信息;利用藏文语句向量和其对应的情感标签,有监督地训练输出层分类器以预测藏文语句的情感倾向.在实例验证部分,探讨了不同向量维度、重构误差系数及语料库大小对算法准确度的影响,并分析了语料库大小和模型训练时间之间的关系,指出若要快速完成模型的训练,可适当减小...

Full description

Saved in:
Bibliographic Details
Published in计算机科学与探索 Vol. 11; no. 7; pp. 1122 - 1130
Main Authors 普次仁, 侯佳林, 刘月, 翟东海
Format Journal Article
LanguageChinese
Published 西藏大学 藏文信息技术研究中心,拉萨,850000%西南交通大学 信息科学与技术学院,成都,610031%西藏大学 藏文信息技术研究中心,拉萨 850000 2017
西南交通大学 信息科学与技术学院,成都 610031
Subjects
Online AccessGet full text
ISSN1673-9418
DOI10.3778/j.issn.1673-9418.1611062

Cover

Abstract TP391.1; 针对以往进行藏文情感分析时算法忽略藏文语句结构、词序等重要信息而导致结果准确率较低的问题,将深度学习领域内的递归自编码算法引入藏文情感分析中,以更深层次提取语义情感信息.将藏文分词后,用词向量表示词语,则藏文语句变为由词向量组成的矩阵;利用无监督递归自编码算法对该矩阵向量化,此时获得的最佳藏文语句向量编码融合了语义、语序等重要信息;利用藏文语句向量和其对应的情感标签,有监督地训练输出层分类器以预测藏文语句的情感倾向.在实例验证部分,探讨了不同向量维度、重构误差系数及语料库大小对算法准确度的影响,并分析了语料库大小和模型训练时间之间的关系,指出若要快速完成模型的训练,可适当减小数据集语句条数.实例验证表明,在最佳参数组合下,所提算法准确度比传统机器学习算法中性能较好的语义空间模型高约8.6%.
AbstractList TP391.1; 针对以往进行藏文情感分析时算法忽略藏文语句结构、词序等重要信息而导致结果准确率较低的问题,将深度学习领域内的递归自编码算法引入藏文情感分析中,以更深层次提取语义情感信息.将藏文分词后,用词向量表示词语,则藏文语句变为由词向量组成的矩阵;利用无监督递归自编码算法对该矩阵向量化,此时获得的最佳藏文语句向量编码融合了语义、语序等重要信息;利用藏文语句向量和其对应的情感标签,有监督地训练输出层分类器以预测藏文语句的情感倾向.在实例验证部分,探讨了不同向量维度、重构误差系数及语料库大小对算法准确度的影响,并分析了语料库大小和模型训练时间之间的关系,指出若要快速完成模型的训练,可适当减小数据集语句条数.实例验证表明,在最佳参数组合下,所提算法准确度比传统机器学习算法中性能较好的语义空间模型高约8.6%.
Abstract_FL During Tibetan sentiment analysis in past, the algorithm always ignores some important information like sentences structure and words order etc, which lead low accuracy of sentiment analysis. To deeply get more senti-ment details, this paper proposes a novel approach of Tibetan sentiment analysis based on deep learning. Firstly, one word in Tibetan is represented by a word vector while one sentence is represented by a matrix which is composed by its word vectors;Secondly, the matrix is turned into a vector which contains most important details such as sentence meaning and words order etc, through an unsupervised recursive auto encoder algorithm; Finally, the classifier in output layer is trained by supervised method which uses the word vectors and its sentiment tags. In the experiment part, this paper discusses the selection of word vector dimensions and reconstruction error weights, studies corpus amount how to affect algorithm accuracy, and analyzes the relation between corpus amount and training time. The experimental results demonstrate that the proposed method can improve accuracy up 8.6%compared with semantic space model which is almost the best in traditional machine learning algorithm.
Author 刘月
普次仁
翟东海
侯佳林
AuthorAffiliation 西藏大学 藏文信息技术研究中心,拉萨,850000%西南交通大学 信息科学与技术学院,成都,610031%西藏大学 藏文信息技术研究中心,拉萨 850000;西南交通大学 信息科学与技术学院,成都 610031
AuthorAffiliation_xml – name: 西藏大学 藏文信息技术研究中心,拉萨,850000%西南交通大学 信息科学与技术学院,成都,610031%西藏大学 藏文信息技术研究中心,拉萨 850000;西南交通大学 信息科学与技术学院,成都 610031
Author_FL LIU Yue
HOU Jialin
PU Ciren
ZHAI Donghai
Author_FL_xml – sequence: 1
  fullname: PU Ciren
– sequence: 2
  fullname: HOU Jialin
– sequence: 3
  fullname: LIU Yue
– sequence: 4
  fullname: ZHAI Donghai
Author_xml – sequence: 1
  fullname: 普次仁
– sequence: 2
  fullname: 侯佳林
– sequence: 3
  fullname: 刘月
– sequence: 4
  fullname: 翟东海
BookMark eNo9jT1LAzEchzNUsNZ-B1eHO_NPcsndKMU3KLh0L5fkIj0lBaOos_Vl0-FqQUQ7lTpUEMGXfp7enR_DguL0e3iG57eEKrZrE4RWAPtUiHAt9TvOWR-4oF7EIJwTAOakgqr_bhHVnetIHDBGQPCwiqLi4zWfjvLJaPY1LF8GxVs_fxh_D26Ku6vi_KLoPeXXl8Xj7exzUt738mlWZuNymJXP78towcQHLqn_bQ21NjdajW2vubu101hveooT8IQyIBPGtGaJUJxTUIZgY3SstMJE0diQMEgiwwFLjZnAhEopowh0YBiPaQ2t_mZPYmtiu9dOu8eHdn7YTl26f3p25AgGgQUGoD8B7WJY
ClassificationCodes TP391.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3778/j.issn.1673-9418.1611062
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Deep Learning Algorithm Applied in Tibetan Sentiment Analysis
EndPage 1130
ExternalDocumentID jsjkxyts201707011
GrantInformation_xml – fundername: The National Natural Science Foundation of China under Grant No. 61540060; the National Soft Science Re-search Program of China under Grant No. 2013GXS4D150; the Research Program of Science and Tech-nology Department of Tibet Autonomous Region
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
M~E
PSX
TCJ
ID FETCH-LOGICAL-c621-7cf1be44dd4e7c6631cf20ffdacdc02c3af285e9f610bd047023bbb991d5f46a3
ISSN 1673-9418
IngestDate Thu May 29 04:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords 情感分析
deep learning
recursive auto encoder
sentiment analysis
recursive neural networks
深度学习
递归自编码
递归神经网络
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c621-7cf1be44dd4e7c6631cf20ffdacdc02c3af285e9f610bd047023bbb991d5f46a3
PageCount 9
ParticipantIDs wanfang_journals_jsjkxyts201707011
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机科学与探索
PublicationTitle_FL Journal of Frontiers of Computer Science & Technology
PublicationYear 2017
Publisher 西藏大学 藏文信息技术研究中心,拉萨,850000%西南交通大学 信息科学与技术学院,成都,610031%西藏大学 藏文信息技术研究中心,拉萨 850000
西南交通大学 信息科学与技术学院,成都 610031
Publisher_xml – name: 西藏大学 藏文信息技术研究中心,拉萨,850000%西南交通大学 信息科学与技术学院,成都,610031%西藏大学 藏文信息技术研究中心,拉萨 850000
– name: 西南交通大学 信息科学与技术学院,成都 610031
SSID ssib054421768
ssib002040941
ssib002423894
ssib051375751
ssib023646573
ssib036438069
ssib002040926
Score 2.0891247
Snippet TP391.1; 针对以往进行藏文情感分析时算法忽略藏文语句结构、词序等重要信息而导致结果准确率较低的问题,将深度学习领域内的递归自编码算法引入藏文情感分析中,以更深层次...
SourceID wanfang
SourceType Aggregation Database
StartPage 1122
Title 深度学习算法在藏文情感分析中的应用研究
URI https://d.wanfangdata.com.cn/periodical/jsjkxyts201707011
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1673-9418
  databaseCode: M~E
  dateStart: 20070101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib054421768
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3Na9RQEA-lXryIouI3RXynkpr38vI-jsk2SxH0VKG3ko-NUmEFuwXtwYv146aHakFEeyr1UEEEP_r3dHc9-Tc4M8nuZtsq6slLeHmZN_ObmZCZSd57cZwrvtRp3rKFGxR-4sosSF1rhXJ5UbS4UYUStFn19Rtq7qa8thAsTEz-qM1aWumkM9nqoetK_sWr0Ad-xVWyf-HZIVPogDb4F47gYTj-kY9ZrFikWcRZHLAoZKHCRjhLDckiy0KPxZqFMbOaiH1mA6SxDRYaFhvsN028ZBUzRGN8ZgJqSGabSGwMM4pogI9HnA1KAc42RLJSupXUI4mzRtFlT2hZpOpJMMoFSCEfwwaQgAn2ABM-rggAiAkSjBJIE4GU4bxoGm2REzTCBjGGQREzfEQCHTC4SY1ZNESljx6RkKbWVGCMGV0BgU0yBmGBi2hLUFrXX5qUq0PpBicNAxw0MjHoI1G3gWLTh5lf4hjED6ec4EIjxOkoJSjs2W_amkNIJDhQEEIDFrAkxUOfiIbB_1J4TAQ1fKD0LHlA0h0EbC3NfgkPRXwQ3-_9tQ_6kMaSw8QAKEFEwT46RzQg24YwMA70vzHkdGnGWjhX2netrCL8IN7z2nNN14I3lB6ilghyXn4x3J9k-FobSjJQxMxQBLQgla5Si_Et3JeWl-7cf9BZxjsRQixuRXBEaMiMcarxw3iULkNEtfVyH8_l2LpzqC-G8RP__aCCUfkBp77x1LA8Cbiv8bPq8FxKwXW5OniAupzciCpd_ZVCtJyxXSTtW7XMe_64c6wqmafC8vl3wplYvX3Ssb0vH7u7W92drb1vm_0PG71PL7tvtr9vPO-9etp79Li39q777Env7Yu9rzv912vd3fX--nZ_c73__vMpZ74Zzzfm3Oo3MG6mBHd1VvC0JWWey5bOoEDiWSG8osiTLM88kflJIUwA4QZuzTT3pAa7pGkKdW8eFFIl_mlnsn233TrjTCW4a0CiUtzWUfpSJvibBp0JaaHOauX6rHO50nSxesovLx7w3bk_ITrvHMV2-a72gjPZubfSugjVSye9RC7_CVBD4g0
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E5%9C%A8%E8%97%8F%E6%96%87%E6%83%85%E6%84%9F%E5%88%86%E6%9E%90%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8E%A2%E7%B4%A2&rft.au=%E6%99%AE%E6%AC%A1%E4%BB%81&rft.au=%E4%BE%AF%E4%BD%B3%E6%9E%97&rft.au=%E5%88%98%E6%9C%88&rft.au=%E7%BF%9F%E4%B8%9C%E6%B5%B7&rft.date=2017&rft.pub=%E8%A5%BF%E8%97%8F%E5%A4%A7%E5%AD%A6+%E8%97%8F%E6%96%87%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E6%8B%89%E8%90%A8%2C850000%25%E8%A5%BF%E5%8D%97%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6+%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%88%90%E9%83%BD%2C610031%25%E8%A5%BF%E8%97%8F%E5%A4%A7%E5%AD%A6+%E8%97%8F%E6%96%87%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E6%8B%89%E8%90%A8+850000&rft.issn=1673-9418&rft.volume=11&rft.issue=7&rft.spage=1122&rft.epage=1130&rft_id=info:doi/10.3778%2Fj.issn.1673-9418.1611062&rft.externalDocID=jsjkxyts201707011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxyts%2Fjsjkxyts.jpg