Automated identification of mouse visual areas with intrinsic signal imaging
This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm. Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we d...
        Saved in:
      
    
          | Published in | Nature protocols Vol. 12; no. 1; pp. 32 - 43 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Nature Publishing Group UK
    
        01.01.2017
     Nature Publishing Group  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1754-2189 1750-2799 1750-2799  | 
| DOI | 10.1038/nprot.2016.158 | 
Cover
| Abstract | This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm.
Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity
in vivo
over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system. | 
    
|---|---|
| AbstractList | Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull ([similar]1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions ([similar]2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system. Keywords: Mouse visual cortex, intrinsic signal optical imaging, striate cortex, extrastriate cortex, brain, mouse brain, ISI, retinotopy, retinotopic map, retinal map, retinal mapping intrinsic activity, neuron, Retinotopic mapping, visual field map, visual cortex, Functional mapping, MATLAB, mouse, visual field, intrinsic signal imaging Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system. This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm.Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system. Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull ([similar]1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions ([similar]2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system. Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (~1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (~2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system. Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system.Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system. This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm. Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system.  | 
    
| Audience | Academic | 
    
| Author | Juavinett, Ashley L Callaway, Edward M Nauhaus, Ian Zhuang, Jun Garrett, Marina E  | 
    
| AuthorAffiliation | 1 Salk Institute for Biological Studies, La Jolla, California, USA 3 The Allen Institute for Brain Science, Seattle, Washington, USA 2 The University of Texas at Austin, Austin, Texas, USA  | 
    
| AuthorAffiliation_xml | – name: 3 The Allen Institute for Brain Science, Seattle, Washington, USA – name: 1 Salk Institute for Biological Studies, La Jolla, California, USA – name: 2 The University of Texas at Austin, Austin, Texas, USA  | 
    
| Author_xml | – sequence: 1 givenname: Ashley L surname: Juavinett fullname: Juavinett, Ashley L organization: Salk Institute for Biological Studies – sequence: 2 givenname: Ian surname: Nauhaus fullname: Nauhaus, Ian organization: The University of Texas at Austin – sequence: 3 givenname: Marina E surname: Garrett fullname: Garrett, Marina E organization: The Allen Institute for Brain Science – sequence: 4 givenname: Jun surname: Zhuang fullname: Zhuang, Jun organization: The Allen Institute for Brain Science – sequence: 5 givenname: Edward M surname: Callaway fullname: Callaway, Edward M email: callaway@salk.edu organization: Salk Institute for Biological Studies  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27906169$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkktr3DAURkVJaZJpt10WQzfpwhNJtl6bwhCaNjBQ6GMtZFl2FGxpKslJ8--jebTJhLTBYAvrfFfS0T0GB847A8BbBOcIVvzUrYJPcwwRnSPCX4AjxAgsMRPiYDOuS4y4OATHMV5BWLOKslfgMM9Diqg4AsvFlPyokmkL2xqXbGe1Sta7wnfF6KdoimsbJzUUKhgVixubLgvrUrAuWl1E27s8Z0fVW9e_Bi87NUTzZvedgZ_nn36cfSmXXz9fnC2WpaYYptJgxWreNgh3vOJUYwQ71JnWEIEZazRWuBFKoIY3yOS3aqChuIGYCGG40NUMnG7rTm6lbm_UMMhVyHsItxJBufYiN17k2ovMXnLi4zaxmprRtDqfNKj7lFdW7s84eyl7fy1JxRHN2mbgZFcg-F-TiUmONmozDMqZbEkiTiBjlOXFn0drgkldC5TR94_QKz-FbDRKTChhmFdU_I9a12Ic44rfU70ajLSu8_kger20XNQ8iyC8Xq84f4LKT2tGq3NvdTb_3wt82AtkJpnfqVdTjPLi-7d99t1Dy3_1_mm3DNRbQAcfYzCd1DZt2i3vwg7_vr35o9iz171rkJhB15vwwNjTiTt1jQc7 | 
    
| CitedBy_id | crossref_primary_10_1016_j_neuron_2021_09_053 crossref_primary_10_1016_j_neuron_2021_10_020 crossref_primary_10_1038_s41586_024_08027_2 crossref_primary_10_1146_annurev_vision_102016_061331 crossref_primary_10_7554_eLife_60628 crossref_primary_10_7554_eLife_73783 crossref_primary_10_1073_pnas_2100579118 crossref_primary_10_1002_cne_25404 crossref_primary_10_7554_eLife_18372 crossref_primary_10_1016_j_cub_2019_03_065 crossref_primary_10_1016_j_celrep_2020_107636 crossref_primary_10_1016_j_jneumeth_2021_109287 crossref_primary_10_1038_s41467_019_11630_x crossref_primary_10_1038_s41467_023_37976_x crossref_primary_10_1523_JNEUROSCI_3478_17_2018 crossref_primary_10_1038_s41586_020_03171_x crossref_primary_10_1016_j_celrep_2024_114244 crossref_primary_10_1038_s43586_022_00136_4 crossref_primary_10_1016_j_celrep_2024_113830 crossref_primary_10_1016_j_celrep_2024_115217 crossref_primary_10_1186_s42492_021_00081_1 crossref_primary_10_1038_s41598_021_90650_4 crossref_primary_10_1038_s41596_022_00768_6 crossref_primary_10_3389_fnins_2022_938665 crossref_primary_10_1016_j_neuron_2020_04_023 crossref_primary_10_1016_j_neuron_2024_06_015 crossref_primary_10_1162_netn_a_00312 crossref_primary_10_1016_j_cub_2024_11_015 crossref_primary_10_1152_jn_00680_2018 crossref_primary_10_3389_fncir_2021_541676 crossref_primary_10_1016_j_neuron_2018_05_009 crossref_primary_10_7554_eLife_62156 crossref_primary_10_1016_j_neures_2021_02_001 crossref_primary_10_1038_s41467_020_14643_z crossref_primary_10_1016_j_celrep_2024_113762 crossref_primary_10_1016_j_xpro_2021_100779 crossref_primary_10_1152_jn_00138_2022 crossref_primary_10_21769_BioProtoc_2731 crossref_primary_10_1038_s41596_021_00527_z crossref_primary_10_3788_CJL221482 crossref_primary_10_1089_ten_tec_2018_0090 crossref_primary_10_2139_ssrn_4102639 crossref_primary_10_1016_j_neures_2022_01_007 crossref_primary_10_1016_j_neuron_2020_01_040 crossref_primary_10_1016_j_neuron_2020_04_018 crossref_primary_10_1002_cne_24737 crossref_primary_10_1523_JNEUROSCI_1167_24_2024 crossref_primary_10_1016_j_neuron_2023_03_006 crossref_primary_10_1038_s41598_022_05932_2 crossref_primary_10_1007_s00429_021_02415_4 crossref_primary_10_1007_s11426_023_1898_4 crossref_primary_10_1038_s41598_023_33951_0 crossref_primary_10_1016_j_cub_2020_12_034 crossref_primary_10_1371_journal_pone_0213924 crossref_primary_10_1016_j_celrep_2021_109826 crossref_primary_10_1016_j_celrep_2024_114197 crossref_primary_10_1016_j_neuron_2018_09_050 crossref_primary_10_1080_01616412_2022_2051132  | 
    
| Cites_doi | 10.1152/jn.00120.2007 10.1016/j.neuron.2008.01.002 10.1038/nprot.2016.007 10.1038/375780a0 10.1016/j.tins.2011.07.002 10.1523/JNEUROSCI.1124-14.2014 10.1523/JNEUROSCI.1818-14.2014 10.1016/j.brainres.2007.11.053 10.1126/science.7754376 10.1038/nprot.2009.89 10.1016/j.cub.2015.05.028 10.1073/pnas.94.26.14826 10.1038/353429a0 10.1073/pnas.0500291102 10.1523/JNEUROSCI.22-15-06549.2002 10.1126/science.2165630 10.1016/j.neuron.2011.12.011 10.1523/JNEUROSCI.20-21-08111.2000 10.1038/nn.3300 10.1097/00004647-200110000-00001 10.1007/978-1-4757-9625-4_3 10.1523/JNEUROSCI.16-21-06945.1996 10.1038/324361a0 10.1093/cercor/4.6.601 10.1038/nn.3865 10.1523/JNEUROSCI.03-11-02251.1983 10.1016/0165-0270(91)90038-2 10.1016/j.jneumeth.2016.04.012 10.1093/cercor/7.2.181 10.1016/j.visres.2010.08.004 10.1073/pnas.87.16.6082 10.1038/nprot.2014.165 10.1016/S0165-0270(03)00198-5 10.1016/S0896-6273(03)00286-1 10.1371/journal.pone.0118277 10.1016/j.neuron.2011.12.004 10.1038/nprot.2009.222 10.1016/0006-8993(71)90635-4 10.1002/mrm.1910300204 10.1126/science.272.5261.551 10.1016/j.neuron.2013.06.010  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Nature Limited 2016 COPYRIGHT 2017 Nature Publishing Group Copyright Nature Publishing Group Jan 2017 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016.  | 
    
| Copyright_xml | – notice: Springer Nature Limited 2016 – notice: COPYRIGHT 2017 Nature Publishing Group – notice: Copyright Nature Publishing Group Jan 2017 – notice: Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QG 7T5 7T7 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1038/nprot.2016.158 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic AIDS and Cancer Research Abstracts ProQuest Central Student  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1750-2799 | 
    
| EndPage | 43 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:5381647 PMC5381647 4269583681 A480165841 27906169 10_1038_nprot_2016_158  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | United States--US | 
    
| GeographicLocations_xml | – name: United States--US | 
    
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH063912 – fundername: NEI NIH HHS grantid: R01 EY022577 – fundername: NEI NIH HHS grantid: P30 EY019005  | 
    
| GroupedDBID | --- 0R~ 123 29M 39C 3TQ 3V. 4.4 53G 5BI 5M7 70F 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABJNI ABLJU ABUWG ACGFO ACGFS ACMJI ACPRK ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF DB5 DU5 EBS EE. EJD EMOBN F5P FEDTE FSGXE FYUFA FZEXT HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC LGEZI LK8 LOTEE M1P M7P NADUK NNMJJ NXXTH O9- ODYON P2P PATMY PQQKQ PROAC PSQYO PYCSY RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG UKHRP AAYXX AFANA ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NFIDA NPM AGSTI 7QG 7T5 7T7 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c620t-e2a748db12f8386c210f1fede59277bc2a2b9a91b8b1e1b8ab0e62b02599e89c3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1754-2189 1750-2799  | 
    
| IngestDate | Sun Oct 26 03:38:03 EDT 2025 Tue Sep 30 17:04:35 EDT 2025 Thu Oct 02 19:36:43 EDT 2025 Thu Sep 04 18:05:39 EDT 2025 Tue Oct 07 06:06:37 EDT 2025 Tue Oct 07 05:53:40 EDT 2025 Mon Oct 20 21:58:58 EDT 2025 Mon Oct 20 16:38:52 EDT 2025 Thu Oct 16 14:11:20 EDT 2025 Mon Jul 21 06:02:53 EDT 2025 Thu Apr 24 22:50:20 EDT 2025 Wed Oct 01 00:19:51 EDT 2025 Fri Feb 21 02:37:34 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | Reprints and permissions information is available online at http://www.nature.com/reprints/index.html. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c620t-e2a748db12f8386c210f1fede59277bc2a2b9a91b8b1e1b8ab0e62b02599e89c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5381647 | 
    
| PMID | 27906169 | 
    
| PQID | 1845782238 | 
    
| PQPubID | 536306 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1038_nprot_2016_158 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5381647 proquest_miscellaneous_1850776710 proquest_miscellaneous_1845254491 proquest_journals_2565728369 proquest_journals_1845782238 gale_infotracmisc_A480165841 gale_infotracacademiconefile_A480165841 gale_incontextgauss_ISR_A480165841 pubmed_primary_27906169 crossref_citationtrail_10_1038_nprot_2016_158 crossref_primary_10_1038_nprot_2016_158 springer_journals_10_1038_nprot_2016_158  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-01-01 | 
    
| PublicationDateYYYYMMDD | 2017-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationSubtitle | Recipes for Researchers | 
    
| PublicationTitle | Nature protocols | 
    
| PublicationTitleAbbrev | Nat Protoc | 
    
| PublicationTitleAlternate | Nat Protoc | 
    
| PublicationYear | 2017 | 
    
| Publisher | Nature Publishing Group UK Nature Publishing Group  | 
    
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group  | 
    
| References | Wandell, Winawer (CR11) 2011; 51 Glickfeld, Andermann, Bonin, Reid (CR20) 2013; 16 Nauhaus, Ringach (CR36) 2007; 97 Yang, Pan, Parkhurst, Grutzendler, Gan (CR30) 2010; 5 Luo, Callaway, Svoboda (CR17) 2008; 57 Villeneuve, Casanova (CR32) 2003; 129 Sereno, McDonald, Allman (CR9) 1994; 4 Niell (CR16) 2011; 72 Raposo, Kaufman, Churchland (CR22) 2014; 17 Silasi, Xiao, Vanni, Chen, Murphy (CR38) 2016; 267 Frostig, Lieke, Ts'o, Grinvald (CR4) 1990; 87 CR12 Das, Gilbert (CR26) 1995; 375 Bandettini, Jesmanowicz, Wong, Hyde (CR40) 1993; 30 Goltstein, Montijn, Pennartz (CR31) 2015; 10 Kaas (CR14) 1997; 12 Huberman, Niell (CR15) 2011; 34 Marshel, Garrett, Nauhaus, Callaway (CR18) 2011; 72 Shtoyerman, Arieli, Slovin, Vanzetta, Grinvald (CR33) 2000; 20 Holtmaat (CR29) 2009; 4 Ratzlaff, Grinvald (CR37) 1991; 36 Bonhoeffer, Grinvald (CR6) 1991; 353 Kodandaramaiah (CR27) 2016; 11 Garrett, Nauhaus, Marshel, Callaway (CR8) 2014; 34 Sereno (CR10) 1995; 268 Allman, Kaas (CR13) 1971; 31 CR21 Engel, Glover, Wandell (CR41) 1997; 7 Kalatsky, Stryker (CR34) 2003; 38 Malonek, Grinvald (CR35) 1996; 272 Schuett, Bonhoeffer, Hübener (CR39) 2002; 22 Oommen, Stahl (CR42) 2008; 1193 Grinvald, Lieke, Frostig, Gilbert, Wiesel (CR1) 1986; 324 Polimeni, Granquist-Fraser, Wood, Schwartz (CR24) 2005; 102 Vanni, Murphy (CR23) 2014; 34 Ts'o, Frostig, Lieke, Grinvald (CR7) 1990; 249 Juavinett, Callaway (CR19) 2015; 25 Orbach, Cohen (CR25) 1983; 3 Attwell, Laughlin (CR3) 2001; 21 Malonek (CR2) 1997; 94 Shmuel, Grinvald (CR5) 1996; 16 Goldey (CR28) 2014; 9 MI Sereno (BFnprot2016158_CR10) 1995; 268 A Das (BFnprot2016158_CR26) 1995; 375 DY Ts'o (BFnprot2016158_CR7) 1990; 249 JH Kaas (BFnprot2016158_CR14) 1997; 12 JR Polimeni (BFnprot2016158_CR24) 2005; 102 A Grinvald (BFnprot2016158_CR1) 1986; 324 HS Orbach (BFnprot2016158_CR25) 1983; 3 PA Bandettini (BFnprot2016158_CR40) 1993; 30 S Schuett (BFnprot2016158_CR39) 2002; 22 G Silasi (BFnprot2016158_CR38) 2016; 267 BFnprot2016158_CR12 AD Huberman (BFnprot2016158_CR15) 2011; 34 E Shtoyerman (BFnprot2016158_CR33) 2000; 20 EH Ratzlaff (BFnprot2016158_CR37) 1991; 36 MP Vanni (BFnprot2016158_CR23) 2014; 34 I Nauhaus (BFnprot2016158_CR36) 2007; 97 BA Wandell (BFnprot2016158_CR11) 2011; 51 VA Kalatsky (BFnprot2016158_CR34) 2003; 38 ME Garrett (BFnprot2016158_CR8) 2014; 34 T Bonhoeffer (BFnprot2016158_CR6) 1991; 353 MI Sereno (BFnprot2016158_CR9) 1994; 4 AL Juavinett (BFnprot2016158_CR19) 2015; 25 D Attwell (BFnprot2016158_CR3) 2001; 21 GJ Goldey (BFnprot2016158_CR28) 2014; 9 A Shmuel (BFnprot2016158_CR5) 1996; 16 LL Glickfeld (BFnprot2016158_CR20) 2013; 16 SB Kodandaramaiah (BFnprot2016158_CR27) 2016; 11 D Malonek (BFnprot2016158_CR2) 1997; 94 L Luo (BFnprot2016158_CR17) 2008; 57 JH Marshel (BFnprot2016158_CR18) 2011; 72 D Malonek (BFnprot2016158_CR35) 1996; 272 BFnprot2016158_CR21 D Raposo (BFnprot2016158_CR22) 2014; 17 RD Frostig (BFnprot2016158_CR4) 1990; 87 MY Villeneuve (BFnprot2016158_CR32) 2003; 129 G Yang (BFnprot2016158_CR30) 2010; 5 S Engel (BFnprot2016158_CR41) 1997; 7 BS Oommen (BFnprot2016158_CR42) 2008; 1193 A Holtmaat (BFnprot2016158_CR29) 2009; 4 PM Goltstein (BFnprot2016158_CR31) 2015; 10 JM Allman (BFnprot2016158_CR13) 1971; 31 CM Niell (BFnprot2016158_CR16) 2011; 72 27102043 - J Neurosci Methods. 2016 Jul 15;267:141-9 11598490 - J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45 7703687 - Cereb Cortex. 1994 Nov-Dec;4(6):601-20 25275789 - Nat Protoc. 2014 Nov;9(11):2515-38 25383902 - Nat Neurosci. 2014 Dec;17(12):1784-92 1905769 - J Neurosci Methods. 1991 Feb;36(2-3):127-37 4998922 - Brain Res. 1971 Aug 7;31(1):85-105 3785405 - Nature. 1986 Nov 27-Dec 3;324(6095):361-4 18341986 - Neuron. 2008 Mar 13;57(5):634-60 12765606 - Neuron. 2003 May 22;38(4):529-45 7754376 - Science. 1995 May 12;268(5212):889-93 12951229 - J Neurosci Methods. 2003 Oct 15;129(1):19-31 8366797 - Magn Reson Med. 1993 Aug;30(2):161-73 23850594 - Neuron. 2013 Aug 7;79(3):579-93 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92 21840069 - Trends Neurosci. 2011 Sep;34(9):464-73 26073133 - Curr Biol. 2015 Jun 29;25(13):1759-64 22196324 - Neuron. 2011 Dec 22;72(6):889-92 7596409 - Nature. 1995 Jun 29;375(6534):780-4 15746240 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4158-63 25429135 - J Neurosci. 2014 Nov 26;34(48):15931-46 26938115 - Nat Protoc. 2016 Apr;11(4):634-54 25706867 - PLoS One. 2015 Feb 23;10(2):e0118277 17344376 - J Neurophysiol. 2007 May;97(5):3781-9 25209296 - J Neurosci. 2014 Sep 10;34(37):12587-600 20692278 - Vision Res. 2011 Apr 13;51(7):718-37 2165630 - Science. 1990 Jul 27;249(4967):417-20 6631479 - J Neurosci. 1983 Nov;3(11):2251-62 9405698 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14826-31 23292681 - Nat Neurosci. 2013 Feb;16(2):219-26 8614805 - Science. 1996 Apr 26;272(5261):551-4 12151534 - J Neurosci. 2002 Aug 1;22(15):6549-59 11050133 - J Neurosci. 2000 Nov 1;20(21):8111-21 22196338 - Neuron. 2011 Dec 22;72(6):1040-54 19617885 - Nat Protoc. 2009;4(8):1128-44 2117272 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6082-6 20134419 - Nat Protoc. 2010 Feb;5(2):201-8 18178173 - Brain Res. 2008 Feb 8;1193:57-66 1896085 - Nature. 1991 Oct 3;353(6343):429-31 8824332 - J Neurosci. 1996 Nov 1;16(21):6945-64  | 
    
| References_xml | – volume: 97 start-page: 3781 year: 2007 end-page: 3789 ident: CR36 article-title: Precise alignment of micromachined electrode arrays with V1 functional maps publication-title: J. Neurophysiol. doi: 10.1152/jn.00120.2007 – volume: 57 start-page: 634 year: 2008 end-page: 660 ident: CR17 article-title: Genetic dissection of neural circuits publication-title: Neuron doi: 10.1016/j.neuron.2008.01.002 – volume: 11 start-page: 634 year: 2016 end-page: 654 ident: CR27 article-title: Assembly and operation of the autopatcher for automated intracellular neural recording publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.007 – volume: 375 start-page: 780 year: 1995 end-page: 784 ident: CR26 article-title: Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex publication-title: Nature doi: 10.1038/375780a0 – volume: 34 start-page: 464 year: 2011 end-page: 473 ident: CR15 article-title: What can mice tell us about how vision works? publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.07.002 – volume: 34 start-page: 12587 year: 2014 end-page: 12600 ident: CR8 article-title: Topography and areal organization of mouse visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1124-14.2014 – volume: 34 start-page: 15931 year: 2014 end-page: 15946 ident: CR23 article-title: Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1818-14.2014 – volume: 1193 start-page: 57 year: 2008 end-page: 66 ident: CR42 article-title: Eye orientation during static tilts and its relationship to spontaneous head pitch in the laboratory mouse publication-title: Brain Res. doi: 10.1016/j.brainres.2007.11.053 – volume: 268 start-page: 889 year: 1995 end-page: 893 ident: CR10 article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging publication-title: Science doi: 10.1126/science.7754376 – volume: 4 start-page: 1128 year: 2009 end-page: 1144 ident: CR29 article-title: Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.89 – ident: CR12 – volume: 25 start-page: 1759 year: 2015 end-page: 1764 ident: CR19 article-title: Pattern and component motion responses in mouse visual cortical areas publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.05.028 – volume: 94 start-page: 14826 year: 1997 end-page: 14831 ident: CR2 article-title: Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.26.14826 – volume: 353 start-page: 429 year: 1991 end-page: 431 ident: CR6 article-title: Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns publication-title: Nature doi: 10.1038/353429a0 – volume: 102 start-page: 4158 year: 2005 end-page: 4163 ident: CR24 article-title: Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0500291102 – volume: 22 start-page: 6549 year: 2002 end-page: 6559 ident: CR39 article-title: Mapping retinotopic structure in mouse visual cortex with optical imaging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-15-06549.2002 – volume: 249 start-page: 417 year: 1990 end-page: 420 ident: CR7 article-title: Functional organization of primate visual cortex revealed by high resolution optical imaging publication-title: Science doi: 10.1126/science.2165630 – volume: 72 start-page: 889 year: 2011 end-page: 892 ident: CR16 article-title: Exploring the next frontier of mouse vision publication-title: Neuron doi: 10.1016/j.neuron.2011.12.011 – volume: 20 start-page: 8111 year: 2000 end-page: 8121 ident: CR33 article-title: Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-21-08111.2000 – volume: 16 start-page: 219 year: 2013 end-page: 226 ident: CR20 article-title: Cortico-cortical projections in mouse visual cortex are functionally target specific publication-title: Nat. Neurosci. doi: 10.1038/nn.3300 – volume: 21 start-page: 1133 year: 2001 end-page: 1145 ident: CR3 article-title: An energy budget for signaling in the grey matter of the brain publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-200110000-00001 – volume: 12 start-page: 91 year: 1997 end-page: 119 ident: CR14 publication-title: Extra-Striate Cortex in Primates doi: 10.1007/978-1-4757-9625-4_3 – ident: CR21 – volume: 16 start-page: 6945 year: 1996 end-page: 6964 ident: CR5 article-title: Functional organization for direction of motion and its relationship to orientation maps in cat area 18 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-21-06945.1996 – volume: 324 start-page: 361 year: 1986 end-page: 364 ident: CR1 article-title: Functional architecture of cortex revealed by optical imaging of intrinsic signals publication-title: Nature doi: 10.1038/324361a0 – volume: 4 start-page: 601 year: 1994 end-page: 620 ident: CR9 article-title: Analysis of retinotopic maps in extrastriate cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/4.6.601 – volume: 17 start-page: 1784 year: 2014 end-page: 1792 ident: CR22 article-title: A category-free neural population supports evolving demands during decision-making publication-title: Nat. Neurosci. doi: 10.1038/nn.3865 – volume: 3 start-page: 2251 year: 1983 end-page: 2262 ident: CR25 article-title: Optical monitoring of activity from many areas of the and salamander olfactory bulb: a new method for studying functional organization in the vertebrate central nervous system publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.03-11-02251.1983 – volume: 36 start-page: 127 year: 1991 end-page: 137 ident: CR37 article-title: A tandem-lens epifluourescence macroscope: hundred-fold brightness advantage for wide field imaging publication-title: J. Neurosci. Methods doi: 10.1016/0165-0270(91)90038-2 – volume: 267 start-page: 141 year: 2016 end-page: 149 ident: CR38 article-title: Intact skull chronic windows for mesoscopic wide-field imaging in awake mice publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.04.012 – volume: 7 start-page: 181 year: 1997 end-page: 192 ident: CR41 article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI publication-title: Cereb. Cortex doi: 10.1093/cercor/7.2.181 – volume: 51 start-page: 718 year: 2011 end-page: 737 ident: CR11 article-title: Imaging retinotopic maps in the human brain publication-title: Vision Res. doi: 10.1016/j.visres.2010.08.004 – volume: 87 start-page: 6082 year: 1990 end-page: 6086 ident: CR4 article-title: Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by high-resolution optical imaging of intrinsic signals publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.87.16.6082 – volume: 9 start-page: 2515 year: 2014 end-page: 2538 ident: CR28 article-title: Removable cranial windows for long-term imaging in awake mice publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.165 – volume: 129 start-page: 19 year: 2003 end-page: 31 ident: CR32 article-title: On the use of isoflurane versus halothane in the study of visual response properties of single cells in the primary visual cortex publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(03)00198-5 – volume: 38 start-page: 529 year: 2003 end-page: 545 ident: CR34 article-title: New paradigm for optical imaging: temporally encoded maps of intrinsic signal publication-title: Neuron doi: 10.1016/S0896-6273(03)00286-1 – volume: 10 start-page: e0118277 year: 2015 ident: CR31 article-title: Effects of isoflurane anesthesia on ensemble patterns of Ca2+ activity in mouse V1: reduced direction selectivity independent of increased correlations in cellular activity publication-title: PLoS One doi: 10.1371/journal.pone.0118277 – volume: 72 start-page: 1040 year: 2011 end-page: 1054 ident: CR18 article-title: Functional specialization of seven mouse visual cortical areas publication-title: Neuron doi: 10.1016/j.neuron.2011.12.004 – volume: 5 start-page: 201 year: 2010 end-page: 208 ident: CR30 article-title: Thinned-skull cranial window technique for long-term imaging of the cortex in live mice publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.222 – volume: 31 start-page: 85 year: 1971 end-page: 105 ident: CR13 article-title: A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey ( ) publication-title: Brain Res. doi: 10.1016/0006-8993(71)90635-4 – volume: 30 start-page: 161 year: 1993 end-page: 173 ident: CR40 article-title: Processing strategies for time-course data sets in functional mri of the human brain publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910300204 – volume: 272 start-page: 551 year: 1996 end-page: 554 ident: CR35 article-title: Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping publication-title: Science doi: 10.1126/science.272.5261.551 – volume: 4 start-page: 601 year: 1994 ident: BFnprot2016158_CR9 publication-title: Cereb. Cortex doi: 10.1093/cercor/4.6.601 – volume: 129 start-page: 19 year: 2003 ident: BFnprot2016158_CR32 publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(03)00198-5 – volume: 30 start-page: 161 year: 1993 ident: BFnprot2016158_CR40 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910300204 – volume: 249 start-page: 417 year: 1990 ident: BFnprot2016158_CR7 publication-title: Science doi: 10.1126/science.2165630 – volume: 21 start-page: 1133 year: 2001 ident: BFnprot2016158_CR3 publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-200110000-00001 – volume: 97 start-page: 3781 year: 2007 ident: BFnprot2016158_CR36 publication-title: J. Neurophysiol. doi: 10.1152/jn.00120.2007 – volume: 7 start-page: 181 year: 1997 ident: BFnprot2016158_CR41 publication-title: Cereb. Cortex doi: 10.1093/cercor/7.2.181 – volume: 5 start-page: 201 year: 2010 ident: BFnprot2016158_CR30 publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.222 – volume: 1193 start-page: 57 year: 2008 ident: BFnprot2016158_CR42 publication-title: Brain Res. doi: 10.1016/j.brainres.2007.11.053 – volume: 22 start-page: 6549 year: 2002 ident: BFnprot2016158_CR39 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-15-06549.2002 – volume: 31 start-page: 85 year: 1971 ident: BFnprot2016158_CR13 publication-title: Brain Res. doi: 10.1016/0006-8993(71)90635-4 – volume: 34 start-page: 15931 year: 2014 ident: BFnprot2016158_CR23 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1818-14.2014 – volume: 72 start-page: 1040 year: 2011 ident: BFnprot2016158_CR18 publication-title: Neuron doi: 10.1016/j.neuron.2011.12.004 – volume: 375 start-page: 780 year: 1995 ident: BFnprot2016158_CR26 publication-title: Nature doi: 10.1038/375780a0 – volume: 4 start-page: 1128 year: 2009 ident: BFnprot2016158_CR29 publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.89 – volume: 3 start-page: 2251 year: 1983 ident: BFnprot2016158_CR25 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.03-11-02251.1983 – volume: 51 start-page: 718 year: 2011 ident: BFnprot2016158_CR11 publication-title: Vision Res. doi: 10.1016/j.visres.2010.08.004 – volume: 34 start-page: 12587 year: 2014 ident: BFnprot2016158_CR8 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1124-14.2014 – volume: 34 start-page: 464 year: 2011 ident: BFnprot2016158_CR15 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2011.07.002 – volume: 10 start-page: e0118277 year: 2015 ident: BFnprot2016158_CR31 publication-title: PLoS One doi: 10.1371/journal.pone.0118277 – ident: BFnprot2016158_CR12 – volume: 57 start-page: 634 year: 2008 ident: BFnprot2016158_CR17 publication-title: Neuron doi: 10.1016/j.neuron.2008.01.002 – volume: 25 start-page: 1759 year: 2015 ident: BFnprot2016158_CR19 publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.05.028 – volume: 16 start-page: 219 year: 2013 ident: BFnprot2016158_CR20 publication-title: Nat. Neurosci. doi: 10.1038/nn.3300 – volume: 12 start-page: 91 year: 1997 ident: BFnprot2016158_CR14 publication-title: Extra-Striate Cortex in Primates doi: 10.1007/978-1-4757-9625-4_3 – volume: 72 start-page: 889 year: 2011 ident: BFnprot2016158_CR16 publication-title: Neuron doi: 10.1016/j.neuron.2011.12.011 – volume: 353 start-page: 429 year: 1991 ident: BFnprot2016158_CR6 publication-title: Nature doi: 10.1038/353429a0 – volume: 272 start-page: 551 year: 1996 ident: BFnprot2016158_CR35 publication-title: Science doi: 10.1126/science.272.5261.551 – volume: 20 start-page: 8111 year: 2000 ident: BFnprot2016158_CR33 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-21-08111.2000 – volume: 102 start-page: 4158 year: 2005 ident: BFnprot2016158_CR24 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0500291102 – volume: 87 start-page: 6082 year: 1990 ident: BFnprot2016158_CR4 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.87.16.6082 – volume: 9 start-page: 2515 year: 2014 ident: BFnprot2016158_CR28 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.165 – volume: 36 start-page: 127 year: 1991 ident: BFnprot2016158_CR37 publication-title: J. Neurosci. Methods doi: 10.1016/0165-0270(91)90038-2 – volume: 324 start-page: 361 year: 1986 ident: BFnprot2016158_CR1 publication-title: Nature doi: 10.1038/324361a0 – ident: BFnprot2016158_CR21 doi: 10.1016/j.neuron.2013.06.010 – volume: 94 start-page: 14826 year: 1997 ident: BFnprot2016158_CR2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.26.14826 – volume: 268 start-page: 889 year: 1995 ident: BFnprot2016158_CR10 publication-title: Science doi: 10.1126/science.7754376 – volume: 17 start-page: 1784 year: 2014 ident: BFnprot2016158_CR22 publication-title: Nat. Neurosci. doi: 10.1038/nn.3865 – volume: 11 start-page: 634 year: 2016 ident: BFnprot2016158_CR27 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.007 – volume: 38 start-page: 529 year: 2003 ident: BFnprot2016158_CR34 publication-title: Neuron doi: 10.1016/S0896-6273(03)00286-1 – volume: 267 start-page: 141 year: 2016 ident: BFnprot2016158_CR38 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.04.012 – volume: 16 start-page: 6945 year: 1996 ident: BFnprot2016158_CR5 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-21-06945.1996 – reference: 22196324 - Neuron. 2011 Dec 22;72(6):889-92 – reference: 15746240 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4158-63 – reference: 19617885 - Nat Protoc. 2009;4(8):1128-44 – reference: 1896085 - Nature. 1991 Oct 3;353(6343):429-31 – reference: 17344376 - J Neurophysiol. 2007 May;97(5):3781-9 – reference: 8614805 - Science. 1996 Apr 26;272(5261):551-4 – reference: 2165630 - Science. 1990 Jul 27;249(4967):417-20 – reference: 6631479 - J Neurosci. 1983 Nov;3(11):2251-62 – reference: 18341986 - Neuron. 2008 Mar 13;57(5):634-60 – reference: 20692278 - Vision Res. 2011 Apr 13;51(7):718-37 – reference: 11598490 - J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45 – reference: 25429135 - J Neurosci. 2014 Nov 26;34(48):15931-46 – reference: 8824332 - J Neurosci. 1996 Nov 1;16(21):6945-64 – reference: 7754376 - Science. 1995 May 12;268(5212):889-93 – reference: 27102043 - J Neurosci Methods. 2016 Jul 15;267:141-9 – reference: 25383902 - Nat Neurosci. 2014 Dec;17(12):1784-92 – reference: 4998922 - Brain Res. 1971 Aug 7;31(1):85-105 – reference: 23850594 - Neuron. 2013 Aug 7;79(3):579-93 – reference: 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92 – reference: 7596409 - Nature. 1995 Jun 29;375(6534):780-4 – reference: 12951229 - J Neurosci Methods. 2003 Oct 15;129(1):19-31 – reference: 23292681 - Nat Neurosci. 2013 Feb;16(2):219-26 – reference: 26073133 - Curr Biol. 2015 Jun 29;25(13):1759-64 – reference: 11050133 - J Neurosci. 2000 Nov 1;20(21):8111-21 – reference: 2117272 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6082-6 – reference: 21840069 - Trends Neurosci. 2011 Sep;34(9):464-73 – reference: 1905769 - J Neurosci Methods. 1991 Feb;36(2-3):127-37 – reference: 25209296 - J Neurosci. 2014 Sep 10;34(37):12587-600 – reference: 26938115 - Nat Protoc. 2016 Apr;11(4):634-54 – reference: 9405698 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14826-31 – reference: 22196338 - Neuron. 2011 Dec 22;72(6):1040-54 – reference: 12765606 - Neuron. 2003 May 22;38(4):529-45 – reference: 3785405 - Nature. 1986 Nov 27-Dec 3;324(6095):361-4 – reference: 25275789 - Nat Protoc. 2014 Nov;9(11):2515-38 – reference: 7703687 - Cereb Cortex. 1994 Nov-Dec;4(6):601-20 – reference: 18178173 - Brain Res. 2008 Feb 8;1193:57-66 – reference: 20134419 - Nat Protoc. 2010 Feb;5(2):201-8 – reference: 8366797 - Magn Reson Med. 1993 Aug;30(2):161-73 – reference: 25706867 - PLoS One. 2015 Feb 23;10(2):e0118277 – reference: 12151534 - J Neurosci. 2002 Aug 1;22(15):6549-59  | 
    
| SSID | ssj0047367 | 
    
| Score | 2.466788 | 
    
| Snippet | This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm.
Intrinsic... Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe... This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm.Intrinsic...  | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 32 | 
    
| SubjectTerms | 14 59 631/136/334/1874/345 631/1647/245/2226 631/378/2613 631/378/3917 Algorithms Analytical Chemistry Animals Automation Biological Techniques Brain Brain architecture Brain mapping Computational Biology/Bioinformatics Computational neuroscience Hemodynamics Image segmentation In vivo methods and tests Innovations Laboratories Life Sciences Mapping Medical examination Mice Mice, Inbred C57BL Microarrays Neuroimaging Neurosciences Optical communication Optical Imaging - instrumentation Optical Imaging - methods Optical tomography Organic Chemistry Protocol Retina Signal Transduction Source code Topography Visual cortex Visual Cortex - cytology Visual Cortex - physiology Visual field Visual Fields Visual pathways Visual signals Visual stimuli  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaWrhBw4P0oLCggJPaSNHFe9rFCrBYEK7RQaTlZtuNAROtWNAEtv54ZN4maiuVxiSrNyKk9M_YXe_wNIc8zmZVpSbmfKA2PXKY-T6jyYWI0aRhDqCu8jfzuJDueJW_O0rM9EnV3YVzSvlZVYOeLwFZfXG7laqEnXZ7YJMWjriS_RPazFOD3iOzPTt5PP7mLj2no09zVjITfiQ_LF--IGmM2sUh9gNlcWRBhifethWh3Ot5aj3ZzJfsD02vkSmNX8vyHnM-31qSjG-S0680mFeVr0NQq0D93iB7_q7s3yfUWoXrTjegW2TP2Nrm8qVl5foe8nTb1EmCuKbyqaFONnHW9ZenhPoLxvlfrBlqQmO_u4UavV0GvKgsO4WG-CMiqhauOdJfMjl59fHnstyUZfJ3RsPYNlXnCChXRksUs0_DBWEalKUzKaZ4rTSVVXPJIMRUZeEoVmowqAFacG8Z1fI-M7NKaB8RLTCgZLxlnEiAGU7wA7JDnsdQ6LkzGx8Tv7CN0y1eOZTPmwp2bx0w4ewq0pwB7jsmLXn-1Yeq4UPMZmlsg_YXF_JrPslmvxesPp2KKbDoIyiJorlUql_BaLdvrCvDnkTFroHkw0IT41ENx51WinR_WAr6rsY4A4KXfiikeRgPww1F42ouxYUyJswaM6ZpAfjke_UkndXRNUTgm9zd-3I8NBApgOXxDPvDwXgGJx4cScFBHQN765JgcdrGw1bMLhvywj5W_WOfhv6s-Ilcpoiy3I3ZARvW3xjwGjFirJ-2s8AtXVWaQ priority: 102 providerName: Unpaywall  | 
    
| Title | Automated identification of mouse visual areas with intrinsic signal imaging | 
    
| URI | https://link.springer.com/article/10.1038/nprot.2016.158 https://www.ncbi.nlm.nih.gov/pubmed/27906169 https://www.proquest.com/docview/1845782238 https://www.proquest.com/docview/2565728369 https://www.proquest.com/docview/1845254491 https://www.proquest.com/docview/1850776710 https://pubmed.ncbi.nlm.nih.gov/PMC5381647 https://www.ncbi.nlm.nih.gov/pmc/articles/5381647  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1750-2799 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0047367 issn: 1750-2799 databaseCode: 7X7 dateStart: 20060601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1750-2799 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0047367 issn: 1750-2799 databaseCode: BENPR dateStart: 20060601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9QwDLe2mxDwgPimMKaCkNhLtzb9SPKA0IE2DQSnaXDS8VQlbQqVjvbgrqD999i5tlwnNl7ah1hpazu2Gzs_A7xIVFLEBZNepDO8cBV7MmLaQ8NoYj_Epa7pNPLHSXIyjd7P4tkWTLqzMFRW2dlEa6jzOqM98kNG-Tn0hYl8vfjhUdcoyq52LTRU21ohf2UhxrZhhxEy1gh23hxNTs862xzx0PaURZ8ZeejcZAfjGIrDioARqNYrOQioAfyGm7porDe81cVKyj6dehOuN9VCnf9W8_mGxzq-DbfaUNMdr3XjDmyZ6i5cWzefPL8HH8bNqsZ41eRumbc1Q1ZMbl24tCFg3F_lssEZFBWuu7Rj65b4AmWFknWp8APHyu-2zdF9mB4ffX574rW9FbwsYf7KM0zxSOQ6YIUIRZIhs4qgMLmJJeNcZ0wxLZUMtNCBwavSvkmYxghJSiNkFj6AUVVX5hG4kfGVkIWQQmGsILTMMQjgPESZhLlJpANex8o0a4HHqf_FPLUJ8FCklvUpsT5F1jvwsqdfrCE3LqV8TpJJCceiokKZr6pZLtN3n87SMcHiUHQV4HQtUVHjYzPVnjvAlyfoqwHl7oASF1o2HO4UIG0X-jLFH2RqCICBzz-H_2qtA8_6YZqYatsqg8K0UxBQnAyuookt7lLgO_BwrXI9bxiXGJTRE_hAGXsCQhAfjlTlN4skHlPaOOIO7Hdqu_Fll7B8v1fr_0jn8dUMeQI3GIVIdjtrF0arn415igHeSu_BNp_xvXbt4n06OR1_-QO37VKn | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWjwgPgaFAYEBGIvYYnzZT9MqMCmlnUVGpu0N2MnDovUpYW2TP3n-Nu4c5PQTmw87SUvd3KS8_nu7Dv_DuB1rOI8yplwQ53iI1GRK0KmXTSMJvICXOqabiMf9OPOcfj5JDpZgd_1XRgqq6xtojXU2TClM_JtRvk59IWxeD_64VLXKMqu1i00VNVaIduxEGPVxY59MzvHLdx4p_sJ5_sNY3u7Rx87btVlwE1j5k1cw1QS8kz7LOcBj1PcA-V-bjITCZYkOmWKaaGEr7n2DT6V9kzMNMYKQhgu0gDHvQFrYRAK3PytfdjtfzmsfUGYBLaHLfro0EVnKmrYyIBvlwTEQLVl8TufGs4vuMWLzmHBO16s3GzSt7dhfVqO1OxcDQYLHnLvLtypQlunPdfFe7Biyvtwc97scvYAeu3pZIjxscmcIqtqlKxaOMPcoQMI4_wqxlMcQVGhvEMnxE6BH1CUqEkOFZogrTizbZUewvG1SHkDVsthaR6DExpPcZFzwRXGJlyLDIOOJAlQB4LMxKIFbi1KmVZA59RvYyBtwj3g0opekuglir4Fbxv-0Rzi41LOVzQzknAzSirM-a6m47Hsfj2UbYLhoWjOx-EqpnyIr01Vdc8BP56gtpY4N5c4cWGny-RaAWRlWMYSN-TUgAADrX-S_66SFrxsyDQw1dKVBifTDkHAdMK_iieyOE--14JHc5VrZMMSgUEgvSFZUsaGgRDLlyllcWqRyyNKU4dJC7ZqtV34s0tEvtWo9X9m58nVAnkB652jg57sdfv7T-EWo_DMHqVtwurk59Q8w-Byop9XK9iBb9dtNP4Az1KNgg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEF8PiG8KAwICsZfQxvmw_YBQxahWNiYEm9Q3YzsORCpJIQ1T_zX-Ou7cJLQTG097yYtPl-R8vjv7zr8j5HmikizOqPAjbeDBVOyLiGofDKONByEsdY23kT8cJLtH0ftJPNkgv9u7MFhW2dpEZ6jT0uAZeZ9ifg58YSL6WVMW8XFn9Gb2w8cOUphpbdtpLFVkzy6OYftWvR7vwFy_oHT07vDtrt90GPBNQgdz31LFIp7qgGY85ImB_U8WZDa1saCMaUMV1UKJQHMdWHgqPbAJ1RAnCGG5MCHwvUAusjAUWE7IJt1mL2Kh614L3jnywY2KFjAy5P0CIRiwqix5FWCr-RWHeNItrPjFkzWbXeL2GrlSFzO1OFbT6YpvHN0g15ug1hsutfAm2bDFLXJp2eZycZvsD-t5CZGxTb08baqTnEJ4Zebh0YP1fuVVDRwUlsh7eDbs5fABeQE65GGJCYzl311DpTvk6FxkfJdsFmVh7xMvsgPFRcYFVxCVcC1SCDcYC5UxYWoT0SN-K0ppGohz7LQxlS7VHnLpRC9R9BJE3yMvO_rZEtzjVMpnODMSETMK1L2vqq4qOf78SQ4RgAfjuADYNURZCa81qrnhAB-PIFtrlFtrlLCkzfpwqwCyMSmVhK04th6AEOufw3_XR4887YaRMVbRFRYm07FASDoRnEUTO4SnYNAj95Yq18mGMgHhH76BrSljR4BY5esjRf7NYZbHmKCOWI9st2q78meniHy7U-v_zM6DswXyhFwGUyH3xwd7D8lVinGZO0PbIpvzn7V9BFHlXD92y9cjX87bXvwB8BWLHA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaWrhBw4P0oLCggJPaSNHFe9rFCrBYEK7RQaTlZtuNAROtWNAEtv54ZN4maiuVxiSrNyKk9M_YXe_wNIc8zmZVpSbmfKA2PXKY-T6jyYWI0aRhDqCu8jfzuJDueJW_O0rM9EnV3YVzSvlZVYOeLwFZfXG7laqEnXZ7YJMWjriS_RPazFOD3iOzPTt5PP7mLj2no09zVjITfiQ_LF--IGmM2sUh9gNlcWRBhifethWh3Ot5aj3ZzJfsD02vkSmNX8vyHnM-31qSjG-S0680mFeVr0NQq0D93iB7_q7s3yfUWoXrTjegW2TP2Nrm8qVl5foe8nTb1EmCuKbyqaFONnHW9ZenhPoLxvlfrBlqQmO_u4UavV0GvKgsO4WG-CMiqhauOdJfMjl59fHnstyUZfJ3RsPYNlXnCChXRksUs0_DBWEalKUzKaZ4rTSVVXPJIMRUZeEoVmowqAFacG8Z1fI-M7NKaB8RLTCgZLxlnEiAGU7wA7JDnsdQ6LkzGx8Tv7CN0y1eOZTPmwp2bx0w4ewq0pwB7jsmLXn-1Yeq4UPMZmlsg_YXF_JrPslmvxesPp2KKbDoIyiJorlUql_BaLdvrCvDnkTFroHkw0IT41ENx51WinR_WAr6rsY4A4KXfiikeRgPww1F42ouxYUyJswaM6ZpAfjke_UkndXRNUTgm9zd-3I8NBApgOXxDPvDwXgGJx4cScFBHQN765JgcdrGw1bMLhvywj5W_WOfhv6s-Ilcpoiy3I3ZARvW3xjwGjFirJ-2s8AtXVWaQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+identification+of+mouse+visual+areas+with+intrinsic+signal+imaging&rft.jtitle=Nature+protocols&rft.au=Juavinett%2C+Ashley+L&rft.au=Nauhaus%2C+Ian&rft.au=Garrett%2C+Marina+E&rft.au=Zhuang%2C+Jun&rft.date=2017-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1754-2189&rft.volume=12&rft.issue=1&rft.spage=32&rft_id=info:doi/10.1038%2Fnprot.2016.158&rft.externalDocID=A480165841 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon |