Automated identification of mouse visual areas with intrinsic signal imaging

This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm. Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we d...

Full description

Saved in:
Bibliographic Details
Published inNature protocols Vol. 12; no. 1; pp. 32 - 43
Main Authors Juavinett, Ashley L, Nauhaus, Ian, Garrett, Marina E, Zhuang, Jun, Callaway, Edward M
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2017
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1754-2189
1750-2799
1750-2799
DOI10.1038/nprot.2016.158

Cover

Abstract This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm. Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system.
AbstractList Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull ([similar]1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions ([similar]2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system. Keywords: Mouse visual cortex, intrinsic signal optical imaging, striate cortex, extrastriate cortex, brain, mouse brain, ISI, retinotopy, retinotopic map, retinal map, retinal mapping intrinsic activity, neuron, Retinotopic mapping, visual field map, visual cortex, Functional mapping, MATLAB, mouse, visual field, intrinsic signal imaging
Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system.
This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm.Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system.
Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull ([similar]1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions ([similar]2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system.
Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (~1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (~2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system.
Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system.Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system.
This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm. Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe our protocol for mapping retinotopy to identify mouse visual cortical areas using ISI. First, surgery is performed to attach a head frame to the mouse skull (∼1 h). The next day, intrinsic activity across the visual cortex is recorded during the presentation of a full-field drifting bar in the horizontal and vertical directions (∼2 h). Horizontal and vertical retinotopic maps are generated by analyzing the response of each pixel during the period of the stimulus. Last, an algorithm uses these retinotopic maps to compute the visual field sign and coverage, and automatically construct visual borders without human input. Compared with conventional retinotopic mapping with episodic presentation of adjacent stimuli, a continuous, periodic stimulus is more resistant to biological artifacts. Furthermore, unlike manual hand-drawn approaches, we present a method for automatically segmenting visual areas, even in the small mouse cortex. This relatively simple procedure and accompanying open-source code can be implemented with minimal surgical and computational experience, and is useful to any laboratory wishing to target visual cortical areas in this increasingly valuable model system.
Audience Academic
Author Juavinett, Ashley L
Callaway, Edward M
Nauhaus, Ian
Zhuang, Jun
Garrett, Marina E
AuthorAffiliation 1 Salk Institute for Biological Studies, La Jolla, California, USA
3 The Allen Institute for Brain Science, Seattle, Washington, USA
2 The University of Texas at Austin, Austin, Texas, USA
AuthorAffiliation_xml – name: 3 The Allen Institute for Brain Science, Seattle, Washington, USA
– name: 1 Salk Institute for Biological Studies, La Jolla, California, USA
– name: 2 The University of Texas at Austin, Austin, Texas, USA
Author_xml – sequence: 1
  givenname: Ashley L
  surname: Juavinett
  fullname: Juavinett, Ashley L
  organization: Salk Institute for Biological Studies
– sequence: 2
  givenname: Ian
  surname: Nauhaus
  fullname: Nauhaus, Ian
  organization: The University of Texas at Austin
– sequence: 3
  givenname: Marina E
  surname: Garrett
  fullname: Garrett, Marina E
  organization: The Allen Institute for Brain Science
– sequence: 4
  givenname: Jun
  surname: Zhuang
  fullname: Zhuang, Jun
  organization: The Allen Institute for Brain Science
– sequence: 5
  givenname: Edward M
  surname: Callaway
  fullname: Callaway, Edward M
  email: callaway@salk.edu
  organization: Salk Institute for Biological Studies
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27906169$$D View this record in MEDLINE/PubMed
BookMark eNqFkktr3DAURkVJaZJpt10WQzfpwhNJtl6bwhCaNjBQ6GMtZFl2FGxpKslJ8--jebTJhLTBYAvrfFfS0T0GB847A8BbBOcIVvzUrYJPcwwRnSPCX4AjxAgsMRPiYDOuS4y4OATHMV5BWLOKslfgMM9Diqg4AsvFlPyokmkL2xqXbGe1Sta7wnfF6KdoimsbJzUUKhgVixubLgvrUrAuWl1E27s8Z0fVW9e_Bi87NUTzZvedgZ_nn36cfSmXXz9fnC2WpaYYptJgxWreNgh3vOJUYwQ71JnWEIEZazRWuBFKoIY3yOS3aqChuIGYCGG40NUMnG7rTm6lbm_UMMhVyHsItxJBufYiN17k2ovMXnLi4zaxmprRtDqfNKj7lFdW7s84eyl7fy1JxRHN2mbgZFcg-F-TiUmONmozDMqZbEkiTiBjlOXFn0drgkldC5TR94_QKz-FbDRKTChhmFdU_I9a12Ic44rfU70ajLSu8_kger20XNQ8iyC8Xq84f4LKT2tGq3NvdTb_3wt82AtkJpnfqVdTjPLi-7d99t1Dy3_1_mm3DNRbQAcfYzCd1DZt2i3vwg7_vr35o9iz171rkJhB15vwwNjTiTt1jQc7
CitedBy_id crossref_primary_10_1016_j_neuron_2021_09_053
crossref_primary_10_1016_j_neuron_2021_10_020
crossref_primary_10_1038_s41586_024_08027_2
crossref_primary_10_1146_annurev_vision_102016_061331
crossref_primary_10_7554_eLife_60628
crossref_primary_10_7554_eLife_73783
crossref_primary_10_1073_pnas_2100579118
crossref_primary_10_1002_cne_25404
crossref_primary_10_7554_eLife_18372
crossref_primary_10_1016_j_cub_2019_03_065
crossref_primary_10_1016_j_celrep_2020_107636
crossref_primary_10_1016_j_jneumeth_2021_109287
crossref_primary_10_1038_s41467_019_11630_x
crossref_primary_10_1038_s41467_023_37976_x
crossref_primary_10_1523_JNEUROSCI_3478_17_2018
crossref_primary_10_1038_s41586_020_03171_x
crossref_primary_10_1016_j_celrep_2024_114244
crossref_primary_10_1038_s43586_022_00136_4
crossref_primary_10_1016_j_celrep_2024_113830
crossref_primary_10_1016_j_celrep_2024_115217
crossref_primary_10_1186_s42492_021_00081_1
crossref_primary_10_1038_s41598_021_90650_4
crossref_primary_10_1038_s41596_022_00768_6
crossref_primary_10_3389_fnins_2022_938665
crossref_primary_10_1016_j_neuron_2020_04_023
crossref_primary_10_1016_j_neuron_2024_06_015
crossref_primary_10_1162_netn_a_00312
crossref_primary_10_1016_j_cub_2024_11_015
crossref_primary_10_1152_jn_00680_2018
crossref_primary_10_3389_fncir_2021_541676
crossref_primary_10_1016_j_neuron_2018_05_009
crossref_primary_10_7554_eLife_62156
crossref_primary_10_1016_j_neures_2021_02_001
crossref_primary_10_1038_s41467_020_14643_z
crossref_primary_10_1016_j_celrep_2024_113762
crossref_primary_10_1016_j_xpro_2021_100779
crossref_primary_10_1152_jn_00138_2022
crossref_primary_10_21769_BioProtoc_2731
crossref_primary_10_1038_s41596_021_00527_z
crossref_primary_10_3788_CJL221482
crossref_primary_10_1089_ten_tec_2018_0090
crossref_primary_10_2139_ssrn_4102639
crossref_primary_10_1016_j_neures_2022_01_007
crossref_primary_10_1016_j_neuron_2020_01_040
crossref_primary_10_1016_j_neuron_2020_04_018
crossref_primary_10_1002_cne_24737
crossref_primary_10_1523_JNEUROSCI_1167_24_2024
crossref_primary_10_1016_j_neuron_2023_03_006
crossref_primary_10_1038_s41598_022_05932_2
crossref_primary_10_1007_s00429_021_02415_4
crossref_primary_10_1007_s11426_023_1898_4
crossref_primary_10_1038_s41598_023_33951_0
crossref_primary_10_1016_j_cub_2020_12_034
crossref_primary_10_1371_journal_pone_0213924
crossref_primary_10_1016_j_celrep_2021_109826
crossref_primary_10_1016_j_celrep_2024_114197
crossref_primary_10_1016_j_neuron_2018_09_050
crossref_primary_10_1080_01616412_2022_2051132
Cites_doi 10.1152/jn.00120.2007
10.1016/j.neuron.2008.01.002
10.1038/nprot.2016.007
10.1038/375780a0
10.1016/j.tins.2011.07.002
10.1523/JNEUROSCI.1124-14.2014
10.1523/JNEUROSCI.1818-14.2014
10.1016/j.brainres.2007.11.053
10.1126/science.7754376
10.1038/nprot.2009.89
10.1016/j.cub.2015.05.028
10.1073/pnas.94.26.14826
10.1038/353429a0
10.1073/pnas.0500291102
10.1523/JNEUROSCI.22-15-06549.2002
10.1126/science.2165630
10.1016/j.neuron.2011.12.011
10.1523/JNEUROSCI.20-21-08111.2000
10.1038/nn.3300
10.1097/00004647-200110000-00001
10.1007/978-1-4757-9625-4_3
10.1523/JNEUROSCI.16-21-06945.1996
10.1038/324361a0
10.1093/cercor/4.6.601
10.1038/nn.3865
10.1523/JNEUROSCI.03-11-02251.1983
10.1016/0165-0270(91)90038-2
10.1016/j.jneumeth.2016.04.012
10.1093/cercor/7.2.181
10.1016/j.visres.2010.08.004
10.1073/pnas.87.16.6082
10.1038/nprot.2014.165
10.1016/S0165-0270(03)00198-5
10.1016/S0896-6273(03)00286-1
10.1371/journal.pone.0118277
10.1016/j.neuron.2011.12.004
10.1038/nprot.2009.222
10.1016/0006-8993(71)90635-4
10.1002/mrm.1910300204
10.1126/science.272.5261.551
10.1016/j.neuron.2013.06.010
ContentType Journal Article
Copyright Springer Nature Limited 2016
COPYRIGHT 2017 Nature Publishing Group
Copyright Nature Publishing Group Jan 2017
Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016.
Copyright_xml – notice: Springer Nature Limited 2016
– notice: COPYRIGHT 2017 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jan 2017
– notice: Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QG
7T5
7T7
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/nprot.2016.158
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
ProQuest Central Student


MEDLINE - Academic


AIDS and Cancer Research Abstracts
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1750-2799
EndPage 43
ExternalDocumentID oai:pubmedcentral.nih.gov:5381647
PMC5381647
4269583681
A480165841
27906169
10_1038_nprot_2016_158
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH063912
– fundername: NEI NIH HHS
  grantid: R01 EY022577
– fundername: NEI NIH HHS
  grantid: P30 EY019005
GroupedDBID ---
0R~
123
29M
39C
3TQ
3V.
4.4
53G
5BI
5M7
70F
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
DB5
DU5
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FSGXE
FYUFA
FZEXT
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LGEZI
LK8
LOTEE
M1P
M7P
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PATMY
PQQKQ
PROAC
PSQYO
PYCSY
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
UKHRP
AAYXX
AFANA
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
AGSTI
7QG
7T5
7T7
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c620t-e2a748db12f8386c210f1fede59277bc2a2b9a91b8b1e1b8ab0e62b02599e89c3
IEDL.DBID BENPR
ISSN 1754-2189
1750-2799
IngestDate Sun Oct 26 03:38:03 EDT 2025
Tue Sep 30 17:04:35 EDT 2025
Thu Oct 02 19:36:43 EDT 2025
Thu Sep 04 18:05:39 EDT 2025
Tue Oct 07 06:06:37 EDT 2025
Tue Oct 07 05:53:40 EDT 2025
Mon Oct 20 21:58:58 EDT 2025
Mon Oct 20 16:38:52 EDT 2025
Thu Oct 16 14:11:20 EDT 2025
Mon Jul 21 06:02:53 EDT 2025
Thu Apr 24 22:50:20 EDT 2025
Wed Oct 01 00:19:51 EDT 2025
Fri Feb 21 02:37:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620t-e2a748db12f8386c210f1fede59277bc2a2b9a91b8b1e1b8ab0e62b02599e89c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5381647
PMID 27906169
PQID 1845782238
PQPubID 536306
PageCount 12
ParticipantIDs unpaywall_primary_10_1038_nprot_2016_158
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5381647
proquest_miscellaneous_1850776710
proquest_miscellaneous_1845254491
proquest_journals_2565728369
proquest_journals_1845782238
gale_infotracmisc_A480165841
gale_infotracacademiconefile_A480165841
gale_incontextgauss_ISR_A480165841
pubmed_primary_27906169
crossref_citationtrail_10_1038_nprot_2016_158
crossref_primary_10_1038_nprot_2016_158
springer_journals_10_1038_nprot_2016_158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle Recipes for Researchers
PublicationTitle Nature protocols
PublicationTitleAbbrev Nat Protoc
PublicationTitleAlternate Nat Protoc
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Wandell, Winawer (CR11) 2011; 51
Glickfeld, Andermann, Bonin, Reid (CR20) 2013; 16
Nauhaus, Ringach (CR36) 2007; 97
Yang, Pan, Parkhurst, Grutzendler, Gan (CR30) 2010; 5
Luo, Callaway, Svoboda (CR17) 2008; 57
Villeneuve, Casanova (CR32) 2003; 129
Sereno, McDonald, Allman (CR9) 1994; 4
Niell (CR16) 2011; 72
Raposo, Kaufman, Churchland (CR22) 2014; 17
Silasi, Xiao, Vanni, Chen, Murphy (CR38) 2016; 267
Frostig, Lieke, Ts'o, Grinvald (CR4) 1990; 87
CR12
Das, Gilbert (CR26) 1995; 375
Bandettini, Jesmanowicz, Wong, Hyde (CR40) 1993; 30
Goltstein, Montijn, Pennartz (CR31) 2015; 10
Kaas (CR14) 1997; 12
Huberman, Niell (CR15) 2011; 34
Marshel, Garrett, Nauhaus, Callaway (CR18) 2011; 72
Shtoyerman, Arieli, Slovin, Vanzetta, Grinvald (CR33) 2000; 20
Holtmaat (CR29) 2009; 4
Ratzlaff, Grinvald (CR37) 1991; 36
Bonhoeffer, Grinvald (CR6) 1991; 353
Kodandaramaiah (CR27) 2016; 11
Garrett, Nauhaus, Marshel, Callaway (CR8) 2014; 34
Sereno (CR10) 1995; 268
Allman, Kaas (CR13) 1971; 31
CR21
Engel, Glover, Wandell (CR41) 1997; 7
Kalatsky, Stryker (CR34) 2003; 38
Malonek, Grinvald (CR35) 1996; 272
Schuett, Bonhoeffer, Hübener (CR39) 2002; 22
Oommen, Stahl (CR42) 2008; 1193
Grinvald, Lieke, Frostig, Gilbert, Wiesel (CR1) 1986; 324
Polimeni, Granquist-Fraser, Wood, Schwartz (CR24) 2005; 102
Vanni, Murphy (CR23) 2014; 34
Ts'o, Frostig, Lieke, Grinvald (CR7) 1990; 249
Juavinett, Callaway (CR19) 2015; 25
Orbach, Cohen (CR25) 1983; 3
Attwell, Laughlin (CR3) 2001; 21
Malonek (CR2) 1997; 94
Shmuel, Grinvald (CR5) 1996; 16
Goldey (CR28) 2014; 9
MI Sereno (BFnprot2016158_CR10) 1995; 268
A Das (BFnprot2016158_CR26) 1995; 375
DY Ts'o (BFnprot2016158_CR7) 1990; 249
JH Kaas (BFnprot2016158_CR14) 1997; 12
JR Polimeni (BFnprot2016158_CR24) 2005; 102
A Grinvald (BFnprot2016158_CR1) 1986; 324
HS Orbach (BFnprot2016158_CR25) 1983; 3
PA Bandettini (BFnprot2016158_CR40) 1993; 30
S Schuett (BFnprot2016158_CR39) 2002; 22
G Silasi (BFnprot2016158_CR38) 2016; 267
BFnprot2016158_CR12
AD Huberman (BFnprot2016158_CR15) 2011; 34
E Shtoyerman (BFnprot2016158_CR33) 2000; 20
EH Ratzlaff (BFnprot2016158_CR37) 1991; 36
MP Vanni (BFnprot2016158_CR23) 2014; 34
I Nauhaus (BFnprot2016158_CR36) 2007; 97
BA Wandell (BFnprot2016158_CR11) 2011; 51
VA Kalatsky (BFnprot2016158_CR34) 2003; 38
ME Garrett (BFnprot2016158_CR8) 2014; 34
T Bonhoeffer (BFnprot2016158_CR6) 1991; 353
MI Sereno (BFnprot2016158_CR9) 1994; 4
AL Juavinett (BFnprot2016158_CR19) 2015; 25
D Attwell (BFnprot2016158_CR3) 2001; 21
GJ Goldey (BFnprot2016158_CR28) 2014; 9
A Shmuel (BFnprot2016158_CR5) 1996; 16
LL Glickfeld (BFnprot2016158_CR20) 2013; 16
SB Kodandaramaiah (BFnprot2016158_CR27) 2016; 11
D Malonek (BFnprot2016158_CR2) 1997; 94
L Luo (BFnprot2016158_CR17) 2008; 57
JH Marshel (BFnprot2016158_CR18) 2011; 72
D Malonek (BFnprot2016158_CR35) 1996; 272
BFnprot2016158_CR21
D Raposo (BFnprot2016158_CR22) 2014; 17
RD Frostig (BFnprot2016158_CR4) 1990; 87
MY Villeneuve (BFnprot2016158_CR32) 2003; 129
G Yang (BFnprot2016158_CR30) 2010; 5
S Engel (BFnprot2016158_CR41) 1997; 7
BS Oommen (BFnprot2016158_CR42) 2008; 1193
A Holtmaat (BFnprot2016158_CR29) 2009; 4
PM Goltstein (BFnprot2016158_CR31) 2015; 10
JM Allman (BFnprot2016158_CR13) 1971; 31
CM Niell (BFnprot2016158_CR16) 2011; 72
27102043 - J Neurosci Methods. 2016 Jul 15;267:141-9
11598490 - J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45
7703687 - Cereb Cortex. 1994 Nov-Dec;4(6):601-20
25275789 - Nat Protoc. 2014 Nov;9(11):2515-38
25383902 - Nat Neurosci. 2014 Dec;17(12):1784-92
1905769 - J Neurosci Methods. 1991 Feb;36(2-3):127-37
4998922 - Brain Res. 1971 Aug 7;31(1):85-105
3785405 - Nature. 1986 Nov 27-Dec 3;324(6095):361-4
18341986 - Neuron. 2008 Mar 13;57(5):634-60
12765606 - Neuron. 2003 May 22;38(4):529-45
7754376 - Science. 1995 May 12;268(5212):889-93
12951229 - J Neurosci Methods. 2003 Oct 15;129(1):19-31
8366797 - Magn Reson Med. 1993 Aug;30(2):161-73
23850594 - Neuron. 2013 Aug 7;79(3):579-93
9087826 - Cereb Cortex. 1997 Mar;7(2):181-92
21840069 - Trends Neurosci. 2011 Sep;34(9):464-73
26073133 - Curr Biol. 2015 Jun 29;25(13):1759-64
22196324 - Neuron. 2011 Dec 22;72(6):889-92
7596409 - Nature. 1995 Jun 29;375(6534):780-4
15746240 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4158-63
25429135 - J Neurosci. 2014 Nov 26;34(48):15931-46
26938115 - Nat Protoc. 2016 Apr;11(4):634-54
25706867 - PLoS One. 2015 Feb 23;10(2):e0118277
17344376 - J Neurophysiol. 2007 May;97(5):3781-9
25209296 - J Neurosci. 2014 Sep 10;34(37):12587-600
20692278 - Vision Res. 2011 Apr 13;51(7):718-37
2165630 - Science. 1990 Jul 27;249(4967):417-20
6631479 - J Neurosci. 1983 Nov;3(11):2251-62
9405698 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14826-31
23292681 - Nat Neurosci. 2013 Feb;16(2):219-26
8614805 - Science. 1996 Apr 26;272(5261):551-4
12151534 - J Neurosci. 2002 Aug 1;22(15):6549-59
11050133 - J Neurosci. 2000 Nov 1;20(21):8111-21
22196338 - Neuron. 2011 Dec 22;72(6):1040-54
19617885 - Nat Protoc. 2009;4(8):1128-44
2117272 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6082-6
20134419 - Nat Protoc. 2010 Feb;5(2):201-8
18178173 - Brain Res. 2008 Feb 8;1193:57-66
1896085 - Nature. 1991 Oct 3;353(6343):429-31
8824332 - J Neurosci. 1996 Nov 1;16(21):6945-64
References_xml – volume: 97
  start-page: 3781
  year: 2007
  end-page: 3789
  ident: CR36
  article-title: Precise alignment of micromachined electrode arrays with V1 functional maps
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00120.2007
– volume: 57
  start-page: 634
  year: 2008
  end-page: 660
  ident: CR17
  article-title: Genetic dissection of neural circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.01.002
– volume: 11
  start-page: 634
  year: 2016
  end-page: 654
  ident: CR27
  article-title: Assembly and operation of the autopatcher for automated intracellular neural recording
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.007
– volume: 375
  start-page: 780
  year: 1995
  end-page: 784
  ident: CR26
  article-title: Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex
  publication-title: Nature
  doi: 10.1038/375780a0
– volume: 34
  start-page: 464
  year: 2011
  end-page: 473
  ident: CR15
  article-title: What can mice tell us about how vision works?
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.07.002
– volume: 34
  start-page: 12587
  year: 2014
  end-page: 12600
  ident: CR8
  article-title: Topography and areal organization of mouse visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1124-14.2014
– volume: 34
  start-page: 15931
  year: 2014
  end-page: 15946
  ident: CR23
  article-title: Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1818-14.2014
– volume: 1193
  start-page: 57
  year: 2008
  end-page: 66
  ident: CR42
  article-title: Eye orientation during static tilts and its relationship to spontaneous head pitch in the laboratory mouse
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2007.11.053
– volume: 268
  start-page: 889
  year: 1995
  end-page: 893
  ident: CR10
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
  publication-title: Science
  doi: 10.1126/science.7754376
– volume: 4
  start-page: 1128
  year: 2009
  end-page: 1144
  ident: CR29
  article-title: Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.89
– ident: CR12
– volume: 25
  start-page: 1759
  year: 2015
  end-page: 1764
  ident: CR19
  article-title: Pattern and component motion responses in mouse visual cortical areas
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.05.028
– volume: 94
  start-page: 14826
  year: 1997
  end-page: 14831
  ident: CR2
  article-title: Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.26.14826
– volume: 353
  start-page: 429
  year: 1991
  end-page: 431
  ident: CR6
  article-title: Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns
  publication-title: Nature
  doi: 10.1038/353429a0
– volume: 102
  start-page: 4158
  year: 2005
  end-page: 4163
  ident: CR24
  article-title: Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0500291102
– volume: 22
  start-page: 6549
  year: 2002
  end-page: 6559
  ident: CR39
  article-title: Mapping retinotopic structure in mouse visual cortex with optical imaging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-15-06549.2002
– volume: 249
  start-page: 417
  year: 1990
  end-page: 420
  ident: CR7
  article-title: Functional organization of primate visual cortex revealed by high resolution optical imaging
  publication-title: Science
  doi: 10.1126/science.2165630
– volume: 72
  start-page: 889
  year: 2011
  end-page: 892
  ident: CR16
  article-title: Exploring the next frontier of mouse vision
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.12.011
– volume: 20
  start-page: 8111
  year: 2000
  end-page: 8121
  ident: CR33
  article-title: Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-21-08111.2000
– volume: 16
  start-page: 219
  year: 2013
  end-page: 226
  ident: CR20
  article-title: Cortico-cortical projections in mouse visual cortex are functionally target specific
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3300
– volume: 21
  start-page: 1133
  year: 2001
  end-page: 1145
  ident: CR3
  article-title: An energy budget for signaling in the grey matter of the brain
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-200110000-00001
– volume: 12
  start-page: 91
  year: 1997
  end-page: 119
  ident: CR14
  publication-title: Extra-Striate Cortex in Primates
  doi: 10.1007/978-1-4757-9625-4_3
– ident: CR21
– volume: 16
  start-page: 6945
  year: 1996
  end-page: 6964
  ident: CR5
  article-title: Functional organization for direction of motion and its relationship to orientation maps in cat area 18
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-21-06945.1996
– volume: 324
  start-page: 361
  year: 1986
  end-page: 364
  ident: CR1
  article-title: Functional architecture of cortex revealed by optical imaging of intrinsic signals
  publication-title: Nature
  doi: 10.1038/324361a0
– volume: 4
  start-page: 601
  year: 1994
  end-page: 620
  ident: CR9
  article-title: Analysis of retinotopic maps in extrastriate cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/4.6.601
– volume: 17
  start-page: 1784
  year: 2014
  end-page: 1792
  ident: CR22
  article-title: A category-free neural population supports evolving demands during decision-making
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3865
– volume: 3
  start-page: 2251
  year: 1983
  end-page: 2262
  ident: CR25
  article-title: Optical monitoring of activity from many areas of the and salamander olfactory bulb: a new method for studying functional organization in the vertebrate central nervous system
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.03-11-02251.1983
– volume: 36
  start-page: 127
  year: 1991
  end-page: 137
  ident: CR37
  article-title: A tandem-lens epifluourescence macroscope: hundred-fold brightness advantage for wide field imaging
  publication-title: J. Neurosci. Methods
  doi: 10.1016/0165-0270(91)90038-2
– volume: 267
  start-page: 141
  year: 2016
  end-page: 149
  ident: CR38
  article-title: Intact skull chronic windows for mesoscopic wide-field imaging in awake mice
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.04.012
– volume: 7
  start-page: 181
  year: 1997
  end-page: 192
  ident: CR41
  article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/7.2.181
– volume: 51
  start-page: 718
  year: 2011
  end-page: 737
  ident: CR11
  article-title: Imaging retinotopic maps in the human brain
  publication-title: Vision Res.
  doi: 10.1016/j.visres.2010.08.004
– volume: 87
  start-page: 6082
  year: 1990
  end-page: 6086
  ident: CR4
  article-title: Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by high-resolution optical imaging of intrinsic signals
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.87.16.6082
– volume: 9
  start-page: 2515
  year: 2014
  end-page: 2538
  ident: CR28
  article-title: Removable cranial windows for long-term imaging in awake mice
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.165
– volume: 129
  start-page: 19
  year: 2003
  end-page: 31
  ident: CR32
  article-title: On the use of isoflurane versus halothane in the study of visual response properties of single cells in the primary visual cortex
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(03)00198-5
– volume: 38
  start-page: 529
  year: 2003
  end-page: 545
  ident: CR34
  article-title: New paradigm for optical imaging: temporally encoded maps of intrinsic signal
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00286-1
– volume: 10
  start-page: e0118277
  year: 2015
  ident: CR31
  article-title: Effects of isoflurane anesthesia on ensemble patterns of Ca2+ activity in mouse V1: reduced direction selectivity independent of increased correlations in cellular activity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118277
– volume: 72
  start-page: 1040
  year: 2011
  end-page: 1054
  ident: CR18
  article-title: Functional specialization of seven mouse visual cortical areas
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.12.004
– volume: 5
  start-page: 201
  year: 2010
  end-page: 208
  ident: CR30
  article-title: Thinned-skull cranial window technique for long-term imaging of the cortex in live mice
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.222
– volume: 31
  start-page: 85
  year: 1971
  end-page: 105
  ident: CR13
  article-title: A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey ( )
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(71)90635-4
– volume: 30
  start-page: 161
  year: 1993
  end-page: 173
  ident: CR40
  article-title: Processing strategies for time-course data sets in functional mri of the human brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910300204
– volume: 272
  start-page: 551
  year: 1996
  end-page: 554
  ident: CR35
  article-title: Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping
  publication-title: Science
  doi: 10.1126/science.272.5261.551
– volume: 4
  start-page: 601
  year: 1994
  ident: BFnprot2016158_CR9
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/4.6.601
– volume: 129
  start-page: 19
  year: 2003
  ident: BFnprot2016158_CR32
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(03)00198-5
– volume: 30
  start-page: 161
  year: 1993
  ident: BFnprot2016158_CR40
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910300204
– volume: 249
  start-page: 417
  year: 1990
  ident: BFnprot2016158_CR7
  publication-title: Science
  doi: 10.1126/science.2165630
– volume: 21
  start-page: 1133
  year: 2001
  ident: BFnprot2016158_CR3
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-200110000-00001
– volume: 97
  start-page: 3781
  year: 2007
  ident: BFnprot2016158_CR36
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00120.2007
– volume: 7
  start-page: 181
  year: 1997
  ident: BFnprot2016158_CR41
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/7.2.181
– volume: 5
  start-page: 201
  year: 2010
  ident: BFnprot2016158_CR30
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.222
– volume: 1193
  start-page: 57
  year: 2008
  ident: BFnprot2016158_CR42
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2007.11.053
– volume: 22
  start-page: 6549
  year: 2002
  ident: BFnprot2016158_CR39
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-15-06549.2002
– volume: 31
  start-page: 85
  year: 1971
  ident: BFnprot2016158_CR13
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(71)90635-4
– volume: 34
  start-page: 15931
  year: 2014
  ident: BFnprot2016158_CR23
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1818-14.2014
– volume: 72
  start-page: 1040
  year: 2011
  ident: BFnprot2016158_CR18
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.12.004
– volume: 375
  start-page: 780
  year: 1995
  ident: BFnprot2016158_CR26
  publication-title: Nature
  doi: 10.1038/375780a0
– volume: 4
  start-page: 1128
  year: 2009
  ident: BFnprot2016158_CR29
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.89
– volume: 3
  start-page: 2251
  year: 1983
  ident: BFnprot2016158_CR25
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.03-11-02251.1983
– volume: 51
  start-page: 718
  year: 2011
  ident: BFnprot2016158_CR11
  publication-title: Vision Res.
  doi: 10.1016/j.visres.2010.08.004
– volume: 34
  start-page: 12587
  year: 2014
  ident: BFnprot2016158_CR8
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1124-14.2014
– volume: 34
  start-page: 464
  year: 2011
  ident: BFnprot2016158_CR15
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2011.07.002
– volume: 10
  start-page: e0118277
  year: 2015
  ident: BFnprot2016158_CR31
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118277
– ident: BFnprot2016158_CR12
– volume: 57
  start-page: 634
  year: 2008
  ident: BFnprot2016158_CR17
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.01.002
– volume: 25
  start-page: 1759
  year: 2015
  ident: BFnprot2016158_CR19
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.05.028
– volume: 16
  start-page: 219
  year: 2013
  ident: BFnprot2016158_CR20
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3300
– volume: 12
  start-page: 91
  year: 1997
  ident: BFnprot2016158_CR14
  publication-title: Extra-Striate Cortex in Primates
  doi: 10.1007/978-1-4757-9625-4_3
– volume: 72
  start-page: 889
  year: 2011
  ident: BFnprot2016158_CR16
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.12.011
– volume: 353
  start-page: 429
  year: 1991
  ident: BFnprot2016158_CR6
  publication-title: Nature
  doi: 10.1038/353429a0
– volume: 272
  start-page: 551
  year: 1996
  ident: BFnprot2016158_CR35
  publication-title: Science
  doi: 10.1126/science.272.5261.551
– volume: 20
  start-page: 8111
  year: 2000
  ident: BFnprot2016158_CR33
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-21-08111.2000
– volume: 102
  start-page: 4158
  year: 2005
  ident: BFnprot2016158_CR24
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0500291102
– volume: 87
  start-page: 6082
  year: 1990
  ident: BFnprot2016158_CR4
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.87.16.6082
– volume: 9
  start-page: 2515
  year: 2014
  ident: BFnprot2016158_CR28
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.165
– volume: 36
  start-page: 127
  year: 1991
  ident: BFnprot2016158_CR37
  publication-title: J. Neurosci. Methods
  doi: 10.1016/0165-0270(91)90038-2
– volume: 324
  start-page: 361
  year: 1986
  ident: BFnprot2016158_CR1
  publication-title: Nature
  doi: 10.1038/324361a0
– ident: BFnprot2016158_CR21
  doi: 10.1016/j.neuron.2013.06.010
– volume: 94
  start-page: 14826
  year: 1997
  ident: BFnprot2016158_CR2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.26.14826
– volume: 268
  start-page: 889
  year: 1995
  ident: BFnprot2016158_CR10
  publication-title: Science
  doi: 10.1126/science.7754376
– volume: 17
  start-page: 1784
  year: 2014
  ident: BFnprot2016158_CR22
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3865
– volume: 11
  start-page: 634
  year: 2016
  ident: BFnprot2016158_CR27
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.007
– volume: 38
  start-page: 529
  year: 2003
  ident: BFnprot2016158_CR34
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00286-1
– volume: 267
  start-page: 141
  year: 2016
  ident: BFnprot2016158_CR38
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.04.012
– volume: 16
  start-page: 6945
  year: 1996
  ident: BFnprot2016158_CR5
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-21-06945.1996
– reference: 22196324 - Neuron. 2011 Dec 22;72(6):889-92
– reference: 15746240 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4158-63
– reference: 19617885 - Nat Protoc. 2009;4(8):1128-44
– reference: 1896085 - Nature. 1991 Oct 3;353(6343):429-31
– reference: 17344376 - J Neurophysiol. 2007 May;97(5):3781-9
– reference: 8614805 - Science. 1996 Apr 26;272(5261):551-4
– reference: 2165630 - Science. 1990 Jul 27;249(4967):417-20
– reference: 6631479 - J Neurosci. 1983 Nov;3(11):2251-62
– reference: 18341986 - Neuron. 2008 Mar 13;57(5):634-60
– reference: 20692278 - Vision Res. 2011 Apr 13;51(7):718-37
– reference: 11598490 - J Cereb Blood Flow Metab. 2001 Oct;21(10):1133-45
– reference: 25429135 - J Neurosci. 2014 Nov 26;34(48):15931-46
– reference: 8824332 - J Neurosci. 1996 Nov 1;16(21):6945-64
– reference: 7754376 - Science. 1995 May 12;268(5212):889-93
– reference: 27102043 - J Neurosci Methods. 2016 Jul 15;267:141-9
– reference: 25383902 - Nat Neurosci. 2014 Dec;17(12):1784-92
– reference: 4998922 - Brain Res. 1971 Aug 7;31(1):85-105
– reference: 23850594 - Neuron. 2013 Aug 7;79(3):579-93
– reference: 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92
– reference: 7596409 - Nature. 1995 Jun 29;375(6534):780-4
– reference: 12951229 - J Neurosci Methods. 2003 Oct 15;129(1):19-31
– reference: 23292681 - Nat Neurosci. 2013 Feb;16(2):219-26
– reference: 26073133 - Curr Biol. 2015 Jun 29;25(13):1759-64
– reference: 11050133 - J Neurosci. 2000 Nov 1;20(21):8111-21
– reference: 2117272 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6082-6
– reference: 21840069 - Trends Neurosci. 2011 Sep;34(9):464-73
– reference: 1905769 - J Neurosci Methods. 1991 Feb;36(2-3):127-37
– reference: 25209296 - J Neurosci. 2014 Sep 10;34(37):12587-600
– reference: 26938115 - Nat Protoc. 2016 Apr;11(4):634-54
– reference: 9405698 - Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14826-31
– reference: 22196338 - Neuron. 2011 Dec 22;72(6):1040-54
– reference: 12765606 - Neuron. 2003 May 22;38(4):529-45
– reference: 3785405 - Nature. 1986 Nov 27-Dec 3;324(6095):361-4
– reference: 25275789 - Nat Protoc. 2014 Nov;9(11):2515-38
– reference: 7703687 - Cereb Cortex. 1994 Nov-Dec;4(6):601-20
– reference: 18178173 - Brain Res. 2008 Feb 8;1193:57-66
– reference: 20134419 - Nat Protoc. 2010 Feb;5(2):201-8
– reference: 8366797 - Magn Reson Med. 1993 Aug;30(2):161-73
– reference: 25706867 - PLoS One. 2015 Feb 23;10(2):e0118277
– reference: 12151534 - J Neurosci. 2002 Aug 1;22(15):6549-59
SSID ssj0047367
Score 2.466788
Snippet This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm. Intrinsic...
Intrinsic signal optical imaging (ISI) is a rapid and noninvasive method for observing brain activity in vivo over a large area of the cortex. Here we describe...
This protocol describes how to produce retinotopic maps of mouse visual cortex using intrinsic signal optical imaging and a segmentation algorithm.Intrinsic...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 32
SubjectTerms 14
59
631/136/334/1874/345
631/1647/245/2226
631/378/2613
631/378/3917
Algorithms
Analytical Chemistry
Animals
Automation
Biological Techniques
Brain
Brain architecture
Brain mapping
Computational Biology/Bioinformatics
Computational neuroscience
Hemodynamics
Image segmentation
In vivo methods and tests
Innovations
Laboratories
Life Sciences
Mapping
Medical examination
Mice
Mice, Inbred C57BL
Microarrays
Neuroimaging
Neurosciences
Optical communication
Optical Imaging - instrumentation
Optical Imaging - methods
Optical tomography
Organic Chemistry
Protocol
Retina
Signal Transduction
Source code
Topography
Visual cortex
Visual Cortex - cytology
Visual Cortex - physiology
Visual field
Visual Fields
Visual pathways
Visual signals
Visual stimuli
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaWrhBw4P0oLCggJPaSNHFe9rFCrBYEK7RQaTlZtuNAROtWNAEtv54ZN4maiuVxiSrNyKk9M_YXe_wNIc8zmZVpSbmfKA2PXKY-T6jyYWI0aRhDqCu8jfzuJDueJW_O0rM9EnV3YVzSvlZVYOeLwFZfXG7laqEnXZ7YJMWjriS_RPazFOD3iOzPTt5PP7mLj2no09zVjITfiQ_LF--IGmM2sUh9gNlcWRBhifethWh3Ot5aj3ZzJfsD02vkSmNX8vyHnM-31qSjG-S0680mFeVr0NQq0D93iB7_q7s3yfUWoXrTjegW2TP2Nrm8qVl5foe8nTb1EmCuKbyqaFONnHW9ZenhPoLxvlfrBlqQmO_u4UavV0GvKgsO4WG-CMiqhauOdJfMjl59fHnstyUZfJ3RsPYNlXnCChXRksUs0_DBWEalKUzKaZ4rTSVVXPJIMRUZeEoVmowqAFacG8Z1fI-M7NKaB8RLTCgZLxlnEiAGU7wA7JDnsdQ6LkzGx8Tv7CN0y1eOZTPmwp2bx0w4ewq0pwB7jsmLXn-1Yeq4UPMZmlsg_YXF_JrPslmvxesPp2KKbDoIyiJorlUql_BaLdvrCvDnkTFroHkw0IT41ENx51WinR_WAr6rsY4A4KXfiikeRgPww1F42ouxYUyJswaM6ZpAfjke_UkndXRNUTgm9zd-3I8NBApgOXxDPvDwXgGJx4cScFBHQN765JgcdrGw1bMLhvywj5W_WOfhv6s-Ilcpoiy3I3ZARvW3xjwGjFirJ-2s8AtXVWaQ
  priority: 102
  providerName: Unpaywall
Title Automated identification of mouse visual areas with intrinsic signal imaging
URI https://link.springer.com/article/10.1038/nprot.2016.158
https://www.ncbi.nlm.nih.gov/pubmed/27906169
https://www.proquest.com/docview/1845782238
https://www.proquest.com/docview/2565728369
https://www.proquest.com/docview/1845254491
https://www.proquest.com/docview/1850776710
https://pubmed.ncbi.nlm.nih.gov/PMC5381647
https://www.ncbi.nlm.nih.gov/pmc/articles/5381647
UnpaywallVersion submittedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1750-2799
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0047367
  issn: 1750-2799
  databaseCode: 7X7
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1750-2799
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0047367
  issn: 1750-2799
  databaseCode: BENPR
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9QwDLe2mxDwgPimMKaCkNhLtzb9SPKA0IE2DQSnaXDS8VQlbQqVjvbgrqD999i5tlwnNl7ah1hpazu2Gzs_A7xIVFLEBZNepDO8cBV7MmLaQ8NoYj_Epa7pNPLHSXIyjd7P4tkWTLqzMFRW2dlEa6jzOqM98kNG-Tn0hYl8vfjhUdcoyq52LTRU21ohf2UhxrZhhxEy1gh23hxNTs862xzx0PaURZ8ZeejcZAfjGIrDioARqNYrOQioAfyGm7porDe81cVKyj6dehOuN9VCnf9W8_mGxzq-DbfaUNMdr3XjDmyZ6i5cWzefPL8HH8bNqsZ41eRumbc1Q1ZMbl24tCFg3F_lssEZFBWuu7Rj65b4AmWFknWp8APHyu-2zdF9mB4ffX574rW9FbwsYf7KM0zxSOQ6YIUIRZIhs4qgMLmJJeNcZ0wxLZUMtNCBwavSvkmYxghJSiNkFj6AUVVX5hG4kfGVkIWQQmGsILTMMQjgPESZhLlJpANex8o0a4HHqf_FPLUJ8FCklvUpsT5F1jvwsqdfrCE3LqV8TpJJCceiokKZr6pZLtN3n87SMcHiUHQV4HQtUVHjYzPVnjvAlyfoqwHl7oASF1o2HO4UIG0X-jLFH2RqCICBzz-H_2qtA8_6YZqYatsqg8K0UxBQnAyuookt7lLgO_BwrXI9bxiXGJTRE_hAGXsCQhAfjlTlN4skHlPaOOIO7Hdqu_Fll7B8v1fr_0jn8dUMeQI3GIVIdjtrF0arn415igHeSu_BNp_xvXbt4n06OR1_-QO37VKn
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWjwgPgaFAYEBGIvYYnzZT9MqMCmlnUVGpu0N2MnDovUpYW2TP3n-Nu4c5PQTmw87SUvd3KS8_nu7Dv_DuB1rOI8yplwQ53iI1GRK0KmXTSMJvICXOqabiMf9OPOcfj5JDpZgd_1XRgqq6xtojXU2TClM_JtRvk59IWxeD_64VLXKMqu1i00VNVaIduxEGPVxY59MzvHLdx4p_sJ5_sNY3u7Rx87btVlwE1j5k1cw1QS8kz7LOcBj1PcA-V-bjITCZYkOmWKaaGEr7n2DT6V9kzMNMYKQhgu0gDHvQFrYRAK3PytfdjtfzmsfUGYBLaHLfro0EVnKmrYyIBvlwTEQLVl8TufGs4vuMWLzmHBO16s3GzSt7dhfVqO1OxcDQYLHnLvLtypQlunPdfFe7Biyvtwc97scvYAeu3pZIjxscmcIqtqlKxaOMPcoQMI4_wqxlMcQVGhvEMnxE6BH1CUqEkOFZogrTizbZUewvG1SHkDVsthaR6DExpPcZFzwRXGJlyLDIOOJAlQB4LMxKIFbi1KmVZA59RvYyBtwj3g0opekuglir4Fbxv-0Rzi41LOVzQzknAzSirM-a6m47Hsfj2UbYLhoWjOx-EqpnyIr01Vdc8BP56gtpY4N5c4cWGny-RaAWRlWMYSN-TUgAADrX-S_66SFrxsyDQw1dKVBifTDkHAdMK_iieyOE--14JHc5VrZMMSgUEgvSFZUsaGgRDLlyllcWqRyyNKU4dJC7ZqtV34s0tEvtWo9X9m58nVAnkB652jg57sdfv7T-EWo_DMHqVtwurk59Q8w-Byop9XK9iBb9dtNP4Az1KNgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEF8PiG8KAwICsZfQxvmw_YBQxahWNiYEm9Q3YzsORCpJIQ1T_zX-Ou7cJLQTG097yYtPl-R8vjv7zr8j5HmikizOqPAjbeDBVOyLiGofDKONByEsdY23kT8cJLtH0ftJPNkgv9u7MFhW2dpEZ6jT0uAZeZ9ifg58YSL6WVMW8XFn9Gb2w8cOUphpbdtpLFVkzy6OYftWvR7vwFy_oHT07vDtrt90GPBNQgdz31LFIp7qgGY85ImB_U8WZDa1saCMaUMV1UKJQHMdWHgqPbAJ1RAnCGG5MCHwvUAusjAUWE7IJt1mL2Kh614L3jnywY2KFjAy5P0CIRiwqix5FWCr-RWHeNItrPjFkzWbXeL2GrlSFzO1OFbT6YpvHN0g15ug1hsutfAm2bDFLXJp2eZycZvsD-t5CZGxTb08baqTnEJ4Zebh0YP1fuVVDRwUlsh7eDbs5fABeQE65GGJCYzl311DpTvk6FxkfJdsFmVh7xMvsgPFRcYFVxCVcC1SCDcYC5UxYWoT0SN-K0ppGohz7LQxlS7VHnLpRC9R9BJE3yMvO_rZEtzjVMpnODMSETMK1L2vqq4qOf78SQ4RgAfjuADYNURZCa81qrnhAB-PIFtrlFtrlLCkzfpwqwCyMSmVhK04th6AEOufw3_XR4887YaRMVbRFRYm07FASDoRnEUTO4SnYNAj95Yq18mGMgHhH76BrSljR4BY5esjRf7NYZbHmKCOWI9st2q78meniHy7U-v_zM6DswXyhFwGUyH3xwd7D8lVinGZO0PbIpvzn7V9BFHlXD92y9cjX87bXvwB8BWLHA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaWrhBw4P0oLCggJPaSNHFe9rFCrBYEK7RQaTlZtuNAROtWNAEtv54ZN4maiuVxiSrNyKk9M_YXe_wNIc8zmZVpSbmfKA2PXKY-T6jyYWI0aRhDqCu8jfzuJDueJW_O0rM9EnV3YVzSvlZVYOeLwFZfXG7laqEnXZ7YJMWjriS_RPazFOD3iOzPTt5PP7mLj2no09zVjITfiQ_LF--IGmM2sUh9gNlcWRBhifethWh3Ot5aj3ZzJfsD02vkSmNX8vyHnM-31qSjG-S0680mFeVr0NQq0D93iB7_q7s3yfUWoXrTjegW2TP2Nrm8qVl5foe8nTb1EmCuKbyqaFONnHW9ZenhPoLxvlfrBlqQmO_u4UavV0GvKgsO4WG-CMiqhauOdJfMjl59fHnstyUZfJ3RsPYNlXnCChXRksUs0_DBWEalKUzKaZ4rTSVVXPJIMRUZeEoVmowqAFacG8Z1fI-M7NKaB8RLTCgZLxlnEiAGU7wA7JDnsdQ6LkzGx8Tv7CN0y1eOZTPmwp2bx0w4ewq0pwB7jsmLXn-1Yeq4UPMZmlsg_YXF_JrPslmvxesPp2KKbDoIyiJorlUql_BaLdvrCvDnkTFroHkw0IT41ENx51WinR_WAr6rsY4A4KXfiikeRgPww1F42ouxYUyJswaM6ZpAfjke_UkndXRNUTgm9zd-3I8NBApgOXxDPvDwXgGJx4cScFBHQN765JgcdrGw1bMLhvywj5W_WOfhv6s-Ilcpoiy3I3ZARvW3xjwGjFirJ-2s8AtXVWaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+identification+of+mouse+visual+areas+with+intrinsic+signal+imaging&rft.jtitle=Nature+protocols&rft.au=Juavinett%2C+Ashley+L&rft.au=Nauhaus%2C+Ian&rft.au=Garrett%2C+Marina+E&rft.au=Zhuang%2C+Jun&rft.date=2017-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1754-2189&rft.volume=12&rft.issue=1&rft.spage=32&rft_id=info:doi/10.1038%2Fnprot.2016.158&rft.externalDocID=A480165841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon