The proposed ‘concordance-statistic for benefit’ provided a useful metric when modeling heterogeneous treatment effects

Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit–the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predi...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical epidemiology Vol. 94; pp. 59 - 68
Main Authors van Klaveren, David, Steyerberg, Ewout W., Serruys, Patrick W., Kent, David M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2018
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0895-4356
1878-5921
1878-5921
DOI10.1016/j.jclinepi.2017.10.021

Cover

Abstract Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit–the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predict treatment benefit. We analyzed data of the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial and of three recombinant tissue plasminogen activator trials. We assessed alternative prediction models with a conventional risk concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for treatment assignment. The ‘c-for-benefit’ represents the probability that from two randomly chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit also has a higher predicted benefit. Compared to a model without treatment interactions, the SYNTAX score II had improved ability to discriminate treatment benefit (c-for-benefit 0.590 vs. 0.552), despite having similar risk discrimination (c-statistic 0.725 vs. 0.719). However, for the simplified stroke–thrombolytic predictive instrument (TPI) vs. the original stroke-TPI, the c-for-benefit (0.584 vs. 0.578) was similar. The proposed methodology has the potential to measure a model's ability to predict treatment benefit not captured with conventional performance metrics.
AbstractList Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit–the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predict treatment benefit. We analyzed data of the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial and of three recombinant tissue plasminogen activator trials. We assessed alternative prediction models with a conventional risk concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for treatment assignment. The ‘c-for-benefit’ represents the probability that from two randomly chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit also has a higher predicted benefit. Compared to a model without treatment interactions, the SYNTAX score II had improved ability to discriminate treatment benefit (c-for-benefit 0.590 vs. 0.552), despite having similar risk discrimination (c-statistic 0.725 vs. 0.719). However, for the simplified stroke–thrombolytic predictive instrument (TPI) vs. the original stroke-TPI, the c-for-benefit (0.584 vs. 0.578) was similar. The proposed methodology has the potential to measure a model's ability to predict treatment benefit not captured with conventional performance metrics.
Objectives Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit-the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predict treatment benefit. Study Design and Setting We analyzed data of the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial and of three recombinant tissue plasminogen activator trials. We assessed alternative prediction models with a conventional risk concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for treatment assignment. The ‘c-for-benefit’ represents the probability that from two randomly chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit also has a higher predicted benefit. Results Compared to a model without treatment interactions, the SYNTAX score II had improved ability to discriminate treatment benefit (c-for-benefit 0.590 vs. 0.552), despite having similar risk discrimination (c-statistic 0.725 vs. 0.719). However, for the simplified stroke-thrombolytic predictive instrument (TPI) vs. the original stroke-TPI, the c-for-benefit (0.584 vs. 0.578) was similar. Conclusion The proposed methodology has the potential to measure a model's ability to predict treatment benefit not captured with conventional performance metrics.
Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit-the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predict treatment benefit.OBJECTIVESClinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit-the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predict treatment benefit.We analyzed data of the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial and of three recombinant tissue plasminogen activator trials. We assessed alternative prediction models with a conventional risk concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for treatment assignment. The 'c-for-benefit' represents the probability that from two randomly chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit also has a higher predicted benefit.STUDY DESIGN AND SETTINGWe analyzed data of the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial and of three recombinant tissue plasminogen activator trials. We assessed alternative prediction models with a conventional risk concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for treatment assignment. The 'c-for-benefit' represents the probability that from two randomly chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit also has a higher predicted benefit.Compared to a model without treatment interactions, the SYNTAX score II had improved ability to discriminate treatment benefit (c-for-benefit 0.590 vs. 0.552), despite having similar risk discrimination (c-statistic 0.725 vs. 0.719). However, for the simplified stroke-thrombolytic predictive instrument (TPI) vs. the original stroke-TPI, the c-for-benefit (0.584 vs. 0.578) was similar.RESULTSCompared to a model without treatment interactions, the SYNTAX score II had improved ability to discriminate treatment benefit (c-for-benefit 0.590 vs. 0.552), despite having similar risk discrimination (c-statistic 0.725 vs. 0.719). However, for the simplified stroke-thrombolytic predictive instrument (TPI) vs. the original stroke-TPI, the c-for-benefit (0.584 vs. 0.578) was similar.The proposed methodology has the potential to measure a model's ability to predict treatment benefit not captured with conventional performance metrics.CONCLUSIONThe proposed methodology has the potential to measure a model's ability to predict treatment benefit not captured with conventional performance metrics.
Author Steyerberg, Ewout W.
Serruys, Patrick W.
van Klaveren, David
Kent, David M.
AuthorAffiliation 3 Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
4 National Heart and Lung Institute, Imperial College London, London, United Kingdom
2 Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
1 Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, USA
AuthorAffiliation_xml – name: 4 National Heart and Lung Institute, Imperial College London, London, United Kingdom
– name: 2 Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
– name: 1 Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, USA
– name: 3 Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
Author_xml – sequence: 1
  givenname: David
  surname: van Klaveren
  fullname: van Klaveren, David
  email: d.van_klaveren@lumc.nl
  organization: Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, 800 Washington St, Boston, MA 02111, USA
– sequence: 2
  givenname: Ewout W.
  surname: Steyerberg
  fullname: Steyerberg, Ewout W.
  organization: Department of Medical Statistics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
– sequence: 3
  givenname: Patrick W.
  surname: Serruys
  fullname: Serruys, Patrick W.
  organization: National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LR, United Kingdom
– sequence: 4
  givenname: David M.
  surname: Kent
  fullname: Kent, David M.
  organization: Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, 800 Washington St, Boston, MA 02111, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29132832$$D View this record in MEDLINE/PubMed
BookMark eNqNUs1u1DAYtFAR3RZeoYrEhUsW_8T5kVBFVVFAqsSlnC3H_rLrkNiL7SyquPQx6Ov1SXDYtoK9lJOlzzPj-TxzhA6ss4DQCcFLgkn5tl_2ajAWNmZJManScIkpeYYWpK7qnDeUHKAFrhueF4yXh-gohB4nIK74C3RIG8JozegC_bxaQ7bxbuMC6Ozu5pdyVjmvpVWQhyijCdGorHM-a8FCZ-Ldze1M2BqdCDKbAnTTkI0QfcL9WIPNRqcheVtla4jg3Srx3BSy6EHGEWzMoOtAxfASPe_kEODV_XmMvl58uDr_lF9--fj5_OwyVyXFMVdAgWjecdypljS6aNuyYwAV44VmLahG8lphrInWIFmlCsYYbytKARpWV-wYne50N1M7glbJgpeD2HgzSn8tnDTi3xtr1mLltqIqiroqcRJ4cy_g3fcJQhSjCQqGQf7ZTJCmLGhFcDO_9XoP2rvJ27SeoOn_OSWU8IQ6-dvRo5WHXBKg3AGUdyF46B4hBIu5AKIXDwUQcwHmeSpAIr7bIyozp-jmzczwNP39jg4pj60BL4IykLqgjU-RCe3M0xKnexIzyig5fIPr_xH4Dd2e6-0
CitedBy_id crossref_primary_10_1016_j_jacc_2021_07_027
crossref_primary_10_1186_s13104_021_05862_8
crossref_primary_10_1016_S0140_6736_20_32114_0
crossref_primary_10_1002_sim_10059
crossref_primary_10_1016_j_jclinepi_2019_05_029
crossref_primary_10_1007_s10654_025_01215_y
crossref_primary_10_1136_bmjopen_2021_058215
crossref_primary_10_1002_sim_9665
crossref_primary_10_1007_s10742_021_00243_x
crossref_primary_10_1136_thorax_2022_219382
crossref_primary_10_1002_sim_10186
crossref_primary_10_1016_j_jacc_2021_02_058
crossref_primary_10_2147_CLEP_S274466
crossref_primary_10_1177_0272989X211064604
crossref_primary_10_1002_sim_9719
crossref_primary_10_1186_s12874_024_02202_9
crossref_primary_10_1016_j_fertnstert_2021_06_018
crossref_primary_10_1002_jrsm_1717
crossref_primary_10_1186_s12874_023_01889_6
crossref_primary_10_1136_bmjopen_2022_065903
crossref_primary_10_1002_sim_9154
crossref_primary_10_1136_bmjopen_2019_035883
crossref_primary_10_1161_CIRCULATIONAHA_122_062626
crossref_primary_10_1371_journal_pone_0292586
crossref_primary_10_1002_cpt_3627
crossref_primary_10_1056_EVIDoa2300041
crossref_primary_10_1097_HEP_0000000000000793
crossref_primary_10_1177_1352458519887343
crossref_primary_10_1016_j_jclinepi_2024_111538
crossref_primary_10_1038_s43856_023_00423_5
crossref_primary_10_1177_09622802221090759
crossref_primary_10_7326_M18_3668
crossref_primary_10_1136_bmj_k4245
crossref_primary_10_1097_ADM_0000000000001313
crossref_primary_10_1016_S2213_2600_24_00405_3
crossref_primary_10_1111_dme_15183
crossref_primary_10_1186_s41512_023_00154_0
crossref_primary_10_1016_j_jhepr_2022_100621
crossref_primary_10_1097_HEP_0000000000000548
crossref_primary_10_1186_s13063_021_05489_x
crossref_primary_10_1200_CCI_24_00037
crossref_primary_10_1161_STROKEAHA_120_032935
crossref_primary_10_1093_ije_dyad037
crossref_primary_10_1007_s11892_020_01353_5
crossref_primary_10_1186_s41512_023_00147_z
crossref_primary_10_2337_dbi22_0039
crossref_primary_10_1136_bmjopen_2024_089356
crossref_primary_10_1016_j_jclinane_2022_110957
crossref_primary_10_1186_s12874_023_01974_w
crossref_primary_10_1001_jama_2024_2933
crossref_primary_10_1016_j_jclinepi_2021_02_005
crossref_primary_10_1097_CCM_0000000000006371
crossref_primary_10_1186_s12874_020_01145_1
crossref_primary_10_1016_j_ejor_2023_09_018
crossref_primary_10_1002_sim_8481
crossref_primary_10_1186_s12883_024_03546_x
Cites_doi 10.1016/S0140-6736(95)90120-5
10.1212/WNL.0000000000001925
10.1016/S0140-6736(13)61152-6
10.7326/M14-2767
10.1056/NEJMoa1301851
10.1161/01.STR.31.4.811
10.1016/S0140-6736(98)08020-9
10.1198/016214504000001880
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1001/jama.282.21.2019
10.1177/0272989X06295361
10.1016/j.ahj.2005.04.020
10.1016/S0002-8703(97)70164-9
10.1136/bmj.e5793
10.1080/01621459.1986.10478354
10.1148/radiology.143.1.7063747
10.1016/j.jclinepi.2014.09.007
10.1016/j.jclinepi.2015.04.005
10.1136/bmj.h5651
10.1016/S0140-6736(13)60108-7
10.2307/2529981
10.1056/NEJMoa0804626
10.18637/jss.v042.i07
10.1001/jama.2016.3775
10.1016/j.ahj.2005.07.017
10.1111/j.0887-378X.2004.00327.x
10.1001/jama.298.10.1209
10.1097/EDE.0b013e3181c30fb2
10.1002/sim.4780030207
10.1111/j.1541-0420.2011.01722.x
10.1093/ije/15.3.413
10.1016/S0140-6736(05)70156-2
10.1001/jama.1982.03320430047030
10.1016/S0140-6736(13)61151-4
10.1016/j.jclinepi.2015.02.012
10.1056/NEJM199512143332401
10.1016/S0140-6736(98)11415-0
10.1186/1745-6215-11-85
10.1161/01.STR.0000249054.96644.c6
10.1016/j.jclinepi.2015.12.005
10.1002/bimj.201300260
10.1136/bmj.h454
10.1186/1745-6215-8-14
10.1056/NEJM198701293160505
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright Elsevier Science Ltd. Feb 1, 2018
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Science Ltd. Feb 1, 2018
DBID AAYXX
CITATION
NPM
3V.
7QL
7QP
7RV
7T2
7T7
7TK
7U7
7U9
7X7
7XB
88C
88E
8AO
8C1
8FD
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
K9.
KB0
M0S
M0T
M1P
M2O
M7N
MBDVC
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1016/j.jclinepi.2017.10.021
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Health and Safety Science Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Research Library (Corporate)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
Health & Safety Science Abstracts
ProQuest Public Health
ProQuest Central Basic
Toxicology Abstracts
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Research Library Prep

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1878-5921
EndPage 68
ExternalDocumentID PMC7448760
29132832
10_1016_j_jclinepi_2017_10_021
S0895435617303037
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: U01NS086294
  funderid: https://doi.org/10.13039/100000002
– fundername: NINDS NIH HHS
  grantid: U01 NS086294
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8G5
8P~
9JM
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYJJ
AAYWO
ABBQC
ABFNM
ABIVO
ABJNI
ABLJU
ABMAC
ABMMH
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOMHK
APXCP
AQUVI
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
D-I
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HEH
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
L7B
M0T
M1P
M29
M2O
M3W
M41
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OD~
OHT
OO0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PRBVW
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSB
SSH
SSO
SSZ
SV3
T5K
UAP
UKHRP
WOW
WUQ
X7M
XPP
YHZ
Z5R
ZGI
~G-
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AKYCK
AMFUW
EFLBG
F3I
LCYCR
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
NPM
7QL
7QP
7T2
7T7
7TK
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c620t-ce2e1d5f50fcb19d4bb6f3ee7354d3bec9a58c00d1ddea37c43335b722ee93873
IEDL.DBID AIKHN
ISSN 0895-4356
1878-5921
IngestDate Thu Aug 21 18:29:40 EDT 2025
Fri Sep 05 07:01:34 EDT 2025
Wed Aug 13 05:17:32 EDT 2025
Thu Apr 03 07:00:02 EDT 2025
Tue Jul 01 03:10:44 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Fri Feb 23 02:32:17 EST 2024
Tue Aug 26 17:23:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Discrimination
Prediction models
Acute ischemic stroke
Treatment benefit
Concordance
Individualized treatment decisions
Coronary artery disease
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620t-ce2e1d5f50fcb19d4bb6f3ee7354d3bec9a58c00d1ddea37c43335b722ee93873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authors’ contributions: All authors contributed to the conception and the design of the study. Patrick Serruys and David Kent acquired the data. David van Klaveren and David Kent analyzed and interpreted the data and wrote the first draft of the paper. All authors contributed to writing the paper and approved the final version.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7448760
PMID 29132832
PQID 2001521215
PQPubID 105585
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7448760
proquest_miscellaneous_1964271097
proquest_journals_2001521215
pubmed_primary_29132832
crossref_primary_10_1016_j_jclinepi_2017_10_021
crossref_citationtrail_10_1016_j_jclinepi_2017_10_021
elsevier_sciencedirect_doi_10_1016_j_jclinepi_2017_10_021
elsevier_clinicalkey_doi_10_1016_j_jclinepi_2017_10_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Elmsford
PublicationTitle Journal of clinical epidemiology
PublicationTitleAlternate J Clin Epidemiol
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Harrell, Califf, Pryor, Lee, Rosati (bib14) 1982; 247
Kovalchik, Tammemagi, Berg, Caporaso, Riley, Korch (bib10) 2013; 369
Pauker, Kassirer (bib46) 1987; 316
Tajik, Oude Rengerink, Mol, Bossuyt (bib16) 2013; 381
Farooq, van Klaveren, Steyerberg, Meliga, Vergouwe, Chieffo (bib7) 2013; 381
Steyerberg, Vickers, Cook, Gerds, Gonen, Obuchowski (bib15) 2010; 21
Rothwell, Warlow (bib5) 1999; 353
Vickers, Elkin (bib45) 2006; 26
Burke, Sussman, Kent, Hayward (bib41) 2015; 351
Huang, Gilbert, Janes (bib42) 2012; 68
Steyerberg, Vedder, Leening, Postmus, D'Agostino, Van Calster (bib43) 2015; 57
Holland (bib19) 1986; 81
Sussman, Kent, Nelson, Hayward (bib9) 2015; 350
Harrell, Lee, Califf, Pryor, Rosati (bib23) 1984; 3
Serruys, Morice, Kappetein, Colombo, Holmes, Mack (bib30) 2009; 360
Siontis, Tzoulaki, Castaldi, Ioannidis (bib31) 2015; 68
Steyerberg, Harrell (bib32) 2016; 69
Kent, Hayward (bib12) 2007; 298
van Klaveren, Vergouwe, Farooq, Serruys, Steyerberg (bib25) 2015; 68
Van Calster, Nieboer, Vergouwe, De Cock, Pencina, Steyerberg (bib22) 2016; 74
Yeh, Secemsky, Kereiakes, Normand, Gershlick, Cohen (bib8) 2016; 315
Greenland, Robins (bib26) 1986; 15
(bib36) 1995; 333
Sekhon (bib28) 2011; 42
Califf, Woodlief, Harrell, Lee, White, Guerci (bib6) 1997; 133
Vickers, Kent (bib3) 2015; 162
Hernandez, Boersma, Murray, Habbema, Steyerberg (bib40) 2006; 151
Kravitz, Duan, Braslow (bib2) 2004; 82
Hacke, Kaste, Fieschi, von Kummer, Davalos, Meier (bib39) 1998; 352
Steyerberg (bib21) 2009
Kent, Rothwell, Ioannidis, Altman, Hayward (bib4) 2010; 11
Clark, Wissman, Albers, Jhamandas, Madden, Hamilton (bib38) 1999; 282
Rubin (bib27) 1980; 36
Kent, Ruthazer, Decker, Jones, Saver, Bluhmki (bib35) 2015; 85
Rothwell, Mehta, Howard, Gutnikov, Warlow (bib11) 2005; 365
Kent, Selker, Ruthazer, Bluhmki, Hacke (bib34) 2006; 37
Rothwell (bib1) 1995; 345
Hanley, McNeil (bib13) 1982; 143
Harrell, Lee, Mark (bib33) 1996; 15
Hingorani, Windt, Riley, Abrams, Moons, Steyerberg (bib24) 2013; 346
Vickers, Kattan, Daniel (bib44) 2007; 8
Rubin (bib20) 2005; 100
Clark, Albers, Madden, Hamilton (bib37) 2000; 31
Kent, Hayward, Dahabreh (bib18) 2016; 45
Farooq, van Klaveren, Steyerberg, Serruys (bib17) 2013; 381
Ong, Serruys, Mohr, Morice, Kappetein, Holmes (bib29) 2006; 151
Kent (10.1016/j.jclinepi.2017.10.021_bib18) 2016; 45
Huang (10.1016/j.jclinepi.2017.10.021_bib42) 2012; 68
Rothwell (10.1016/j.jclinepi.2017.10.021_bib1) 1995; 345
Farooq (10.1016/j.jclinepi.2017.10.021_bib17) 2013; 381
Greenland (10.1016/j.jclinepi.2017.10.021_bib26) 1986; 15
Van Calster (10.1016/j.jclinepi.2017.10.021_bib22) 2016; 74
Rothwell (10.1016/j.jclinepi.2017.10.021_bib11) 2005; 365
Harrell (10.1016/j.jclinepi.2017.10.021_bib23) 1984; 3
Kent (10.1016/j.jclinepi.2017.10.021_bib4) 2010; 11
Hanley (10.1016/j.jclinepi.2017.10.021_bib13) 1982; 143
Harrell (10.1016/j.jclinepi.2017.10.021_bib14) 1982; 247
Steyerberg (10.1016/j.jclinepi.2017.10.021_bib32) 2016; 69
Harrell (10.1016/j.jclinepi.2017.10.021_bib33) 1996; 15
Kovalchik (10.1016/j.jclinepi.2017.10.021_bib10) 2013; 369
van Klaveren (10.1016/j.jclinepi.2017.10.021_bib25) 2015; 68
Hernandez (10.1016/j.jclinepi.2017.10.021_bib40) 2006; 151
Steyerberg (10.1016/j.jclinepi.2017.10.021_bib21) 2009
Rubin (10.1016/j.jclinepi.2017.10.021_bib20) 2005; 100
Sussman (10.1016/j.jclinepi.2017.10.021_bib9) 2015; 350
Rubin (10.1016/j.jclinepi.2017.10.021_bib27) 1980; 36
Burke (10.1016/j.jclinepi.2017.10.021_bib41) 2015; 351
Califf (10.1016/j.jclinepi.2017.10.021_bib6) 1997; 133
Kent (10.1016/j.jclinepi.2017.10.021_bib12) 2007; 298
Yeh (10.1016/j.jclinepi.2017.10.021_bib8) 2016; 315
Clark (10.1016/j.jclinepi.2017.10.021_bib37) 2000; 31
Kent (10.1016/j.jclinepi.2017.10.021_bib34) 2006; 37
Serruys (10.1016/j.jclinepi.2017.10.021_bib30) 2009; 360
Pauker (10.1016/j.jclinepi.2017.10.021_bib46) 1987; 316
Ong (10.1016/j.jclinepi.2017.10.021_bib29) 2006; 151
Farooq (10.1016/j.jclinepi.2017.10.021_bib7) 2013; 381
Steyerberg (10.1016/j.jclinepi.2017.10.021_bib43) 2015; 57
Vickers (10.1016/j.jclinepi.2017.10.021_bib45) 2006; 26
Tajik (10.1016/j.jclinepi.2017.10.021_bib16) 2013; 381
Clark (10.1016/j.jclinepi.2017.10.021_bib38) 1999; 282
Kent (10.1016/j.jclinepi.2017.10.021_bib35) 2015; 85
Siontis (10.1016/j.jclinepi.2017.10.021_bib31) 2015; 68
Hacke (10.1016/j.jclinepi.2017.10.021_bib39) 1998; 352
Vickers (10.1016/j.jclinepi.2017.10.021_bib44) 2007; 8
Vickers (10.1016/j.jclinepi.2017.10.021_bib3) 2015; 162
Rothwell (10.1016/j.jclinepi.2017.10.021_bib5) 1999; 353
Kravitz (10.1016/j.jclinepi.2017.10.021_bib2) 2004; 82
Hingorani (10.1016/j.jclinepi.2017.10.021_bib24) 2013; 346
Sekhon (10.1016/j.jclinepi.2017.10.021_bib28) 2011; 42
(10.1016/j.jclinepi.2017.10.021_bib36) 1995; 333
Steyerberg (10.1016/j.jclinepi.2017.10.021_bib15) 2010; 21
Holland (10.1016/j.jclinepi.2017.10.021_bib19) 1986; 81
References_xml – volume: 298
  start-page: 1209
  year: 2007
  end-page: 1212
  ident: bib12
  article-title: Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification
  publication-title: JAMA
– volume: 381
  start-page: 639
  year: 2013
  end-page: 650
  ident: bib7
  article-title: Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II
  publication-title: Lancet
– volume: 37
  start-page: 2957
  year: 2006
  end-page: 2962
  ident: bib34
  article-title: The stroke-thrombolytic predictive instrument: a predictive instrument for intravenous thrombolysis in acute ischemic stroke
  publication-title: Stroke
– volume: 31
  start-page: 811
  year: 2000
  end-page: 816
  ident: bib37
  article-title: The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study. Thromblytic therapy in acute ischemic stroke study investigators
  publication-title: Stroke
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  ident: bib13
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
– volume: 350
  start-page: h454
  year: 2015
  ident: bib9
  article-title: Improving diabetes prevention with benefit based tailored treatment: risk based reanalysis of diabetes prevention program
  publication-title: BMJ
– volume: 81
  start-page: 945
  year: 1986
  end-page: 960
  ident: bib19
  article-title: Statistics and causal inference
  publication-title: J Am Stat Assoc
– volume: 133
  start-page: 630
  year: 1997
  end-page: 639
  ident: bib6
  article-title: Selection of thrombolytic therapy for individual patients: development of a clinical model. GUSTO-I Investigators
  publication-title: Am Heart J
– volume: 346
  start-page: e5793
  year: 2013
  ident: bib24
  article-title: Prognosis research strategy (PROGRESS) 4: stratified medicine research
  publication-title: BMJ
– volume: 360
  start-page: 961
  year: 2009
  end-page: 972
  ident: bib30
  article-title: Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease
  publication-title: N Engl J Med
– volume: 82
  start-page: 661
  year: 2004
  end-page: 687
  ident: bib2
  article-title: Evidence-based medicine, heterogeneity of treatment effects, and the trouble with averages
  publication-title: Milbank Q
– year: 2009
  ident: bib21
  article-title: Clinical prediction models: a practical approach to development, validation, and updating
– volume: 57
  start-page: 556
  year: 2015
  end-page: 570
  ident: bib43
  article-title: Graphical assessment of incremental value of novel markers in prediction models: from statistical to decision analytical perspectives
  publication-title: Biom J
– volume: 68
  start-page: 687
  year: 2012
  end-page: 696
  ident: bib42
  article-title: Assessing treatment-selection markers using a potential outcomes framework
  publication-title: Biometrics
– volume: 151
  start-page: 257
  year: 2006
  end-page: 264
  ident: bib40
  article-title: Subgroup analyses in therapeutic cardiovascular clinical trials: are most of them misleading?
  publication-title: Am Heart J
– volume: 68
  start-page: 1366
  year: 2015
  end-page: 1374
  ident: bib25
  article-title: Estimates of absolute treatment benefit for individual patients required careful modeling of statistical interactions
  publication-title: J Clin Epidemiol
– volume: 68
  start-page: 25
  year: 2015
  end-page: 34
  ident: bib31
  article-title: External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination
  publication-title: J Clin Epidemiol
– volume: 11
  start-page: 85
  year: 2010
  ident: bib4
  article-title: Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal
  publication-title: Trials
– volume: 353
  start-page: 2105
  year: 1999
  end-page: 2110
  ident: bib5
  article-title: Prediction of benefit from carotid endarterectomy in individual patients: a risk-modelling study
  publication-title: Lancet
– volume: 315
  start-page: 1735
  year: 2016
  end-page: 1749
  ident: bib8
  article-title: Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention
  publication-title: JAMA
– volume: 3
  start-page: 143
  year: 1984
  end-page: 152
  ident: bib23
  article-title: Regression modelling strategies for improved prognostic prediction
  publication-title: Stat Med
– volume: 69
  start-page: 245
  year: 2016
  end-page: 247
  ident: bib32
  article-title: Prediction models need appropriate internal, internal–external, and external validation
  publication-title: J Clin Epidemiol
– volume: 333
  start-page: 1581
  year: 1995
  end-page: 1587
  ident: bib36
  article-title: Tissue plasminogen activator for acute ischemic stroke
  publication-title: N Engl J Med
– volume: 42
  start-page: 1
  year: 2011
  end-page: 52
  ident: bib28
  article-title: Multivariate and propensity score matching software automated balance optimization: the matching package R
  publication-title: J Stat Softw
– volume: 74
  start-page: 167
  year: 2016
  end-page: 176
  ident: bib22
  article-title: A calibration hierarchy for risk models was defined: from utopia to empirical data
  publication-title: J Clin Epidemiol
– volume: 381
  start-page: 1899
  year: 2013
  end-page: 1900
  ident: bib17
  article-title: SYNTAX score II - Authors' reply
  publication-title: Lancet
– volume: 100
  start-page: 322
  year: 2005
  end-page: 331
  ident: bib20
  article-title: Causal inference using potential outcomes
  publication-title: J Am Stat Assoc
– volume: 365
  start-page: 256
  year: 2005
  end-page: 265
  ident: bib11
  article-title: Treating individuals 3: from subgroups to individuals: general principles and the example of carotid endarterectomy
  publication-title: Lancet
– volume: 381
  start-page: 1899
  year: 2013
  ident: bib16
  article-title: SYNTAX score II
  publication-title: Lancet
– volume: 316
  start-page: 250
  year: 1987
  end-page: 258
  ident: bib46
  article-title: Decision analysis
  publication-title: N Engl J Med
– volume: 162
  start-page: 866
  year: 2015
  end-page: 867
  ident: bib3
  article-title: The lake Wobegon effect: why most patients are at below-average risk
  publication-title: Ann Intern Med
– volume: 36
  start-page: 293
  year: 1980
  end-page: 298
  ident: bib27
  article-title: Bias reduction using Mahalanobis-metric matching
  publication-title: Biometrics
– volume: 352
  start-page: 1245
  year: 1998
  end-page: 1251
  ident: bib39
  article-title: Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators
  publication-title: Lancet
– volume: 21
  start-page: 128
  year: 2010
  end-page: 138
  ident: bib15
  article-title: Assessing the performance of prediction models: a framework for traditional and novel measures
  publication-title: Epidemiology
– volume: 85
  start-page: 942
  year: 2015
  end-page: 949
  ident: bib35
  article-title: Development and validation of a simplified stroke-thrombolytic predictive instrument
  publication-title: Neurology
– volume: 247
  start-page: 2543
  year: 1982
  end-page: 2546
  ident: bib14
  article-title: Evaluating the yield of medical tests
  publication-title: JAMA
– volume: 45
  start-page: 2184
  year: 2016
  end-page: 2193
  ident: bib18
  article-title: Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient-centered evidence
  publication-title: Int J Epidemiol
– volume: 369
  start-page: 245
  year: 2013
  end-page: 254
  ident: bib10
  article-title: Targeting of low-dose CT screening according to the risk of lung-cancer death
  publication-title: N Engl J Med
– volume: 345
  start-page: 1616
  year: 1995
  end-page: 1619
  ident: bib1
  article-title: Can overall results of clinical trials be applied to all patients?
  publication-title: Lancet
– volume: 8
  start-page: 14
  year: 2007
  ident: bib44
  article-title: Method for evaluating prediction models that apply the results of randomized trials to individual patients
  publication-title: Trials
– volume: 15
  start-page: 413
  year: 1986
  end-page: 419
  ident: bib26
  article-title: Identifiability, exchangeability, and epidemiological confounding
  publication-title: Int J Epidemiol
– volume: 26
  start-page: 565
  year: 2006
  end-page: 574
  ident: bib45
  article-title: Decision curve analysis: a novel method for evaluating prediction models
  publication-title: Med Decis Making
– volume: 15
  start-page: 361
  year: 1996
  end-page: 387
  ident: bib33
  article-title: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
  publication-title: Stat Med
– volume: 151
  start-page: 1194
  year: 2006
  end-page: 1204
  ident: bib29
  article-title: The SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery (SYNTAX) study: design, rationale, and run-in phase
  publication-title: Am Heart J
– volume: 351
  start-page: h5651
  year: 2015
  ident: bib41
  article-title: Three simple rules to ensure reasonably credible subgroup analyses
  publication-title: BMJ
– volume: 282
  start-page: 2019
  year: 1999
  end-page: 2026
  ident: bib38
  article-title: Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS Study: a randomized controlled trial. Alteplase thrombolysis for acute noninterventional therapy in ischemic stroke
  publication-title: JAMA
– volume: 345
  start-page: 1616
  year: 1995
  ident: 10.1016/j.jclinepi.2017.10.021_bib1
  article-title: Can overall results of clinical trials be applied to all patients?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)90120-5
– volume: 85
  start-page: 942
  year: 2015
  ident: 10.1016/j.jclinepi.2017.10.021_bib35
  article-title: Development and validation of a simplified stroke-thrombolytic predictive instrument
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001925
– volume: 381
  start-page: 1899
  year: 2013
  ident: 10.1016/j.jclinepi.2017.10.021_bib17
  article-title: SYNTAX score II - Authors' reply
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)61152-6
– volume: 162
  start-page: 866
  year: 2015
  ident: 10.1016/j.jclinepi.2017.10.021_bib3
  article-title: The lake Wobegon effect: why most patients are at below-average risk
  publication-title: Ann Intern Med
  doi: 10.7326/M14-2767
– volume: 369
  start-page: 245
  year: 2013
  ident: 10.1016/j.jclinepi.2017.10.021_bib10
  article-title: Targeting of low-dose CT screening according to the risk of lung-cancer death
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1301851
– volume: 31
  start-page: 811
  year: 2000
  ident: 10.1016/j.jclinepi.2017.10.021_bib37
  article-title: The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study. Thromblytic therapy in acute ischemic stroke study investigators
  publication-title: Stroke
  doi: 10.1161/01.STR.31.4.811
– volume: 352
  start-page: 1245
  year: 1998
  ident: 10.1016/j.jclinepi.2017.10.021_bib39
  article-title: Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators
  publication-title: Lancet
  doi: 10.1016/S0140-6736(98)08020-9
– volume: 100
  start-page: 322
  year: 2005
  ident: 10.1016/j.jclinepi.2017.10.021_bib20
  article-title: Causal inference using potential outcomes
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000001880
– volume: 15
  start-page: 361
  year: 1996
  ident: 10.1016/j.jclinepi.2017.10.021_bib33
  article-title: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– volume: 282
  start-page: 2019
  year: 1999
  ident: 10.1016/j.jclinepi.2017.10.021_bib38
  article-title: Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS Study: a randomized controlled trial. Alteplase thrombolysis for acute noninterventional therapy in ischemic stroke
  publication-title: JAMA
  doi: 10.1001/jama.282.21.2019
– volume: 26
  start-page: 565
  year: 2006
  ident: 10.1016/j.jclinepi.2017.10.021_bib45
  article-title: Decision curve analysis: a novel method for evaluating prediction models
  publication-title: Med Decis Making
  doi: 10.1177/0272989X06295361
– volume: 151
  start-page: 257
  year: 2006
  ident: 10.1016/j.jclinepi.2017.10.021_bib40
  article-title: Subgroup analyses in therapeutic cardiovascular clinical trials: are most of them misleading?
  publication-title: Am Heart J
  doi: 10.1016/j.ahj.2005.04.020
– volume: 133
  start-page: 630
  year: 1997
  ident: 10.1016/j.jclinepi.2017.10.021_bib6
  article-title: Selection of thrombolytic therapy for individual patients: development of a clinical model. GUSTO-I Investigators
  publication-title: Am Heart J
  doi: 10.1016/S0002-8703(97)70164-9
– volume: 346
  start-page: e5793
  year: 2013
  ident: 10.1016/j.jclinepi.2017.10.021_bib24
  article-title: Prognosis research strategy (PROGRESS) 4: stratified medicine research
  publication-title: BMJ
  doi: 10.1136/bmj.e5793
– volume: 81
  start-page: 945
  year: 1986
  ident: 10.1016/j.jclinepi.2017.10.021_bib19
  article-title: Statistics and causal inference
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1986.10478354
– volume: 143
  start-page: 29
  year: 1982
  ident: 10.1016/j.jclinepi.2017.10.021_bib13
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– year: 2009
  ident: 10.1016/j.jclinepi.2017.10.021_bib21
– volume: 68
  start-page: 25
  year: 2015
  ident: 10.1016/j.jclinepi.2017.10.021_bib31
  article-title: External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2014.09.007
– volume: 69
  start-page: 245
  year: 2016
  ident: 10.1016/j.jclinepi.2017.10.021_bib32
  article-title: Prediction models need appropriate internal, internal–external, and external validation
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2015.04.005
– volume: 45
  start-page: 2184
  year: 2016
  ident: 10.1016/j.jclinepi.2017.10.021_bib18
  article-title: Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient-centered evidence
  publication-title: Int J Epidemiol
– volume: 351
  start-page: h5651
  year: 2015
  ident: 10.1016/j.jclinepi.2017.10.021_bib41
  article-title: Three simple rules to ensure reasonably credible subgroup analyses
  publication-title: BMJ
  doi: 10.1136/bmj.h5651
– volume: 381
  start-page: 639
  year: 2013
  ident: 10.1016/j.jclinepi.2017.10.021_bib7
  article-title: Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)60108-7
– volume: 36
  start-page: 293
  year: 1980
  ident: 10.1016/j.jclinepi.2017.10.021_bib27
  article-title: Bias reduction using Mahalanobis-metric matching
  publication-title: Biometrics
  doi: 10.2307/2529981
– volume: 360
  start-page: 961
  year: 2009
  ident: 10.1016/j.jclinepi.2017.10.021_bib30
  article-title: Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0804626
– volume: 42
  start-page: 1
  year: 2011
  ident: 10.1016/j.jclinepi.2017.10.021_bib28
  article-title: Multivariate and propensity score matching software automated balance optimization: the matching package R
  publication-title: J Stat Softw
  doi: 10.18637/jss.v042.i07
– volume: 315
  start-page: 1735
  year: 2016
  ident: 10.1016/j.jclinepi.2017.10.021_bib8
  article-title: Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention
  publication-title: JAMA
  doi: 10.1001/jama.2016.3775
– volume: 151
  start-page: 1194
  year: 2006
  ident: 10.1016/j.jclinepi.2017.10.021_bib29
  article-title: The SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery (SYNTAX) study: design, rationale, and run-in phase
  publication-title: Am Heart J
  doi: 10.1016/j.ahj.2005.07.017
– volume: 82
  start-page: 661
  year: 2004
  ident: 10.1016/j.jclinepi.2017.10.021_bib2
  article-title: Evidence-based medicine, heterogeneity of treatment effects, and the trouble with averages
  publication-title: Milbank Q
  doi: 10.1111/j.0887-378X.2004.00327.x
– volume: 298
  start-page: 1209
  year: 2007
  ident: 10.1016/j.jclinepi.2017.10.021_bib12
  article-title: Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification
  publication-title: JAMA
  doi: 10.1001/jama.298.10.1209
– volume: 21
  start-page: 128
  year: 2010
  ident: 10.1016/j.jclinepi.2017.10.021_bib15
  article-title: Assessing the performance of prediction models: a framework for traditional and novel measures
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181c30fb2
– volume: 3
  start-page: 143
  year: 1984
  ident: 10.1016/j.jclinepi.2017.10.021_bib23
  article-title: Regression modelling strategies for improved prognostic prediction
  publication-title: Stat Med
  doi: 10.1002/sim.4780030207
– volume: 68
  start-page: 687
  year: 2012
  ident: 10.1016/j.jclinepi.2017.10.021_bib42
  article-title: Assessing treatment-selection markers using a potential outcomes framework
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01722.x
– volume: 15
  start-page: 413
  year: 1986
  ident: 10.1016/j.jclinepi.2017.10.021_bib26
  article-title: Identifiability, exchangeability, and epidemiological confounding
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/15.3.413
– volume: 365
  start-page: 256
  year: 2005
  ident: 10.1016/j.jclinepi.2017.10.021_bib11
  article-title: Treating individuals 3: from subgroups to individuals: general principles and the example of carotid endarterectomy
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)70156-2
– volume: 247
  start-page: 2543
  year: 1982
  ident: 10.1016/j.jclinepi.2017.10.021_bib14
  article-title: Evaluating the yield of medical tests
  publication-title: JAMA
  doi: 10.1001/jama.1982.03320430047030
– volume: 381
  start-page: 1899
  year: 2013
  ident: 10.1016/j.jclinepi.2017.10.021_bib16
  article-title: SYNTAX score II
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)61151-4
– volume: 68
  start-page: 1366
  year: 2015
  ident: 10.1016/j.jclinepi.2017.10.021_bib25
  article-title: Estimates of absolute treatment benefit for individual patients required careful modeling of statistical interactions
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2015.02.012
– volume: 333
  start-page: 1581
  year: 1995
  ident: 10.1016/j.jclinepi.2017.10.021_bib36
  article-title: Tissue plasminogen activator for acute ischemic stroke
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199512143332401
– volume: 353
  start-page: 2105
  year: 1999
  ident: 10.1016/j.jclinepi.2017.10.021_bib5
  article-title: Prediction of benefit from carotid endarterectomy in individual patients: a risk-modelling study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(98)11415-0
– volume: 11
  start-page: 85
  year: 2010
  ident: 10.1016/j.jclinepi.2017.10.021_bib4
  article-title: Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal
  publication-title: Trials
  doi: 10.1186/1745-6215-11-85
– volume: 37
  start-page: 2957
  year: 2006
  ident: 10.1016/j.jclinepi.2017.10.021_bib34
  article-title: The stroke-thrombolytic predictive instrument: a predictive instrument for intravenous thrombolysis in acute ischemic stroke
  publication-title: Stroke
  doi: 10.1161/01.STR.0000249054.96644.c6
– volume: 74
  start-page: 167
  year: 2016
  ident: 10.1016/j.jclinepi.2017.10.021_bib22
  article-title: A calibration hierarchy for risk models was defined: from utopia to empirical data
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2015.12.005
– volume: 57
  start-page: 556
  year: 2015
  ident: 10.1016/j.jclinepi.2017.10.021_bib43
  article-title: Graphical assessment of incremental value of novel markers in prediction models: from statistical to decision analytical perspectives
  publication-title: Biom J
  doi: 10.1002/bimj.201300260
– volume: 350
  start-page: h454
  year: 2015
  ident: 10.1016/j.jclinepi.2017.10.021_bib9
  article-title: Improving diabetes prevention with benefit based tailored treatment: risk based reanalysis of diabetes prevention program
  publication-title: BMJ
  doi: 10.1136/bmj.h454
– volume: 8
  start-page: 14
  year: 2007
  ident: 10.1016/j.jclinepi.2017.10.021_bib44
  article-title: Method for evaluating prediction models that apply the results of randomized trials to individual patients
  publication-title: Trials
  doi: 10.1186/1745-6215-8-14
– volume: 316
  start-page: 250
  year: 1987
  ident: 10.1016/j.jclinepi.2017.10.021_bib46
  article-title: Decision analysis
  publication-title: N Engl J Med
  doi: 10.1056/NEJM198701293160505
SSID ssj0017075
Score 2.4900053
Snippet Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment...
Objectives Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 59
SubjectTerms Acute ischemic stroke
Calibration
Cardiovascular disease
Clinical decision making
Clinical trials
Concordance
Coronary artery disease
Coronary vessels
Data processing
Decision making
Discrimination
Epidemiology
Heart diseases
Heart surgery
Individualized treatment decisions
Mathematical models
Medical screening
Patients
Performance measurement
Prediction models
Risk
Statistical analysis
Stroke
Syntax
t-Plasminogen activator
Thrombolysis
Treatment benefit
SummonAdditionalLinks – databaseName: Public Health Database
  dbid: 8C1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4s1CQUbi6jbxI45PCFVUFVI5Uak3K35pd1WyC9kVBy79GfD3-kuYSZzQgqDcoiQjxZnxPDzfzBDy2oPKg4BNMu49BChgoJipFGcNXCZVBogAMKN7_KE6OpHvT9VpPnDrMqxy1Im9og4rj2fk-4j9wTrTUr1Zf2Y4NQqzq3mExk1yC2tAMfiqDyaIR6mHRrtFbRQDt6C6VCG83Fti6WFcLxDepfcQ4cXLvxmnP53P3zGUl4zS4T1yN3uT9O3A_vvkRmwfkNvHOV_-kHwDKaBrHITQxUAvzr9D9IvhJrKaYS1R36aZguNKHSi9tNhcnP-guTov0IZuu5i2Z_QTzt3y9Os8trSfnQMGj84RSbMCAYyrbUcnxDrNEJFH5OTw3ceDI5bHLTBf8WLDfOSxDCqpInlXmiCdq5KIUQslgwBem0bVvihCCSqxEdpLIYRymvMYjai1eEx22lUbnxLqRTBJxibW3kiZeGN4kaRxpdPCVXWaETX-Z-tzL3IciXFmR9DZ0o78scgfvA_8mZH9iW49dOO4lkKPbLRjrSloRwsG41pKM1Fmb2TwMv6LdneUGJt1Qmd_SfCMvJoew27GFE3T88piezSO8Fg9I08GAZsWyk0pcLAULOmK6E0vYKfwq0_axbzvGK4hCNdV8ezfn_Wc3IE11AMmfZfsbL5s4wtwuTbuZb-vfgLrPjDT
  priority: 102
  providerName: ProQuest
Title The proposed ‘concordance-statistic for benefit’ provided a useful metric when modeling heterogeneous treatment effects
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895435617303037
https://dx.doi.org/10.1016/j.jclinepi.2017.10.021
https://www.ncbi.nlm.nih.gov/pubmed/29132832
https://www.proquest.com/docview/2001521215
https://www.proquest.com/docview/1964271097
https://pubmed.ncbi.nlm.nih.gov/PMC7448760
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_aFMZexr6XrSsa7NWJLVmW9diFlnSjYWwr5M3YskQcOicsCXsYjP4Z27_Xv2R3sWyajdHBXvwh-cDyne8D_e4O4LVBlYcBWxxwYzBAQQMV6ETyIMdLJ6MSIwDa0T2fJOOL-O1UTvdg1ObCEKzS6_5Gp2-1tR8Z-q85XFbV8GOYaonGHk0wquFQqH044Gjt0x4cHJ-9G0-6zQTV1Nul5wMiuJEoPB_MKQPRLitCeakBAb149Dcb9acP-juU8oZtOr0P97xTyY6b934Ae7Z-CHfO_bb5I_iGwsCW1A9hZUt2ffUDg2CKOonjAaUUbas1M_RfWYG6z1Xr66ufzCfplSxnm5V1m0v2mdpvGfZ1Zmu2baGDdo_NCFCzQDm0i82KdcB15pEij-Hi9OTTaBz4rguBSXi4DozlNiqlk6EzRaTLuCgSJ6xVQsalQJbrXKYmDMsINWMulImFELJQnFurRarEE-jVi9o-A2ZEqV1sc5saHceO55qHLtZFVChRJKnrg2y_c2Z8SXLqjHGZtdizedbyJyP-0Djypw_Djm7ZFOW4lUK1bMzalFNUkhnajVspdUe5I5j_RHvYSkzmVcOK-n6Sz4SuVh9eddP4U9NOTb7lVUZV0jihZFUfnjYC1i2U60hQfylc0o7odQ9QwfDdmbqabQuHK4zFVRI-_48lvYC7eJc2uPVD6K2_bOxLdMvWxRHsD75HeFRThcd0hNfNj4jnNyeT9x9-AZHhQVw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuiGdJKbBIcHRr78PrPVSIR6uUNhFCrdTbYq_XSqKShDpRhbj0Z8Cf4cf0lzBjr00LgnLpzbI9ltczOw_PNzOEPLeg8iBgEwGzFgIUMFCBjiULUjgsZJRDBIAZ3f4g7h2Id4fycIn8aGphEFbZ6MRKUedTi__INxD7g3WmkXw5-xzg1CjMrjYjNFI_WiHfrFqM-cKOXfflBEK4cnPnLfD7BWPbW_tveoGfMhDYmIXzwDrmolwWMixsFulcZFlccOcUlyLnsESdysSGYR6BJki5soJzLjPFmHOaJ4rDc6-RZYE_UDpk-fXW4P2HNo-h6la_YaJlAHfE52qUx-tjLH50sxECzNQ6YsxY9Dfz-Kf7-zuK85xZ3L5Nbnl_lr6qBfAOWXKTu-R632fs75GvIId0hqMYSpfTs9NvEH9jwIvCFmA1U9UomoLrTDNQu8Vofnb6nfr6wJymdFG6YnFEP-HkL0tPhm5Cq-k9YHLpELE8U9gCbrooaYuZpx6kcp8cXAkrHpDOZDpxDwm1PNeFcKlLrBaiYKlmYSF0FmWKZ3FSdIlsvrOxvhs6DuU4Mg3sbWwa_hjkD54H_nTJRks3q_uBXEqhGjaaptoV9LMBk3UppW4pvT9U-zn_RbvWSIzxWqk0v_ZQlzxrL4M-wSRRWvHKYIM2hgBd1SUrtYC1C2U64jjaCpZ0QfTaG7BX-cUrk9Gw6lmuBETGcbj679d6Sm709vt7Zm9nsPuI3IT1JDVCfo105scL9xgcwHn2xO8ySj5e9cb-CTg5dhI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVqq4IP5JKbBIcHRj74_Xe6gQ0EYtpVGFqNSbsde7SiJwUpyoQlz6GPBKPEafhBl7bVoQlEtvkZ2xspl_zzczhDwzYPIgYRMBMwYSFHBQgY4lCzL46GRUQAaAFd39YbxzKN4cyaMl8qPthUFYZWsTa0NdTA2-I-8j9gf7TCPZdx4WcbA1eDE7DnCDFFZa23UamV-zUGzW48Z8k8ee_XIC6Vy1ubsFvH_O2GD7_eudwG8cCEzMwnlgLLNRIZ0MnckjXYg8jx23VnEpCg7H1ZlMTBgWEViFjCsjOOcyV4xZq3miODz3GllR4PUhEVx5tT08eNfVNFQz9jdMtAwgSInP9StPNibYCGlnYwSbqQ3Em7Hob67yz1D4d0TnORc5uElu-NiWvmyE8RZZsuVtsrrvq_d3yFeQSTrDtQyVLejZ6TfIxTH5RcELsLOpHhpNIYymOZhgN56fnX6nvlewoBldVBa4Qj_hFjBDT0a2pPUmH3C_dIS4nimog50uKtrh56kHrNwlh1fCintkuZyW9gGhhhfaCZvZxGghHMs0C53QeZQrnseJ6xHZ_s-p8ZPRcUHHx7SFwE3Slj8p8gevA396pN_RzZrZIJdSqJaNadv5CrY6Bfd1KaXuKH1s1MQ8_0W73kpM6i1Ulf7Spx552t0G24IFo6zmVYrD2hiCdVWP3G8ErDso0xHHNVdwpAui130B55ZfvFOOR_X8ciUgS47DtX__rCdkFRQ8fbs73HtIrsNxkgYsv06W558X9hHEgvP8sVcySj5ctV7_BHy3elY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+proposed+%E2%80%98concordance-statistic+for+benefit%E2%80%99+provided+a+useful+metric+when+modeling+heterogeneous+treatment+effects&rft.jtitle=Journal+of+clinical+epidemiology&rft.au=van+Klaveren%2C+David&rft.au=Steyerberg%2C+Ewout+W.&rft.au=Serruys%2C+Patrick+W&rft.au=Kent%2C+David+M.&rft.date=2018-02-01&rft.issn=0895-4356&rft.eissn=1878-5921&rft.volume=94&rft.spage=59&rft.epage=68&rft_id=info:doi/10.1016%2Fj.jclinepi.2017.10.021&rft_id=info%3Apmid%2F29132832&rft.externalDocID=PMC7448760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4356&client=summon