The proposed ‘concordance-statistic for benefit’ provided a useful metric when modeling heterogeneous treatment effects
Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit–the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predi...
Saved in:
Published in | Journal of clinical epidemiology Vol. 94; pp. 59 - 68 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0895-4356 1878-5921 1878-5921 |
DOI | 10.1016/j.jclinepi.2017.10.021 |
Cover
Abstract | Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit–the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predict treatment benefit.
We analyzed data of the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial and of three recombinant tissue plasminogen activator trials. We assessed alternative prediction models with a conventional risk concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for treatment assignment. The ‘c-for-benefit’ represents the probability that from two randomly chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit also has a higher predicted benefit.
Compared to a model without treatment interactions, the SYNTAX score II had improved ability to discriminate treatment benefit (c-for-benefit 0.590 vs. 0.552), despite having similar risk discrimination (c-statistic 0.725 vs. 0.719). However, for the simplified stroke–thrombolytic predictive instrument (TPI) vs. the original stroke-TPI, the c-for-benefit (0.584 vs. 0.578) was similar.
The proposed methodology has the potential to measure a model's ability to predict treatment benefit not captured with conventional performance metrics. |
---|---|
AbstractList | Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit–the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predict treatment benefit.
We analyzed data of the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial and of three recombinant tissue plasminogen activator trials. We assessed alternative prediction models with a conventional risk concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for treatment assignment. The ‘c-for-benefit’ represents the probability that from two randomly chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit also has a higher predicted benefit.
Compared to a model without treatment interactions, the SYNTAX score II had improved ability to discriminate treatment benefit (c-for-benefit 0.590 vs. 0.552), despite having similar risk discrimination (c-statistic 0.725 vs. 0.719). However, for the simplified stroke–thrombolytic predictive instrument (TPI) vs. the original stroke-TPI, the c-for-benefit (0.584 vs. 0.578) was similar.
The proposed methodology has the potential to measure a model's ability to predict treatment benefit not captured with conventional performance metrics. Objectives Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit-the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predict treatment benefit. Study Design and Setting We analyzed data of the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial and of three recombinant tissue plasminogen activator trials. We assessed alternative prediction models with a conventional risk concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for treatment assignment. The ‘c-for-benefit’ represents the probability that from two randomly chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit also has a higher predicted benefit. Results Compared to a model without treatment interactions, the SYNTAX score II had improved ability to discriminate treatment benefit (c-for-benefit 0.590 vs. 0.552), despite having similar risk discrimination (c-statistic 0.725 vs. 0.719). However, for the simplified stroke-thrombolytic predictive instrument (TPI) vs. the original stroke-TPI, the c-for-benefit (0.584 vs. 0.578) was similar. Conclusion The proposed methodology has the potential to measure a model's ability to predict treatment benefit not captured with conventional performance metrics. Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit-the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predict treatment benefit.OBJECTIVESClinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit-the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predict treatment benefit.We analyzed data of the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial and of three recombinant tissue plasminogen activator trials. We assessed alternative prediction models with a conventional risk concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for treatment assignment. The 'c-for-benefit' represents the probability that from two randomly chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit also has a higher predicted benefit.STUDY DESIGN AND SETTINGWe analyzed data of the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial and of three recombinant tissue plasminogen activator trials. We assessed alternative prediction models with a conventional risk concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for treatment assignment. The 'c-for-benefit' represents the probability that from two randomly chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit also has a higher predicted benefit.Compared to a model without treatment interactions, the SYNTAX score II had improved ability to discriminate treatment benefit (c-for-benefit 0.590 vs. 0.552), despite having similar risk discrimination (c-statistic 0.725 vs. 0.719). However, for the simplified stroke-thrombolytic predictive instrument (TPI) vs. the original stroke-TPI, the c-for-benefit (0.584 vs. 0.578) was similar.RESULTSCompared to a model without treatment interactions, the SYNTAX score II had improved ability to discriminate treatment benefit (c-for-benefit 0.590 vs. 0.552), despite having similar risk discrimination (c-statistic 0.725 vs. 0.719). However, for the simplified stroke-thrombolytic predictive instrument (TPI) vs. the original stroke-TPI, the c-for-benefit (0.584 vs. 0.578) was similar.The proposed methodology has the potential to measure a model's ability to predict treatment benefit not captured with conventional performance metrics.CONCLUSIONThe proposed methodology has the potential to measure a model's ability to predict treatment benefit not captured with conventional performance metrics. |
Author | Steyerberg, Ewout W. Serruys, Patrick W. van Klaveren, David Kent, David M. |
AuthorAffiliation | 3 Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands 4 National Heart and Lung Institute, Imperial College London, London, United Kingdom 2 Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands 1 Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, USA |
AuthorAffiliation_xml | – name: 4 National Heart and Lung Institute, Imperial College London, London, United Kingdom – name: 2 Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands – name: 1 Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, USA – name: 3 Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands |
Author_xml | – sequence: 1 givenname: David surname: van Klaveren fullname: van Klaveren, David email: d.van_klaveren@lumc.nl organization: Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, 800 Washington St, Boston, MA 02111, USA – sequence: 2 givenname: Ewout W. surname: Steyerberg fullname: Steyerberg, Ewout W. organization: Department of Medical Statistics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands – sequence: 3 givenname: Patrick W. surname: Serruys fullname: Serruys, Patrick W. organization: National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LR, United Kingdom – sequence: 4 givenname: David M. surname: Kent fullname: Kent, David M. organization: Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, 800 Washington St, Boston, MA 02111, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29132832$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUs1u1DAYtFAR3RZeoYrEhUsW_8T5kVBFVVFAqsSlnC3H_rLrkNiL7SyquPQx6Ov1SXDYtoK9lJOlzzPj-TxzhA6ss4DQCcFLgkn5tl_2ajAWNmZJManScIkpeYYWpK7qnDeUHKAFrhueF4yXh-gohB4nIK74C3RIG8JozegC_bxaQ7bxbuMC6Ozu5pdyVjmvpVWQhyijCdGorHM-a8FCZ-Ldze1M2BqdCDKbAnTTkI0QfcL9WIPNRqcheVtla4jg3Srx3BSy6EHGEWzMoOtAxfASPe_kEODV_XmMvl58uDr_lF9--fj5_OwyVyXFMVdAgWjecdypljS6aNuyYwAV44VmLahG8lphrInWIFmlCsYYbytKARpWV-wYne50N1M7glbJgpeD2HgzSn8tnDTi3xtr1mLltqIqiroqcRJ4cy_g3fcJQhSjCQqGQf7ZTJCmLGhFcDO_9XoP2rvJ27SeoOn_OSWU8IQ6-dvRo5WHXBKg3AGUdyF46B4hBIu5AKIXDwUQcwHmeSpAIr7bIyozp-jmzczwNP39jg4pj60BL4IykLqgjU-RCe3M0xKnexIzyig5fIPr_xH4Dd2e6-0 |
CitedBy_id | crossref_primary_10_1016_j_jacc_2021_07_027 crossref_primary_10_1186_s13104_021_05862_8 crossref_primary_10_1016_S0140_6736_20_32114_0 crossref_primary_10_1002_sim_10059 crossref_primary_10_1016_j_jclinepi_2019_05_029 crossref_primary_10_1007_s10654_025_01215_y crossref_primary_10_1136_bmjopen_2021_058215 crossref_primary_10_1002_sim_9665 crossref_primary_10_1007_s10742_021_00243_x crossref_primary_10_1136_thorax_2022_219382 crossref_primary_10_1002_sim_10186 crossref_primary_10_1016_j_jacc_2021_02_058 crossref_primary_10_2147_CLEP_S274466 crossref_primary_10_1177_0272989X211064604 crossref_primary_10_1002_sim_9719 crossref_primary_10_1186_s12874_024_02202_9 crossref_primary_10_1016_j_fertnstert_2021_06_018 crossref_primary_10_1002_jrsm_1717 crossref_primary_10_1186_s12874_023_01889_6 crossref_primary_10_1136_bmjopen_2022_065903 crossref_primary_10_1002_sim_9154 crossref_primary_10_1136_bmjopen_2019_035883 crossref_primary_10_1161_CIRCULATIONAHA_122_062626 crossref_primary_10_1371_journal_pone_0292586 crossref_primary_10_1002_cpt_3627 crossref_primary_10_1056_EVIDoa2300041 crossref_primary_10_1097_HEP_0000000000000793 crossref_primary_10_1177_1352458519887343 crossref_primary_10_1016_j_jclinepi_2024_111538 crossref_primary_10_1038_s43856_023_00423_5 crossref_primary_10_1177_09622802221090759 crossref_primary_10_7326_M18_3668 crossref_primary_10_1136_bmj_k4245 crossref_primary_10_1097_ADM_0000000000001313 crossref_primary_10_1016_S2213_2600_24_00405_3 crossref_primary_10_1111_dme_15183 crossref_primary_10_1186_s41512_023_00154_0 crossref_primary_10_1016_j_jhepr_2022_100621 crossref_primary_10_1097_HEP_0000000000000548 crossref_primary_10_1186_s13063_021_05489_x crossref_primary_10_1200_CCI_24_00037 crossref_primary_10_1161_STROKEAHA_120_032935 crossref_primary_10_1093_ije_dyad037 crossref_primary_10_1007_s11892_020_01353_5 crossref_primary_10_1186_s41512_023_00147_z crossref_primary_10_2337_dbi22_0039 crossref_primary_10_1136_bmjopen_2024_089356 crossref_primary_10_1016_j_jclinane_2022_110957 crossref_primary_10_1186_s12874_023_01974_w crossref_primary_10_1001_jama_2024_2933 crossref_primary_10_1016_j_jclinepi_2021_02_005 crossref_primary_10_1097_CCM_0000000000006371 crossref_primary_10_1186_s12874_020_01145_1 crossref_primary_10_1016_j_ejor_2023_09_018 crossref_primary_10_1002_sim_8481 crossref_primary_10_1186_s12883_024_03546_x |
Cites_doi | 10.1016/S0140-6736(95)90120-5 10.1212/WNL.0000000000001925 10.1016/S0140-6736(13)61152-6 10.7326/M14-2767 10.1056/NEJMoa1301851 10.1161/01.STR.31.4.811 10.1016/S0140-6736(98)08020-9 10.1198/016214504000001880 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1001/jama.282.21.2019 10.1177/0272989X06295361 10.1016/j.ahj.2005.04.020 10.1016/S0002-8703(97)70164-9 10.1136/bmj.e5793 10.1080/01621459.1986.10478354 10.1148/radiology.143.1.7063747 10.1016/j.jclinepi.2014.09.007 10.1016/j.jclinepi.2015.04.005 10.1136/bmj.h5651 10.1016/S0140-6736(13)60108-7 10.2307/2529981 10.1056/NEJMoa0804626 10.18637/jss.v042.i07 10.1001/jama.2016.3775 10.1016/j.ahj.2005.07.017 10.1111/j.0887-378X.2004.00327.x 10.1001/jama.298.10.1209 10.1097/EDE.0b013e3181c30fb2 10.1002/sim.4780030207 10.1111/j.1541-0420.2011.01722.x 10.1093/ije/15.3.413 10.1016/S0140-6736(05)70156-2 10.1001/jama.1982.03320430047030 10.1016/S0140-6736(13)61151-4 10.1016/j.jclinepi.2015.02.012 10.1056/NEJM199512143332401 10.1016/S0140-6736(98)11415-0 10.1186/1745-6215-11-85 10.1161/01.STR.0000249054.96644.c6 10.1016/j.jclinepi.2015.12.005 10.1002/bimj.201300260 10.1136/bmj.h454 10.1186/1745-6215-8-14 10.1056/NEJM198701293160505 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. Copyright Elsevier Science Ltd. Feb 1, 2018 |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Science Ltd. Feb 1, 2018 |
DBID | AAYXX CITATION NPM 3V. 7QL 7QP 7RV 7T2 7T7 7TK 7U7 7U9 7X7 7XB 88C 88E 8AO 8C1 8FD 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 K9. KB0 M0S M0T M1P M2O M7N MBDVC NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1016/j.jclinepi.2017.10.021 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Health and Safety Science Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Research Library (Corporate) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student ProQuest Central Essentials Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library Health & Safety Science Abstracts ProQuest Public Health ProQuest Central Basic Toxicology Abstracts ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1878-5921 |
EndPage | 68 |
ExternalDocumentID | PMC7448760 29132832 10_1016_j_jclinepi_2017_10_021 S0895435617303037 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: U01NS086294 funderid: https://doi.org/10.13039/100000002 – fundername: NINDS NIH HHS grantid: U01 NS086294 |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8G5 8P~ 9JM 9JO AABNK AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYJJ AAYWO ABBQC ABFNM ABIVO ABJNI ABLJU ABMAC ABMMH ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEUYN AEVXI AFFNX AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOMHK APXCP AQUVI ASPBG AVARZ AVWKF AXJTR AZFZN AZQEC BENPR BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 D-I DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HEH HMCUK HMK HMO HVGLF HZ~ IHE J1W KOM L7B M0T M1P M29 M2O M3W M41 MO0 N9A NAPCQ O-L O9- OAUVE OD~ OHT OO0 OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQQKQ PRBVW PROAC PSQYO PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSB SSH SSO SSZ SV3 T5K UAP UKHRP WOW WUQ X7M XPP YHZ Z5R ZGI ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AKYCK AMFUW EFLBG F3I LCYCR RIG ZA5 AAYXX AGRNS ALIPV CITATION NPM 7QL 7QP 7T2 7T7 7TK 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c620t-ce2e1d5f50fcb19d4bb6f3ee7354d3bec9a58c00d1ddea37c43335b722ee93873 |
IEDL.DBID | AIKHN |
ISSN | 0895-4356 1878-5921 |
IngestDate | Thu Aug 21 18:29:40 EDT 2025 Fri Sep 05 07:01:34 EDT 2025 Wed Aug 13 05:17:32 EDT 2025 Thu Apr 03 07:00:02 EDT 2025 Tue Jul 01 03:10:44 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Fri Feb 23 02:32:17 EST 2024 Tue Aug 26 17:23:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Discrimination Prediction models Acute ischemic stroke Treatment benefit Concordance Individualized treatment decisions Coronary artery disease |
Language | English |
License | Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c620t-ce2e1d5f50fcb19d4bb6f3ee7354d3bec9a58c00d1ddea37c43335b722ee93873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Authors’ contributions: All authors contributed to the conception and the design of the study. Patrick Serruys and David Kent acquired the data. David van Klaveren and David Kent analyzed and interpreted the data and wrote the first draft of the paper. All authors contributed to writing the paper and approved the final version. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7448760 |
PMID | 29132832 |
PQID | 2001521215 |
PQPubID | 105585 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7448760 proquest_miscellaneous_1964271097 proquest_journals_2001521215 pubmed_primary_29132832 crossref_primary_10_1016_j_jclinepi_2017_10_021 crossref_citationtrail_10_1016_j_jclinepi_2017_10_021 elsevier_sciencedirect_doi_10_1016_j_jclinepi_2017_10_021 elsevier_clinicalkey_doi_10_1016_j_jclinepi_2017_10_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Elmsford |
PublicationTitle | Journal of clinical epidemiology |
PublicationTitleAlternate | J Clin Epidemiol |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Harrell, Califf, Pryor, Lee, Rosati (bib14) 1982; 247 Kovalchik, Tammemagi, Berg, Caporaso, Riley, Korch (bib10) 2013; 369 Pauker, Kassirer (bib46) 1987; 316 Tajik, Oude Rengerink, Mol, Bossuyt (bib16) 2013; 381 Farooq, van Klaveren, Steyerberg, Meliga, Vergouwe, Chieffo (bib7) 2013; 381 Steyerberg, Vickers, Cook, Gerds, Gonen, Obuchowski (bib15) 2010; 21 Rothwell, Warlow (bib5) 1999; 353 Vickers, Elkin (bib45) 2006; 26 Burke, Sussman, Kent, Hayward (bib41) 2015; 351 Huang, Gilbert, Janes (bib42) 2012; 68 Steyerberg, Vedder, Leening, Postmus, D'Agostino, Van Calster (bib43) 2015; 57 Holland (bib19) 1986; 81 Sussman, Kent, Nelson, Hayward (bib9) 2015; 350 Harrell, Lee, Califf, Pryor, Rosati (bib23) 1984; 3 Serruys, Morice, Kappetein, Colombo, Holmes, Mack (bib30) 2009; 360 Siontis, Tzoulaki, Castaldi, Ioannidis (bib31) 2015; 68 Steyerberg, Harrell (bib32) 2016; 69 Kent, Hayward (bib12) 2007; 298 van Klaveren, Vergouwe, Farooq, Serruys, Steyerberg (bib25) 2015; 68 Van Calster, Nieboer, Vergouwe, De Cock, Pencina, Steyerberg (bib22) 2016; 74 Yeh, Secemsky, Kereiakes, Normand, Gershlick, Cohen (bib8) 2016; 315 Greenland, Robins (bib26) 1986; 15 (bib36) 1995; 333 Sekhon (bib28) 2011; 42 Califf, Woodlief, Harrell, Lee, White, Guerci (bib6) 1997; 133 Vickers, Kent (bib3) 2015; 162 Hernandez, Boersma, Murray, Habbema, Steyerberg (bib40) 2006; 151 Kravitz, Duan, Braslow (bib2) 2004; 82 Hacke, Kaste, Fieschi, von Kummer, Davalos, Meier (bib39) 1998; 352 Steyerberg (bib21) 2009 Kent, Rothwell, Ioannidis, Altman, Hayward (bib4) 2010; 11 Clark, Wissman, Albers, Jhamandas, Madden, Hamilton (bib38) 1999; 282 Rubin (bib27) 1980; 36 Kent, Ruthazer, Decker, Jones, Saver, Bluhmki (bib35) 2015; 85 Rothwell, Mehta, Howard, Gutnikov, Warlow (bib11) 2005; 365 Kent, Selker, Ruthazer, Bluhmki, Hacke (bib34) 2006; 37 Rothwell (bib1) 1995; 345 Hanley, McNeil (bib13) 1982; 143 Harrell, Lee, Mark (bib33) 1996; 15 Hingorani, Windt, Riley, Abrams, Moons, Steyerberg (bib24) 2013; 346 Vickers, Kattan, Daniel (bib44) 2007; 8 Rubin (bib20) 2005; 100 Clark, Albers, Madden, Hamilton (bib37) 2000; 31 Kent, Hayward, Dahabreh (bib18) 2016; 45 Farooq, van Klaveren, Steyerberg, Serruys (bib17) 2013; 381 Ong, Serruys, Mohr, Morice, Kappetein, Holmes (bib29) 2006; 151 Kent (10.1016/j.jclinepi.2017.10.021_bib18) 2016; 45 Huang (10.1016/j.jclinepi.2017.10.021_bib42) 2012; 68 Rothwell (10.1016/j.jclinepi.2017.10.021_bib1) 1995; 345 Farooq (10.1016/j.jclinepi.2017.10.021_bib17) 2013; 381 Greenland (10.1016/j.jclinepi.2017.10.021_bib26) 1986; 15 Van Calster (10.1016/j.jclinepi.2017.10.021_bib22) 2016; 74 Rothwell (10.1016/j.jclinepi.2017.10.021_bib11) 2005; 365 Harrell (10.1016/j.jclinepi.2017.10.021_bib23) 1984; 3 Kent (10.1016/j.jclinepi.2017.10.021_bib4) 2010; 11 Hanley (10.1016/j.jclinepi.2017.10.021_bib13) 1982; 143 Harrell (10.1016/j.jclinepi.2017.10.021_bib14) 1982; 247 Steyerberg (10.1016/j.jclinepi.2017.10.021_bib32) 2016; 69 Harrell (10.1016/j.jclinepi.2017.10.021_bib33) 1996; 15 Kovalchik (10.1016/j.jclinepi.2017.10.021_bib10) 2013; 369 van Klaveren (10.1016/j.jclinepi.2017.10.021_bib25) 2015; 68 Hernandez (10.1016/j.jclinepi.2017.10.021_bib40) 2006; 151 Steyerberg (10.1016/j.jclinepi.2017.10.021_bib21) 2009 Rubin (10.1016/j.jclinepi.2017.10.021_bib20) 2005; 100 Sussman (10.1016/j.jclinepi.2017.10.021_bib9) 2015; 350 Rubin (10.1016/j.jclinepi.2017.10.021_bib27) 1980; 36 Burke (10.1016/j.jclinepi.2017.10.021_bib41) 2015; 351 Califf (10.1016/j.jclinepi.2017.10.021_bib6) 1997; 133 Kent (10.1016/j.jclinepi.2017.10.021_bib12) 2007; 298 Yeh (10.1016/j.jclinepi.2017.10.021_bib8) 2016; 315 Clark (10.1016/j.jclinepi.2017.10.021_bib37) 2000; 31 Kent (10.1016/j.jclinepi.2017.10.021_bib34) 2006; 37 Serruys (10.1016/j.jclinepi.2017.10.021_bib30) 2009; 360 Pauker (10.1016/j.jclinepi.2017.10.021_bib46) 1987; 316 Ong (10.1016/j.jclinepi.2017.10.021_bib29) 2006; 151 Farooq (10.1016/j.jclinepi.2017.10.021_bib7) 2013; 381 Steyerberg (10.1016/j.jclinepi.2017.10.021_bib43) 2015; 57 Vickers (10.1016/j.jclinepi.2017.10.021_bib45) 2006; 26 Tajik (10.1016/j.jclinepi.2017.10.021_bib16) 2013; 381 Clark (10.1016/j.jclinepi.2017.10.021_bib38) 1999; 282 Kent (10.1016/j.jclinepi.2017.10.021_bib35) 2015; 85 Siontis (10.1016/j.jclinepi.2017.10.021_bib31) 2015; 68 Hacke (10.1016/j.jclinepi.2017.10.021_bib39) 1998; 352 Vickers (10.1016/j.jclinepi.2017.10.021_bib44) 2007; 8 Vickers (10.1016/j.jclinepi.2017.10.021_bib3) 2015; 162 Rothwell (10.1016/j.jclinepi.2017.10.021_bib5) 1999; 353 Kravitz (10.1016/j.jclinepi.2017.10.021_bib2) 2004; 82 Hingorani (10.1016/j.jclinepi.2017.10.021_bib24) 2013; 346 Sekhon (10.1016/j.jclinepi.2017.10.021_bib28) 2011; 42 (10.1016/j.jclinepi.2017.10.021_bib36) 1995; 333 Steyerberg (10.1016/j.jclinepi.2017.10.021_bib15) 2010; 21 Holland (10.1016/j.jclinepi.2017.10.021_bib19) 1986; 81 |
References_xml | – volume: 298 start-page: 1209 year: 2007 end-page: 1212 ident: bib12 article-title: Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification publication-title: JAMA – volume: 381 start-page: 639 year: 2013 end-page: 650 ident: bib7 article-title: Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II publication-title: Lancet – volume: 37 start-page: 2957 year: 2006 end-page: 2962 ident: bib34 article-title: The stroke-thrombolytic predictive instrument: a predictive instrument for intravenous thrombolysis in acute ischemic stroke publication-title: Stroke – volume: 31 start-page: 811 year: 2000 end-page: 816 ident: bib37 article-title: The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study. Thromblytic therapy in acute ischemic stroke study investigators publication-title: Stroke – volume: 143 start-page: 29 year: 1982 end-page: 36 ident: bib13 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology – volume: 350 start-page: h454 year: 2015 ident: bib9 article-title: Improving diabetes prevention with benefit based tailored treatment: risk based reanalysis of diabetes prevention program publication-title: BMJ – volume: 81 start-page: 945 year: 1986 end-page: 960 ident: bib19 article-title: Statistics and causal inference publication-title: J Am Stat Assoc – volume: 133 start-page: 630 year: 1997 end-page: 639 ident: bib6 article-title: Selection of thrombolytic therapy for individual patients: development of a clinical model. GUSTO-I Investigators publication-title: Am Heart J – volume: 346 start-page: e5793 year: 2013 ident: bib24 article-title: Prognosis research strategy (PROGRESS) 4: stratified medicine research publication-title: BMJ – volume: 360 start-page: 961 year: 2009 end-page: 972 ident: bib30 article-title: Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease publication-title: N Engl J Med – volume: 82 start-page: 661 year: 2004 end-page: 687 ident: bib2 article-title: Evidence-based medicine, heterogeneity of treatment effects, and the trouble with averages publication-title: Milbank Q – year: 2009 ident: bib21 article-title: Clinical prediction models: a practical approach to development, validation, and updating – volume: 57 start-page: 556 year: 2015 end-page: 570 ident: bib43 article-title: Graphical assessment of incremental value of novel markers in prediction models: from statistical to decision analytical perspectives publication-title: Biom J – volume: 68 start-page: 687 year: 2012 end-page: 696 ident: bib42 article-title: Assessing treatment-selection markers using a potential outcomes framework publication-title: Biometrics – volume: 151 start-page: 257 year: 2006 end-page: 264 ident: bib40 article-title: Subgroup analyses in therapeutic cardiovascular clinical trials: are most of them misleading? publication-title: Am Heart J – volume: 68 start-page: 1366 year: 2015 end-page: 1374 ident: bib25 article-title: Estimates of absolute treatment benefit for individual patients required careful modeling of statistical interactions publication-title: J Clin Epidemiol – volume: 68 start-page: 25 year: 2015 end-page: 34 ident: bib31 article-title: External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination publication-title: J Clin Epidemiol – volume: 11 start-page: 85 year: 2010 ident: bib4 article-title: Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal publication-title: Trials – volume: 353 start-page: 2105 year: 1999 end-page: 2110 ident: bib5 article-title: Prediction of benefit from carotid endarterectomy in individual patients: a risk-modelling study publication-title: Lancet – volume: 315 start-page: 1735 year: 2016 end-page: 1749 ident: bib8 article-title: Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention publication-title: JAMA – volume: 3 start-page: 143 year: 1984 end-page: 152 ident: bib23 article-title: Regression modelling strategies for improved prognostic prediction publication-title: Stat Med – volume: 69 start-page: 245 year: 2016 end-page: 247 ident: bib32 article-title: Prediction models need appropriate internal, internal–external, and external validation publication-title: J Clin Epidemiol – volume: 333 start-page: 1581 year: 1995 end-page: 1587 ident: bib36 article-title: Tissue plasminogen activator for acute ischemic stroke publication-title: N Engl J Med – volume: 42 start-page: 1 year: 2011 end-page: 52 ident: bib28 article-title: Multivariate and propensity score matching software automated balance optimization: the matching package R publication-title: J Stat Softw – volume: 74 start-page: 167 year: 2016 end-page: 176 ident: bib22 article-title: A calibration hierarchy for risk models was defined: from utopia to empirical data publication-title: J Clin Epidemiol – volume: 381 start-page: 1899 year: 2013 end-page: 1900 ident: bib17 article-title: SYNTAX score II - Authors' reply publication-title: Lancet – volume: 100 start-page: 322 year: 2005 end-page: 331 ident: bib20 article-title: Causal inference using potential outcomes publication-title: J Am Stat Assoc – volume: 365 start-page: 256 year: 2005 end-page: 265 ident: bib11 article-title: Treating individuals 3: from subgroups to individuals: general principles and the example of carotid endarterectomy publication-title: Lancet – volume: 381 start-page: 1899 year: 2013 ident: bib16 article-title: SYNTAX score II publication-title: Lancet – volume: 316 start-page: 250 year: 1987 end-page: 258 ident: bib46 article-title: Decision analysis publication-title: N Engl J Med – volume: 162 start-page: 866 year: 2015 end-page: 867 ident: bib3 article-title: The lake Wobegon effect: why most patients are at below-average risk publication-title: Ann Intern Med – volume: 36 start-page: 293 year: 1980 end-page: 298 ident: bib27 article-title: Bias reduction using Mahalanobis-metric matching publication-title: Biometrics – volume: 352 start-page: 1245 year: 1998 end-page: 1251 ident: bib39 article-title: Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators publication-title: Lancet – volume: 21 start-page: 128 year: 2010 end-page: 138 ident: bib15 article-title: Assessing the performance of prediction models: a framework for traditional and novel measures publication-title: Epidemiology – volume: 85 start-page: 942 year: 2015 end-page: 949 ident: bib35 article-title: Development and validation of a simplified stroke-thrombolytic predictive instrument publication-title: Neurology – volume: 247 start-page: 2543 year: 1982 end-page: 2546 ident: bib14 article-title: Evaluating the yield of medical tests publication-title: JAMA – volume: 45 start-page: 2184 year: 2016 end-page: 2193 ident: bib18 article-title: Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient-centered evidence publication-title: Int J Epidemiol – volume: 369 start-page: 245 year: 2013 end-page: 254 ident: bib10 article-title: Targeting of low-dose CT screening according to the risk of lung-cancer death publication-title: N Engl J Med – volume: 345 start-page: 1616 year: 1995 end-page: 1619 ident: bib1 article-title: Can overall results of clinical trials be applied to all patients? publication-title: Lancet – volume: 8 start-page: 14 year: 2007 ident: bib44 article-title: Method for evaluating prediction models that apply the results of randomized trials to individual patients publication-title: Trials – volume: 15 start-page: 413 year: 1986 end-page: 419 ident: bib26 article-title: Identifiability, exchangeability, and epidemiological confounding publication-title: Int J Epidemiol – volume: 26 start-page: 565 year: 2006 end-page: 574 ident: bib45 article-title: Decision curve analysis: a novel method for evaluating prediction models publication-title: Med Decis Making – volume: 15 start-page: 361 year: 1996 end-page: 387 ident: bib33 article-title: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Stat Med – volume: 151 start-page: 1194 year: 2006 end-page: 1204 ident: bib29 article-title: The SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery (SYNTAX) study: design, rationale, and run-in phase publication-title: Am Heart J – volume: 351 start-page: h5651 year: 2015 ident: bib41 article-title: Three simple rules to ensure reasonably credible subgroup analyses publication-title: BMJ – volume: 282 start-page: 2019 year: 1999 end-page: 2026 ident: bib38 article-title: Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS Study: a randomized controlled trial. Alteplase thrombolysis for acute noninterventional therapy in ischemic stroke publication-title: JAMA – volume: 345 start-page: 1616 year: 1995 ident: 10.1016/j.jclinepi.2017.10.021_bib1 article-title: Can overall results of clinical trials be applied to all patients? publication-title: Lancet doi: 10.1016/S0140-6736(95)90120-5 – volume: 85 start-page: 942 year: 2015 ident: 10.1016/j.jclinepi.2017.10.021_bib35 article-title: Development and validation of a simplified stroke-thrombolytic predictive instrument publication-title: Neurology doi: 10.1212/WNL.0000000000001925 – volume: 381 start-page: 1899 year: 2013 ident: 10.1016/j.jclinepi.2017.10.021_bib17 article-title: SYNTAX score II - Authors' reply publication-title: Lancet doi: 10.1016/S0140-6736(13)61152-6 – volume: 162 start-page: 866 year: 2015 ident: 10.1016/j.jclinepi.2017.10.021_bib3 article-title: The lake Wobegon effect: why most patients are at below-average risk publication-title: Ann Intern Med doi: 10.7326/M14-2767 – volume: 369 start-page: 245 year: 2013 ident: 10.1016/j.jclinepi.2017.10.021_bib10 article-title: Targeting of low-dose CT screening according to the risk of lung-cancer death publication-title: N Engl J Med doi: 10.1056/NEJMoa1301851 – volume: 31 start-page: 811 year: 2000 ident: 10.1016/j.jclinepi.2017.10.021_bib37 article-title: The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study. Thromblytic therapy in acute ischemic stroke study investigators publication-title: Stroke doi: 10.1161/01.STR.31.4.811 – volume: 352 start-page: 1245 year: 1998 ident: 10.1016/j.jclinepi.2017.10.021_bib39 article-title: Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators publication-title: Lancet doi: 10.1016/S0140-6736(98)08020-9 – volume: 100 start-page: 322 year: 2005 ident: 10.1016/j.jclinepi.2017.10.021_bib20 article-title: Causal inference using potential outcomes publication-title: J Am Stat Assoc doi: 10.1198/016214504000001880 – volume: 15 start-page: 361 year: 1996 ident: 10.1016/j.jclinepi.2017.10.021_bib33 article-title: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – volume: 282 start-page: 2019 year: 1999 ident: 10.1016/j.jclinepi.2017.10.021_bib38 article-title: Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS Study: a randomized controlled trial. Alteplase thrombolysis for acute noninterventional therapy in ischemic stroke publication-title: JAMA doi: 10.1001/jama.282.21.2019 – volume: 26 start-page: 565 year: 2006 ident: 10.1016/j.jclinepi.2017.10.021_bib45 article-title: Decision curve analysis: a novel method for evaluating prediction models publication-title: Med Decis Making doi: 10.1177/0272989X06295361 – volume: 151 start-page: 257 year: 2006 ident: 10.1016/j.jclinepi.2017.10.021_bib40 article-title: Subgroup analyses in therapeutic cardiovascular clinical trials: are most of them misleading? publication-title: Am Heart J doi: 10.1016/j.ahj.2005.04.020 – volume: 133 start-page: 630 year: 1997 ident: 10.1016/j.jclinepi.2017.10.021_bib6 article-title: Selection of thrombolytic therapy for individual patients: development of a clinical model. GUSTO-I Investigators publication-title: Am Heart J doi: 10.1016/S0002-8703(97)70164-9 – volume: 346 start-page: e5793 year: 2013 ident: 10.1016/j.jclinepi.2017.10.021_bib24 article-title: Prognosis research strategy (PROGRESS) 4: stratified medicine research publication-title: BMJ doi: 10.1136/bmj.e5793 – volume: 81 start-page: 945 year: 1986 ident: 10.1016/j.jclinepi.2017.10.021_bib19 article-title: Statistics and causal inference publication-title: J Am Stat Assoc doi: 10.1080/01621459.1986.10478354 – volume: 143 start-page: 29 year: 1982 ident: 10.1016/j.jclinepi.2017.10.021_bib13 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – year: 2009 ident: 10.1016/j.jclinepi.2017.10.021_bib21 – volume: 68 start-page: 25 year: 2015 ident: 10.1016/j.jclinepi.2017.10.021_bib31 article-title: External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2014.09.007 – volume: 69 start-page: 245 year: 2016 ident: 10.1016/j.jclinepi.2017.10.021_bib32 article-title: Prediction models need appropriate internal, internal–external, and external validation publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2015.04.005 – volume: 45 start-page: 2184 year: 2016 ident: 10.1016/j.jclinepi.2017.10.021_bib18 article-title: Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient-centered evidence publication-title: Int J Epidemiol – volume: 351 start-page: h5651 year: 2015 ident: 10.1016/j.jclinepi.2017.10.021_bib41 article-title: Three simple rules to ensure reasonably credible subgroup analyses publication-title: BMJ doi: 10.1136/bmj.h5651 – volume: 381 start-page: 639 year: 2013 ident: 10.1016/j.jclinepi.2017.10.021_bib7 article-title: Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II publication-title: Lancet doi: 10.1016/S0140-6736(13)60108-7 – volume: 36 start-page: 293 year: 1980 ident: 10.1016/j.jclinepi.2017.10.021_bib27 article-title: Bias reduction using Mahalanobis-metric matching publication-title: Biometrics doi: 10.2307/2529981 – volume: 360 start-page: 961 year: 2009 ident: 10.1016/j.jclinepi.2017.10.021_bib30 article-title: Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease publication-title: N Engl J Med doi: 10.1056/NEJMoa0804626 – volume: 42 start-page: 1 year: 2011 ident: 10.1016/j.jclinepi.2017.10.021_bib28 article-title: Multivariate and propensity score matching software automated balance optimization: the matching package R publication-title: J Stat Softw doi: 10.18637/jss.v042.i07 – volume: 315 start-page: 1735 year: 2016 ident: 10.1016/j.jclinepi.2017.10.021_bib8 article-title: Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention publication-title: JAMA doi: 10.1001/jama.2016.3775 – volume: 151 start-page: 1194 year: 2006 ident: 10.1016/j.jclinepi.2017.10.021_bib29 article-title: The SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery (SYNTAX) study: design, rationale, and run-in phase publication-title: Am Heart J doi: 10.1016/j.ahj.2005.07.017 – volume: 82 start-page: 661 year: 2004 ident: 10.1016/j.jclinepi.2017.10.021_bib2 article-title: Evidence-based medicine, heterogeneity of treatment effects, and the trouble with averages publication-title: Milbank Q doi: 10.1111/j.0887-378X.2004.00327.x – volume: 298 start-page: 1209 year: 2007 ident: 10.1016/j.jclinepi.2017.10.021_bib12 article-title: Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification publication-title: JAMA doi: 10.1001/jama.298.10.1209 – volume: 21 start-page: 128 year: 2010 ident: 10.1016/j.jclinepi.2017.10.021_bib15 article-title: Assessing the performance of prediction models: a framework for traditional and novel measures publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181c30fb2 – volume: 3 start-page: 143 year: 1984 ident: 10.1016/j.jclinepi.2017.10.021_bib23 article-title: Regression modelling strategies for improved prognostic prediction publication-title: Stat Med doi: 10.1002/sim.4780030207 – volume: 68 start-page: 687 year: 2012 ident: 10.1016/j.jclinepi.2017.10.021_bib42 article-title: Assessing treatment-selection markers using a potential outcomes framework publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01722.x – volume: 15 start-page: 413 year: 1986 ident: 10.1016/j.jclinepi.2017.10.021_bib26 article-title: Identifiability, exchangeability, and epidemiological confounding publication-title: Int J Epidemiol doi: 10.1093/ije/15.3.413 – volume: 365 start-page: 256 year: 2005 ident: 10.1016/j.jclinepi.2017.10.021_bib11 article-title: Treating individuals 3: from subgroups to individuals: general principles and the example of carotid endarterectomy publication-title: Lancet doi: 10.1016/S0140-6736(05)70156-2 – volume: 247 start-page: 2543 year: 1982 ident: 10.1016/j.jclinepi.2017.10.021_bib14 article-title: Evaluating the yield of medical tests publication-title: JAMA doi: 10.1001/jama.1982.03320430047030 – volume: 381 start-page: 1899 year: 2013 ident: 10.1016/j.jclinepi.2017.10.021_bib16 article-title: SYNTAX score II publication-title: Lancet doi: 10.1016/S0140-6736(13)61151-4 – volume: 68 start-page: 1366 year: 2015 ident: 10.1016/j.jclinepi.2017.10.021_bib25 article-title: Estimates of absolute treatment benefit for individual patients required careful modeling of statistical interactions publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2015.02.012 – volume: 333 start-page: 1581 year: 1995 ident: 10.1016/j.jclinepi.2017.10.021_bib36 article-title: Tissue plasminogen activator for acute ischemic stroke publication-title: N Engl J Med doi: 10.1056/NEJM199512143332401 – volume: 353 start-page: 2105 year: 1999 ident: 10.1016/j.jclinepi.2017.10.021_bib5 article-title: Prediction of benefit from carotid endarterectomy in individual patients: a risk-modelling study publication-title: Lancet doi: 10.1016/S0140-6736(98)11415-0 – volume: 11 start-page: 85 year: 2010 ident: 10.1016/j.jclinepi.2017.10.021_bib4 article-title: Assessing and reporting heterogeneity in treatment effects in clinical trials: a proposal publication-title: Trials doi: 10.1186/1745-6215-11-85 – volume: 37 start-page: 2957 year: 2006 ident: 10.1016/j.jclinepi.2017.10.021_bib34 article-title: The stroke-thrombolytic predictive instrument: a predictive instrument for intravenous thrombolysis in acute ischemic stroke publication-title: Stroke doi: 10.1161/01.STR.0000249054.96644.c6 – volume: 74 start-page: 167 year: 2016 ident: 10.1016/j.jclinepi.2017.10.021_bib22 article-title: A calibration hierarchy for risk models was defined: from utopia to empirical data publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2015.12.005 – volume: 57 start-page: 556 year: 2015 ident: 10.1016/j.jclinepi.2017.10.021_bib43 article-title: Graphical assessment of incremental value of novel markers in prediction models: from statistical to decision analytical perspectives publication-title: Biom J doi: 10.1002/bimj.201300260 – volume: 350 start-page: h454 year: 2015 ident: 10.1016/j.jclinepi.2017.10.021_bib9 article-title: Improving diabetes prevention with benefit based tailored treatment: risk based reanalysis of diabetes prevention program publication-title: BMJ doi: 10.1136/bmj.h454 – volume: 8 start-page: 14 year: 2007 ident: 10.1016/j.jclinepi.2017.10.021_bib44 article-title: Method for evaluating prediction models that apply the results of randomized trials to individual patients publication-title: Trials doi: 10.1186/1745-6215-8-14 – volume: 316 start-page: 250 year: 1987 ident: 10.1016/j.jclinepi.2017.10.021_bib46 article-title: Decision analysis publication-title: N Engl J Med doi: 10.1056/NEJM198701293160505 |
SSID | ssj0017075 |
Score | 2.4900053 |
Snippet | Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment... Objectives Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 59 |
SubjectTerms | Acute ischemic stroke Calibration Cardiovascular disease Clinical decision making Clinical trials Concordance Coronary artery disease Coronary vessels Data processing Decision making Discrimination Epidemiology Heart diseases Heart surgery Individualized treatment decisions Mathematical models Medical screening Patients Performance measurement Prediction models Risk Statistical analysis Stroke Syntax t-Plasminogen activator Thrombolysis Treatment benefit |
SummonAdditionalLinks | – databaseName: Public Health Database dbid: 8C1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4s1CQUbi6jbxI45PCFVUFVI5Uak3K35pd1WyC9kVBy79GfD3-kuYSZzQgqDcoiQjxZnxPDzfzBDy2oPKg4BNMu49BChgoJipFGcNXCZVBogAMKN7_KE6OpHvT9VpPnDrMqxy1Im9og4rj2fk-4j9wTrTUr1Zf2Y4NQqzq3mExk1yC2tAMfiqDyaIR6mHRrtFbRQDt6C6VCG83Fti6WFcLxDepfcQ4cXLvxmnP53P3zGUl4zS4T1yN3uT9O3A_vvkRmwfkNvHOV_-kHwDKaBrHITQxUAvzr9D9IvhJrKaYS1R36aZguNKHSi9tNhcnP-guTov0IZuu5i2Z_QTzt3y9Os8trSfnQMGj84RSbMCAYyrbUcnxDrNEJFH5OTw3ceDI5bHLTBf8WLDfOSxDCqpInlXmiCdq5KIUQslgwBem0bVvihCCSqxEdpLIYRymvMYjai1eEx22lUbnxLqRTBJxibW3kiZeGN4kaRxpdPCVXWaETX-Z-tzL3IciXFmR9DZ0o78scgfvA_8mZH9iW49dOO4lkKPbLRjrSloRwsG41pKM1Fmb2TwMv6LdneUGJt1Qmd_SfCMvJoew27GFE3T88piezSO8Fg9I08GAZsWyk0pcLAULOmK6E0vYKfwq0_axbzvGK4hCNdV8ezfn_Wc3IE11AMmfZfsbL5s4wtwuTbuZb-vfgLrPjDT priority: 102 providerName: ProQuest |
Title | The proposed ‘concordance-statistic for benefit’ provided a useful metric when modeling heterogeneous treatment effects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0895435617303037 https://dx.doi.org/10.1016/j.jclinepi.2017.10.021 https://www.ncbi.nlm.nih.gov/pubmed/29132832 https://www.proquest.com/docview/2001521215 https://www.proquest.com/docview/1964271097 https://pubmed.ncbi.nlm.nih.gov/PMC7448760 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_aFMZexr6XrSsa7NWJLVmW9diFlnSjYWwr5M3YskQcOicsCXsYjP4Z27_Xv2R3sWyajdHBXvwh-cDyne8D_e4O4LVBlYcBWxxwYzBAQQMV6ETyIMdLJ6MSIwDa0T2fJOOL-O1UTvdg1ObCEKzS6_5Gp2-1tR8Z-q85XFbV8GOYaonGHk0wquFQqH044Gjt0x4cHJ-9G0-6zQTV1Nul5wMiuJEoPB_MKQPRLitCeakBAb149Dcb9acP-juU8oZtOr0P97xTyY6b934Ae7Z-CHfO_bb5I_iGwsCW1A9hZUt2ffUDg2CKOonjAaUUbas1M_RfWYG6z1Xr66ufzCfplSxnm5V1m0v2mdpvGfZ1Zmu2baGDdo_NCFCzQDm0i82KdcB15pEij-Hi9OTTaBz4rguBSXi4DozlNiqlk6EzRaTLuCgSJ6xVQsalQJbrXKYmDMsINWMulImFELJQnFurRarEE-jVi9o-A2ZEqV1sc5saHceO55qHLtZFVChRJKnrg2y_c2Z8SXLqjHGZtdizedbyJyP-0Djypw_Djm7ZFOW4lUK1bMzalFNUkhnajVspdUe5I5j_RHvYSkzmVcOK-n6Sz4SuVh9eddP4U9NOTb7lVUZV0jihZFUfnjYC1i2U60hQfylc0o7odQ9QwfDdmbqabQuHK4zFVRI-_48lvYC7eJc2uPVD6K2_bOxLdMvWxRHsD75HeFRThcd0hNfNj4jnNyeT9x9-AZHhQVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuiGdJKbBIcHRr78PrPVSIR6uUNhFCrdTbYq_XSqKShDpRhbj0Z8Cf4cf0lzBjr00LgnLpzbI9ltczOw_PNzOEPLeg8iBgEwGzFgIUMFCBjiULUjgsZJRDBIAZ3f4g7h2Id4fycIn8aGphEFbZ6MRKUedTi__INxD7g3WmkXw5-xzg1CjMrjYjNFI_WiHfrFqM-cKOXfflBEK4cnPnLfD7BWPbW_tveoGfMhDYmIXzwDrmolwWMixsFulcZFlccOcUlyLnsESdysSGYR6BJki5soJzLjPFmHOaJ4rDc6-RZYE_UDpk-fXW4P2HNo-h6la_YaJlAHfE52qUx-tjLH50sxECzNQ6YsxY9Dfz-Kf7-zuK85xZ3L5Nbnl_lr6qBfAOWXKTu-R632fs75GvIId0hqMYSpfTs9NvEH9jwIvCFmA1U9UomoLrTDNQu8Vofnb6nfr6wJymdFG6YnFEP-HkL0tPhm5Cq-k9YHLpELE8U9gCbrooaYuZpx6kcp8cXAkrHpDOZDpxDwm1PNeFcKlLrBaiYKlmYSF0FmWKZ3FSdIlsvrOxvhs6DuU4Mg3sbWwa_hjkD54H_nTJRks3q_uBXEqhGjaaptoV9LMBk3UppW4pvT9U-zn_RbvWSIzxWqk0v_ZQlzxrL4M-wSRRWvHKYIM2hgBd1SUrtYC1C2U64jjaCpZ0QfTaG7BX-cUrk9Gw6lmuBETGcbj679d6Sm709vt7Zm9nsPuI3IT1JDVCfo105scL9xgcwHn2xO8ySj5e9cb-CTg5dhI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVqq4IP5JKbBIcHRj74_Xe6gQ0EYtpVGFqNSbsde7SiJwUpyoQlz6GPBKPEafhBl7bVoQlEtvkZ2xspl_zzczhDwzYPIgYRMBMwYSFHBQgY4lCzL46GRUQAaAFd39YbxzKN4cyaMl8qPthUFYZWsTa0NdTA2-I-8j9gf7TCPZdx4WcbA1eDE7DnCDFFZa23UamV-zUGzW48Z8k8ee_XIC6Vy1ubsFvH_O2GD7_eudwG8cCEzMwnlgLLNRIZ0MnckjXYg8jx23VnEpCg7H1ZlMTBgWEViFjCsjOOcyV4xZq3miODz3GllR4PUhEVx5tT08eNfVNFQz9jdMtAwgSInP9StPNibYCGlnYwSbqQ3Em7Hob67yz1D4d0TnORc5uElu-NiWvmyE8RZZsuVtsrrvq_d3yFeQSTrDtQyVLejZ6TfIxTH5RcELsLOpHhpNIYymOZhgN56fnX6nvlewoBldVBa4Qj_hFjBDT0a2pPUmH3C_dIS4nimog50uKtrh56kHrNwlh1fCintkuZyW9gGhhhfaCZvZxGghHMs0C53QeZQrnseJ6xHZ_s-p8ZPRcUHHx7SFwE3Slj8p8gevA396pN_RzZrZIJdSqJaNadv5CrY6Bfd1KaXuKH1s1MQ8_0W73kpM6i1Ulf7Spx552t0G24IFo6zmVYrD2hiCdVWP3G8ErDso0xHHNVdwpAui130B55ZfvFOOR_X8ciUgS47DtX__rCdkFRQ8fbs73HtIrsNxkgYsv06W558X9hHEgvP8sVcySj5ctV7_BHy3elY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+proposed+%E2%80%98concordance-statistic+for+benefit%E2%80%99+provided+a+useful+metric+when+modeling+heterogeneous+treatment+effects&rft.jtitle=Journal+of+clinical+epidemiology&rft.au=van+Klaveren%2C+David&rft.au=Steyerberg%2C+Ewout+W.&rft.au=Serruys%2C+Patrick+W&rft.au=Kent%2C+David+M.&rft.date=2018-02-01&rft.issn=0895-4356&rft.eissn=1878-5921&rft.volume=94&rft.spage=59&rft.epage=68&rft_id=info:doi/10.1016%2Fj.jclinepi.2017.10.021&rft_id=info%3Apmid%2F29132832&rft.externalDocID=PMC7448760 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4356&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4356&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4356&client=summon |