MiDReG: A method of mining developmentally regulated genes using Boolean implications
We present a method termed mining developmentally regulated genes (MiDReG) to predict genes whose expression is either activated or repressed as precursor cells differentiate. MiDReG does not require gene expression data from intermediate stages of development. MiDReG is based on the gene expression...
        Saved in:
      
    
          | Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 13; pp. 5732 - 5737 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          National Academy of Sciences
    
        30.03.2010
     National Acad Sciences  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0027-8424 1091-6490 1091-6490  | 
| DOI | 10.1073/pnas.0913635107 | 
Cover
| Abstract | We present a method termed mining developmentally regulated genes (MiDReG) to predict genes whose expression is either activated or repressed as precursor cells differentiate. MiDReG does not require gene expression data from intermediate stages of development. MiDReG is based on the gene expression patterns between the initial and terminal stages of the differentiation pathway, coupled with "if-then" rules (Boolean implications) mined from large-scale microarray databases. MiDReG uses two gene expression-based seed conditions that mark the initial and the terminal stages of a given differentiation pathway and combines the statistically inferred Boolean implications from these seed conditions to identify the relevant genes. The method was validated by applying it to B-cell development. The algorithm predicted 62 genes that are expressed after the KIT+ progenitor cell stage and remain expressed through CD19+ and AICDA+ germinal center B cells. qRT-PCR of 14 of these genes on sorted B-cell progenitors confirmed that the expression of 10 genes is indeed stably established during B-cell differentiation. Review of the published literature of knockout mice revealed that of the predicted genes, 63.4% have defects in B-cell differentiation and function and 22% have a role in the B cell according to other experiments, and the remaining 14.6% are not characterized. Therefore, our method identified novel gene candidates for future examination of their role in B-cell development. These data demonstrate the power of MiDReG in predicting functionally important intermediate genes in a given developmental pathway that is defined by a mutually exclusive gene expression pattern. | 
    
|---|---|
| AbstractList | We present a method termed mining developmentally regulated genes (MiDReG) to predict genes whose expression is either activated or repressed as precursor cells differentiate. MiDReG does not require gene expression data from intermediate stages of development. MiDReG is based on the gene expression patterns between the initial and terminal stages of the differentiation pathway, coupled with "if-then" rules (Boolean implications) mined from large-scale microarray databases. MiDReG uses two gene expression-based seed conditions that mark the initial and the terminal stages of a given differentiation pathway and combines the statistically inferred Boolean implications from these seed conditions to identify the relevant genes. The method was validated by applying it to B-cell development. The algorithm predicted 62 genes that are expressed after the KIT+ progenitor cell stage and remain expressed through CD19+ and AICDA+ germinal center B cells. qRT-PCR of 14 of these genes on sorted B-cell progenitors confirmed that the expression of 10 genes is indeed stably established during B-cell differentiation. Review of the published literature of knockout mice revealed that of the predicted genes, 63.4% have defects in B-cell differentiation and function and 22% have a role in the B cell according to other experiments, and the remaining 14.6% are not characterized. Therefore, our method identified novel gene candidates for future examination of their role in B-cell development. These data demonstrate the power of MiDReG in predicting functionally important intermediate genes in a given developmental pathway that is defined by a mutually exclusive gene expression pattern. We present a method termed mining developmentally regulated genes (MiDReG) to predict genes whose expression is either activated or repressed as precursor cells differentiate. MiDReG does not require gene expression data from intermediate stages of development. MiDReG is based on the gene expression patterns between the initial and terminal stages of the differentiation pathway, coupled with "if-then" rules (Boolean implications) mined from large-scale microarray databases. MiDReG uses two gene expression-based seed conditions that mark the initial and the terminal stages of a given differentiation pathway and combines the statistically inferred Boolean implications from these seed conditions to identify the relevant genes. The method was validated by applying it to B-cell development. The algorithm predicted 62 genes that are expressed after the KIT+ progenitor cell stage and remain expressed through CD19+ and AICDA+ germinal center B cells. qRT-PCR of 14 of these genes on sorted B-cell progenitors confirmed that the expression of 10 genes is indeed stably established during B-cell differentiation. Review of the published literature of knockout mice revealed that of the predicted genes, 63.4% have defects in B-cell differentiation and function and 22% have a role in the B cell according to other experiments, and the remaining 14.6% are not characterized. Therefore, our method identified novel gene candidates for future examination of their role in B-cell development. These data demonstrate the power of MiDReG in predicting functionally important intermediate genes in a given developmental pathway that is defined by a mutually exclusive gene expression pattern.We present a method termed mining developmentally regulated genes (MiDReG) to predict genes whose expression is either activated or repressed as precursor cells differentiate. MiDReG does not require gene expression data from intermediate stages of development. MiDReG is based on the gene expression patterns between the initial and terminal stages of the differentiation pathway, coupled with "if-then" rules (Boolean implications) mined from large-scale microarray databases. MiDReG uses two gene expression-based seed conditions that mark the initial and the terminal stages of a given differentiation pathway and combines the statistically inferred Boolean implications from these seed conditions to identify the relevant genes. The method was validated by applying it to B-cell development. The algorithm predicted 62 genes that are expressed after the KIT+ progenitor cell stage and remain expressed through CD19+ and AICDA+ germinal center B cells. qRT-PCR of 14 of these genes on sorted B-cell progenitors confirmed that the expression of 10 genes is indeed stably established during B-cell differentiation. Review of the published literature of knockout mice revealed that of the predicted genes, 63.4% have defects in B-cell differentiation and function and 22% have a role in the B cell according to other experiments, and the remaining 14.6% are not characterized. Therefore, our method identified novel gene candidates for future examination of their role in B-cell development. These data demonstrate the power of MiDReG in predicting functionally important intermediate genes in a given developmental pathway that is defined by a mutually exclusive gene expression pattern. We present a method termed mining developmentally regulated genes (MiDReG) to predict genes whose expression is either activated or repressed as precursor cells differentiate. MiDReG does not require gene expression data from intermediate stages of development. MiDReG is based on the gene expression patterns between the initial and terminal stages of the differentiation pathway, coupled with "if-then" rules (Boolean implications) mined from large-scale microarray databases. MiDReG uses two gene expression-based seed conditions that mark the initial and the terminal stages of a given differentiation pathway and combines the statistically inferred Boolean implications from these seed conditions to identify the relevant genes. The method was validated by applying it to B-cell development. The algorithm predicted 62 genes that are expressed after the KIT+ progenitor cell stage and remain expressed through CD19+ and AICDA+ germinal center B cells. qRT-PCR of 14 of these genes on sorted B-cell progenitors confirmed that the expression of 10 genes is indeed stably established during B-cell differentiation. Review of the published literature of knockout mice revealed that of the predicted genes, 63.4% have defects in B-cell differentiation and function and 22% have a role in the B cell according to other experiments, and the remaining 14.6% are not characterized. Therefore, our method identified novel gene candidates for future examination of their role in B-cell development. These data demonstrate the power of MiDReG in predicting functionally important intermediate genes in a given developmental pathway that is defined by a mutually exclusive gene expression pattern. [PUBLICATION ABSTRACT]  | 
    
| Author | Seita, Jun Inlay, Matthew A Weissman, Irving L Bhattacharya, Deepta Sahoo, Debashis Plevritis, Sylvia K Dill, David L  | 
    
| Author_xml | – sequence: 1 fullname: Sahoo, Debashis – sequence: 2 fullname: Seita, Jun – sequence: 3 fullname: Bhattacharya, Deepta – sequence: 4 fullname: Inlay, Matthew A – sequence: 5 fullname: Weissman, Irving L – sequence: 6 fullname: Plevritis, Sylvia K – sequence: 7 fullname: Dill, David L  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20231483$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFUU1v1DAUtFAR3S6cOQERF05pn78SuwekUqAgFSEBe7acxNl65dghTor23-NlFwI90JP1_GZGM_NO0JEP3iD0FMMphpKe9V7HU5CYFpSnjwdogdOUF0zCEVoAkDIXjLBjdBLjBgAkF_AIHRMgFDNBF2j1yb79Yq7Os4usM-NNaLLQZp311q-zxtwaF_rO-FE7t80Gs56cHk2TrY03MZviDvUmBGe0z2zXO1vr0QYfH6OHrXbRPDm8S7R6_-7b5Yf8-vPVx8uL67wusBxz2ULLilLzxgjWYqxlmoqSag68BAkNro2EilImSw6MijSUDHiLRYWrqqJLBHvdyfd6-yO5VP1gOz1sFQa1a0jtGlJzQ4nyek_pp6ozTZ3CDXqmBW3Vvxtvb9Q63CoiOJYUksCrg8AQvk8mjqqzsTbOaW_CFFXJSCFIQdn9SEqxoJBUl-jlHeQmTINP1SkCmBGBU4Alev638z-Wfx8zAfgeUA8hxsG0qrbjr4OkINb9p5KzO7z7S3xxsLJbzOhSYap4SUlCPNsjNnEMw-yVF0U6rpgVWh2UXg82qtXXlDXVIQihVNKf_bjefw | 
    
| CitedBy_id | crossref_primary_10_3390_biom12121782 crossref_primary_10_7554_eLife_69160 crossref_primary_10_1016_j_stem_2025_02_013 crossref_primary_10_1073_pnas_1116110108 crossref_primary_10_1016_j_placenta_2011_07_005 crossref_primary_10_1097_CMR_0000000000000440 crossref_primary_10_1371_journal_pone_0273524 crossref_primary_10_1103_PhysRevLett_107_188701 crossref_primary_10_1016_j_ebiom_2023_104719 crossref_primary_10_1063_1_4807481 crossref_primary_10_1038_s41467_021_24470_5 crossref_primary_10_1073_pnas_1120605109 crossref_primary_10_1371_journal_pone_0102119 crossref_primary_10_1111_cgf_12386 crossref_primary_10_1109_TCBB_2024_3487434 crossref_primary_10_1186_1742_4682_10_37 crossref_primary_10_1016_j_artmed_2012_01_001 crossref_primary_10_18632_oncotarget_23973 crossref_primary_10_1590_1414_431X20143792 crossref_primary_10_1103_PhysRevResearch_2_043432 crossref_primary_10_1111_cei_12658 crossref_primary_10_1002_gcc_23124 crossref_primary_10_3390_cancers13174296 crossref_primary_10_1016_j_jbc_2023_105390 crossref_primary_10_3389_fphys_2020_00275 crossref_primary_10_1073_pnas_1310212110 crossref_primary_10_1038_nbt_1947 crossref_primary_10_1111_febs_15236 crossref_primary_10_4137_CIN_S14054 crossref_primary_10_1038_s42003_022_03168_4 crossref_primary_10_1002_pld3_123 crossref_primary_10_1038_ncb2610 crossref_primary_10_1186_s12859_020_03941_4 crossref_primary_10_1016_j_ebiom_2021_103390 crossref_primary_10_1016_j_ebiom_2022_104185 crossref_primary_10_1186_s12859_022_04915_4  | 
    
| Cites_doi | 10.1038/nature06159 10.1074/jbc.274.26.18470 10.1084/jem.174.1.63 10.1016/S1074-7613(00)80268-X 10.1101/gad.1836009 10.1093/nar/30.1.207 10.1371/journal.pgen.0010028 10.1007/s11064-008-9867-6 10.1093/intimm/12.3.313 10.1038/75556 10.1056/NEJMoa032520 10.4049/jimmunol.148.7.2012 10.1186/gb-2006-7-5-r36 10.1182/blood-2002-06-1931 10.1016/0092-8674(86)90346-6 10.1093/nar/gng015 10.1038/35000501 10.1093/emboj/16.23.7118 10.1126/science.1067518 10.1038/35004599 10.1210/mend.16.6.0865 10.1186/gb-2008-9-10-r157 10.1073/pnas.89.4.1502 10.1016/S1357-2725(99)00076-X 10.1146/annurev.immunol.19.1.595 10.1046/j.1432-0436.2003.700606.x 10.4049/jimmunol.148.9.2909 10.1073/pnas.0437996100 10.1038/ng1532 10.1089/106652700750050961 10.1016/1074-7613(95)90131-0 10.4049/jimmunol.179.10.6808 10.1016/0092-8674(88)90492-8  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright National Academy of Sciences Mar 30, 2010 | 
    
| Copyright_xml | – notice: Copyright National Academy of Sciences Mar 30, 2010 | 
    
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| DOI | 10.1073/pnas.0913635107 | 
    
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef MEDLINE Virology and AIDS Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 1091-6490 | 
    
| EndPage | 5737 | 
    
| ExternalDocumentID | 10.1073/pnas.0913635107 PMC2851930 2002732591 20231483 10_1073_pnas_0913635107 107_13_5732 25665058 US201301822339  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature  | 
    
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: T32 CA009151 – fundername: NIAID NIH HHS grantid: 5R01AI047458 – fundername: NIAID NIH HHS grantid: R01 AI047457 – fundername: NIDDK NIH HHS grantid: K01DK078318 – fundername: NCI NIH HHS grantid: U56 CA112973 – fundername: NIDDK NIH HHS grantid: K01 DK078318 – fundername: NCI NIH HHS grantid: R01 CA086065 – fundername: NIAID NIH HHS grantid: T32 AI007290 – fundername: NIAID NIH HHS grantid: R01 AI047458 – fundername: NCI NIH HHS grantid: K99 CA151673  | 
    
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM ADTOC AFHIN AFQQW UNPAY  | 
    
| ID | FETCH-LOGICAL-c619t-9f0f467a5de84f11a9467673a5057090d1ce90b334975043890b7405f18b1bbb3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0027-8424 1091-6490  | 
    
| IngestDate | Sun Oct 26 03:31:12 EDT 2025 Thu Aug 21 18:06:39 EDT 2025 Fri Sep 05 09:41:58 EDT 2025 Thu Sep 04 15:48:16 EDT 2025 Tue Oct 28 08:16:06 EDT 2025 Sat May 31 02:11:36 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Wed Oct 01 01:21:31 EDT 2025 Wed Nov 11 00:30:44 EST 2020 Thu May 29 08:41:03 EDT 2025 Wed Dec 27 19:15:38 EST 2023  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Language | English | 
    
| License | Freely available online through the PNAS open access option. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c619t-9f0f467a5de84f11a9467673a5057090d1ce90b334975043890b7405f18b1bbb3 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Contributed by Irving L Weissman, December 22, 2009 (sent for review September 10, 2009) 2Present address: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110. Author contributions: D.S. designed research; D.S., J.S., D.B., M.A.I., and D.L.D. performed research; D.S. and D.L.D. contributed new reagents/analytic tools; D.S., J.S., D.B., M.A.I., I.L.W., S.K.P., and D.L.D. analyzed data; and D.S., J.S., D.B., M.A.I., I.L.W., S.K.P., and D.L.D. wrote the paper. D.S. and D.L.D. designed MiDReG. D.S., J.S., D.B., and M.A.I. validated MiDReG for B-cell development. S.K.P. helped conceptualize the direction of the MiDReG project.  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.pnas.org/content/pnas/107/13/5732.full.pdf | 
    
| PMID | 20231483 | 
    
| PQID | 201428191 | 
    
| PQPubID | 42026 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | crossref_citationtrail_10_1073_pnas_0913635107 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2851930 pubmed_primary_20231483 fao_agris_US201301822339 proquest_journals_201428191 crossref_primary_10_1073_pnas_0913635107 proquest_miscellaneous_742682634 unpaywall_primary_10_1073_pnas_0913635107 jstor_primary_25665058 proquest_miscellaneous_733183019 pnas_primary_107_13_5732  | 
    
| ProviderPackageCode | RNA PNE CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-03-30 | 
    
| PublicationDateYYYYMMDD | 2010-03-30 | 
    
| PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-30 day: 30  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington  | 
    
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS | 
    
| PublicationTitleAlternate | Proc Natl Acad Sci U S A | 
    
| PublicationYear | 2010 | 
    
| Publisher | National Academy of Sciences National Acad Sciences  | 
    
| Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences  | 
    
| References | Liao F (e_1_3_3_15_2) 1992; 148 Gold MR (e_1_3_3_17_2) 1992; 148 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 Simmons PJ (e_1_3_3_8_2) 1994; 22 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Butte AJ (e_1_3_3_24_2) 2000; 5 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2  | 
    
| References_xml | – ident: e_1_3_3_31_2 doi: 10.1038/nature06159 – ident: e_1_3_3_14_2 doi: 10.1074/jbc.274.26.18470 – ident: e_1_3_3_6_2 doi: 10.1084/jem.174.1.63 – ident: e_1_3_3_10_2 doi: 10.1016/S1074-7613(00)80268-X – ident: e_1_3_3_28_2 doi: 10.1101/gad.1836009 – ident: e_1_3_3_33_2 doi: 10.1093/nar/30.1.207 – ident: e_1_3_3_4_2 doi: 10.1371/journal.pgen.0010028 – ident: e_1_3_3_1_2 doi: 10.1007/s11064-008-9867-6 – ident: e_1_3_3_11_2 doi: 10.1093/intimm/12.3.313 – volume: 5 start-page: 415 year: 2000 ident: e_1_3_3_24_2 article-title: Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements publication-title: Pac Symp Biocomput – ident: e_1_3_3_18_2 doi: 10.1038/75556 – ident: e_1_3_3_20_2 doi: 10.1056/NEJMoa032520 – volume: 148 start-page: 2012 year: 1992 ident: e_1_3_3_17_2 article-title: Membrane ig cross-linking regulates phosphatidylinositol 3-kinase in B lymphocytes publication-title: J Immunol doi: 10.4049/jimmunol.148.7.2012 – ident: e_1_3_3_27_2 doi: 10.1186/gb-2006-7-5-r36 – ident: e_1_3_3_19_2 doi: 10.1182/blood-2002-06-1931 – ident: e_1_3_3_22_2 doi: 10.1016/0092-8674(86)90346-6 – ident: e_1_3_3_34_2 doi: 10.1093/nar/gng015 – ident: e_1_3_3_21_2 doi: 10.1038/35000501 – ident: e_1_3_3_16_2 doi: 10.1093/emboj/16.23.7118 – ident: e_1_3_3_32_2 doi: 10.1126/science.1067518 – ident: e_1_3_3_9_2 doi: 10.1038/35004599 – ident: e_1_3_3_3_2 doi: 10.1210/mend.16.6.0865 – ident: e_1_3_3_5_2 doi: 10.1186/gb-2008-9-10-r157 – ident: e_1_3_3_7_2 doi: 10.1073/pnas.89.4.1502 – ident: e_1_3_3_12_2 doi: 10.1016/S1357-2725(99)00076-X – ident: e_1_3_3_13_2 doi: 10.1146/annurev.immunol.19.1.595 – ident: e_1_3_3_2_2 doi: 10.1046/j.1432-0436.2003.700606.x – volume: 22 start-page: 157 year: 1994 ident: e_1_3_3_8_2 article-title: C-kit is expressed by primitive human hematopoietic cells that give rise to colony-forming cells in stroma-dependent or cytokine-supplemented culture publication-title: Exp Hematol – volume: 148 start-page: 2909 year: 1992 ident: e_1_3_3_15_2 article-title: A nuclear DNA-binding protein expressed during early stages of B cell differentiation interacts with diverse segments within and 3′ of the ig H chain gene cluster publication-title: J Immunol doi: 10.4049/jimmunol.148.9.2909 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.0437996100 – ident: e_1_3_3_25_2 doi: 10.1038/ng1532 – ident: e_1_3_3_26_2 doi: 10.1089/106652700750050961 – ident: e_1_3_3_30_2 doi: 10.1016/1074-7613(95)90131-0 – ident: e_1_3_3_35_2 doi: 10.4049/jimmunol.179.10.6808 – ident: e_1_3_3_29_2 doi: 10.1016/0092-8674(88)90492-8  | 
    
| SSID | ssj0009580 | 
    
| Score | 2.1693058 | 
    
| Snippet | We present a method termed mining developmentally regulated genes (MiDReG) to predict genes whose expression is either activated or repressed as precursor... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref pnas jstor fao  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 5732 | 
    
| SubjectTerms | AICDA (Activation-Induced Cytidine Deaminase) Algorithms Animals Antigens, CD19 - genetics B lymphocytes Biological Sciences Boolean data Cell differentiation Cell Differentiation - genetics Cell division Computational Biology Cytidine Deaminase - genetics Data Mining - statistics & numerical data Databases, Genetic Datasets Developmental biology Developmental stages Gene expression Gene Expression Profiling - statistics & numerical data Gene expression regulation Gene Expression Regulation, Developmental Genes Genetics Hematopoietic stem cells Humans knockout mutants Methods Mice microarray technology mining Models, Statistical Oligonucleotide Array Sequence Analysis - statistics & numerical data Physical Sciences Precursor Cells, B-Lymphoid - cytology Precursor Cells, B-Lymphoid - metabolism prediction Progenitor cells quantitative polymerase chain reaction Receptors reverse transcriptase polymerase chain reaction Stem Cell Factor - genetics Stem cells  | 
    
| Title | MiDReG: A method of mining developmentally regulated genes using Boolean implications | 
    
| URI | https://www.jstor.org/stable/25665058 http://www.pnas.org/content/107/13/5732.abstract https://www.ncbi.nlm.nih.gov/pubmed/20231483 https://www.proquest.com/docview/201428191 https://www.proquest.com/docview/733183019 https://www.proquest.com/docview/742682634 https://pubmed.ncbi.nlm.nih.gov/PMC2851930 https://www.pnas.org/content/pnas/107/13/5732.full.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 107 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB416QEuQIG2plDtgUN7sOvNrmMvt_BoK6RWCIgIp9WuvQ4RwY6aRKj8emb8SFKe6tHxeGzvzs5-45l8A_A8MZlKbSRxIcURBihW-UrSYRza2PE8TSuKjYvL_vlQvh1Foy3ot_-FobLKWWHmVRKfqrXR9Z7QD7i84xMuMIAXvYA-TQezLO_Adj9CDN6F7eHlu8Hnup4D3a6su9niZuj3pQpbTp9YVLoCIsPEnZZTE9mN7aiTm7KtSySyUxT9E_D8vX7yzrKYmevvZjrd2JxO78On9rXqmpSvwXJhg_THL4yPt3_vB3CvwatsUBvYDmy54iHsNB5hzo4a2urjRzC8mLx-785esAGr21KzMmffqv4TLFuXJuHTX7MrN6a2YS5jY_K1jKrvx-xlWU6dKdhko8r9MQxP33x8de43TRv8FGOxha_yMEfna6LMJTLn3ChJnHDCUCQUqjDjqVOhFUIqYpZHvIRGgagx54nl1lqxC92iLNw-sB66XombuDKRktKhP0yNE4kNXR7KPJMeBO3c6bRhNKfGGlNdZdZjoWkA9XqyPThaXTCryTz-LrqPxqDNGF2tHn7oUYIXQ7GeEMqD3cpCVioQNSLOjRK8ptKyVh1rLjTNnAcHrRnpxknMNSqVlMfkHrDVWVzdlLIxhSuXc00dNRO8s_qHCGIsjBEFDsdebZbrByNyP5kID-IbBrsSIG7xm2eKyZeKY7yXELQPPThemfb_huzJLWQP4G5dhiF8ET6F7uJq6Z4hulvYQ-icjfhhs6B_AipOSM0 | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB616QEulAJt3QLaA4f2YNf2rmMvt_AoFVIrBFiU02rXXoeIYEdNIlR-PTN-JeWpHh2Px_bu7Ow3nsk3AM8SncvMRAIXUhxhgGKkKwUdxr6JbVBkWU2xcX4xPEvF28vocgOG3X9hqKxyVup5ncSnam10vSf0Ay7v-CTgGMDz0KNP094sLzZhaxghBh_AVnrxbvS5qedAtyuabra4GbpDIf2O0yfmtS6PyDBxpw2oiezadrRZ6KqrSySyUxT9E_D8vX7yzrKc6evvejpd25xOt-FT91pNTcpXb7kwXvbjF8bH27_3fbjX4lU2agxsBzZs-QB2Wo8wZ0ctbfXxQ0jPJ6_e2zfP2Yg1balZVbBvdf8Jlq9Kk_Dpr9mVHVPbMJuzMflaRtX3Y_aiqqZWl2yyVuX-CNLT1x9fnrlt0wY3w1hs4crCL9D56ii3iSiCQEtBnHBcUyTkSz8PMit9w7mQxCyPeAmNAlFjESQmMMbwXRiUVWn3gYXoegVu4lJHUgiL_jDTlifGt4Uvilw44HVzp7KW0Zwaa0xVnVmPuaIBVKvJduCov2DWkHn8XXQfjUHpMbpalX4IKcGLoVjIuXRgt7aQXgWiRsS5UYLX1FpWqmMVcEUz58BhZ0aqdRJzhUoF5TEDB1h_Flc3pWx0aavlXFFHzQTvLP8hghgLY0SOw7HXmOXqwYjcTyTcgfiGwfYCxC1-80w5-VJzjIcJQXvfgePetP83ZAe3kD2Eu00ZBne5_xgGi6ulfYLobmGetkv5J3sqR9w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MiDReG%3A+a+method+of+mining+developmentally+regulated+genes+using+Boolean+implications&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sahoo%2C+Debashis&rft.au=Seita%2C+Jun&rft.au=Bhattacharya%2C+Deepta&rft.au=Inlay%2C+Matthew+A&rft.date=2010-03-30&rft.eissn=1091-6490&rft.volume=107&rft.issue=13&rft.spage=5732&rft_id=info:doi/10.1073%2Fpnas.0913635107&rft_id=info%3Apmid%2F20231483&rft.externalDocID=20231483 | 
    
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F13.cover.gif | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F13.cover.gif |